The Agents

Market Maker

- Nasdaq definition: agent that places competitive orders on both sides of the order book in exchange for privileges.
- In this lecture: **Liquidity provider**, someone who posts an order book (equivalently, a transaction cost curve).
- Strategy: adapt pricing and volumes by *reading client flows*.

Clients

- In this lecture: **Liquidity takers**, agents who trade with the Market maker.
- Clients place market orders.
- Each client has his/her *own information* and acts accordingly.
Theoretical literature

- **Early approaches**: Hasbrouck (2007), Chakrborti - Toke - Patriarca - Abergel (2011)
- **Inventory models**: Garman (1976), Amihud - Mendelson (1980)
Objective: Endogenous Order Book

Propose a **stochastic, agent-based** model in which existence and *(tractable and realistic)* properties of the LOB appear as a result of the analysis *(not as hypotheses)*

<table>
<thead>
<tr>
<th>Client model</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤ Should capture the dependence between trades and price dynamics.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Market maker model</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤ Assumes the clients are rational, and optimizes his/her order book choice</td>
</tr>
</tbody>
</table>

R.C. - K. Webster (2012)
Setup: Heterogeneous Beliefs

Mathematically

1. \((\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})\) with \(W\) a \(\mathbb{P}\)-BM that generates \(\mathbb{F}\).
2. \(\mathbb{F}^k \subset \mathbb{F}\) generated by a \(\mathbb{P}\)-BM \(W^k\).
3. \(\mathbb{P}^k\) s.t. \(\mathbb{P}^k|_{\mathcal{F}_t} \sim \mathbb{P}|_{\mathcal{F}_t}\).
4. \(P_t\) an Itô process adapted to all \((\mathbb{F}^k)_{k=0\ldots n}\).

NB

- Each agent has his /her own filtration & probability measure.
- The filtrations (information structures) are potentially different,
- The price process is adapted to all of them (i.e each client sees the price)
Anatomy of a Trade

- **Midprice** P_t announced by the market at time t
- **Market maker** proposes an **order book** around P_t
- **Market maker** cannot differentiate clients **pre-trade**
- **Client** triggers a **trade** of volume l_t
- **Client** obtains volume l_t and pays **cash flow** $P_t l_t + c_t(l_t)$
 ($l \leftrightarrow c_t(l)$ transaction cost function at time t)
- **Market maker** learns the **identity** of the client **post-trade**
 (assumption depends upon market, true for FX)
Setup: Transaction Costs

Agents behaviors
- Market maker controls transaction cost function \(\ell \mapsto c_t(\ell) \).
- Client \(i \) controls trading volumes/speeds \(l_i \).

Hypotheses

1. **Marginal costs** are defined: \(\ell \mapsto c_t(\ell) \) is differentiable in \(\ell \).
2. Clients may choose **not to trade**, \(c_t(0) = 0 \)
3. The **midprice** is well defined, \(c'_t(0) = 0 \).
4. **Marginal costs** increase with volume: \(c_t \) is convex.
5. \(c_t \) has ”compact domain” (\(\infty \) outside an interval)
Duality Relationship

Legendre transform

\[
\gamma_t(\alpha) := \sup_{l \in \text{supp}(c_t)} (\alpha l - c_t(l))
\]

Duality

\(c_t\) convex with compact domain \(\iff\ \gamma_t''\) is a positive finite measure.

- The distribution \(\gamma_t''\) represents the order book formed by the orders of the market maker.
- If \(\gamma_t''\) has a density \(f(x)\), it is the shape function we used earlier.
Disclaimer: *We are NOT* trying to implement an optimal trading strategy.

Assumptions

- The client only tries to *predict*, not *cause* price movements.
- The client’s decision does not affect c_t.
Client Optimization Problem

- **Exogeneous state variables**
 - P_t non-negative Itô process
 - c_t (random adapted) convex function in a fixed domain

- **Endogeneous state variables**

 \[
 \begin{cases}
 dL^i_t = l^i_t dt \\
 dX^i_t = L^i_t dP_t - c_t(l^i_t) dt
 \end{cases}
 \]

 - l^i_t rate at which client trades (control variable).
 - L^i_t volume or total position of the client
 - X^i_t wealth, marked to the mid-price.

- **Objective function**

 \[J^i = E_{\mathbb{P}^i} \left[U^i(X^i_{\tau^i}, P_{\tau^i}) \right] \]

 - U^i utility function
 - τ^i stopping time
Optimal Trading Strategy

Theorem

Under suitable integrability assumptions on U^i and τ^i, the optimal strategy is

$$\alpha_t^i := c_t'(l_t^i) = \mathbb{E}_{Q^i} \left[P_{\tau^i} - P_t \mid \mathcal{F}_t^i \right]$$

with

$$\frac{dQ^i}{dP^i} = \frac{\partial_X U^i(X_{\tau^i}^i, P_{\tau^i})}{\mathbb{E}_{P^i} \left[\partial_X U^i(X_{\tau^i}^i, P_{\tau^i}) \right]}.$$
Testing the Client Model

Hypotheses

- Under Q^i, $\tau^i \sim \exp(\beta^i)$ independent of P_t.
- $\sigma^i_t := \left| c_t' \left(\frac{r^i_t}{l^i_t} \right) - (p_{\tau^i} - P_t) \right| \leq \frac{\text{spread}}{2}$

This leads to a two parameter model linking trade to price dynamics: (β^i, σ^i).

