Energy Markets II: Spread Options, Weather Derivatives & Asset Valuation

René Carmona

Bendheim Center for Finance Department of Operations Research & Financial Engineering Princeton University

Banff, May 2007

European Call on the difference between two indexes

Calendar Spread Options

Single Commodity at two different times

```
\mathbb{E}\{(I(T_2) - I(T_1) - K)^+\}
```

• Mathematically easier (only one underlier)

European Call on the difference between two indexes

Calendar Spread

- Amaranth largest (and fatal) positions
 - Shoulder Natural Gas Spread (play on inventories)
 - Long March Gas
 - Short April Gas
 - Depletion stops in March, injection starts in April
 - Can be fatal: emphwidow maker spread

Seasonality of Gas Inventory

U.S. Natural Gas Inventories 2005-6

(from Raj Hatharamani ORFE Senior Thesis)

What Killed Amaranth

Cross Commodity

- Crush Spread: between Soybean and soybean products (meal & oil)
- Orack Spread:
 - gasoline crack spread between Crude and Unleaded
 - heating oil crack spread between Crude and HO
- Spark spread

$$S_t = F_E(t) - H_{eff}F_G(t)$$

Heff Heat Rate

Present value of profits for future power generation (case of one fuel)

$$\mathbb{E}\big\{\int_0^T D(0,t)(\tilde{F}_P(t,\tau) - H * \tilde{F}_G(t,\tau) - K)^+ dt\big\}$$

where

- τ > 0 fixed (small)
- D(0, t) **discount factor** to compute present values
- *F*_P(t, τ) (resp. *F*_G(t, τ)) price at time t of a power (resp. gas) contract with delivery t + τ
- H Heat Rate
- K Operation and Maintenance cost (sometimes denoted O&M)

Basket of Spread Options

Deterministic discounting (with constant interest rate)

$$D(t,T)=e^{-r(T-t)}$$

Interchange expectation and integral

$$\int_0^{\tau} \mathbf{e}^{-rt} \mathbb{E}\{(\tilde{F}_{\mathcal{P}}(t,\tau) - H * \tilde{F}_{\mathcal{G}}(t,\tau) - K)^+\} dt$$

Continuous stream of spread options In Practice

Discretize time, say daily

$$\sum_{t=0}^{T} \boldsymbol{e}^{-rt} \mathbb{E}\{(\tilde{F}_{P}(t,\tau) - \boldsymbol{H} * \tilde{F}_{G}(t,\tau) - \boldsymbol{K})^{+}$$

Bin Daily Production in Buckets B_k's (e.g. 5 × 16, 2 × 16, 7 × 8, settlement locations,).

$$\sum_{t=0}^{T} \boldsymbol{e}^{-r(T-t)} \sum_{k} \mathbb{E}\{(\tilde{F}_{P}^{(k)}(t,\tau) - H^{(k)} * \tilde{F}_{G}^{(k)}(t,\tau) - K^{(k)})^{+}\}$$

Basket of Spark Spread Options

Spread Mathematical Challenge

$$p = e^{-rT} \mathbb{E}\{(I_2(T) - I_1(T) - K)^+\}$$

Underlying indexes are spot prices

- Geometric Brownian Motions (K = 0 Margrabe)
- Geometric Ornstein-Uhlembeck (OK for Gas)
- Geometric Ornstein-Uhlembeck with jumps (OK for Power)
- Underlying indexes are forward/futures prices
 - HJM-type models with deterministic coefficients

Problem

finding closed form formula and/or fast/sharp approximation for

$$\mathbb{E}\{(\alpha \boldsymbol{e}^{\gamma X_1} - \beta \boldsymbol{e}^{\delta X_2} - \kappa)^+\}$$

for a Gaussian vector (X_1, X_2) of N(0, 1) random variables with correlation ρ .

Sensitivities?

Easy Case : Exchange Option & Margrabe Formula

$$p = e^{-rT} \mathbb{E}\{(S_2(T) - S_1(T))^+\}$$

- $S_1(T)$ and $S_2(T)$ log-normal
- p given by a formula à la Black-Scholes

$$p = x_2 \Phi(d_1) - x_1 \Phi(d_0)$$

with

$$d_1 = \frac{\ln(x_2/x_1)}{\sigma\sqrt{T}} + \frac{1}{2}\sigma\sqrt{T} \qquad d_0 = \frac{\ln(x_2/x_1)}{\sigma\sqrt{T}} - \frac{1}{2}\sigma\sqrt{T}$$

and:

$$x_1 = S_1(0), \ x_2 = S_2(0), \ \sigma^2 = \sigma_1^2 - 2\rho\sigma_1\sigma_2 + \sigma_2^2$$

Deltas are also given by "closed form formulae".

Proof of Margrabe Formula

$$\rho = e^{-rT} \mathbb{E}_{\mathbb{Q}} \{ (S_2(T) - S_1(T))^+ \} = e^{-rT} \mathbb{E}_{\mathbb{Q}} \left\{ \left(\frac{S_2(T)}{S_1(T)} - 1 \right)^+ S_1(T) \right\}$$

- Q risk-neutral probability measure
- Define (Girsanov) \mathbb{P} by:

$$\frac{d\mathbb{P}}{d\mathbb{Q}}\Big|_{\mathcal{F}_{T}} = S_{1}(T) = \exp\left(-\frac{1}{2}\sigma_{1}^{2}T + \sigma_{1}\hat{W}_{1}(T)\right)$$

● Under P,

- $\hat{W}_1(t) \sigma_1 t$ and $\hat{W}_2(t)$
- S₂/S₁ is geometric Brownian motion under ℙ with volatility

$$\sigma^2 = \sigma_1^2 - 2\rho\sigma_1\sigma_2 + \sigma_2^2$$

$$p = S_1(0)\mathbb{E}_{\mathbb{P}}\left\{\left(\frac{S_2(T)}{S_1(T)} - 1\right)^+\right\}$$

Black-Scholes formula with K = 1, σ as above.

(Classical) Real Option Power Plant Valuation

Real Option Approach

- Lifetime of the plant [T₁, T₂]
- C capacity of the plant (in MWh)
- *H* heat rate of the plant (in MMBtu/MWh)
- Pt price of power on day t
- G_t price of **fuel** (gas) on day t
- K fixed Operating Costs
- Value of the Plant (ORACLE)

$$C\sum_{t=\tau_1}^{\tau_2} e^{-rt} \mathbb{E}\{(P_t - HG_t - K)^+\}$$

String of Spark Spread Options

(Flash Back)

The Calpine - Morgan Stanley Deal

- Calpine needs to refinance USD 8 MM by November 2004
- Jan. 2004: Deutsche Bank: no traction on the offering
- Feb. 2004: The Street thinks Calpine is "heading South"
- March 2004: Morgan Stanley offers a (complex) structured deal
 - A strip of spark spread options on 14 Calpine plants
 - A similar bond offering
- How were the options priced?
 - By Morgan Stanley ?
 - By Calpine ?

c (\$)

