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ABSTRACT. This paper provides with approximate formulas that generalize Black-Scholes formula
in all dimensions. Pricing and hedging of multivariate contingent claims are achieved by computing
lower and upper bounds. These bounds are given in closed form in the same spirit as the classical
one-dimensional Black-Scholes formula. Lower bounds perform remarkably well. Like in the one-
dimensional case, Greeks are also available in closed form. We discuss an extension to basket options
with barrier.

1. INTRODUCTION

This paper provides with approximate formulas that generalize Black-Scholes formula in all di-
mensions. The classical Black-Scholes formula gives in closed form the price of a call option on a
single stock whose dynamics is a geometric Brownian motion. Its use has spread to fixed income
markets to price caps and floors in Libor models or swaptions in Swap models when volatilities are
deterministic.

Many options however have multivariate payoffs. Although the mathematical theory does not
present any particular difficulties, actual computations of prices cannot be done in closed form any
more. Financial practitioners have to resort to numerical integration, simulations or approximations.
In high dimensions, numerical integration and simulation methods may be too slow for practical
purposes. Many areas of computational finance require robust and accurate algorithms to price these
options.

In this paper we give approximate formulas that are fast, easy to implement and yet very accurate.
These formulas are based on rigorous lower and upper bounds. These bounds are derived under
two assumptions. First, we restrict ourselves to a special class of multivariate payoffs. Throughout
payoffs are of the European type (options can only be exercised at maturity) and when exercised
these options pay alinear combinationof asset prices. This wide class includes basket options (i.e.,
options on a basket of stocks), spread options (i.e., options on the difference between two stocks or
indices) and more generally rainbow options but also discrete-time average Asian options and also
combination of those like Asian spread options (i.e., options on the difference between time averages
of two stocks or indices.) Second, we work in the so-called multidimensional Black-Scholes model.
In this model, assets follow a multidimensional geometric Brownian motion dynamics. In other
words, all volatilities are constants. As usual, to extend the results for deterministic time dependent
volatilities one just has to replace volatilities by their root-mean-square over the option life.
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To continue the discussion, let us fix some notations. In a multidimensional Black-Scholes model
with n stocksS1, . . . , Sn, risk neutral dynamics are given by

dSi(t)
Si(t)

= rdt +
n∑

j=1

σijdBj(t),

with some initial valuesS1(0), . . . , Sn(0). B1, . . . , Bn are independent standard Brownian motions.
Correlations among different stocks are captured through the matrix(σij). Given a vector of weights
(wi)i=1,...,n, we are interested, for instance, in valuing the following basket option struck atK whose
payoff at maturityT is (

n∑

i=1

wiSi(T )−K

)+

.

Risk neutral valuation gives the price at time 0 as the following expectation

(1) p = e−rTE

{(
n∑

i=1

wiSi(T )−K

)+}
.

Deriving formulas in closed form for such options with multivariate payoffs has already been tack-
led in the financial literature. For example, Jarrow and Rudd in [2] provide a general method based
on Edgeworth (sometimes also called Charlier) expansions. Their idea is to replace the integration
over the multidimensional log-normal distribution by an integration over another distribution with the
same moments of low order so that this last integration can be done in closed form. In the case where
the new distribution is Gaussian, this approximation is often called the Bachelier approximation since
it gives back formulas alike those derived by Bachelier.

Another take on this problem (introduced in [4]) is to replace arithmetic averages by their corre-
sponding geometric averages. The latter have the nice property of being log-normally distributed;
they therefore lead to formula alike the Black-Scholes formula. See, for example, [3] pp. 218-225
for a presentation of these results. This method assumes however that the weights(wi)i=1,...,n are all
positive. Our method does not require this assumption and will prove to be more accurate.

There are two difficulties in computing (1): the lack of tractability of the multivariate log-normal
distribution on the one hand and the non linearity of the functionx 7→ x+ on the other. Whereas
[2] and [4] circumvent the first difficulty, our approach relies on finding optimal one-dimensional
approximations thanks to properties of the functionx 7→ x+. In one dimension, computations can
then be carried out explicitly.

Approximations in closed form are given in Proposition 4 and 6 below. Various price sensitivities,
the so-called Greeks, are given in Proposition 9, 10, 11 and 12. Section 3 shows actual numerical
results as well as an extension to multivariate barrier options.

