Plan of the Course

- **Commodity Markets**
 - Production, Transportation, Storage, Delivery
 - Spot / Forward Markets

- **Spread Option Valuation**
 - Why Spread Options
 - First Asset Valuation

- **Gas and Power Markets**
 - Physical / Financial Contracts
 - Price Formation
 - Load and Temperature

- **Weather Markets**
 - Weather Exposure
 - Temperature Options

- **More Asset Valuation**
 - Plant Optionality Valuation
 - Financial Valuation
 - Valuing Storage Facilities

- **Emission Markets**
Deregulated Electricity Markets

No More **Utilities monopolies**

Vertical Integration of *production, transportation, distribution* of electricity

Unbundling

Open competitive markets for production and retail
(Typically, grid remains under control)

New Price Formation

Constant *supply - demand* balance (Market forces)
Commodities form a **separate asset class**!

LOCAL STACK – MERIT ORDER (plant on the margin)
Support portfolio management
(producer, retailer, utility, investment banks, ...)

- Different **data analysis**
 (spot, day-ahead, on-peak, off-peak, firm, non-firm, forward, ... , negative prices)

- New instrument **valuation**
 (swing / recall / take-or-pay options, weather and credit derivatives, gas storage, cross commodity derivatives, ...)

- New forms of **hedging** using physical assets
 Perfected by **GS & MS** (power plants, pipelines, tankers, ...)

- Marking to market and new forms of **risk** measures
Degradation of credit exacerbated liquidity problems

- **Credit risk**
 - Understanding the statistics of credit migration
 - Including counter-party risk in valuation
 - Credit derivatives and credit enhancement

- **Reporting** and indexes

- Could **clearing** be a solution?
 - Exchange traded instruments pretty much standardized, but OTC!
 - Design of a minimal set of instruments for **standardization**

- **Collateral** requirements / **margin** calls
 - **Objective valuation** algorithms widely accepted for frequent Mark-to-Market
 - **Netting**
 - Challenge of the dependencies (correlations, copulas,)
 - Integrated approach to risk control
Physical Markets
- Spot (immediate delivery) Markets
- Forward Markets

Volume Explosion with Financially Settled Contracts
- Physical / Financial Contracts
- Exchanges serve as Clearing Houses
- Speculators provide Liquidity

In IB, part of Fixed Income Desk

Seasonality / Storage / Convenience Yield
First Challenge: Constructing Forward Curves

- How can it be a challenge?
 - Just do a PCA!
 - "OK" for Crude Oil (backwardation/contango → 3 factors)
 - Not settled for Gas
 - Does not work for Electricity
 - Extreme **complexity** & **size** of the data (location, grade, peak/off peak, firm/non firm, interruptible, swings, etc)
 - Incomplete and inconsistent sources of information
 - **Liquidity** and wide Bid-Ask spreads (**smoothing**)
 - **Length** of the curve (**extrapolation**)

- Dynamic models **à la HJM**:
Crude Oil

Crude Oil-Brent 1Mth Fwd FOB U$/BBL before Katrina

More Crude Oil Data

Crude Oil-Brent 1Mth Fwd FOB U$/BBL

[Graph showing the price trend of Brent crude oil from 1994 to 2007]
Crude Oil Spot Volatility
Is the Forward the Expected Value of Future Spots?
Examples of Crude Oil Forward Curves

- Backwardation
- Contengo
In financial models where one can hold positions at no cost

\[F(t, T) = S(t)e^{r(T-t)} \]

by a simple **cash & carry arbitrage** argument. In particular

\[F(t, T) = \mathbb{E}\{S(T) \mid \mathcal{F}_t\} \]

for risk neutral expectations.

Perfect Price Discovery

In general (theory of normal **backwardation**)
- \(F(t, T) \) is a **downward biased** estimate of \(S(T) \)
- Spot price exceeds the forward prices
Forward Price = (risk neutral) conditional expectation of future values of **Spot Price**

- No **cash & carry** arbitrage argument
 - Is the spot really tradable?
 - What are its dynamics?
 - How do we *risk-adjust* them?

- **Convenience Yield** for storable commodities
 - Natural Gas, Crude Oil, . . .
 - Correct interest rate to compute present values
 - Does not apply to Electricity
For **storabe** commodities (still same cash & carry arbitrage argument)

\[F(t, T) = S(t)e^{(r-\delta)(T-t)} \]

for \(\delta \geq 0 \) called **convenience yield.** (NOT FOR ELECTRICITY !)

