Optimal Execution: IV. Heterogeneous Beliefs and Market Making

René Carmona

Bendheim Center for Finance
Department of Operations Research & Financial Engineering
Princeton University

Purdue June 21, 2012

The Agents

Market Maker

- Nasdaq definition: agent that places competitive orders on both sides of the order book in exchange for privileges.
- Acts as a scaled-down version of the market.
- In this lecture: Liquidity provider, someone who posts an order book/transaction cost curve.
- Strategy: adapt pricing by reading client flows.

Clients

- In this lecture: Liquidity takers, agents who trade with the Market maker.
- Are information driven.

Theoretical literature

- Early approaches: Hasbrouck(2007), Chakrborti Toke -Patriarca - Abergel(2011)
- ► Inventory models: Garman(1976), Amihud Mendelson(1980)
- ► Informed trader models: Kyle(1985), O'Hara(1995)
- Zero-intelligence models: Gode Sunder(1993), Maslov(2000), Cont(2008)
- Market impact models: Almgren Chriss(2000), Bouchaud -Potters (2006), Schied(2007)

Objective

Propose a **stochastic**, **agent-based** model in which existence and (*tractable* and *realisitc*) properties of the LOB appear as a result of the analysis (**not as hypotheses**)

Client model

Summarize sparsely the link between trade and price dynamics.

Market maker model

Tractable market making strategy based on previous result.

R.C. - K. Webster (2012)

Setup: heterogeneous beliefs

Let

- 1. $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})$ with W a \mathbb{P} -BM that generates \mathbb{F} .
- 2. $\mathbb{F}^k \subset \mathbb{F}$ generated by a \mathbb{P} -BM W^k .
- 3. \mathbb{P}^k s.t. $\mathbb{P}^k|_{\mathcal{F}^k_t} \sim \mathbb{P}|_{\mathcal{F}^k_t}$.
- 4. P_t an Itô process adapted to all $(\mathbb{F}^k)_{k=0...n}$.
- 5. In L^2 and a.s. P_t grows polynomially in t.

NB

Each agent has his /her own distinct *filtration* and *probability measure*. They are potentially mutually exclusive, but the **price process is adapted to all of them**

Anatomy of a trade

- ▶ Midprice P_t announced by the market at time t
- ▶ Market maker proposes a transaction cost curve $c_t(I)$ around P_t
- Market maker cannot differentiate clients pre-trade
- Client triggers a trade of volume It
- ▶ Client obtains volume l_t and pays **cash flow** $P_t l_t + c_t(l_t)$.
- Market maker tries to identify clients post-trade

Setup: transaction costs

Agents behaviors

- ▶ Market maker controls transaction **cost function** $I \mapsto c_t(I)$.
- Client i controls trading volumes/speeds I_t.

Hypotheses

- 1. Marginal costs are defined: $c \in C^1$.
- 2. Clients may choose not to trade, $c_t(0) = 0$ and the midprice is well defined, $c'_t(0) = 0$.
- 3. Marginal costs increase with volume: c_t is convex.
- 4. ct has compact support.

Duality relationship

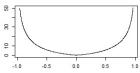
Legendre transform

$$\gamma_t(\alpha) := \sup_{I \in \text{supp}(c_t)} (\alpha I - c_t(I))$$

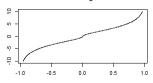
Duality

 c_t convex with compact support $\iff \gamma_t''$ is a positive finite measure.

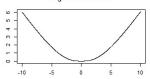
The distribution γ_t'' represents the **order book** formed by the orders of the market maker.



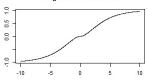
volume vs marginal costs



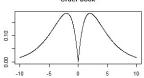
Legendre transform



marginal costs vs volume



Order book



Client model

Client's Objective

Summarize sparsely the link between trade and price dynamics in a general, theoretical framework.

Not trying to build a optimal trading strategy.

Assumptions

- ▶ The client only tries to *predict*, not *cause* price movements.
- ► The client's decision does not affect c_t.

Realistic if the client is 'small enough'.