Calpine Debt with Deutsche Bank Financing

Debt Distribution for Calpine with Deutsche Bank Refinancing

Calpine Debt with Morgan Stanley Financing

Ψ) (

A Possible Model

Assume that Calpine owns only one plant

MS guarantees its spark spread will be at least κ for M years

Approach à la Leland's Theory of the Value of the Firm

$$V = v - p_0 + \sup_{\tau \leq T} \mathbb{E} \left\{ \int_0^\tau e^{-rt} \overline{\delta}_t \, dt \right\}$$

where

$$\overline{\delta}_t = \begin{cases} (P_t - H * G_t - K) \lor \kappa - c_t & \text{if } 0 \le t \le M \\ (P_t - H * G_t - K)^+ - c_t & \text{if } M \le t \le T \end{cases}$$

and

- v current value of firm's assets
- *p*₀ option premium
- M length of the option life
- κ strike of the option
- ct cost of servicing the existing debt

Expected Bankruptcy Time as function of Coupon

Carmona Energy Ma

Plant Value

Carmona

Debt Value as function of Coupon

Carmona Energy Ma

Pricing Calendar Spreads in Forward Models

Involves prices of two forward contracts with different maturities, say T_1 and T_2

$$S_1(t) = F(t, T_1)$$
 and $S_2(t) = F(t, T_2)$,

Remember forward prices are log-normal

Price at time *t* of a calendar spread option with maturity T and strike K

$$\alpha = e^{-r[T-t]}F(t, T_2), \quad \beta = \sqrt{\sum_{k=1}^n \int_t^T \sigma_k(s, T_2)^2 ds},$$
$$\gamma = e^{-r[T-t]}F(t, T_1), \quad \text{and} \qquad \delta = \sqrt{\sum_{k=1}^n \int_t^T \sigma_k(s, T_1)^2 ds}$$

and $\kappa = e^{-r(T-t)}$ ($\mu \equiv 0$ per risk-neutral dynamics)

$$\rho = \frac{1}{\beta\delta} \sum_{k=1}^{n} \int_{t}^{T} \sigma_{k}(s, T_{1}) \sigma_{k}(s, T_{2}) ds$$

Cross-commodity

- subscript e for forward prices, times-to-maturity, volatility functions, ... relative to electric power
- subscript **g** for quantities pertaining to natural gas.

Pay-off

$$(F_e(T, T_e) - H * F_g(T, T_g) - K)^+$$
.

- $T < \min\{T_e, T_g\}$
- Heat rate H
- Strike K given by O& M costs

Natural

- Buyer owner of a power plant that transforms gas into electricity,
- Protection against low electricity prices and/or high gas prices.

う くぼう くきり くきり

$$\begin{cases} dF_e(t, T_e) = F_e(t, T_e)[\mu_e(t, T_e)dt + \sum_{k=1}^n \sigma_{e,k}(t, T_e)dW_k(t)] \\ dF_g(t, T_g) = F_g(t, T_g)[\mu_g(t, T_g)dt + \sum_{k=1}^n \sigma_{g,k}(t, T_g)dW_k(t)] \end{cases}$$

- Each commodity has its own volatility factors
- between The two dynamics share the same driving Brownian motion processes W_k, hence correlation.

イロト イポト イヨト イヨト

Fitting Join Cross-Commodity Models

- on any given day t we have
 - electricity forward contract prices for N^(e) times-to-maturity $\tau_1^{(e)} < \tau_2^{(e)}, \ldots < \tau_{N^{(e)}}^{(e)}$
 - natural gas forward contract prices for N^(g) times-to-maturity $\tau_1^{(g)} < \tau_2^{(g)}, \ldots < \tau_{N(g)}^{(g)}$

Typically $N^{(e)} = 12$ and $N^{(g)} = 36$ (possibly more).

- Estimate instantaneous vols $\sigma^{(e)}(t)$ & $\sigma^{(g)}(t)$ 30 days rolling window For each day *t*, the $N = N^{(e)} + N^{(g)}$ dimensional random vector **X**(*t*)

$$\mathbf{X}(t) = \begin{bmatrix} \left(\frac{\log \tilde{F}_{e}(t+1,\tau_{j}^{(e)}) - \log \tilde{F}_{e}(t,\tau_{j}^{(e)})}{\sigma^{(e)}(t)}\right)_{j=1,\dots,N^{(e)}} \\ \left(\frac{\log \tilde{F}_{g}(t+1,\tau_{j}^{(g)}) - \log \tilde{F}_{g}(t,\tau_{j}^{(g)})}{\sigma^{(g)}(t)}\right)_{j=1,\dots,N^{(g)}} \end{bmatrix}$$

- Run PCA on historical samples of X(t)
- Choose small number *n* of factors ۵

• for
$$k = 1, ..., n$$
,

• first $N^{(e)}$ coordinates give the electricity volatilities $\tau \hookrightarrow \sigma_{\nu}^{(e)}(\tau)$ for k = 1, ..., n

• remaining $N^{(g)}$ coordinates give the gas volatilities $\tau \hookrightarrow \sigma_{\mu}^{(g)}(\tau)$.

Skip gory details

Pricing a Spark Spread Option

Price at time t

$$p_t = e^{-r(T-t)} \mathbb{E}_t \left\{ (F_e(T, T_e) - H * F_g(T, T_g) - K)^+ \right\}$$

 $F_e(T, T_e)$ and $F_g(T, T_g)$ are log-normal under the pricing measure calibrated by PCA

$$F_{e}(T, T_{e}) = F_{e}(t, T_{e}) \exp\left[-\frac{1}{2}\sum_{k=1}^{n}\int_{t}^{T}\sigma_{e,k}(s, T_{e})^{2}ds + \sum_{k=1}^{n}\int_{t}^{T}\sigma_{e,k}(s, T_{e})dW_{k}(s)\right]$$

and:

$$F_{g}(T, T_{g}) = F_{g}(t, T_{g}) \exp\left[-\frac{1}{2} \sum_{k=1}^{n} \int_{t}^{T} \sigma_{g,k}(s, T_{g})^{2} ds + \sum_{k=1}^{n} \int_{t}^{T} \sigma_{g,k}(s, T_{g}) dW_{k}(s)\right]$$

Set

$$S_1(t) = H * F_g(t, T_g)$$
 and $S_2(t) = F_e(t, T_e)$

Use the constants

$$\alpha = e^{-r(T-t)}F_e(t, T_e),$$
 and

$$\beta = \sqrt{\sum_{k=1}^{n} \int_{t}^{T} \sigma_{e,k}(s, T_e)^2 \, ds}$$

for the first log-normal distribution,

$$\gamma = He^{-r(T-t)}F_g(t, T_g),$$
 and $\delta = \sqrt{\sum_{k=1}^n \int_t^T \sigma_{g,k}(s, T_g)^2} ds$

for the second one, $\kappa = e^{-r(T-t)}K$ and

$$\rho = \frac{1}{\beta\delta} \int_{t}^{T} \sum_{k=1}^{n} \sigma_{e,k}(s, T_{e}) \sigma_{g,k}(s, T_{g}) ds$$

for the correlation coefficient.

- Fourier Approximations (Madan, Carr, Dempster, ...)
- Bachelier approximation
- Zero-strike approximation
- Kirk approximation
- Upper and Lower Bounds

Can we also approximate the Greeks ?