Decompose \(\delta = \delta_1 - c \) with

- \(\delta_1 \) benefit from owning the physical commodity
- \(c \) cost of storage

Then

\[f(t, T) = e^{r(T-t)}e^{-\delta_1(T-t)}e^{-c(T-t)} \]

- \(e^{r(T-t)} \) cost of **financing** the purchase
- \(e^{c(T-t)} \) cost of **storage**
- \(e^{-\delta_1(T-t)} \) sheer **benefit from owning** the physical commodity
Backwardation / Contango Duality

Backwardation
- \(T \leftarrow F(t, T) = S(t) e^{(r+c-\delta_1)(T-t)} \) decreasing if \(r + c < \delta_1 \)
 - Low cost of storage
 - Low interest rate
 - High benefit in holding the commodity

Contango
- \(T \leftarrow F(t, T) = S(t) e^{(r+c-\delta_1)(T-t)} \) increasing if \(r + c \geq \delta_1 \)
Natural Gas
Commodity Convenience Yield Models

Gibson-Schwartz Two-factor model
- S_t commodity spot price
- δ_t convenience yield

Risk Neutral Dynamics

$$dS_t = \left(r_t - \delta_t \right) S_t \, dt + \sigma S_t \, dW^1_t,$$

$$d\delta_t = \kappa(\theta - \delta_t) \, dt + \sigma_\delta \, dW^2_t$$

Major Problems
- Explicit formulae (exponential affine model)
- Convenience yield implied from forward contract prices
- Unstable & Inconsistent ([R.C.-M. Ludkovski](#))
Lack of Consistency

Exponential Affine Model

\[F(t, T) = S_t e^{\int_t^T r_s ds} e^{B(t, T) \delta_t + A(t, T)} \]

where

\[B(t, T) = \frac{e^{-\kappa(T-t)} - 1}{\kappa}, \]
\[A(t, T) = \frac{\kappa \theta + \rho \sigma_s \gamma}{\kappa^2} (1 - e^{-\kappa(T-t)} - \kappa(T-t)) + \]
\[+ \frac{\gamma^2}{\kappa^3} (2\kappa(T-t) - 3 + 4e^{-\kappa(T-t)} - e^{-2\kappa(T-t)}). \]

- For each \(T \), one can imply \(\delta_t \) from \(F(t, T) \)
- Inconsistency in the implied \(\delta_t \)
- Ignores **Maturity Specific** effects
Crude Oil convenience yield implied by a 3 month futures contract (left)
Difference in implied convenience yields between 3 and 12 month contracts.
Use **forward** $F_t = F(t, T_0)$ instead of **spot** S_t (T_0 fixed maturity)

Historical Dynamics

\[
\begin{align*}
 dF_t &= (\mu_t - \delta_t)F_t\,dt + \sigma F_t\,dW_t^1, \\
 d\delta_t &= \kappa(\theta - \delta_t)\,dt + \sigma_\delta\,dW_t^2
\end{align*}
\]

or more generally

\[d\delta_t = b(\delta_t, F_t)\,dt + \sigma_\delta(\delta_t, F_t)dW_t^2\]

We assume

- F_t is **tradable** (hence **observable**)
- (Forward) convenience yield δ_t **not observable** (filtering)

Different from **Bjork-Landen**'s **Risk Neutral Term Structure of Convenience Yield**
Several obstructions

- Cannot store the physical commodity
- Does the forward price converge as the time to maturity goes to 0?

Mathematical spot?

\[S(t) = \lim_{T \downarrow t} F(t, T) \]

Sparse Forward Data

- Lack of transparency (manipulated indexes)
- Poor (or lack of) reporting by fear of law suits
- CCRO white paper(s)
Dynamic Model for Forward Curves

\[n\text{-factor forward curve model} \]

\[
\frac{dF(t, T)}{F(t, T)} = \mu(t, T)dt + \sum_{k=1}^{n} \sigma_k(t, T)dW_k(t) \quad t \leq T
\]

- \(W = (W_1, \ldots, W_n) \) is a \(n \)-dimensional standard Brownian motion,
- drift \(\mu \) and volatilities \(\sigma_k \) are deterministic functions of \(t \) and time-of-maturity \(T \)
- \(\mu(t, T) \equiv 0 \) for pricing
- \(\mu(t, T) \) calibrated to historical data for risk management
Explicit Solution

\[F(t, T) = F(0, T) \exp \left[\int_0^t \left[\mu(s, T) - \frac{1}{2} \sum_{k=1}^n \sigma_k(s, T)^2 \right] ds + \sum_{k=1}^n \int_0^t \sigma_k(s, T) dW_k(s) \right] \]

Forward prices are **log-normal** (deterministic coefficients)

\[F(t, T) = \alpha e^{\beta X - \beta^2 / 2} \]

with \(X \sim N(0, 1) \) and

\[\alpha = F(0, T) \exp \left[\int_0^t \mu(s, T) ds \right], \quad \text{and} \quad \beta = \sqrt{\sum_{k=1}^n \int_0^t \sigma_k(s, T)^2 ds} \]
Dynamics of the Spot Price

Spot price left hand of forward curve

\[S(t) = F(t, t) \]