2. APPROXIMATE LOWER AND UPPER BOUNDS

As we have just explained, our goal is to computeE{X+} whereX is the random variable

X =
n∑

i=0

εixie
Gi− 1

2
Var(Gi).
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(Gi)i=0,...,n is a mean zero Gaussian vector of sizen + 1 and covariance matrixΣ. εi = ±1 and
xi > 0 for all i = 0, . . . , n. In view of (1), this is justεi = sgn(wi) andxi = |wi|Si(0). Note that
entries ofΣ are dimensionless, that is, they are “volatilities squared× time to maturity”.

Without loss of generality, we suppose that not all of theεi have the same sign. If this were the
case, computingE{X+} would not present any difficulty. Note also thatΣ is symmetric positive
semi-definite but not necessarily definite. Before we explain our approximation method we need the
following definition and proposition.

Definition 1. For everyi, j, k = 0, . . . , n, we let

Σk
ij = Σij − Σik − Σkj + Σkk

and

σi =
√

Σii σk
i =

√
Σk

ii.

Proposition 1. For everyk = 0, . . . , n, let (Gk
i )i=0,...,n be a mean zero Gaussian vector with covari-

anceΣk. Then,

E{X+} = E

{(
n∑

i=0

εixie
Gk

i− 1
2

Var(Gk
i )

)+}
.

Proof. This is an easy consequence of Girsanov’s transform. Indeed,

E{X+} = E

{
eGk− 1

2
Var(Gk)

(
n∑

i=0

εixie
Gi−Gk− 1

2
(Var(Gi)−Var(Gk))

)+}

= EQk

{(
n∑

i=0

εixie
Gi−Gk− 1

2
(Var(Gi)−Var(Gk))

)+}
,

where probability measureQk is defined by its Radon-Nikodým derivative

dQk

dP
= eGk− 1

2
Var(Gk).

UnderQk, (Gi −Gk)0≤i≤n is again a Gaussian vector. Its covariance matrix isΣk.

Without loss of generality, we will also assume that for everyk = 0, . . . , n, Σk 6= 0. Indeed if
such were the case, Proposition 1 above would give us the price without any further computation.

2.1. Two optimization problems. The following proposition will provide us with bounds.

Proposition 2. For anyX ∈ L1,

(2) sup
0≤Y≤1

E{XY } = E{X+} = inf
X=Z1−Z2,Z1≥0,Z2≥0

E{Z1}.

Proof. On the left-hand side, letting0 ≤ Y ≤ 1,

E{XY } = E{X+Y } − E{X−Y } ≤ E{X+}
and takingY = 1{X≥0} shows that the supremum is actually attained. On the right-hand side, it is
well known that ifX = Z1 − Z2 with bothZ1 andZ2 non negative, thenZ1 ≥ X+.

These two optimization problems are dual of each other in the sense of linear programming.
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2.2. Derivation of the lower bound. Our lower bound is obtained by restricting the set over which
the supremum in (2) is computed. We chooseY of the form1 1{u·G≤d} whereu ∈ Rn+1 andd ∈ R
are arbitrary. Let us let

p∗ = sup
u,d
E

{
X1{u·G≤d}

}
.

The next two propositions give further information onp∗. First, we need the following definition.

Definition 2. LetD to be the(n + 1)× (n + 1) diagonal matrix whoseith diagonal element is1/σi

if σi 6= 0 and 0 otherwise. LetC to be such that

C = DΣD.

C is also a positive semi-definite matrix and we denote by
√

C a square root of it (i.e.,C =
√

C
√

C
T

.)

Proposition 3.

p∗ = sup
d∈R

sup
u·Σu=1

n∑

i=0

εixiΦ (d + (Σu)i) = sup
d∈R

sup
‖v‖=1

n∑

i=0

εixiΦ
(
d + σi(

√
Cv)i

)
.

Here and throughout the paper, we use the notationϕ(x) andΦ(x) for the density and the cumula-
tive distribution function of the standard Gaussian distribution, i.e.,

ϕ(x) =
1√
2π

e−x2/2 and Φ(x) =
1√
2π

∫ x

−∞
e−u2/2du.