Bachelier Approximation

- Generate $x_1^{(1)}, x_2^{(1)}, \cdots, x_N^{(1)}$ from $N(\mu_1, \sigma_1^2)$
- Generate $x_1^{(2)}, x_2^{(2)}, \cdots, x_N^{(2)}$ from $N(\mu_1, \sigma_1^2)$
- Correlation ρ
- Look at the distribution of

$$e^{x_1^{(2)}} - e^{x_1^{(1)}}, e^{x_2^{(2)}} - e^{x_2^{(1)}}, \cdots, e^{x_N^{(2)}} - e^{x_N^{(1)}}$$

イロト イポト イヨト イヨト

Log-Normal Samples

イロト イヨト イヨト イヨト

Histogram of the Difference between two Log-normals

Bachelier Approximation

- Assume $(S_2(T) S_1(T))$ is Gaussian
- Match the first two moments

$$\rho = \left(m(T) - Ke^{-rT}\right) \Phi\left(\frac{m(T) - Ke^{-rT}}{s(T)}\right) + s(T)\varphi\left(\frac{m(T) - Ke^{-rT}}{s(T)}\right)$$

with:

$$\begin{array}{lll} m(T) & = & (x_2 - x_1)e^{(\mu - r)T} \\ s^2(T) & = & e^{2(\mu - r)T} \left[x_1^2 \left(e^{\sigma_1^2 T} - 1 \right) - 2x_1 x_2 \left(e^{\rho \sigma_1 \sigma_2 T} - 1 \right) + x_2^2 \left(e^{\sigma_2^2 T} - 1 \right) \right] \end{array}$$

Easy to compute the Greeks !

$p = e^{-rT} \mathbb{E}\{(S_2(T) - S_1(T) - K)^+\}$

- Assume $S_2(T) = F_E(T)$ is **log-normal**
- Replace $S_1(T) = H * F_G(T)$ by $\tilde{S}_1(T) = S_1(T) + K$
- Assume $S_2(T)$ and $\tilde{S}_1(T)$ are jointly log-normal
- Use **Margrabe** formula for $p = e^{-rT} \mathbb{E}\{(S_2(T) \tilde{S}_1(T))^+\}$

Use the Greeks from Margrabe formula !

$p = e^{-rT} \mathbb{E}\{(S_2(T) - S_1(T) - K)^+\}$

• Assume $S_2(T) = F_E(T)$ is **log-normal**

- Replace $S_1(T) = H * F_G(T)$ by $\tilde{S}_1(T) = S_1(T) + K$
- Assume $S_2(T)$ and $\tilde{S}_1(T)$ are jointly log-normal
- Use Margrabe formula for $p = e^{-rT} \mathbb{E}\{(S_2(T) \tilde{S}_1(T))^+\}$

Use the Greeks from Margrabe formula !

$$p = e^{-rT} \mathbb{E}\{(S_2(T) - S_1(T) - K)^+\}$$

- Assume $S_2(T) = F_E(T)$ is **log-normal**
- Replace $S_1(T) = H * F_G(T)$ by $\tilde{S}_1(T) = S_1(T) + K$
- Assume $S_2(T)$ and $\tilde{S}_1(T)$ are jointly log-normal
- Use **Margrabe** formula for $p = e^{-rT} \mathbb{E}\{(S_2(T) \tilde{S}_1(T))^+\}$

Use the Greeks from Margrabe formula !

$$p = e^{-rT} \mathbb{E}\{(S_2(T) - S_1(T) - K)^+\}$$

- Assume $S_2(T) = F_E(T)$ is **log-normal**
- Replace $S_1(T) = H * F_G(T)$ by $\tilde{S}_1(T) = S_1(T) + K$
- Assume $S_2(T)$ and $\tilde{S}_1(T)$ are jointly log-normal
- Use Margrabe formula for $p = e^{-rT} \mathbb{E}\{(S_2(T) \tilde{S}_1(T))^+\}$ Use the Greeks from Margrabe formula !

Kirk Approximation

$$\hat{p}^{K} = x_{2}\Phi\left(\frac{\ln\left(\frac{x_{2}}{x_{1}+Ke^{-rT}}\right)}{\sigma^{K}} + \frac{\sigma^{K}}{2}\right) - (x_{1}+Ke^{-rT})\Phi\left(\frac{\ln\left(\frac{x_{2}}{x_{1}+Ke^{-rT}}\right)}{\sigma^{K}} - \frac{\sigma^{K}}{2}\right)$$

where

$$\sigma^{K} = \sqrt{\sigma_{2}^{2} - 2\rho\sigma_{1}\sigma_{2}\frac{x_{1}}{x_{1} + Ke^{-rT}} + \sigma_{1}^{2}\left(\frac{x_{1}}{x_{1} + Ke^{-rT}}\right)^{2}}.$$

Exactly what we called "Zero Strike Approximation"!!!

Upper and Lower Bounds

$$\Pi(\alpha,\beta,\gamma,\delta,\kappa,\rho) = \mathbb{E}\left\{\left(\alpha \boldsymbol{e}^{\beta X_1 - \beta^2/2} - \gamma \boldsymbol{e}^{\delta X_2 - \delta^2/2} - \kappa\right)^+\right\}$$

where

- α , β , γ , δ and κ real constants
- X_1 and X_2 are jointly Gaussian N(0, 1)
- correlation ρ

$$\alpha = x_2 e^{-q_2 T} \quad \beta = \sigma_2 \sqrt{T} \quad \gamma = x_1 e^{-q_1 T} \quad \delta = \sigma_1 \sqrt{T} \quad \text{and} \quad \kappa = K e^{-rT}.$$

A Precise Lower Bound

$$\hat{p} = x_2 e^{-q_2 T} \Phi \left(d^* + \sigma_2 \cos(\theta^* + \phi) \sqrt{T} \right) - x_1 e^{-q_1 T} \Phi \left(d^* + \sigma_1 \sin \theta^* \sqrt{T} \right) \\ - \mathcal{K} e^{-rT} \Phi (d^*)$$

where

θ^{*} is the solution of

$$\frac{1}{\delta\cos\theta}\ln\left(-\frac{\beta\kappa\sin(\theta+\phi)}{\gamma[\beta\sin(\theta+\phi)-\delta\sin\theta]}\right) - \frac{\delta\cos\theta}{2}$$
$$= \frac{1}{\beta\cos(\theta+\phi)}\ln\left(-\frac{\delta\kappa\sin\theta}{\alpha[\beta\sin(\theta+\phi)-\delta\sin\theta]}\right) - \frac{\beta\cos(\theta+\phi)}{2}$$

- the angle ϕ is defined by setting $\rho = \cos \phi$
- d* is defined by

$$d^* = \frac{1}{\sigma \cos(\theta^* - \psi)\sqrt{T}} \ln\left(\frac{x_2 e^{-q_2 T} \sigma_2 \sin(\theta^* + \phi)}{x_1 e^{-q_1 T} \sigma_1 \sin \theta^*}\right) - \frac{1}{2} (\sigma_2 \cos(\theta^* + \phi) + \sigma_1 \cos \theta)$$