Testing the hypotheses on data

- Assume all clients have one of two time scales.
- Choose (β_1, β_2) that minimizes error between implied and realized alpha.
Source

- Nasdaq ‘fullview’ data: all public quotes, all trades, nanosecond timestamps.
- Long parsing time: Data goes from 7:00-10:00am.
Two Time Scales

- L^1 regression used.
- Time scales: 9 (≈ 0.5 seconds) and 158 ticks.
- Mean error: 0.026.
- Mean half-spread: 0.063.
- Lower bound on error: 0.005.
Market Maker Optimization Problem

With **primal** variables

\[
\begin{align*}
\frac{dL_t}{dt} &= -\frac{1}{n} \sum_i l^i_t dt \\
\frac{dX_t}{dt} &= L_t dP_t + \frac{1}{n} \sum_i c_t(l^i_t) dt
\end{align*}
\]

Recall \(\alpha^i_t = c^i_t(l^i_t) \) so equivalently \(l^i_t = [c^i_t]^{-1}(\alpha^i_t) = \gamma^i_t(\alpha^i_t) \)

With **dual** variables

\[
\begin{align*}
\frac{dL_t}{dt} &= -\frac{1}{n} \sum_i \gamma^i_t(\alpha^i_t) dt \\
\frac{dX_t}{dt} &= L_t dP_t + \frac{1}{n} \sum_i [\alpha^i_t \gamma^i_t(\alpha^i_t) - \gamma_t(\alpha^i_t)] dt
\end{align*}
\]

We assume the market maker is **risk-neutral**
Model for the α^i_t

- **Notation**
 We will denote by $\mu_t(\alpha)$ the client belief distribution, that is, the empirically observed distribution of the (α^i_t).

- **Microscopic model (SDE)**

 \[
 d\alpha^i_t = -\rho \alpha^i_t \, dt + \sigma dB^i_t + \nu dB_t
 \]

 Mean reversion corresponds to decay of information.

- **Macroscopic model (SPDE)**

 \[
 d\mu_t(\alpha) = \left[\frac{1}{2} (\sigma^2 + \nu^2) \Delta \mu_t(\alpha) + \rho \nabla (\alpha \mu_t(\alpha)) \right] dt - \nu \nabla \mu_t(\alpha) dB_t
 \]
What does that tell us about P_t?

▶ **Intuition**
 - Do not want to make an explicit model for the price process.
 - Instead, would like to *infer* the price from client trades.

▶ **Implied alpha relationship**

\[
\alpha^i_t := c^i_t(l^i_t) = \mathbb{E}_Q^i \left[\int_t^\infty e^{-\beta^i(t-s)} dP_s \bigg| \mathcal{F}^i_t \right]
\]

▶ **Price Proxy**

\[
dP^\lambda_t := \sum_{i=1}^n \lambda^i \left(\beta^i \alpha^i_t dt - d\alpha^i_t \right)
\]

for any set of weights λ^i s.t. $\sum \lambda^i = 1.$
Estimation Result

Entropic feedback

There exists λ s.t.

$$\mathbb{E} \left| P_t - P_t^\lambda \right|^2 \leq \epsilon^2 \frac{1}{n} \sum_i E(Q^i, P) \approx -\epsilon^2 \int_0^t \left\langle \log \left(\frac{\gamma_s''}{\mu_s} \right), \mu_s \right\rangle ds$$

with E the relative entropy (Kullback - Leibler) and

$$\epsilon = \sqrt{\frac{n}{\sum_i (\sigma^i)^{-2}}} \leq \frac{1}{n} \sum_i \sigma^i$$
Approximate Control Problem

State variables

\[
\begin{aligned}
\begin{cases}
\ dL_t &= -\langle \gamma'_t, \mu_t \rangle \ dt \\
\ d\mu_t(\alpha) &= \left[\frac{1}{2} \left(\sigma^2 + \nu^2 \right) \Delta \mu_t(\alpha) + \rho \nabla (\alpha \mu_t(\alpha)) \right] \ dt - \nu \nabla \mu_t(\alpha) dB_t
\end{cases}
\end{aligned}
\]

Objective function

\[
J^\lambda = \int_0^\infty e^{-\beta t} \mathbb{E} \left[L_t \langle \text{id}, (\beta \lambda)_t \rangle + \langle -L_t \beta \text{id} + (\text{id} - \bar{\alpha}_t) \gamma'_t - \gamma_t, \mu_t \rangle \right] \ dt
\]

under the constraint \(\int_0^\infty \left\langle e^{-\beta t} \log \left(\frac{\gamma''_t}{\mu_t} \right), \mu_t \right\rangle \ dt \leq C. \)
(Pontryagin) Stochastic Maximum Principle

BSDE

The solution to the Pontryagin BSDE gives rise to the market maker’s ‘shadow alpha’:

\[
\alpha^*_t = \left\langle id, \lambda_t + \frac{(\beta \lambda)_t - \beta \mu_t}{\beta + \rho} \right\rangle
\]

Hamiltonian

\[
\mathcal{H}(\gamma, \mu, \alpha^*) = \left\langle (id - \alpha^*)\gamma' - \gamma + \epsilon \log \gamma'', \mu \right\rangle
\]
Profitability of an order without feedback

Define

\[m(\alpha) = (\alpha - \alpha^*) \cdot \underbrace{\int_0^\infty}_\text{spread} \underbrace{\mu}_{\text{filling probability}} \quad \text{if } \alpha \geq 0 \]

then we have:

\[\mathcal{H}(\gamma, \mu, \alpha^*) = \langle \gamma'', m \rangle + \epsilon \langle \log \gamma'', \mu \rangle \]

Optimal Strategy with Feedback

\[\gamma''(\alpha) \quad \mu(\alpha) = \frac{\epsilon}{C - m(\alpha)} \]

where \(C \) is a renormalization constant.
Simulation Example

Figure: Blue: Optimal order book γ''. Green: Client alpha distribution μ.