Proof.

p∗ = sup
d∈R

sup
u∈Rn+1

E
{
E {X|u ·G}1{u·G≤d}

}

= sup
d∈R

sup
u∈Rn+1

n∑

i=0

εixiE
{

e
Cov(Gi,u·G)

u·Σu
u·G− 1

2

Cov(Gi,u·G)2

u·Σu 1{u·G≤d}

}

= sup
d∈R

sup
u·Σu=1

n∑

i=0

εixiE
{

eCov(Gi,u·G)u·G− 1
2

Cov(Gi,u·G)21{u·G≤d}
}

= sup
d∈R

sup
u·Σu=1

n∑

i=0

εixiΦ(d + (Σu)i) .

By definingD−1 to be the(n + 1) × (n + 1) diagonal matrix whoseith diagonal element isσi, we

easily check thatΣ = D−1
√

C
√

C
T
D−1. Therefore by takingv = D−1

√
C

T
u, we have the second

equality of the proposition.

To actually compute this supremum, it is interesting to look at the LagrangianL:

L(v, d) =
n∑

i=0

εixiΦ
(
d + σi(

√
Cv)i

)
− µ

2
(‖v‖2 − 1

)
.

1· denotes the usual inner product ofRn+1.
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Proposition 4.

p∗ =
n∑

i=0

εixiΦ
(
d∗ + σi(

√
Cv∗)i

)

whered∗ andv∗ satisfy the following first order conditions
n∑

i=0

εixiσi

√
Cijϕ

(
d∗ + σi(

√
Cv∗)i

)
− µv∗j = 0 for j = 0, . . . , n(3)

n∑

i=0

εixiϕ
(
d∗ + σi(

√
Cv∗)i

)
= 0(4)

‖v∗‖ = 1.(5)

Note that expression forp∗ is as close to the classical Black-Scholes formula as one could hope.
To conclude this subsection, we give a necessary condition ford∗ to be finite. It is interesting when it
comes to numerical computations but it also ensures us that lower bounds are not trivial. We need to
make a non-degeneracy assumption. Recall that the matrixC was introduced in Definition 2. Through
its definition,C may have columns and rows of zeros. We are now assuming that the square matrixC̃
obtained by removing these rows and columns is non-singular.C̃ is well defined because we assumed
that none of theΣk (and thereforeΣ) were actually the zero matrix.

Condition 1.
det(C̃) 6= 0

Proposition 5. Under Condition 1,

p∗ > E {X}+ , or equivalently |d∗| < +∞.

Proof. Assume for instance thatE {X} ≥ 0. We want to show thatp∗ > E {X}. Let us letfv(d) =∑n
i=0 εixiΦ

(
d + σi(

√
Cv)i

)
. First note that for anyv, limd→+∞ fv(d) = E {X}. We are going

to show the claim by showing that there exists a unit vectorv such thatf ′v(d) < 0 whend is near
+∞. Under Condition 1,Range(

√
C) =

⊕n
i=0 σiR 6= {0} and we can pick a unit vectorv such that

σi > 0 ⇒ εi(
√

Cv)i > 0. For such av, write f ′v as

f ′v(d) = ϕ(d)

{ ∑

i:εi=+1

xie
−dσi(

√
Cv)i− 1

2
σ2

i (
√

Cv)2i −
∑

i:εi=−1

xie
−dσi(

√
Cv)i− 1

2
σ2

i (
√

Cv)2i

}
.

By denotingσ = mini:εi=+1 σi(
√

Cv)i ≥ 0 andσ = maxi:εi=−1 σi(
√

Cv)i ≤ 0, we get the follow-
ing bound, valid ford ≥ 0:

f ′v(d) ≤ ϕ(d)

{( ∑

i:εi=+1

xi

)
e−dσ− 1

2
σ2 −

( ∑

i:εi=−1

xi

)
e−dσ− 1

2
σ2

}
.

Without loss of generality, we can assume thatσ andσ are not simultaneously zero and the above
upper bound is strictly negative ford large enough. The case whereE {X} ≤ 0 is treated analogously
by showing thatf ′v > 0 around−∞.
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2.3. Derivation of the upper bound. Our upper bound is obtained by restricting the set over which
the infimum in (2) is computed. For everyk = 0, . . . , n, let Ek = {i : σk

i 6= 0} 6= ∅. Let us also let
x̃k = |∑i/∈Ek

εixi| andε̃k = sgn(
∑

i/∈Ek
εixi). Without loss of generality, we can assumex̃k > 0.

