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ABSTRACT. This paper provides with approximate formulas that generalize Black-Scholes formula

in all dimensions. Pricing and hedging of multivariate contingent claims are achieved by computing
lower and upper bounds. These bounds are given in closed form in the same spirit as the classical
one-dimensional Black-Scholes formula. Lower bounds perform remarkably well. Like in the one-
dimensional case, Greeks are also available in closed form. We discuss an extension to basket options
with barrier.

1. INTRODUCTION

This paper provides with approximate formulas that generalize Black-Scholes formula in all di-
mensions. The classical Black-Scholes formula gives in closed form the price of a call option on a
single stock whose dynamics is a geometric Brownian motion. Its use has spread to fixed income
markets to price caps and floors in Libor models or swaptions in Swap models when volatilities are
deterministic.

Many options however have multivariate payoffs. Although the mathematical theory does not
present any particular difficulties, actual computations of prices cannot be done in closed form any
more. Financial practitioners have to resort to numerical integration, simulations or approximations.
In high dimensions, numerical integration and simulation methods may be too slow for practical
purposes. Many areas of computational finance require robust and accurate algorithms to price these
options.

In this paper we give approximate formulas that are fast, easy to implement and yet very accurate.
These formulas are based on rigorous lower and upper bounds. These bounds are derived under
two assumptions. First, we restrict ourselves to a special class of multivariate payoffs. Throughout
payoffs are of the European type (options can only be exercised at maturity) and when exercised
these options pay llnear combinationof asset prices. This wide class includes basket options (i.e.,
options on a basket of stocks), spread options (i.e., options on the difference between two stocks or
indices) and more generally rainbow options but also discrete-time average Asian options and also
combination of those like Asian spread options (i.e., options on the difference between time averages
of two stocks or indices.) Second, we work in the so-called multidimensional Black-Scholes model.
In this model, assets follow a multidimensional geometric Brownian motion dynamics. In other
words, all volatilities are constants. As usual, to extend the results for deterministic time dependent
volatilities one just has to replace volatilities by their root-mean-square over the option life.
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To continue the discussion, let us fix some notations. In a multidimensional Black-Scholes model

with n stocksSy, . . ., .Sy, risk neutral dynamics are given by
dsS;(t) =
S:(0) = rdt + J;l 0;jdB; (t),
with some initial valuess; (0), ..., S,(0). By,..., B, are independent standard Brownian motions.

Correlations among different stocks are captured through the ngatfix Given a vector of weights
(wi)i=1,...n, We are interested, for instance, in valuing the following basket option strucksetose
payoff at maturityl is

n +
=1

Risk neutral valuation gives the price at time 0 as the following expectation

n +
Q) p=e¢"TE { (Z w; Si(T) — K) } .

Deriving formulas in closed form for such options with multivariate payoffs has already been tack-
led in the financial literature. For example, Jarrow and Rudd in [2] provide a general method based
on Edgeworth (sometimes also called Charlier) expansions. Their idea is to replace the integration
over the multidimensional log-normal distribution by an integration over another distribution with the
same moments of low order so that this last integration can be done in closed form. In the case where
the new distribution is Gaussian, this approximation is often called the Bachelier approximation since
it gives back formulas alike those derived by Bachelier.

Another take on this problem (introduced in [4]) is to replace arithmetic averages by their corre-
sponding geometric averages. The latter have the nice property of being log-normally distributed,;
they therefore lead to formula alike the Black-Scholes formula. See, for example, [3] pp. 218-225
for a presentation of these results. This method assumes however that the wejghts . ,, are all
positive. Our method does not require this assumption and will prove to be more accurate.

There are two difficulties in computing (1): the lack of tractability of the multivariate log-normal
distribution on the one hand and the non linearity of the functions ™ on the other. Whereas
[2] and [4] circumvent the first difficulty, our approach relies on finding optimal one-dimensional
approximations thanks to properties of the function~ ™. In one dimension, computations can
then be carried out explicitly.

Approximations in closed form are given in Proposition 4 and 6 below. Various price sensitivities,
the so-called Greeks, are given in Proposition 9, 10, 11 and 12. Section 3 shows actual numerical
results as well as an extension to multivariate barrier options.