We get

\[S(t) = F(0, t) \exp \left[\int_0^t [\mu(s, t) - \frac{1}{2} \sum_{k=1}^n \sigma_k(s, t)^2] ds + \sum_{k=1}^n \int_0^t \sigma_k(s, t) dW_k(s) \right] \]

and differentiating both sides we get:

\[
\begin{align*}
dS(t) &= S(t) \left[\left(\frac{1}{F(0, t)} \frac{\partial F(0, t)}{\partial t} + \mu(t, t) + \int_0^t \frac{\partial \mu(s, t)}{\partial t} ds - \frac{1}{2} \sigma_S(t)^2 \right) \\
&\quad - \sum_{k=1}^n \int_0^t \sigma_k(s, t) \frac{\partial \sigma_k(s, t)}{\partial t} ds + \sum_{k=1}^n \int_0^t \frac{\partial \sigma_k(s, t)}{\partial t} dW_k(s) \right) dt + \sum_{k=1}^n \sigma_k(t, t) dW_k(t) \right]\end{align*}
\]

Spot volatility

\[
\sigma_S(t)^2 = \sum_{k=1}^n \sigma_k(t, t)^2. \quad (1)
\]
Hence

\[
\frac{dS(t)}{S(t)} = \left[\frac{\partial \log F(0, t)}{\partial t} + D(t) \right] dt + \sum_{k=1}^{n} \sigma_k(t, t)dW_k(t)
\]

with drift

\[
D(t) = \mu(t, t) - \frac{1}{2} \sigma_S(t)^2 + \int_{0}^{t} \frac{\partial \mu(s, t)}{\partial t} ds - \sum_{k=1}^{n} \int_{0}^{t} \sigma_k(s, t) \frac{\partial \sigma_k(s, t)}{\partial t} ds
\]

\[
+ \sum_{k=1}^{n} \int_{0}^{t} \frac{\partial \sigma_k(s, t)}{\partial t} dW_k(s)
\]
Remarks

- Interpretation of drift (in a risk-neutral setting)
 - logarithmic derivative of the forward can be interpreted as a discount rate (i.e., the running interest rate)
 - \(D(t) \) can be interpreted as a convenience yield
- Drift generally not Markovian
- Particular case \(n = 1, \mu(t, T) \equiv 0, \sigma_1(t, T) = \sigma e^{-\lambda(T-t)} \)

\[
D(t) = \lambda [\log F(0, t) - \log S(t)] + \frac{\sigma^2}{4} \left(1 - e^{-2\lambda t}\right)
\]

\[
\frac{dS(t)}{S(t)} = [\mu(t) - \lambda \log S(t)] dt + \sigma dW(t)
\]

exponential OU
Changing Variables

\[\text{time-of-maturity } T \quad \Rightarrow \quad \text{time-to-maturity } \tau \]

changes dependence upon \(t \)

\[t \leftrightarrow F(t, T) = F(t, t + \tau) = \tilde{F}(t, \tau) \]

Fixed Domain \([0, \infty)\) for \(\tau \leftrightarrow \tilde{F}(t, \tau) \)
Heating Oil Forward Surface
HO PCA Loadings
HO Loadings on their Importance Scale
PCA of Heating Oil Forwards

Comp.1: 0.931
Comp.2: 0.979
Comp.3: 0.99
Comp.4: 0.997
Comp.5: 0.999
Comp.6: 1
Comp.7: 1
Comp.8: 1
Comp.9: 1
Comp.10: 1
HO Loadings on their Importance Scale

0.20
0.15
0.10
0.05
0.0
0 10 20 30
PCA of Henry Hub Natural Gas Forward Prices

0.922

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10
Changing Variables

\[\text{time-of-maturity } T \quad \Rightarrow \quad \text{time-to-maturity } \tau \]

changes dependence upon \(t \)

\[t \hookrightarrow F(t, T) = F(t, t + \tau) = \tilde{F}(t, \tau) \]

For **pricing purposes**

- For \(T \) fixed, \(\{F(t, T)\}_{0 \leq t \leq T} \) **is a martingale**
- For \(\tau \) fixed, \(\{\tilde{F}(t, \tau)\}_{0 \leq t} \) **is NOT a martingale**

\[\tilde{F}(t, \tau) = F(t, t+\tau), \quad \tilde{\mu}(t, \tau) = \mu(t, t+\tau), \quad \text{and} \quad \tilde{\sigma}_k(t, \tau) = \sigma_k(t, t+\tau), \]

In general dynamics become

\[d\tilde{F}(t, \tau) = \tilde{F}(t, \tau) \left[\left(\tilde{\mu}(t, \tau) + \frac{\partial}{\partial \tau} \log \tilde{F}(t, \tau) \right) dt + \sum_{k=1}^{n} \tilde{\sigma}_k(t, \tau) dW_k(t) \right], \quad \tau \geq 0. \]
PCA with Seasonality