• the angles ϕ and ψ are chosen in $[0, \pi]$ such that:

$$\cos \phi = \rho$$
 and $\cos \psi = \frac{\sigma_1 - \rho \sigma_2}{\sigma}$,

Remarks on this Lower Bound

• \hat{p} is equal to the true price p when

•
$$K = 0$$

• $x_1 = 0$
• $x_2 = 0$

•
$$\rho = -1$$

•
$$\rho = +$$

• Margrabe formula when K = 0 because

$$\theta^* = \pi + \psi = \pi + \arccos\left(rac{\sigma_1 - \rho \sigma_2}{\sigma}
ight).$$

with:

$$\sigma = \sqrt{\sigma_1^2 - 2\rho\sigma_1\sigma_2 + \sigma_2^2}$$

Remarks on this Lower Bound

• \hat{p} is equal to the true price p when

•
$$K = 0$$

•
$$x_1 = 0$$

• $x_2 = 0$

• Margrabe formula when K = 0 because

$$\theta^* = \pi + \psi = \pi + \arccos\left(\frac{\sigma_1 - \rho \sigma_2}{\sigma}\right).$$

with:

$$\sigma = \sqrt{\sigma_1^2 - 2\rho\sigma_1\sigma_2 + \sigma_2^2}$$

The portfolio comprising at each time $t \leq T$

$$\Delta_1 = -e^{-q_1 T} \Phi \left(d^* + \sigma_1 \cos \theta^* \sqrt{T} \right)$$

and

$$\Delta_{2} = e^{-q_{2}T}\Phi\left(d^{*} + \sigma_{2}\cos(\theta^{*} + \phi)\sqrt{T}\right)$$

units of each of the underlying assets is a sub-hedge

its value at maturity is a.s. a lower bound for the pay-off

The Other Greeks

- \diamond ϑ_1 and ϑ_2 sensitivities w.r.t. volatilities σ_1 and σ_2
- $\diamond \chi$ sensitivity w.r.t. correlation ρ
- \diamond κ sensitivity w.r.t. strike price K
- \diamond Θ sensitivity w.r.t. maturity time T

$$\begin{aligned} \vartheta_1 &= x_1 e^{-q_1 T} \varphi \left(d^* + \sigma_1 \cos \theta^* \sqrt{T} \right) \cos \theta^* \sqrt{T} \\ \vartheta_2 &= -x_2 e^{-q_2 T} \varphi \left(d^* + \sigma_2 \cos(\theta^* + \phi) \sqrt{T} \right) \cos(\theta^* + \phi) \sqrt{T} \\ \chi &= -x_1 e^{-q_1 T} \varphi \left(d^* + \sigma_1 \cos \theta^* \sqrt{T} \right) \sigma_1 \frac{\sin \theta^*}{\sin \phi} \sqrt{T} \\ \kappa &= -\Phi \left(d^* \right) e^{-rT} \\ \Theta &= \frac{\sigma_1 \vartheta_1 + \sigma_2 \vartheta_2}{2T} - q_1 x_1 \Delta_1 - q_2 x_2 \Delta_2 - rK \kappa \end{aligned}$$

The Other Greeks

- \diamond ϑ_1 and ϑ_2 sensitivities w.r.t. volatilities σ_1 and σ_2
- $\diamond \chi$ sensitivity w.r.t. correlation ρ
- $\diamond \kappa$ sensitivity w.r.t. strike price K
- \diamond Θ sensitivity w.r.t. maturity time T

$$\begin{aligned} \vartheta_1 &= x_1 e^{-q_1 T} \varphi \left(d^* + \sigma_1 \cos \theta^* \sqrt{T} \right) \cos \theta^* \sqrt{T} \\ \vartheta_2 &= -x_2 e^{-q_2 T} \varphi \left(d^* + \sigma_2 \cos(\theta^* + \phi) \sqrt{T} \right) \cos(\theta^* + \phi) \sqrt{T} \\ \chi &= -x_1 e^{-q_1 T} \varphi \left(d^* + \sigma_1 \cos \theta^* \sqrt{T} \right) \sigma_1 \frac{\sin \theta^*}{\sin \phi} \sqrt{T} \\ \kappa &= -\Phi \left(d^* \right) e^{-rT} \\ \Theta &= \frac{\sigma_1 \vartheta_1 + \sigma_2 \vartheta_2}{2T} - q_1 x_1 \Delta_1 - q_2 x_2 \Delta_2 - rK \kappa \end{aligned}$$

Behavior of the tracking error as the number of re-hedging times increases. The model data are $x_1 = 100$, $x_2 = 110$, $\sigma_1 = 10\%$, $\sigma_2 = 15\%$ and T = 1. $\rho = 0.9$, K = 30 (left) and $\rho = 0.6$, K = 20 (right).

Generalization: European Basket Option

Black-Scholes Set-Up

- Multidimensional model
- *n* stocks *S*₁,..., *S_n*
- Risk neutral dynamics

$$\frac{dS_i(t)}{S_i(t)} = rdt + \sum_{j=1}^n \sigma_{ij} dB_j(t),$$

- initial values $S_1(0), \ldots, S_n(0)$
- B₁,..., B_n independent standard Brownian motions
- Correlation through matrix (σ_{ij})

う くぼう くきり くきり

European Basket Option (cont.)

- Vector of weights $(w_i)_{i=1,...,n}$ (most often $w_i \ge 0$)
- Basket option struck at K at maturity T given by payoff

$$\left(\sum_{i=1}^n w_i S_i(T) - K\right)^+$$

(Asian Options)

Risk neutral valuation: price at time 0

$$p = e^{-rT} \mathbb{E} \left\{ \left(\sum_{i=1}^{n} w_i S_i(T) - K \right)^+ \right\}$$

Jarrow and Rudd

- Replace true distribution by simpler distribution with same first moments
- Edgeworth (Charlier) expansions
- Bachelier approximation when Gaussian distribution used
- SemiParametric Bounds (known marginals)
- Fully NonParametric Bounds
 - Intervals too large
 - Used only to rule out arbitrage
- Replacing Arithmetic Averages by Geometric Averages (Musiela)

Reformulation of the Problem

- Change *w_i* if necessary to absorb exponent mean
- Change w_i if necessary to introduce variance in exponent
- Replace *K* by $-w_0 e^{G_0 \text{Var}\{G_0\}/2}$ with $G_0 \sim N(0, 0)$

• Set
$$x_i = |w_i|$$
 and $\epsilon_i = \operatorname{sign}(w_i)$

Our original problem becomes: Compute

 $\mathbb{E}\{X^+\}$

for

$$X = \sum_{i=0}^{n} \epsilon_i x_i e^{G_i - \operatorname{Var}(G_i)/2}.$$

- Explicit formulae in close form
- Compute Greeks as well

n = 1

- Black Scholes Formula
- Margrabe Formula

For any
$$X \in L^1$$
,

$$\sup_{0 \le Y \le 1} \mathbb{E}\{XY\} = \mathbb{E}\{X^+\} = \inf_{X = Z_1 - Z_2, Z_1 \ge 0, Z_2 \ge 0} \mathbb{E}\{Z_1\}.$$

Lower Bound Strategy

$$\sup_{0 \le Y \le 1} \mathbb{E}\{XY\} = \mathbb{E}\{X^+\}$$

Compute sup in LHS restricting Y
We choose Y = 1_{u⋅G≤d} for u ∈ ℝⁿ⁺¹ and d ∈ ℝ
where G = (G₀, G₁, ..., G_n) and u ⋅ G = u₀G₀ + u₁G₁ + ... + u_nG_n

Can we compute?