Then, choose reals(λk
i )i∈Ek

such that
∑

i∈Ek
λk

i = −ε̃k and rewriteX as

X =
∑

i∈Ek

εixie
Gi− 1

2
Var(Gi) − λk

i x̃ke
Gk− 1

2
Var(Gk)

=
∑

i∈Ek

(
εixie

Gi− 1
2

Var(Gi) − λk
i x̃ke

Gk− 1
2

Var(Gk)
)+

−
∑

i∈Ek

(
εixie

Gi− 1
2

Var(Gi) − λk
i x̃ke

Gk− 1
2

Var(Gk)
)−

.

The family of random variablesZ1 that we choose consists of those of the form
∑

i∈Ek

(
εixie

Gi− 1
2

Var(Gi) − λk
i x̃ke

Gk− 1
2

Var(Gk)
)+

wherek = 0, . . . , n,
∑

i∈Ek
λk

i = −ε̃k andλk
i εi > 0 for all i ∈ Ek. Because all theεi do not have the

same sign, the set of suchλk is nonempty for eachk.

Proposition 6.

(6) p∗ = min
0≤k≤n

{
n∑

i=0

εixiΦ
(
dk + εiσ

k
i

)}

wheredk is given by the following first order conditions

εi

σk
i

ln
(

εixi

λk
i x̃k

)
− εiσ

k
i

2
=

εj

σk
j

ln

(
εjxj

λk
j x̃k

)
− εjσ

k
j

2
= dk for i, j ∈ Ek

∑

i∈Ek

λk
i = −ε̃k

λk
i εi > 0 for i ∈ Ek.

Again, note that expression forp∗ is as close to the classical Black-Scholes formula as one could
hope.

Proof.

p∗ = min
0≤k≤n

infP
i∈Ek

λk
i =−ε̃k

E





∑

i∈Ek

(
εixie

Gi− 1
2

Var(Gi) − λk
i x̃ke

Gk− 1
2

Var(Gk)
)+





= min
0≤k≤n

infP
i∈Ek

λk
i =−ε̃k

∑

i∈Ek

εixiΦ
(

εi

σk
i

ln
(

εixi

λk
i x̃k

)
+

εiσ
k
i

2

)

−λk
i x̃kΦ

(
εi

σk
i

ln
(

εixi

λk
i x̃k

)
− εiσ

k
i

2

)
.
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Forming the LagrangianLk

Lk(λk) =
∑

i∈Ek

εixiΦ
(

εi

σk
i

ln
(

εixi

λk
i x̃k

)
+

εiσ
k
i

2

)

−λk
i x̃kΦ

(
εi

σk
i

ln
(

εixi

λk
i x̃k

)
− εiσ

k
i

2

)
− µ


∑

i∈Ek

λk
i + ε̃k


 ,

we find the first order conditions

∂Lk

∂λk
i

= −x̃kΦ
(

εi

σk
i

ln
(

εixi

λk
i x̃k

)
− εiσ

k
i

2

)
− µ = 0,

from which we deduce that the arguments ofΦ must all equal each other.

2.4. Cases of equality.It is easily seen that whenn = 1, lower and upper bounds both reduce to the
Black-Scholes formula and therefore give the true value. Let us stress thatn = 1 not only contains the
classical call and put options but also the exchange option of Margrabe. The following proposition
gives other cases where the lower and upper bounds are in fact equal to the true value.

Proposition 7. If for all i, j = 0, . . . , n,

Σij = εiεjσiσj ,

then

p∗ = p∗.

Proof. Exactly as in Proposition 1, note that for anyk,

p∗ = sup
d∈R

sup
u·Σku=1

n∑

i=0

εixiΦ
(
d + (Σku)i

)
.

Therefore, for anyk,

(7) sup
u·Σku=1

n∑

i=0

εixiΦ
(
dk + (Σku)i

)
≤ p∗ ≤ p∗ ≤

n∑

i=0

εixiΦ
(
dk + εiσ

k
i

)
.