2. APPROXIMATE LOWER AND UPPER BOUNDS

As we have just explained, our goal is to compH{eX *} whereX is the random variable

n
1 .
X = Z EixieGl 2Var(G1)_
=0



PRICING AND HEDGING MULTIVARIATE CONTINGENT CLAIMS 3

(Gi)i=0,...n Is @ mean zero Gaussian vector of sizg- 1 and covariance matriX. ¢; = +1 and
x; > 0foralli =0,...,n. Inview of (1), this is just; = sgnw;) andz; = |w;|S;(0). Note that
entries ofY are dimensionless, that is, they are “volatilities squaraime to maturity”.

Without loss of generality, we suppose that not all of ghéave the same sign. If this were the
case, computind{ X} would not present any difficulty. Note also thatis symmetric positive
semi-definite but not necessarily definite. Before we explain our approximation method we need the
following definition and proposition.

Definition 1. For everyi, j,k =0,...,n, we let
S5 = 54 — Sik — Skj + Skk

o =\ 2 Uf:\/zz.

Proposition 1. For everyk = 0,...,n, let (Gf)izown be a mean zero Gaussian vector with covari-

anceX*. Then, .
E{XT}=E { (Zezx et =z Var( Gk)) } :

Proof. This is an easy consequence of Girsanov’s transform. Indeed,

_l’_
IE{X*} _ E{ —1var(Gy) (Zezxz ;(Var(Gq;)—Var(Gk))> }

JF
= Eg { (Z gixieGi—Gk—;(Var(Gi)—Var(G’k))> } ’
=0

where probability measui@” is defined by its Radon-Nikdan derivative

and

dQ" _ G- tvarcy)
dP '
UnderQ¥, (Gi — Gi)o<i<n is again a Gaussian vector. Its covariance matriXfis n

Without loss of generality, we will also assume that for eviers: 0,...,7n, ¥ # 0. Indeed if
such were the case, Proposition 1 above would give us the price without any further computation.

2.1. Two optimization problems. The following proposition will provide us with bounds.

Proposition 2. Forany X € L',

+ _ .
(2) 031}1/2 E{XY}=E{X"} = X:Zlengfle,ZgzoE{Zl}.

Proof. On the left-hand side, letting < Y < 1,

E{XY}=E{XTY} -E{X Y} <E{X"}
and takingY” = 1>, shows that the supremum is actually attained. On the right-hand side, it is
well known that if X = Z; — Z, with both Z; andZ, non negative, the@; > X*. 1

These two optimization problems are dual of each other in the sense of linear programming.
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2.2. Derivation of the lower bound. Our lower bound is obtained by restricting the set over which
the supremum in (2) is computed. We chodasef the formt 1¢u.G<qy Whereu € Rl andd € R
are arbitrary. Let us let

Py = SUCII)E {Xl{uGSd}} .
u7
The next two propositions give further information pn First, we need the following definition.

Definition 2. Let D to be the(n + 1) x (n + 1) diagonal matrix whoséth diagonal element i$/o;
if 0; # 0 and O otherwise. Lat' to be such that

C =D¥D.
C'is also a positive semi-definite matrix and we denote/Bya square root of it (i.e.C' = VOV .)
Proposition 3.

Py = SUp Ssup zn:esimifb (d+ (Xu),;) = sup sup Zn:zsixi@ <d + O'i(\/a’l))i> .

deR u-Su=17", deR ||v||=1,",

Here and throughout the paper, we use the notatian and®(x) for the density and the cumula-
tive distribution function of the standard Gaussian distribution, i.e.,

1 1 T
cp(az):me °/2 and @(x):m/ e 2y,

Proof.
p» = sup sup E{E{X|u-G}1p.c<qy}
deR yeR+1

1 Cov(Gyu-G)2

n Cov(Gyu-G) o
= sup sup Z giriE qe wxue M ws T 1, g<gy
deR ueRn+1 =5 B

n
. G-—1 )2
— sup sup Z e.tiE { (COUCiu G G—JCUGu Gy d}}
deR u-Yu=1"