$$p_* = \sup_{u,d} \mathbb{E} \left\{ X \mathbf{1}_{\{u \cdot G \leq d\}}
ight\}$$

We sure can!

$$\mathbb{E}\left\{X\mathbf{1}_{\{u\cdot G\leq d\}}\right\} = \sum_{i=0}^{n} \mathbb{E}\left\{\epsilon_{i} x_{i} \mathbb{E}\left\{e^{G_{i} - \operatorname{Var}(G_{i})/2} | u \cdot G\right\}\mathbf{1}_{\{u\cdot G\leq d\}}\right\}$$

$$p_* = \sup_{d \in \mathbb{R}} \sup_{u \cdot \Sigma u = 1} \sum_{i=0}^n \epsilon_i x_i \Phi \left(d + (\Sigma u)_i \right)$$

=
$$\sup_{d \in \mathbb{R}} \sup_{\|v\| = 1} \sum_{i=0}^n \epsilon_i x_i \Phi \left(d + \sigma_i (\sqrt{C} v)_i \right).$$

where

$$C = D\Sigma D$$
 and $D = diag(1/\sigma_i)$

and

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
 and $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du.$

イロト イヨト イヨト イヨト

2

First Order Conditions

Lagrangian \mathcal{L} :

$$\mathcal{L}(\boldsymbol{v},\boldsymbol{d}) = \sum_{i=0}^{n} \epsilon_{i} \boldsymbol{x}_{i} \Phi\left(\boldsymbol{d} + \sigma_{i}(\sqrt{C}\boldsymbol{v})_{i}\right) - \frac{\mu}{2} \left(\|\boldsymbol{v}\|^{2} - 1\right).$$

$$\boldsymbol{p}_* = \sum_{i=0}^n \epsilon_i \boldsymbol{x}_i \Phi\left(\boldsymbol{d}^* + \sigma_i (\sqrt{C} \boldsymbol{v}^*)_i\right)$$

where d^* and v^* satisfy the following first order conditions

$$\sum_{i=0}^{n} \epsilon_{i} \mathbf{x}_{i} \sigma_{i} \sqrt{C}_{ij} \varphi \left(\mathbf{d}^{*} + \sigma_{i} (\sqrt{C} \mathbf{v}^{*})_{i} \right) - \mu \mathbf{v}_{j}^{*} = \mathbf{0} \quad \text{for } j = 0, \dots, n$$
$$\sum_{i=0}^{n} \epsilon_{i} \mathbf{x}_{i} \varphi \left(\mathbf{d}^{*} + \sigma_{i} (\sqrt{C} \mathbf{v}^{*})_{i} \right) = \mathbf{0}$$
$$\|\mathbf{v}^{*}\| = \mathbf{1}.$$

イロト イポト イヨト イヨト

Remark (Warm Up for Upper Bound)

for each *k* in $\{0, 1, ..., n\}$

$$X = \sum_{i \neq k} \varepsilon_i x_i e^{G_i - \operatorname{Var}(G_i)/2} - \lambda_i^k x_k e^{G_k - \operatorname{Var}(G_k)/2}$$

$$= \sum_{i \neq k} \left(\varepsilon_i x_i e^{G_i - \operatorname{Var}(G_i)/2} - \lambda_i^k x_k e^{G_k - \operatorname{Var}(G_k)/2} \right)^+$$

$$- \sum_{i \neq k} \left(\varepsilon_i x_i e^{G_i - \operatorname{Var}(G_i)/2} - \lambda_i^k x_k e^{G_k - \operatorname{Var}(G_k)/2} \right)^-$$

if $\sum_{i\neq k} \lambda_i^k = -\varepsilon_k$

・ロン ・聞と ・ ヨン ・ ヨン …

2

In formula

$$\mathbb{E}\{X^+\} = \inf_{X=Z_1-Z_2, Z_1 \ge 0, Z_2 \ge 0} \mathbb{E}\{Z_1\}.$$

Restrict Z₁ to

$$\sum_{i\neq k} \left(\varepsilon_i \mathbf{x}_i \mathbf{e}^{G_i - \operatorname{Var}(G_i)/2} - \lambda_i^k \tilde{\mathbf{x}}_k \mathbf{e}^{G_k - \operatorname{Var}(G_k)/2} \right)^+$$

where k = 0, ..., n, $\sum_{i \neq k} \lambda_i^k = -\varepsilon_k$ and $\lambda_i^k \varepsilon_i > 0$ for all $i \neq k$.

$$\boldsymbol{p}^* = \min_{0 \le k \le n} \left\{ \sum_{i=0}^n \varepsilon_i \boldsymbol{x}_i \Phi \left(\boldsymbol{d}^k + \varepsilon_i \sigma_i^k \right) \right\}$$

where d^k is given by the following first order conditions

$$\frac{\varepsilon_{i}}{\sigma_{i}^{k}} \ln\left(\frac{\varepsilon_{i} X_{i}}{\lambda_{i}^{k} x_{k}}\right) - \frac{\varepsilon_{i} \sigma_{i}^{k}}{2} = \frac{\varepsilon_{j}}{\sigma_{j}^{k}} \ln\left(\frac{\varepsilon_{j} X_{j}}{\lambda_{j}^{k} x_{k}}\right) - \frac{\varepsilon_{j} \sigma_{j}^{k}}{2} = d^{k} \quad \text{for } i, j \neq k$$

$$\sum_{i \neq k} \lambda_{i}^{k} = -\tilde{\varepsilon}_{k}$$

$$\lambda_{i}^{k} \varepsilon_{i} > 0 \quad \text{for } i \neq k.$$

If for all
$$i, j = 0, ..., n$$
,
 $\Sigma_{ij} = \varepsilon_i \varepsilon_j \sigma_i \sigma_j$,

then

$$p_* = p^*$$
.

$$0 \leq \boldsymbol{p}^* - \boldsymbol{p}_* \leq \sqrt{\frac{2}{\pi}} \min_{0 \leq k \leq n} \left\{ \sum_{i=0}^n x_i \sigma_i^k \right\}.$$

where

$$\sigma_i^k = \sqrt{\operatorname{Var}\left(\{G_i - G_k\}\right)}$$

イロト イポト イヨト イヨト

2

Numerical Performance

Carmona

Lower and upper bound on the price of an Asian option. The dotted line represents the geometric average approximation.