Fundamental Assumption

\[
\sigma_k(t, T) = \sigma(t)\sigma_k(T - t) = \sigma(t)\sigma_k(\tau)
\]
for some function \(t \mapsto \sigma(t) \)

Notice

\[
\sigma_S(t) = \tilde{\sigma}(0)\sigma(t)
\]

provided we set:

\[
\tilde{\sigma}(\tau) = \sqrt{\sum_{k=1}^{n} \sigma_k(\tau)^2}.
\]

Conclusion

\(t \mapsto \sigma(t) \) is (up to a constant) the **instantaneous spot volatility**
Rationale for a New PCA

- Fix times-to-maturity $\tau_1, \tau_2, \ldots, \tau_N$
- Assume on each day t, quotes for the forward prices with times-of-maturity $T_1 = t + \tau_1$, $T_2 = t + \tau_2$, \ldots, $T_N = t + \tau_N$ are available

$$
\frac{d\tilde{F}(t, \tau_i)}{\tilde{F}(t, \tau_i)} = \left(\tilde{\mu}(t, \tau_i) + \frac{\partial}{\partial \tau} \log \tilde{F}(t, \tau_i) \right) dt + \sigma(t) \sum_{k=1}^{n} \sigma_k(\tau_i) dW_k(t) \quad i = 1, \ldots, N
$$

Define $F = [\sigma_k(\tau_i)]_{i=1,\ldots,N, k=1,\ldots,n}$.

$$
d \log \tilde{F}(t, \tau_i) = \left(\tilde{\mu}(t, \tau_i) + \frac{\partial}{\partial \tau_i} \log \tilde{F}(t, \tau_i) - \frac{1}{2} \sigma(t)^2 \tilde{\sigma}(\tau_i)^2 \right) dt + \sigma(t) \sum_{k=1}^{n} \sigma_k(\tau_i) dW_k(t),
$$

Instantaneous variance/covariance matrix $\{M(t); t \geq 0\}$ defined by:

$$
d[\log \tilde{F}(\cdot, \tau_i), \log \tilde{F}(\cdot, \tau_j)]_t = M_{i,j}(t) dt
$$

satisfies

$$
M(t) = \sigma(t)^2 \left(\sum_{k=1}^{n} \sigma_k(\tau_i) \sigma_k(\tau_j) \right)
$$

or equivalently

$$
M(t) = \sigma(t)^2 FF^*
$$
Estimate instantaneous spot volatility $\sigma(t)$ (in a rolling window)

Estimate $\mathbf{F}F^*$ from historical data as the empirical auto-covariance of $\ln(F(t, \cdot)) - \ln(F(t - 1, \cdot))$ after normalization by $\sigma(t)$

Instantaneous auto-covariance structure of the entire forward curve becomes time independent

Do SVD of auto-covariance matrix and get

$$\tau \leftrightarrow \sigma_k(\tau)$$

Choose order n of the model from their relative sizes
The Case of Natural Gas

Instantaneous standard deviation of the Henry Hub natural gas spot price computed in a sliding window of length 30 days.
PCA of Henry Hub Natural Gas \(\Delta \)e-Seasonalized Forward Prices

Comp.1: 0.715
Comp.2: 0.902
Comp.3: 0.94
Comp.4: 0.956
Comp.5: 0.965
Comp.6: 0.972
Comp.7: 0.978
Comp.8: 0.982
Comp.9: 0.985
Comp.10: 0.988
HH De-Seasonalized Loadings on their Absolute Importance Scale
Demand, Risk Neutral Firms & Price Formation

- **Finite set** \mathcal{I} of **risk neutral agents/firms**
- **Producing a finite set** \mathcal{K} of **goods**
- Firm $i \in \mathcal{I}$ can use **technology** $j \in \mathcal{J}^{i,k}$ to produce good $k \in \mathcal{K}$
- **Discrete time** $\{0, 1, \cdots, T\}$
- **Demand for Goods**

\[\{D^k(t); \ t = 0, 1, \cdots, T - 1, \ k \in \mathcal{K}\}. \]

- **Production Capacity Limits** $\kappa^{i,j,k} \geq 0$
Goal of Equilibrium Analysis

Find a stochastic process
- for the Prices of goods

\[S = \{ S_t^k \}, k \in K, t \geq 0 \]

satisfying the usual conditions for the existence of a

competitive equilibrium
Individual Firm Problem

- If price of goods S given exogenously
- If firm $i \in \mathcal{I}$ produces $\xi_{t}^{i,j,k}$ of good $k \in \mathcal{K}$ with technology $j \in \mathcal{J}^{i,k}$ during time period $[t, t + 1)$

then P&L of firm i given by

$$L^{S,i}(\xi^{i}) := \sum_{k \in \mathcal{K}} \sum_{j \in \mathcal{J}^{i,k}} \sum_{t=0}^{T-1} (S^{k}_{t} - C_{t}^{i,j,k})\xi_{t}^{i,j,k}$$

Problem for (risk neutral) firm $i \in \mathcal{I}$

$$\max_{\xi^{i}, \ 0 \leq \xi_{t}^{i,j,k} \leq \kappa_{i,j,k}} \mathbb{E}\{L^{S,i}(\xi^{i})\}$$
Classical competitive equilibrium problem!