Let us choosek such thatσk = min0≤i≤n σi. Note that under the hypothesis,Σk
ij = (εiσi −

εkσk)(εjσj − εkσk). Notice further that since all theεi do not have the same sign, we can define
the following vectoru:

ui =
sgn(εiσi − εkσk)∑n
j=0 |εjσj − εkσk| .

One trivially checks thatu · Σku = 1 and that
(
Σku

)
i
= εiσi − εkσk. Because of the way we chose

k,

εiσi − εkσk = εi|εiσi − εkσk| = εiσ
k
i .

This proves that the inequalities in (7) are in fact equalities.
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2.5. Bound on the gap. Although an estimate of the gap is readily available as soon as lower and
upper bounds are computed, it is interesting to have ana priori bound on the gapp∗ − p∗.

Proposition 8.

0 ≤ p∗ − p∗ ≤
√

2
π

min
0≤k≤n

{
n∑

i=0

xiσ
k
i

}
.

Proof.

p∗ − p∗ ≤ min
0≤k≤n

n∑

i=0

εixiΦ
(
dk + εiσ

k
i

)
− max

0≤k≤n

n∑

i=0

εixiΦ
(
dk + (Σku∗)i

)

≤ min
0≤k≤n

n∑

i=0

εixi

{
Φ

(
dk + εiσ

k
i

)
− Φ

(
dk + (Σku∗)i

)}
.

By Cauchy-Schwarz inequality2,

∣∣∣(Σku∗)i

∣∣∣ =

∣∣∣∣∣∣

n∑

j=0

n∑

l=0

Σk
lju

∗
jδil

∣∣∣∣∣∣
≤

√√√√
n∑

j=0

n∑

l=0

Σk
lju

∗
ju
∗
l

√√√√
n∑

j=0

n∑

l=0

Σk
ljδilδij = σk

i .

It follows that

p∗ − p∗ ≤ min
0≤k≤n

n∑

i=0

xi‖ϕ‖∞
(
σk

i − (Σku∗)i

)
≤ 2‖ϕ‖∞ min

0≤k≤n

n∑

i=0

xiσ
k
i ,

which is the desired upper bound on the gap.

2.6. Computation of the Greeks.

Lower bound.To compute partial derivatives with respect to the coefficients ofC (i.e., the various
correlation parameters), we again need to make a non-degeneracy assumption. Assume Condition 1

holds true. Then,
√

C̃ is also non-singular and we defineC− 1
2 to be the(n + 1) × (n + 1) matrix

obtained with the entries of
√

C̃
−1

and putting back the rows and columns of zeros that we first
removed fromC.

Proposition 9. Under Condition 1,

∆∗i =
∂p∗
∂xi

= εiΦ
(
d∗ + σi(

√
Cv∗)i

)

V ega∗i =
∂p∗
∂σi

√
T = εixi(

√
Cv∗)iϕ

(
d∗ + σi(

√
Cv∗)i

)√
T

χ∗ij =
∂p∗
∂ρij

=
1
2

n∑

k=0

εkxk

(
σiC

− 1
2

kj v∗j + σjC
− 1

2
ki v∗i

)
ϕ

(
d∗ + σk(

√
Cv∗)k

)

Θ∗ =
∂p∗
∂T

=
1

2T

n∑

k=0

εkxkσk(
√

Cv∗)kϕ
(
d∗ + σk(

√
Cv∗)k

)
.

2δij = 1 if i = j and 0 otherwise.
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Proof. First order derivatives are easily computable thanks to the following observation.

dp∗
dxi

=
∂p∗
∂xi

+
∂p∗
∂d

∂d

∂xi
+∇vp∗ · ∂v

∂xi
=

∂p∗
∂xi

+
µ

2
∂‖v∗‖2

∂xi
=

∂p∗
∂xi

becausep∗ satisfies the first order conditions (3-5) at(d∗, v∗).

Second order derivatives are more difficult to obtain since the previous trick is no longer possi-
ble. There exist however simple and natural approximations that satisfy the multidimensional Black-
Scholes equation.

Proposition 10. Let

Γ∗ij = εiεj

ϕ
(
d∗ + σi(

√
Cv∗)i

)
ϕ

(
d∗ + σj(

√
Cv∗)j

)

∑n
k=0 εkxkσk(

√
Cv∗)kϕ

(
d∗ + σk(

√
Cv∗)k

) ,

then

−Θ∗ +
1

2T

n∑

i=0

n∑

j=0

ΣijxixjΓ∗ij = 0.