Computation of (Approximate) Greeks

$$\begin{split} \Delta_{*i} &= \frac{\partial p_*}{\partial x_i} = \varepsilon_i \Phi \left(d^* + \sigma_i (\sqrt{C} v^*)_i \right) \\ \text{Vega}_{*i} &= \frac{\partial p_*}{\partial \sigma_i} \sqrt{T} = \varepsilon_i x_i (\sqrt{C} v^*)_i \varphi \left(d^* + \sigma_i (\sqrt{C} v^*)_i \right) \sqrt{T} \\ \chi_{*ij} &= \frac{\partial p_*}{\partial \rho_{ij}} = \frac{1}{2} \sum_{k=0}^n \varepsilon_k x_k \left(\sigma_i C_{kj}^{-\frac{1}{2}} v_j^* + \sigma_j C_{ki}^{-\frac{1}{2}} v_i^* \right) \varphi \left(d^* + \sigma_k (\sqrt{C} v^*) \right) \\ \Theta_* &= \frac{\partial p_*}{\partial T} = \frac{1}{2T} \sum_{k=0}^n \varepsilon_k x_k \sigma_k (\sqrt{C} v^*)_k \varphi \left(d^* + \sigma_k (\sqrt{C} v^*)_k \right). \end{split}$$

2

イロト イポト イヨト イヨト

Second Order Derivatives

$$\Gamma_{*ij} = \varepsilon_i \varepsilon_j \frac{\varphi \left(d^* + \sigma_i (\sqrt{C} v^*)_i \right) \varphi \left(d^* + \sigma_j (\sqrt{C} v^*)_j \right)}{\sum_{k=0}^n \varepsilon_k x_k \sigma_k (\sqrt{C} v^*)_k \varphi \left(d^* + \sigma_k (\sqrt{C} v^*)_k \right)},$$

then

$$-\Theta_* + \frac{1}{2T}\sum_{i=0}^n\sum_{j=0}^n \Sigma_{ij}x_ix_j\Gamma_{*ij} = 0.$$

2

イロト イポト イヨト イヨト

Down-and-Out Call on a Basket of *n* Stocks

Option Payoff

$$\left(\sum_{i=1}^{n} w_i S_i(T) - K\right)^+ \mathbf{1}_{\left\{\inf_{t \leq T} S_1(t) \geq H\right\}}.$$

Option price is

$$\mathbb{E}\left\{\left(\sum_{i=0}^{n}\varepsilon_{i}x_{i}e^{G_{i}(1)-\frac{1}{2}\sigma_{i}^{2}}\mathbf{1}_{\left\{\inf_{\theta\leq1}x_{1}e^{G_{1}(\theta)-\frac{1}{2}\sigma_{1}^{2}\theta}\geq H\right\}}\right)^{+}\right\},\$$

where

•
$$\varepsilon_1 = +1, \, \sigma_1 > 0 \text{ and } H < x_1$$

{G(θ); θ ≤ 1} is a (n + 1)-dimensional Brownian motion starting from 0 with covariance Σ.

Use lower bound.

$$\boldsymbol{p}_{*} = \sup_{d,u} \mathbb{E} \left\{ \sum_{i=0}^{n} \varepsilon_{i} \boldsymbol{x}_{i} \boldsymbol{e}^{G_{i}(1) - \frac{1}{2}\sigma_{i}^{2}} \mathbf{1}_{\left\{ \inf_{\theta \leq 1} \boldsymbol{x}_{1} \boldsymbol{e}^{G_{1}(\theta) - \frac{1}{2}\sigma_{1}^{2}\theta} \geq H; u \cdot G(1) \leq d \right\}} \right\}.$$

Girsanov implies

$$p_* = \sup_{d,u} \sum_{i=0}^n \varepsilon_i x_i \mathbb{P} \left\{ \inf_{\theta \le 1} G_1(\theta) + \left(\Sigma_{i1} - \sigma_1^2/2 \right) \theta \ge \ln\left(\frac{H}{x_1}\right); u \cdot G(1) \le d - (\Sigma u)_i \right\}.$$

Numerical Results

σ	ρ	H/x_1	<i>n</i> = 10	<i>n</i> = 20	<i>n</i> = 30
0.4	0.5	0.7	0.1006	0.0938	0.0939
0.4	0.5	0.8	0.0811	0.0785	0.0777
0.4	0.5	0.9	0.0473	0.0455	0.0449
0.4	0.7	0.7	0.1191	0.1168	0.1165
0.4	0.7	0.8	0.1000	0.1006	0.0995
0.4	0.7	0.9	0.0608	0.0597	0.0594
0.4	0.9	0.7	0.1292	0.1291	0.1290
0.4	0.9	0.8	0.1179	0.1175	0.1173
0.4	0.9	0.9	0.0751	0.0747	0.0745
0.5	0.5	0.7	0.1154	0.1122	0.1110
0.5	0.5	0.8	0.0875	0.0844	0.0816
0.5	0.5	0.9	0.0518	0.0464	0.0458
0.5	0.7	0.7	0.1396	0.1389	0.1388
0.5	0.7	0.8	0.1103	0.1086	0.1080
0.5	0.7	0.9	0.0631	0.0619	0.0615
0.5	0.9	0.7	0.1597	0.1593	0.1592
0.5	0.9	0.8	0.1328	0.1322	0.1320
0.5	0.9	0.9	0.0786	0.0782	0.0780

2

イロト イポト イモト イモト

Stylized Version

Leasing an Energy Asset

- Fossil Fuel Power Plant
- Oil Refinery
- Pipeline

Owner of the Agreement

- Decides when and how to use the asset (e.g. run the power plant)
- Has someone else do the leg work

Plant Operation Model: the Finite Mode Case

- Markov process (state of the world) $X_t = (X_t^{(1)}, X_t^{(2)}, \cdots)$ (e.g. $X_t^{(1)} = P_t$, $X_t^{(2)} = G_t$, $X_t^{(3)} = O_t$ for a dual plant)
- Plant characteristics
 - $\mathbb{Z}_M \triangleq \{0, \cdots, M-1\}$ modes of operation of the plant
 - $H_0, H_1 \cdots, H_{M-1}$ heat rates
 - $\{C(i,j)\}_{(i,j)\in\mathbb{Z}_M}$ regime switching costs $(C(i,j) = C(i,\ell) + C(\ell,j))$
- **Operation** of the plant (control) $u = (\xi, T)$ where
 - $\xi_k \in \mathbb{Z}_M \stackrel{\scriptscriptstyle \Delta}{=} \{0, \cdots, M-1\}$ successive modes
 - $0 \leq \tau_{k-1} \leq \tau_k \leq T$ switching times

Plant Operation Model: the Finite Mode Case

- T (horizon) length of the tolling agreement
- Total reward

$$H(x, i, [0, T]; u)(\omega) \triangleq \int_0^T \psi_{u_s}(s, X_s) \, ds - \sum_{\tau_k < T} C(u_{\tau_k -}, u_{\tau_k})$$

Stochastic Control Problem

 U(t)) acceptable controls on [t, T] (adapted càdlàg Z_M-valued processes u of a.s. finite variation on [t, T])

Optimal Switching Problem

$$J(t, x, i) = \sup_{u \in \mathcal{U}(t)} J(t, x, i; u),$$

where

$$J(t, x, i; u) = \mathbb{E}[H(x, i, [t, T]; u) | X_t = x, u_t = i]$$

= $\mathbb{E}[\int_0^T \psi_{u_s}(s, X_s) ds - \sum_{\tau_k < T} C(u_{\tau_k -}, u_{\tau_k}) | X_t = x, u_t = i]$

Consider problem with at most k mode switches

$$\mathcal{U}^{k}(t) \stackrel{\scriptscriptstyle \Delta}{=} \{(\xi, \mathcal{T}) \in \mathcal{U}(t) \colon \tau_{\ell} = T \text{ for } \ell \geqslant k+1\}$$

Admissible strategies on [t, T] with at most k switches

$$J^{k}(t, x, i) \triangleq \operatorname{esssup}_{u \in \mathcal{U}^{k}(t)} \mathbb{E} \Big[\int_{t}^{T} \psi_{u_{s}}(s, X_{s}) \, ds - \sum_{t \leqslant \tau_{k} < T} C(u_{\tau_{k}-}, u_{\tau_{k}}) \Big| \, X_{t} = x, u_{t} = i \Big].$$