Representative Agent / Informed Central Planner

chooses optimal **production schedules** and the equilibrium prices S^* are set so that supply meets demand. For each time t

$$(\xi^*_{t,i,j,k})_{i,j,k} = \arg\max_{((\xi_{t,i,j,k})_{i,j,k})_{i\in I, j\in J, k}} \sum_{i\in I} \sum_{j\in J} \sum_{k\in K} -C_{t,i,j,k} \xi_{t,i,j,k}$$

$$\sum_{i\in I} \sum_{j\in J} \xi_{t,i,j,k} = D_{t,k} \quad k \in K$$

$$0 \leq \xi_{t,i,j,k} \leq \kappa_{i,j,k} \quad \text{for } i \in I, j \in J, k \in K$$
Classical competitive equilibrium problem!

Representative Agent / Informed Central Planner

chooses optimal **production schedules** and the equilibrium prices S^* are set so that supply meets demand. For each time t

\[
(\xi^*_{i,j,k})_{i,j,k} = \arg \max_{((\xi^i_{i,j,k})_{i,j,k})_{i \in I, j \in J_i, k}} \sum_{i \in I} \sum_{j \in J_i, k} -C^i_{i,j,k} \xi^i_{i,j,k}
\]

\[
\sum_{i \in I} \sum_{j \in J_i, k} \xi^i_{i,j,k} = D^k_t \quad k \in K
\]

\[
0 \leq \xi^i_{i,j,k} \leq \kappa^i_{i,j,k} \quad \text{for } i \in I, j \in J_i, k \in K
\]
The corresponding prices of the goods are

\[S_{t}^{*k} = \max_{i \in I, j \in J^{i,k}} C_{t}^{i,j,k} 1_{\{\xi_{t}^{*i,j,k} > 0\}} \]

Classical MERIT ORDER

- At each time \(t \) and for each good \(k \)
- Production technologies ranked by increasing production costs \(C_{t}^{i,j,k} \)
- Demand \(D_{t}^{k} \) met by producing from the cheapest technology first
- Equilibrium spot price is the marginal cost of production of the most expansive production technology used to meet demand

Business As Usual
(typical scenario in Deregulated electricity markets)
The corresponding prices of the goods are

\[S_t^{*k} = \max_{i \in I, j \in J^i, k} C_t^{i,j,k} 1_{\{\xi_t^{*i,j,k} > 0\}} , \]

Classical MERIT ORDER

- At each time \(t \) and for each good \(k \)
- Production technologies ranked by increasing production costs \(C_t^{i,j,k} \)
- Demand \(D_t^k \) met by producing from the cheapest technology first
- Equilibrium spot price is the marginal cost of production of the most expansive production technology used to meet demand

Business As Usual
(typical scenario in Deregulated electricity markets)
Reduced Form Models

Based on idea that

"Commodities **Mean Revert**" toward the **cost of production**

Case of power prices

- **Models for ”Spot” Price**
 - Nonlinear effects (exponential OU^2)
 - Jumps diffusion models

- **Structural Models**
 - Inelastic Demand \rightarrow Supply Stack & **Merit Order**

Barlow

- $s_t(x)$ supply at time t when power price is x
- $d_t(x)$ demand at time t when power price is x

Power price at time t is number S_t such that

$$s(S_t) = d_t(S_t)$$
Example of a merit graph (Alberta Power Pool, courtesy M. Barlow)
Barlow’s Proposal for a Dynamic Model

Same supply every day

\[s_t(x) = g(x) \]

Inelastic demand

\[d_t(x) = D_t \]

So

\[S_t = g^{-1}(D_t) = f(D_t) \]

Barlow chooses

\[S_t = \begin{cases} f_\alpha(X_t) & 1 + \alpha X_t > \epsilon_0 \\ \epsilon_0^{1/\alpha} & 1 + \alpha X_t \leq \epsilon_0 \end{cases} \]

for the non-linear function, including a "cut-off",

\[f_\alpha(x) = \begin{cases} (1 + \alpha x)^{1/\alpha}, & \alpha \neq 0 \\ e^x & \alpha = 0 \end{cases} \]

of an OU diffusion

\[dX_t = -\lambda(X_t - \bar{x})dt + \sigma dW_t \]
Monte Carlo Sample from Barlow’s Spot Model (courtesy M. Barlow)
Example of a Monte Carlo Sample from the Exponential of an OU^2
Consider the case of **PJM** (Pennsylvania - New Jersey - Maryland)