1=0
n
= sup sup Z&'%L‘b (d+ (Xu);) .
deR u-Su=1 ",

By defining D! to be the(n + 1) x (n + 1) diagonal matrix whoséh diagonal element is;, we

easily check that = D~1v/C/C" D!, Therefore by taking = D~'v/C" u, we have the second
equality of the proposition.m

To actually compute this supremum, it is interesting to look at the Lagranfjian

L(v,d) = Z&‘%“I’ (d—i— Ji(\FCU)i) — g (|[o]* = 1).
=0

L. denotes the usual inner productist .
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Proposition 4.
n
Py = Z&Z:L‘lq) (d* + O'i(\/ C’U*)l>
i=0

whered* andv* satisfy the following first order conditions

(3) Zfiwiaz’\/@ij@ (d* + O‘z(\FCU*)l) — ,LL’L);K =0 fOI’j = 0, Lo, n
=0
(4) Zaixiap (d* + ai(\FCU*)i> =0
=0
5) W = 1.

Note that expression fqr, is as close to the classical Black-Scholes formula as one could hope.
To conclude this subsection, we give a necessary conditiofi ftur be finite. It is interesting when it
comes to numerical computations but it also ensures us that lower bounds are not trivial. We need to
make a non-degeneracy assumption. Recall that the ndatsias introduced in Definition 2. Through
its definition,C' may have columns and rows of zeros. We are now assuming that the square(natrix
obtained by removing these rows and columns is non-singtlarwell defined because we assumed
that none of th&* (and therefor&) were actually the zero matrix.

Condition 1.
det(C) # 0
Proposition 5. Under Condition 1,
p. >E{X}T, orequivalently |d*| < +ooc.
Proof. Assume for instance th@t{ X'} > 0. We want to show thai, > E {X}. Let us letf,(d) =
S8 e (d + ai(\va)i). First note that for any, limg_, o f,(d) = E{X}. We are going
to show the claim by showing that there exists a unit veetsuch thatf, (d) < 0 whend is near

+00. Under Condition 1Range(v/C) = @}, 0:R # {0} and we can pick a unit vectersuch that
o; > 0 = g;(v/Cv); > 0. For such a, write f/ as

fo(d) = p(d) { MmO 3ROV N wied”i(‘@“)iéaf(\@v)?} .
ie;=+1 iig;=—1

By denotinge = min;.,—11 0;(vCv); > 0 ands = max;..,—_1 0;(v/Cv); < 0, we get the follow-

ing bound, valid ford > 0:

fi(d) < o(d) {( Z xl> e~do—30% _ ( Z I1> edE;UQ} '
tigi=+1 ig;=—1

Without loss of generality, we can assume thanda are not simultaneously zero and the above
upper bound is strictly negative fdlarge enough. The case whété X } < 0 is treated analogously
by showing thatf] > 0 around—cc. B
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2.3. Derivation of the upper bound. Our upper bound is obtained by restricting the set over which
the infimum in (2) is computed. For eveky= 0,...,n, let&, = {i : ¥ # 0} # (. Let us also let
T = | g, €imi| @ndéy, = sgr(}_,qc, €iwi). Without loss of generality, we can assumge> 0.

Then, choose reals\F);cs, such thad M = —&, and rewriteX as
X = Z€z$€ VarG) )\ki" eG’“ —Var(Gk)
€€
Gi—ivar(Gy) kr Gr—LvarGy) )T
= Z g;xie 2 V- A Te 2
€€
— Z (€i$i€Gi_%Var(Gi) — )\?i“keG’“_%Var(G’“)>_
1€E

The family of random variableg; that we choose consists of those of the form

Z <€i$i€Gi_%Var(Gi) - Afi"keck—%vaf(Gk))+

€8
wherek = 0,...,n, > ice, M= &, and)\Fe; > 0foralli € &,. Because all the; do not have the
same sign, the set of sugfi is nonempty for each.

Proposition 6.

whered” is given by the following first order conditions

1 <5i$i ) &‘Z‘O'é€ &j 1 <€jx]’) <€j0§-C dk foriicé&
- = —hn{o=—]- = i,j € &
k k k ’
ok A 2 g ATy 2
YN = &
€€k

Meg, > 0 forieé&.