Alternative Recursive Construction

$$J^{0}(t, x, i) \triangleq \mathbb{E}\Big[\int_{t}^{T} \psi_{i}(s, X_{s}) ds \Big| X_{t} = x\Big],$$

$$J^{k}(t, x, i) \triangleq \sup_{\tau \in \mathcal{S}_{t}} \mathbb{E}\Big[\int_{t}^{\tau} \psi_{i}(s, X_{s}) ds + \mathcal{M}^{k, i}(\tau, X_{\tau})\Big| X_{t} = x\Big].$$

Intervention operator $\ensuremath{\mathcal{M}}$

$$\mathcal{M}^{k,i}(t,x) \triangleq \max_{j\neq i} \Big\{ -C_{i,j} + J^{k-1}(t,x,j) \Big\}.$$

Hamadène - Jeanblanc (M=2)

イロト イポト イヨト イヨト

Variational Formulation

Notation

- *L_X X* space-time generator of Markov process *X_t* in ℝ^d
- $\mathcal{M}\phi(t, x, i) = \max_{j \neq i} \{-C_{i,j} + \phi(t, x, j)\}$ intervention operator

Assume

- $\phi(t, x, i)$ in $\mathcal{C}^{1,2}(([0, T] \times \mathbb{R}^d) \setminus D) \cap \mathcal{C}^{1,1}(D)$
- $D = \bigcup_i \{(t, x) : \phi(t, x, i) = \mathcal{M}\phi(t, x, i)\}$
- (QVI) for all $i \in \mathbb{Z}_M$:

Conclusion

ϕ is the optimal value function for the switching problem

Reflected Backward SDE's

Assume

•
$$X_0 = x \& \exists (Y^x, Z^x, A) \text{ adapted to } (\mathcal{F}_t^X)$$

$$\mathbb{E}\big[\sup_{0\leqslant t\leqslant T}|Y_t^x|^2+\int_0^T \|Z_t^x\|^2\,dt+|A_T|^2\big]<\infty$$

and

$$\begin{split} Y_t^x &= \int_t^T \psi_i(s, X_s^x) \, ds + A_T - A_t - \int_t^T Z_s \cdot \, dW_s, \\ Y_t^x &\geq \mathcal{M}^{k,i}(t, X_t^x), \\ \int_0^T (Y_t^x - \mathcal{M}^{k,i}(t, X_t^x)) \, dA_t = 0, \qquad A_0 = 0. \end{split}$$

Conclusion: if $Y_0^x = J^k(0, x, i)$ then

$$Y_t^x = J^k(t, X_t^x, i)$$

イロト イポト イモト イモト

2

QVI for optimal switching: **coupled system** of reflected BSDE's for $(Y^i)_{i \in \mathbb{Z}_M}$,

$$egin{aligned} \mathbf{Y}_t^i &= \int_t^T \psi_i(s, X_s) \, ds + \mathbf{A}_T^i - \mathbf{A}_t^i - \int_t^T \mathbf{Z}_s^i \cdot d \mathbf{W}_s, \ \mathbf{Y}_t^i &\geqslant \max_{j
eq i} \{ - \mathbf{C}_{i,j} + \mathbf{Y}_t^j \}. \end{aligned}$$

Existence and uniqueness Directly for M > 2? M = 2, Hamadène - Jeanblanc use difference process $Y^1 - Y^2$.

Discrete Time Dynamic Programming

- Time Step $\Delta t = T/M^{\sharp}$
- Time grid $S^{\Delta} = \{m\Delta t, m = 0, 1, \dots, M^{\sharp}\}$
- Switches are allowed in S^Δ

DPP

For $t_1 = m\Delta t$, $t_2 = (m + 1)\Delta t$ consecutive times

$$J^{k}(t_{1}, X_{t_{1}}, i) = \max\left(\mathbb{E}\left[\int_{t_{1}}^{t_{2}} \psi_{i}(s, X_{s}) ds + J^{k}(t_{2}, X_{t_{2}}, i) | \mathcal{F}_{t_{1}}\right], \mathcal{M}^{k, i}(t_{1}, X_{t_{1}})\right)$$

$$\simeq \left(\psi_{i}(t_{1}, X_{t_{1}}) \Delta t + \mathbb{E}\left[J^{k}(t_{2}, X_{t_{2}}, i) | \mathcal{F}_{t_{1}}\right]\right) \vee \left(\max_{j \neq i} \left\{-C_{i, j} + J^{k-1}(t_{1}, X_{t_{1}}, j)\right\}\right).$$
(1)

Tsitsiklis - van Roy

Longstaff-Schwartz Version

Recall

$$J^{k}(m\Delta t, x, i) = \mathbb{E}\Big[\sum_{j=m}^{\tau^{k}} \psi_{i}(j\Delta t, X_{j\Delta t}) \Delta t + \mathcal{M}^{k,i}(\tau^{k}\Delta t, X_{\tau^{k}\Delta t}) | X_{m\Delta t} = x\Big].$$

Analogue for τ^k :

$$\tau^{k}(m\Delta t, x_{m\Delta t}^{\ell}, i) = \begin{cases} \tau^{k}((m+1)\Delta t, x_{(m+1)\Delta t}^{\ell}, i), & \text{no switch;} \\ m, & \text{switch,} \end{cases}$$
(2)

and the set of paths on which we switch is given by $\{\ell: \hat{j}^{\ell}(m\Delta t; i) \neq i\}$ with $\hat{j}^{\ell}(t_1; i) = \arg\max_{j} \left(-C_{i,j} + J^{k-1}(t_1, x_{t_1}^{\ell}, j), \psi_i(t_1, x_{t_1}^{\ell})\Delta t + \hat{E}_{t_1}\left[J^k(t_2, \cdot, i)\right](x_{t_1}^{\ell})\right).$ (3)

The full recursive *pathwise* construction for J^k is

$$J^{k}(m\Delta t, x_{m\Delta t}^{\ell}, i) = \begin{cases} \psi_{i}(m\Delta t, x_{m\Delta t}^{\ell}) \Delta t + J^{k}((m+1)\Delta t, x_{(m+1)\Delta t}^{\ell}, i), & \text{no switch;} \\ -C_{i,j} + J^{k-1}(m\Delta t, x_{m\Delta t}^{\ell}, j), & \text{switch to } j. \end{cases}$$
(4)

- Regression used solely to update the optimal stopping times τ^k
- Regressed values never stored
- Helps to eliminate potential biases from the regression step.

Algorithm

- Select a set of basis functions (B_j) and algorithm parameters $\Delta t, M^{\sharp}, N^{\rho}, \bar{K}, \delta$.
- Generate N^p paths of the driving process: {x^ℓ_{m∆t}, m = 0, 1, ..., M[♯], ℓ = 1, 2, ..., N^p} with fixed initial condition x^ℓ₀ = x₀.

Initialize the value functions and switching times $J^k(T, x_T^{\ell}, i) = 0$, $\tau^k(T, x_T^{\ell}, i) = M^{\sharp} \forall i, k$.