- Over 3,000 nodes in the transmission network
- Each day, and for each node
 - Real time prices
 - Day-ahead prices
 - Hour by hour load prediction for the following day

Historical prices

- In 2003 over 100,000 instances of **NEGATIVE PRICES**
 - Geographic clusters
 - Time of the year (*shoulder months*)
 - Time of the day (*night*)

Possible Explanations

- Load miss-predicted
- High temperature volatility
For many contracts, delivery needs to match demand

- **Demand** for energy highly correlated with **temperature**
 - Heating Season (winter) HDD
 - Cooling Season (summer) CDD
- **Stylized Facts** and **First (naive) Models**
 - Electricity demand $= \beta \times \text{weather} + \alpha$
Daily Load versus Daily Temperature (PJM)
For many contracts, delivery needs to match demand

- **Demand** for energy highly correlated with **temperature**
 - Heating Season (winter) HDD
 - Cooling Season (summer) CDD

- **Stylized Facts** and **First (naive) Models**
 - Electricity demand = $\beta \times$ weather + α
 - Not true all the time
 - Time dependent β by filtering!
 - From the stack: Correlation (Gas, Power) = $f($weather$)$
 - No significance, too unstable
 - Could it be because of heavy tails?

- **Weather dynamics** need to be included
 - **Another Source of Incompleteness**
Princeton University Electricity Budget

2.8 M $ over (PU is small)

- The University has its own Power Plant
- Gas Turbine for Electricity & Steam

Major Exposures
- Hot Summer (air conditioning) Spikes in Demand, Gas & Electricity Prices
- Cold Winter (heating) Spikes in Gas Prices
Never Again such a Short Fall !!!

Student (Greg Larkin) Senior Thesis

Hedging Volume Risk
- Protection against the Weather Exposure
- *Temperature Options* on CDDs (Extreme Load)

Hedging Volume & Basis Risk
- Protection against Gas & Electricity Price Spikes
- Gas purchase with *Swing Options*
Mitigating Volume Risk with Swing Options

Exposure to spikes in prices of
- Natural Gas (used to fuel the plant)
- Electricity Spot (in case of overload)

Proposed Solution
- Forward Contracts
- Swing Options

Pretty standard
Mitigating Volume Risk

- Use **Swing Options**
- Multiple Rights to deviate (within bounds) from base load contract level
- **Pricing & Hedging** quite involved!
 - Tree/Forest Based Methods
 - Direct Backward Dynamic Programing Induction
 (à la Jaillet-Ronn-Tompaidis)
 - **New Monte Carlo Methods**
 - Nonparametric Regression (à la Longstaff-Schwarz) Backward Dynamic Programing Induction
Review: **Classical Optimal Stopping Problem: American Option**

- $X_0, X_1, X_2, \ldots, X_n, \ldots$ rewards
- Right to ONE Exercise
- Mathematical Problem

\[
\sup_{0 \leq \tau \leq T} \mathbb{E}\{X_\tau\}
\]

Mathematical Solution

- Snell’s Envelop
- Backward Dynamic Programming Induction in Markovian Case

Standard, Well Understood
In its simplest form the problem of Swing/Recall option pricing is an **Optimal Multiple Stopping Problem**

- $X_0, X_1, X_2, \ldots, X_n, \ldots$ rewards
- Right to N Exercises
- Mathematical Problem

$$\sup_{0 \leq \tau_1 < \tau_2 < \cdots < \tau_N \leq T} \mathbb{E}\{X_{\tau_1} + X_{\tau_2} + \cdots + X_{\tau_N}\}$$

- **Refraction** period θ

$$\tau_1 + \theta < \tau_2 < \tau_2 + \theta < \tau_3 < \cdots < \tau_{N-1} + \theta < \tau_N$$

Part of recall contracts & crucial for continuous time models
Instruments with Multiple American Exercises

- **Ubiquitous in Energy Sector**
 - Swing / Recall contracts
 - End user contracts (EDF)
- **Present in other contexts**
 - Fixed income markets (e.g. chooser swaps)
 - Executive option programs
 - Reload → Multiple exercise, Vesting → Refraction, ⋯
 - Fleet Purchase (airplanes, cars, ⋯)
- **Challenges**
 - Valuation
 - Optimal exercise policies
 - Hedging
Some Mathematical Problems

Recursive re-formulation into a hierarchy of classical optimal stopping problems

- Development of a theory of *Generalized Snell’s Envelop* in continuous time setting
- Find a form of Backward Dynamic Programing Induction in Markovian Case
- Design & implement efficient numerical algorithms for finite horizon case