Again, note that expression fpr is as close to the classical Black-Scholes formula as one could
hope.

Proof.
. - . —Var(Gi) vk~ Gr—LvarGp)\ "
p* = min inf Z (slzve 2 V=N Zper 2 ’“)
0<k<n Ziesk Ne—_ ice,
. . & EiT; g0k
= min inf Zalxz —In{5— |+ 5
0SkSn S e, M=k S of T\ My

k
E;X; E;,0;

Moz @ (Sl n |2 —>
o ( (u) 2
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Forming the Lagrangiag”

k
kyk €; EiT; €i0;
A = 2P| — 1

£5A) D < <a’?n</\ffck>+ 2 >

1€EK ¢

k
ke - [ Ei € gio! Eo -
€&k

we find the first order conditions

8£k E; g5 e’:‘iO'k
i S N (A P (i N ) )
ONE g <alf (Af:ﬁk 2 ) H

)

from which we deduce that the argumentsbofnust all equal each otherm

2.4. Cases of equality. It is easily seen that when = 1, lower and upper bounds both reduce to the
Black-Scholes formula and therefore give the true value. Let us stress thatnot only contains the
classical call and put options but also the exchange option of Margrabe. The following proposition
gives other cases where the lower and upper bounds are in fact equal to the true value.

Proposition 7. If forall 4,7 =0,...,n,
Yij = €igj0i0j,
then
px=p".
Proof. Exactly as in Proposition 1, note that for aky

n
Py = SUp  Sup Zaixifb (d + (Zku)l) .
Therefore, for any,

n

) sup Zaixi@ <dk + (Eku),> <pe <p* < Zn:eimié (dk + €iaf> )
i=0

Let us choose: such thato, = ming<;<, 0;. Note that under the hypothesE,ﬁ?j = (gio; —
eroy)(ej0; — eroy). Notice further that since all the do not have the same sign, we can define
the following vectoru:

Sgl'(EZ‘O'Z‘ — EkO'k)
Yizolejoj — ewow|
One trivially checks that - *u = 1 and that(X*u), = ;0; — £40%. Because of the way we chose
k,

i =

k
Ei0; — ERO| = EZ'|€1'UZ' — 5k0k| = &i0; .

This proves that the inequalities in (7) are in fact equaliti@s.
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2.5. Bound on the gap. Although an estimate of the gap is readily available as soon as lower and
upper bounds are computed, it is interesting to hava grori bound on the gap* — p..

OSP*—p*S[OgEn{sz }

n

n
p*—p. < min gix; P (dk + eiaf) — max g;x; P (dk + (Eku*)l)
nggn 0 0<k<n “—o

: o) o(e )}
< Oir}flgnzgle{@ (d + &0} O (d¥ + (ZFu™);

By Cauchy-Schwarz inequality

ZZEU = 25U leézl% =0;.
§j=01=0 §=01=0 §j=01

Proposition 8.

Proof.

‘(Zk *

It follows that

P —p. < min szusouoo (o = (2*u):) < 2l glloo min sz o,

0<k<n
which is the desired upper bound on the gap.
2.6. Computation of the Greeks.

Lower bound.To compute partial derivatives with respect to the coefficient§ ¢i.e., the various
correlation parameters), we again need to make a non- degeneracy assumption. Assume Condition 1

holds true. Theny/C is also non- smgular and we defi& 2 to be the(n + 1) x (n + 1) matrix

obtained with the entries o‘ff_ and putting back the rows and columns of zeros that we first
removed fromC.

Proposition 9. Under Condition 1,

_ O _
Ai=gr = d+a“/v))
Ops
Vega.; = ;;vT = gxi(VCv)ip (d + 0;(VCOu*); ) VT
},_8p*_1” P I . i
O, = T 7 k:L‘kO'k(VCU )ng (d —l—Uk(\/CU )k)

=0

25”' = 1if ¢ = j and O otherwise.
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Proof. First order derivatives are easily computable thanks to the following observation.

dp. _ Op. Op. 0d v Op. | polv|*  Op.
dwi N (9:62 od 6.%'1 + va* 6.%’1 N G:BZ + 2 aJEZ N 8901

because. satisfies the first order conditions (3-5)dt, v*). n

Second order derivatives are more difficult to obtain since the previous trick is no longer possi-
ble. There exist however simple and natural approximations that satisfy the multidimensional Black-
Scholes equation.