Client model

- ▶ **Exogeneous state variables** *P*_t and *c*_t are Itô processes. *P*_t has polynomial growth and *c*_t convex with compact support.
- Endogeneous state variables

$$\begin{cases} dL_t^i = l_t^i dt \\ dX_t^i = L_t^i dP_t - c_t(l_t^i) dt \end{cases}$$

 L_t^i is the *total* position of the client. X_t^i is his *wealth*, marked to the midprice. I_t^i , the rate at which he trades, is his *control*.

Objective function

$$J^i = \mathbb{E}_{\mathbb{P}^i} \left[U^i(X^i_{ au^i}, oldsymbol{p}_{ au^i})
ight]$$

with τ^i a stopping time.

Optimal trading strategy

Theorem

Under suitable integrability assumptions on \mathbf{U}^i and τ^i , the optimal strategy is

$$lpha_t^i := c_t'(l_t^i) = \mathbb{E}_{\mathbb{Q}^i} \left[\left. oldsymbol{
ho}_{ au^i} - oldsymbol{P}_t
ight| \mathcal{F}_t^i
ight]$$

with
$$\frac{d\mathbb{Q}^i}{d\mathbb{P}^l} = \frac{\partial_X U^i(X^i_{\tau^i}, p_{\tau^i})}{\mathbb{E}_{\mathbb{P}^l} \left[\partial_X U^i(X^i_{\tau^i}, p_{\tau^i}) \right]}.$$

Testing the client model

Hypotheses

- ▶ Under \mathbb{Q}^i , $\tau^i \sim \exp(\beta^i)$ independent of P_t .

This leads to a *two parameter* model linking trade to price dynamics: (β^i, σ^i) .

Testing the hypotheses on data

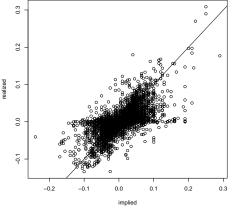
- Assume all clients have one of two time scales.
- choose (β_1, β_2) that minimizes error between implied and realized alpha.

Source

- Nasdaq 'fullview' data: all public quotes, all trades, nanosecond timestamps.
- ▶ Long parsing time: Data goes from 7:00-10:00am.



Two time scales



- ► L¹ regression used.
- ➤ Time scales: 9 (≈ 0.5 seconds) and 158 ticks.
- ► Mean error: 0.026.
- Mean half-spread: 0.063.
- Lower bound on error: 0.005.

Market maker model

Market Maker's Objectives

- Find a *tractable* market making strategy based on previous result.
- ▶ Build a theoretical model for the order book that *replicates* the empirical features described before.

Strategy

Exploit link between trade and price dynamics to dynamically adapt pricing.

Market maker model: endogenous variables

With primal variables

$$\left\{ \begin{array}{ll} dL_t &= -\frac{1}{n} \sum_i I_t^i dt \\ dX_t &= L_t dP_t + \frac{1}{n} \sum_i c_t(I_t^i) dt \end{array} \right.$$

With dual variables

$$\begin{cases} dL_{t} &= -\frac{1}{n} \sum_{i} \gamma_{t}' \left(\alpha_{t}^{i} \right) dt \\ dX_{t} &= L_{t} dP_{t} + \frac{1}{n} \sum_{i} \left[\alpha_{t}^{i} \gamma_{t}' \left(\alpha_{t}^{i} \right) - \gamma_{t} \left(\alpha_{t}^{i} \right) \right] dt \end{cases}$$

Assume the market maker is risk-neutral.

Model for the α_t^i

Notation

We will denote by $\mu_t(\alpha)$ the client belief distribution, that is, the empirically observed distribution of the (α_t^i) .

Microscopic model(SDE)

$$d\alpha_t^i = -\rho \alpha_t^i dt + \sigma dB_t^i + \nu dB_t$$

mean reversion corresponds to decay of information.