Results

- Perpetual case: abstract nonsense
 R.C. & S.Dayanik (diffusion), R.C. & N.Touzi (GBM)
- Perpetual case: Characterization of the optimal policies
 R.C. & S.Dayanik (diffusion), R.C. & N.Touzi (GBM)
- Finite horizon case
 Jaillet - Ronn - Tomapidis (Tree) R.C. N.Touzi (GBM) B.Hambly (chooser swap)
Exercise regions for $N = 5$ rights and finite maturity computed by Malliavin-Monte-Carlo.
Mitigation of Volume Risk with Temperature Options

- Rigorous Analysis of the Dependence between the **Budget Shortfall** and **Temperature** in Princeton

- Use of Historical Data (**sparse**) & Define of a **Temperature Protection**
 - Period of the Coverage
 - Form of the Coverage

- Search for the **Nearest Weather Stations** with HDD/CDD Trades
 - La Guardia Airport (LGA)
 - Philadelphia (PHL)

- Define a Portfolio of LGA & PHL forward / option Contracts

- Construct a **LGA / PHL basket**
Pricing: How Much is it Worth to PU?

- **Actuarial / Historical Approach**
 - Burn Analysis
 - Temperature Modeling & Monte Carlo VaR Computations
 - Not Enough Reliable Load Data

- **Expected (Exponential) Utility Maximization (A. Danilova)**
 - Use Gas & Power Contracts
 - Hedging in Incomplete Models
 - Indifference Pricing
 - Very Difficult Numerics (whether PDE’s or Monte Carlo)
Weather is an essential economic factor

- *Weather is not just an environmental issue; it is a major economic factor. At least 1 trillion USD of our economy is weather-sensitive* (William Daley, 1998, US Commerce Secretary)
- **20% of the world economy** is estimated to be affected by weather
- Energy and other industrial sectors, Entertainment and Tourism Industry, ...
- **WRMA**

Weather Derivatives as a **Risk Transfer** Mechanism (**El Karoui - Barrieu**)
Total Notional Value of weather contracts: (in million USD) Price Waterhouse Coopers market survey.
Weather Derivatives

- **OTC** Customer tailored transactions
 - Temperature, Precipitation, Wind, Snow Fall,
- **CME** (≈ 50%) (Temperature - Launched in 1999)
 - 18 American cities
 - 2 Japanese cities (Tokyo and Osaka)
An Example of Precipitation Contract

Physical Underlying Daily Index:
- Precipitation in Paris
- A day is a rainy day if precipitation exceeds 2mm

Season
- 2000: April thru August + September weekends
- 2001: April thru August + September weekends
- 2002: April thru August + September weekends

Aggregate Index
- Total Number of Rainy Days in the Season

Pay-Off
- Strike, Cap, Rate
Who Wanted this Deal?
- A Natural Trying to Hedge RainFall Exposure (Asterix Amusement Park)

Who was willing to take the other side?
- Speculators
- Insurance Companies
- Re-insurance Companies
- Statistical Arbitrageurs
- Investment Banks
- Hedge Funds
- Endowment Funds
-
Other Example: Precipitation / Snow Pack

- City of Sacramento
 - HydroPower Electricity
- Who was on the other side?
 - Large Energy Companies (*Aquila, Enron*)

Who is covering for them?
For a given **location**, on any given day \(t \)

\[
CDD_t = \max\{ T_t - 65, 0\} \quad \text{and} \quad HDD_t = \max\{ 65 - T_t, 0\}
\]

Season
- One Month (CME Contracts)
- May 1st September 30 (CDD season)
- November 1st March 31st (HDD season)

Index
- Aggregate number of DD in the season

\[
l = \sum_{t \in \text{Season}} CDD_t \quad \text{or} \quad l = \sum_{t \in \text{Season}} HDD_t
\]

Pay-Off
- Strike \(K \), Cap \(C \), Rate \(\alpha \)
Call with Cap

Pay-off = \min\{\max\{\alpha \cdot (I - K), 0\}, C\}

\xi = f(DD)

\begin{align*}
\xi &= f(DD) \\
C &= \text{constant line}
\end{align*}
Put with a Floor

\[\xi = f(DD) \]

\[F \]

Pay-off = \(\min\{ \max\{ \alpha \times (K - l), 0 \}, C \} \)
Collar

\[\xi = f(DD) \]

\[C \]

\[K_p \]

\[K_c \]

\[-F \]
Famous Example of Weather Station Change in Charlotte (NC).
Structure: Heating Degree Day (HDD) Floor (Put)

Index: Cumulative HDDs

Term: November 1, 2007 February 28, 2008

Stations:
- New York, LaGuardia 57.20%
- Boston, MA 24.5%
- Philadelphia, PA 12.00%
- Baltimore, MD 6.30%