The unusual term “1/2T ” comes from our convention onΣ.

Proof. It suffices to show that:

−
(

n∑

k=0

εkxkσkϕk(
√

Cv∗)k

)2

+
n∑

i=0

n∑

j=0

εiεjΣijxixjϕiϕj = 0

where we used the short-hand notationϕk = ϕ
(
d∗ + σk(

√
Cv∗)k

)
. Simply note that because of (3),

n∑

i=0

n∑

j=0

εiεjΣijxixjϕiϕj =
n∑

i=0

n∑

j=0

n∑

k=0

εiεjσiσj

√
Cik

√
Ckjxixjϕiϕj

= µ

n∑

j=0

εjσjxjϕj(
√

Cv∗)j .

Again because of (3) and (5), we have:

µ =
n∑

i=0

εiσixiϕi(
√

Cv∗)i.

This completes the proof.

Upper bound.We now turn ourselves to the case of upper bounds. The functionmin is only almost
everywhere differentiable. Therefore the next two propositions have to be understood in an almost
sure sense.k∗ denotes the value for which the minimum is achieved in (6).
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Proposition 11.

∆∗
i =

∂p∗

∂xi
= εiΦ

(
dk∗ + εiσ

k∗
i

)

V ega∗i =
∂p∗

∂σi

√
T = xi

σi − ρik∗σk∗

σk∗
i

ϕ
(
dk∗ + εiσ

k∗
i

)√
T

χ∗ij =
∂p∗

∂ρij
= −δjk∗xi

ρik∗σiσk∗

σk∗
i

ϕ
(
dk∗ + εiσ

k∗
i

)

Θ∗ =
∂p∗

∂T
=

1
2T

n∑

l=0

xlσ
k∗
l ϕ

(
dk∗ + εlσ

k∗
l

)

with the convention0/0 = 0.

Proof. We proceed in the same way as for the lower bound.

Proposition 12. Let

Γ∗ij =





ϕ
�
dk∗+εiσ

k∗
i

�
xiσk∗

i

δij if i ∈ Ek∗

0 for all j if i /∈ Ek∗ ,

then

−Θ∗ +
1

2T

n∑

i=0

n∑

j=0

Σk∗
ij xixjΓ∗ij = 0.

Proof. Straightforward.

3. NUMERICAL EXAMPLES AND EXTENSIONS

3.1. Basket options. As a first example, we shall consider the case of a basket option. For simplicity,
let us suppose that there aren stocks whose initial values are all $1 and whose volatilities are also all
the same, equal toσ. Correlation between any two distinct stocks isρ. This amounts to the following:

ε =




1
...
1

−1


 , x =




1/n
...

1/n
K


 and Σ = σ2T




1 ρ · · · ρ 0

ρ 1
...

...
...

...
... ... ρ 0

ρ · · · ρ 1 0
0 · · · 0 0 0




.

The option has maturity 1 year. We present the results in Figure 1 whenn = 50 and for different
volatilities (σ = 10%, 20%, 30%) and different correlation parameters (ρ = 30%, 50%, 70%.) We
plot lower and upper bounds against strikeK. For the sake of comparison we also plot results of brute
force Monte Carlo simulations with 100,000 simulated paths.

Agreement of the lower bound with Monte Carlo results is excellent, Monte Carlo results being
sometimes slightly below the lower bound. Obviously, upper bounds are really not as good as lower
bounds.
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In view of these plots one can make two comments. The gap between lower and upper bound tends
to decrease as correlation increases, which is in total agreement with Proposition 7. On the other hand
the gap increases with the volatility, this, in turn, could be suspected from Proposition 8.
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FIGURE 1. Lower and upper bound on the price for a basket option on 50 stocks
(each one having a weight of1/50) as a function ofK. “+” denote Monte Carlo
results.

3.2. Discrete-time average Asian options.In the case of Asian option, we compare the lower bound
with another often used approximative lower bound for Asian option. This lower bound is obtained
by replacing an arithmetic average by a geometric one (see, for example, [4].) Results are reported
in Figure 2. Again, we take an option with 1 year to expiry and an initial value for the stock of
$1. Averaging is performed over 50 equally spaced dates. Results are given for different stock
volatilities (σ = 10%, 20%, 30%.) The lower bound is uniformly better than the geometric average
approximation.
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FIGURE 2. Lower and upper bound on the price of an Asian option. The dotted line
represents the geometric average approximation.