Macroscopic model(SPDE)

$$d\mu_t(\alpha) = \left[\frac{1}{2}\left(\sigma^2 + \nu^2\right)\Delta\mu_t(\alpha) + \rho\nabla\left(\alpha\mu_t(\alpha)\right)\right]dt - \nu\nabla\mu_t(\alpha)dB_t$$

Approximate model for P_t

- Intuition
 - ▶ Do not want to make an explicit model for the price process.
 - ▶ Instead, would like to *infer* the price from client trades.
- Implied alpha relationship

$$lpha_t^i := c_t'(I_t^i) = \mathbb{E}_{\mathbb{Q}^i} \left[\left. \int_t^\infty e^{-eta^i(t-s)} dp_s \right| \mathcal{F}_t^i
ight]$$

Estimator

$$dp_t^{\lambda} := \sum_{i=1}^n \lambda^i \left(\beta^i \alpha_t^i dt - d \alpha_t^i \right)$$

with $\sum \lambda^i = 1$.

Estimation result

Entropic feedback

There exists λ s.t.

$$\mathbb{E}\left|P_t - p_t^{\lambda}\right|^2 \leq \epsilon^2 \frac{1}{n} \sum_i E(\mathbb{Q}^i, \mathbb{P}) \approx -\epsilon^2 \int_0^t \left\langle \log\left(\frac{\gamma_s''}{\mu_s}\right), \mu_s \right\rangle ds$$

with E the entropy function and

$$\epsilon = \sqrt{\frac{n}{\sum_{i} (\sigma^{i})^{-2}}} \le \frac{1}{n} \sum_{i} \sigma^{i}$$

Approximate control problem

State variables

$$\begin{cases} dL_t &= -\langle \gamma_t', \mu_t \rangle dt \\ d\mu_t(\alpha) &= \left[\frac{1}{2} \left(\sigma^2 + \nu^2\right) \Delta \mu_t(\alpha) + \rho \nabla \left(\alpha \mu_t(\alpha)\right)\right] dt - \nu \nabla \mu_t(\alpha) dB_t \end{cases}$$

Objective function

$$J^{\lambda} = \int_{0}^{\infty} e^{-\beta t} \mathbb{E}\left[L_{t} \left\langle id, (\beta \lambda)_{t} \right\rangle + \left\langle -L_{t} \beta id + (id - \bar{\alpha}_{t}) \gamma_{t}' - \gamma_{t}, \mu_{t} \right\rangle\right] dt$$

under the constraint
$$\int_0^\infty \left\langle e^{-\beta t} \log \left(\frac{\gamma_t''}{\mu_t} \right), \mu_t \right\rangle dt \leq C$$
.

Pontryagin

BSDE

The solution to the Pontryagin BSDE gives rise to the market maker's 'shadow alpha':

$$\alpha_t^* = \left\langle id, \lambda_t + \frac{(\beta \lambda)_t - \beta \mu_t}{\beta + \rho} \right\rangle$$

Hamiltonian

$$\mathcal{H}(\gamma, \mu, \alpha^*) = \langle (id - \alpha^*)\gamma' - \gamma + \epsilon \log \gamma'', \mu \rangle$$

Result

Profitability of an order without feedback

Define

$$m(\alpha) = \underbrace{(\alpha - \alpha^*)}_{spread} \cdot \underbrace{\int_{\alpha}^{\infty} \mu}_{filling\ probability} \text{ if } \alpha \geq 0$$

then we have:

$$\mathcal{H}(\gamma,\mu,\alpha^*) = \langle \gamma'', \textit{m} \rangle + \epsilon \, \langle \log \gamma'', \mu \rangle$$

Optimal strategy with feedback

$$\frac{\gamma''(\alpha)}{\mu(\alpha)} = \frac{\epsilon}{C - m(\alpha)}$$

where C is a renormalization constant.

Simulated example

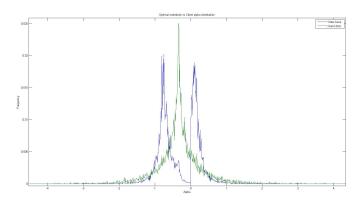


Figure: Blue: Optimal order book γ'' . Green: Client alpha distribution μ .