- Solution Moving backward in time with $t = m\Delta t$, $m = M^{\sharp}, \ldots, 0$ repeat the Loop:
 - Compute inductively the layers $k = 0, 1, ..., \bar{K}$ (evaluate $\mathbb{E}[J^k(m\Delta t + \Delta t, \cdot, i) | \mathcal{F}_{m\Delta t}]$ by linear regression of $\{J^k(m\Delta t + \Delta t, x_{m\Delta t+\Delta t}^{\ell}, i)\}$ against $\{B_j(x_{m\Delta t}^{\ell})\}_{j=1}^{N^B}$, then add the reward $\psi_i(m\Delta t, x_{m\Delta t}^{\ell}) \cdot \Delta t$)
 - Update the switching times and value functions
- end Loop.
- Solution Check whether \overline{K} switches are enough by comparing $J^{\overline{K}}$ and $J^{\overline{K}-1}$ (they should be equal).

Observe that during the main loop we only need to store the buffer $J(t, \cdot), \ldots, J(t + \delta, \cdot)$; and $\tau(t, \cdot), \cdots, \tau(t + \delta, \cdot)$.

- Bouchard Touzi
- Gobet Lemor Warin

2

イロト イポト イヨト イヨト

$$dX_t = 2(10 - X_t) dt + 2 dW_t, \qquad X_0 = 10,$$

- Horizon T = 2,
- Switch separation $\delta = 0.02$.
- Two regimes
- Reward rates $\psi_0(X_t) = 0$ and $\psi_1(X_t) = 10(X_t 10)$
- Switching cost C = 0.3.

Value Functions

Exercise Boundaries

k = 2 (left) k = 7 (right) NB: Decreasing boundary around t = 0 is an artifact of the Monte Carlo.

(ロ) (部) (E) (E)

Example 2: Comparisons

Spark spread $X_t = (P_t, G_t)$

$$\begin{cases} \log(P_t) \sim OU(\kappa = 2, \theta = \log(10), \sigma = 0.8) \\ \log(G_t) \sim OU(\kappa = 1, \theta = \log(10), \sigma = 0.4) \end{cases}$$

•
$$P_0 = 10, G_0 = 10, \rho = 0.7$$

- Agreement Duration [0, 0.5]
- Reward functions

$$\begin{array}{rcl} \psi_0(X_t) &=& 0\\ \psi_1(X_t) &=& 10(P_t - G_t)\\ \psi_2(X_t) &=& 20(P_t - 1.1 \ G_t) \end{array}$$

Switching costs

$$C_{i,j} = 0.25|i-j|$$

< ロ > < 四 > < 回 > < 回 > < 回 > ...

Method	Mean	Std. Dev	Time (m)	
Explicit FD	5.931	_	25	
LS Regression	5.903	0.165	1.46	
TvR Regression	5.276	0.096	1.45	
Kernel	5.916	0.074	3.8	
Quantization	5.658	0.013	400*	

Table: Benchmark results for Example 2.

Example 3: Dual Plant & Delay

$$\begin{cases} \log(P_t) \sim OU(\kappa = 2, \theta = \log(10), \sigma = 0.8), \\ \log(G_t) \sim OU(\kappa = 1, \theta = \log(10), \sigma = 0.4), \\ \log(O_t) \sim OU(\kappa = 1, \theta = \log(10), \sigma = 0.4), . \end{cases}$$

•
$$P_0 = G_0 = O_0 = 10, \, \rho_{pg} = 0.5, \rho_{po} = 0.3, \, \rho_{go} = 0$$

- Agreement Duration T = 1
- Reward functions

$$\begin{array}{rcl} \psi_0(X_t) &\equiv & 0 \\ \psi_1(X_t) &= & 5 \cdot (P_t - G_t) \\ \psi_2(X_t) &= & 5 \cdot (P_t - O_t), \\ \psi_3(X_t) &= & 5 \cdot (3P_t - 4G_t) \\ \psi_4(X_t) &= & 5 \cdot (3P_t - 4O_t). \end{array}$$

- Switching costs $C_{i,j} \equiv 0.5$
- Delay $\delta = 0, 0.01, 0.03$ (up to ten days)

Setting	No Delay	$\delta = 0.01$	$\delta = 0.03$
Base Case	13.22	12.03	10.87
Jumps in <i>P</i> _t	23.33	22.00	20.06
Regimes 0-3 only	11.04	10.63	10.42
Regimes 0-2 only	9.21	9.16	9.14
Gas only: 0, 1, 3	9.53	7.83	7.24

Table: LS scheme with 400 steps and 16000 paths.

Remarks

- High δ lowers profitability by over 20%.
- Removal of regimes: without regimes 3 and 4 expected profit drops from 13.28 to 9.21.

Example 4: Exhaustible Resources

Include I_t current level of resources left (I_t non-increasing process).

$$J(t, x, c, i) = \sup_{\tau, j} \mathbb{E} \Big[\int_t^\tau \psi_i(s, X_s) \, ds + J(\tau, X_\tau, I_\tau, j) - C_{i,j} | X_t = x, I_t = c \Big].$$
(5)

◇ Resource depletion (boundary condition) $J(t, x, 0, i) \equiv 0$.
 ◇ Not really a control problem I_t can be computed **on the fly**

Mining example of Brennan and Schwartz varying the initial copper price X_0

Method/ X ₀	0.3	0.4	0.5	0.6	0.7	0.8
BS '85	1.45	4.35	8.11	12.49	17.38	22.68
PDE FD	1.42	4.21	8.04	12.43	17.21	22.62
RMC	1.33	4.41	8.15	12.44	17.52	22.41

Accomodate outages

- Include switch separation as a form of delay
- Was extended (R.C. M. Ludkovski) to treat
 - Gas Storage
 - Hydro Plants
- Porchet-Touzi

イロト イポト イヨト イヨト

- Need to improve delays
- Need convergence analysis
- Need better analysis of exercise boundaries
- Need to implement duality upper bounds
 - we have approximate value functions
 - we have approximate exercise boundaries
 - so we have lower bounds
 - need to extend Meinshausen-Hambly to optimal switching set-up

Extending the Analysis Adding Access to a Financial Market Porchet-Touzi

- Same (Markov) factor process $X_t = (X_t^{(1)}, X_t^{(2)}, \cdots)$ as before
- Same plant characteristics as before
- Same operation control $u = (\xi, T)$ as before
- Same maturity T (end of tolling agreement) as before
- Reward for operating the plant

$$H(x, i, T; u)(\omega) \triangleq \int_0^T \psi_{u_s}(s, X_s) \, ds - \sum_{\tau_k < T} C(u_{\tau_k -}, u_{\tau_k})$$

Access to a financial market (possibly incomplete)

- y initial wealth
- π_t investment portfolio
- $Y_T^{y,\pi}$ corresponding terminal wealth from investment
- Utility function $U(y) = -e^{-\gamma y}$
- Maximum expected utility

$$v(y) = \sup_{\pi} \mathbb{E}\{U(Y_T^{y,\pi})\}$$

• With the power plant (tolling contract)

$$V(x, i, y) = \sup_{u, \pi} \mathbb{E}\{U(Y_T^{y, \pi} + H(x, i, T; u))\}$$

INDIFFERENCE PRICING

$$\overline{p} = p(x, i, y) = \sup\{p \ge 0; V(x, i, y - p) \ge v(y)\}$$

Analysis of

- BSDE formulation
- PDE formulation