3.3. Basket options with barrier. In this subsection, we show how to extend the previous results
to the case of a basket option with a down-and-out barrier condition on the first stock of the basket.
More specifically, the option payoff is

(
n∑

i=1

wiSi(T )−K

)+

1{inft≤T S1(t)≥H}.

With the notation used so far, the option price is3

E

{(
n∑

i=0

εixie
Gi(1)− 1

2
σ2

i 1�
infθ≤1 x1eG1(θ)− 1

2 σ2
1θ≥H

�)+}
,

where{G(θ); θ ≤ 1} is a(n + 1)-dimensional Brownian motion starting from 0 with covarianceΣ.
We propose to approximate the option price and its replicating strategy with an optimal lower bound.

p∗ = sup
d,u
E

{
n∑

i=0

εixie
Gi(1)− 1

2
σ2

i 1�
infθ≤1 x1eG1(θ)− 1

2 σ2
1θ≥H;u·G(1)≤d

�}
.

Using Girsanov’s theorem, this rewrites

p∗ = sup
d,u

n∑

i=0

εixiP
{

inf
θ≤1

G1(θ) +
(
Σi1 − σ2

1/2
)
θ ≥ ln

(
H

x1

)
; u ·G(1) ≤ d− (Σu)i

}
.

Let us define a new standard Brownian motion{W (θ); θ ≤ 1} independent of{G1(θ); θ ≤ 1} by

u ·G(θ) =

√
u · Σu− (Σu)21

σ2
1

W (θ) +
(Σu)1

σ2
1

G1(θ)

3Assuming, without loss of generality, thatε1 = +1, σ1 > 0 andH < x1.
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We choose to normalizeu by setting|(Σu)1| = σ2
1. Lettingλi = Σi1 − σ2

1/2 andY = d− (Σu)i −√
u · Σu− σ2

1W (1), we get

p∗ = max

{
sup
d∈R

sup
(Σu)1=σ2

1

n∑

i=0

εixiP
{

inf
θ≤1

G1(θ) + λiθ ≥ ln
(

H

x1

)
;G1(1) ≤ Y

}
;

sup
d∈R

sup
(Σu)1=−σ2

1

n∑

i=0

εixiP
{

inf
θ≤1

G1(θ) + λiθ ≥ ln
(

H

x1

)
; G1(1) ≥ Y

}}
.

To compute these probabilities we use the following result (see, for example, [3] pp. 470.)

Lemma 1. LetB be standard Brownian motion andX(θ) = σB(θ) + λθ, then fory ≤ 0,

P
{

inf
θ≤1

X(θ) ≥ y; X(1) ≤ x

}
=





Φ
(
−y+λ

σ

)
− e

2λy

σ2 Φ
(

y+λ
σ

)
− Φ

(−x+λ
σ

)

+e
2λy

σ2 Φ
(
−x+λ+2y

σ

)
if y ≤ x

0 otherwise,

P
{

inf
θ≤1

X(θ) ≥ y; X(1) ≥ x

}
=





Φ
(−x+λ

σ

)− e
2λy

σ2 Φ
(
−x+λ+2y

σ

)
if y ≤ x

Φ
(
−y+λ

σ

)
− e

2λy

σ2 Φ
(

y+λ
σ

)
otherwise.

Therefore, we have, by first conditioning onY :4

P
{

inf
θ≤1

G1(θ) + λiθ ≥ ln
(

H

x1

)
; G1(1) ≤ Y

}
=

E






Φ

(
λi − ln(H/x1)

σ1

)
−

(
H

x1

) 2λi
σ2
1 Φ

(
λi + ln(H/x1)

σ1

)
− Φ

(−Y

σ1

)

+
(

H

x1

) 2λi
σ2
1 Φ

(−Y + 2 ln(H/x1)
σ1

)
1{ln(H/x1)≤Y +λi}



 =


Φ

(
λi − ln(H/x1)

σ1

)
−

(
H

x1

) 2λi
σ2
1 Φ

(
λi + ln(H/x1)

σ1

)
Φ

(
d− (Σu)i + λi − ln(H/x1)√

u · Σu− σ2
1

)

−Φ2

(
−d− (Σu)i√

u · Σu
,
d− (Σu)i + λi − ln(H/x1)√

u · Σu− σ2
1

,−
√

1− σ2
1

u · Σu

)

+
(

H

x1

) 2λi
σ2
1 Φ2

(
−d− (Σu)i − 2 ln(H/x1)√

u · Σu
,
d− (Σu)i + λi − ln(H/x1)√

u · Σu− σ2
1

,−
√

1− σ2
1

u · Σu

)
.