Floor Strike: 3130 HDDs

Payout: USD 35,000/HDD

Limit: USD 12,500,000

Premium: USD 2,925,000
Weather and Commodity

- **Stand-alone**
 - temperature ($\approx 80\%$)
 - precipitation ($\approx 10\%$)
 - wind ($\approx 5\%$)
 - snow fall ($\approx 5\%$)

- **In-Combination**
 - natural gas
 - power
 - heating oil
 - propane

- Agricultural risk (yield, revenue, input hedges and trading)
- Power outage - contingent power price options
Still Extremely **Illiquid** Markets (except for **front month**)

Misconception: Weather Derivative = Insurance Contract
- No secondary market (Except on **Enron-on-Line!!!**)

Mark-to-Market (or Model)
- Essentially never changes
- At least, Not Until Meteorology kicks in (10-15 days before maturity)
- Then Mark-to-Market (or Model) changes every day
- Contracts change hands
- That’s when major losses occur and money is made

This *hot period* is not considered in academic studies
- Need for **updates:** new information coming in (temperatures, forecasts,)
- Filtering is (again) the solution
La Guardia Daily Average Temperature

Daily Average Temperature at La Guardia.
Prediction on 6/1/2001 of daily temperature over the next four months.
The Future of the Weather Markets

- **Social function** of the weather market
 - Existence of a Market of Professionals (for weather risk transfer)

- **Under attack** from
 - (Re-)Insurance industry (but *high frequency / low cost*)
 - Utilities (trying to pass weather risk to end-customer)
 - EDF program in France
 - Weather Normalization Agreements in US

- **Cross Commodity Products**
 - Gas & Power contracts with *weather triggers/contingencies*
 - New (major) players: **Hedge Funds** provide liquidity

- **World Bank**
 - Use weather derivatives instead of insurance contracts
The Weather Market Today

- **Insurance Companies**: Swiss Re, XL, Munich Re, Ren Re
- **Financial Houses**: Goldman Sachs, Deutsche Bank, Merrill Lynch, SocGen, ABN AMRO
- **Hedge funds**: D. E. Shaw, Tudor, Susquehanna, Centaurus, Wolverine

Where is Trading Taking Place?
- **Exchange**: CME (Chicago Mercantile Exchange) 29 cites globally traded, monthly / seasonal contracts
- **OTC**
- Strong end-user demand within the **energy sector**
Temperature Options: Actuarial/Statistical Approach
Temperature Options: Diffusion Models (Danilova)
Precipitation Options: Markov Models (Diko)

- **Problem:** Pricing in an Incomplete Market
- **Solution:** Indifference Pricing à la Davis

\[
\begin{align*}
 d\theta_t &= p(t, \theta)dt + q(t, \theta)dW_t^{(\theta)} + r(t, \theta)dQ_t^{(\theta)} \\
 dS_t &= S_t[\mu(t, \theta)dt + \sigma(t, \theta)dW_t^{(S)}]
\end{align*}
\]

- \(\theta_t \) **non-tradable**
- \(S_t \) **tradable**
Example: **Exponential Utility Function**

\[
\tilde{p}_t = \frac{\mathbb{E}\{\tilde{\phi}(Y_T) e^{-\int_t^T V(s, Y_s)ds}\}}{\mathbb{E}\{e^{-\int_t^T V(s, Y_s)ds}\}}
\]

where

- \(\tilde{\phi} = e^{-\gamma(1-\rho^2)t}\)

 where \(f(\theta_T)\) is the pay-off function of the European call on the temperature

- \(\tilde{p}_t = e^{-\gamma(1-\rho^2)p_t}\)

 where \(p_t\) is price of the option at time \(t\)

- \(Y_t\) is the diffusion:

\[
dY_t = [g(t, Y_t) - \frac{\mu(t, Y_t) - r}{\sigma(t, Y_t)} h(t, Y_t)] dt + h(t, Y_t) d\tilde{W}_t
\]

starting from \(Y_0 = y\)

- \(V\) is the time dependent potential function:

\[
V(t, y) = -\frac{1 - \rho^2}{2} \frac{(\mu(t, y) - r)^2}{\sigma(t, y)^2}
\]
Enron Global Markets LLC
P.O. BOX 1188
HOUSTON, TX 77251-1188

DATE 11/13/2001
NO. 1000001124

PAY
Eleven Thousand and NO/100 Dollars

TO THE
RENE CARMONA
PRINCETON UNIVERSITY
OR F DEPT
PRINCETON NJ 08544

ORDER OF

CITIBANK DELAWARE, A SUBSIDIARY OF CITICORP
ONE PENN’S WAY, NEW CASTLE, DE 19720

***11,000.00

NOT VALID AFTER 1 YEAR

AUTHORIZED SIGNATURE

1000001124
1031100209
38616564
FIRST CLASS MAIL

Att. Rene Carmona
Princeton University
ORFE Dept
Princeton NJ 08544
Forwards, Convenience Yield, and Weather