4Φ2 denotes the cumulative distribution function of the standard bivariate Gaussian distribution, i.e.,

Φ2(x, y, ρ) =
1

2π
p

1− ρ2

Z x

−∞

Z y

−∞
exp

�
−1

2

u2 − 2ρuv + v2

1− ρ2

�
dudv.
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Similarly,

P
{

inf
θ≤1

G1(θ) + λiθ ≥ ln
(

H

x1

)
; G1(1) ≥ Y

}
=


Φ

(
λi − ln(H/x1)

σ1

)
−

(
H

x1

) 2λi
σ2
1 Φ

(
λi + ln(H/x1)

σ1

)
Φ

(
d− (Σu)i − λi + ln(H/x1)√

u · Σu− σ2
1

)

+Φ2

(
d− (Σu)i√

u · Σu
,−d− (Σu)i − λi + ln(H/x1)√

u · Σu− σ2
1

,−
√

1− σ2
1

u · Σu

)

−
(

H

x1

) 2λi
σ2
1 Φ2

(
d− (Σu)i − 2 ln(H/x1)√

u · Σu
,−d− (Σu)i − λi + ln(H/x1)√

u · Σu− σ2
1

,−
√

1− σ2
1

u · Σu

)
.

Table 1 below gives prices for such options for various parameters. Framework and notation are
the same as section 3.1. There aren stocks whose initial values are $1 and whose volatilities are
all equal toσ. Correlation between any two distinct stocks isρ and options are at-the-money, i.e.,
K = 1.

σ ρ H/x1 n = 10 n = 20 n = 30
0.4 0.5 0.7 0.1006 0.0938 0.0939
0.4 0.5 0.8 0.0811 0.0785 0.0777
0.4 0.5 0.9 0.0473 0.0455 0.0449
0.4 0.7 0.7 0.1191 0.1168 0.1165
0.4 0.7 0.8 0.1000 0.1006 0.0995
0.4 0.7 0.9 0.0608 0.0597 0.0594
0.4 0.9 0.7 0.1292 0.1291 0.1290
0.4 0.9 0.8 0.1179 0.1175 0.1173
0.4 0.9 0.9 0.0751 0.0747 0.0745
0.5 0.5 0.7 0.1154 0.1122 0.1110
0.5 0.5 0.8 0.0875 0.0844 0.0816
0.5 0.5 0.9 0.0518 0.0464 0.0458
0.5 0.7 0.7 0.1396 0.1389 0.1388
0.5 0.7 0.8 0.1103 0.1086 0.1080
0.5 0.7 0.9 0.0631 0.0619 0.0615
0.5 0.9 0.7 0.1597 0.1593 0.1592
0.5 0.9 0.8 0.1328 0.1322 0.1320
0.5 0.9 0.9 0.0786 0.0782 0.0780

TABLE 1. Lower bounds for a down-and-out call option on a basket ofn stocks.

4. CONCLUSION

This paper showed how to efficiently compute approximate prices and hedges of options on any
linear combination of assets. Our general method allowed us to treat all these options in a common
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framework. Lower bounds prove to be extremely accurate. This methodology was applied to the
pricing of basket, discrete-time average Asian options and basket options with barrier.

As an important by-product of this method, first and second order sensitivities are given in closed
form at no extra cost. This is a clear advantage over Monte Carlo methods. Indeed, first order
derivatives are also easily computable along with the price as explained, for example, in [1]. In the
one-dimensional case, there is only one second order derivative (Gamma) and it can be computed by
imposing that it satisfy Black-Scholes equation. In dimensionn ≥ 2, this PDE involves alln second
order partial derivatives, and it seems we need to computen− 1 of them, if we want to use the same
trick.
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