Proposition 10. Let
® (d* + Ui(\/av*)i> © (d* + Uj(\/av*)j)
ZZ:O 6kwk0k(\@v*)kcp (d* + ak(\@v*)k)

Lsij = €igj

then

1
-0, + ﬁ ZO ZO Eijl‘il’jr*ij =0.
i=0 j=

The unusual term1/27” comes from our convention of.
Proof. It suffices to show that:
n 2 n n
— (Z 5kxkakcpk(\/5v*)k> + Z Z 5i5j2ijl’i$jgﬁig0j =0
k=0 1=0 j=0
where we used the short-hand notatign= ¢ (d* + Uk(\@v*)k) Simply note that because of (3),

n n n n n
Z Z EiEjZijxia:jcpigoj = Z Z Z EiEjUz‘Uj\/aik\/Ekj%xj@i@j

i=0 j=0 i=0 j=0 k=0

= u Z EjO'jCUj(,Dj(\/E'U*)j.

Jj=0

Again because of (3) and (5), we have:
p= i&m%%(ﬁv*)i-
=0
This completes the proofa
Upper bound.We now turn ourselves to the case of upper bounds. The funetions only almost

everywhere differentiable. Therefore the next two propositions have to be understood in an almost
sure sensek* denotes the value for which the minimum is achieved in (6).
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Proposition 11.

8 * * *
Ar=3E = s (& +eol)
2
6 * O; — Pik*0 L* * *
g %
% ap* pk*o'o'k* k* fe*
Xij = @ = = jk*xz‘%w (d + €io; )
. Op* 1 & o i o
0* = T = ﬁleJl gp(d + €107 )

1=0
with the conventio/0 = 0.

Proof. We proceed in the same way as for the lower boumd.

Proposition 12. Let

o(d¥" +eiok .
I‘;*] — (‘xT(sw ifi € gk*
0 forall J if i & Epx,
then
—O* + — Z E mlmj =0.
=0 j=0

Proof. Straightforward. m

3. NUMERICAL EXAMPLES AND EXTENSIONS

3.1. Basket options. As a first example, we shall consider the case of a basket option. For simplicity,
let us suppose that there arestocks whose initial values are all $1 and whose volatilities are also all
the same, equal t@. Correlation between any two distinct stockgisThis amounts to the following:

M1 P 0_
1 1/n p
. . p 1
€= = : and “=¢%T71| . . .
1 1/n o e p 0
-1 K p - p 10
Lo -~ 0 0 0]

The option has maturity 1 year. We present the results in Figure 1 when50 and for different
volatilities (o = 10%, 20%, 30%) and different correlation parameteys £ 30%, 50%, 70%.) We
plot lower and upper bounds against strike For the sake of comparison we also plot results of brute
force Monte Carlo simulations with 100,000 simulated paths.

Agreement of the lower bound with Monte Carlo results is excellent, Monte Carlo results being
sometimes slightly below the lower bound. Obviously, upper bounds are really not as good as lower
bounds.
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In view of these plots one can make two comments. The gap between lower and upper bound tends
to decrease as correlation increases, which is in total agreement with Proposition 7. On the other hand
the gap increases with the volatility, this, in turn, could be suspected from Proposition 8.

p=30%0 = 10% p=30% 0 =20% p=30% 0 =30%

)
w
)
@
o
@

price

o o o

= ° i ° i~

S e & N &
price

o o o

= ° i o N

G e & Ny 3
price

o o o

= ° i o i~

G - & o 5

0.75 0.88 1.00 113 125 0.75 0.88 1.00 113 125 0.75 0.88 1.00 113 125
strike K strike K strike K
p=50% 0 = 10% p=50% 0 = 20% p=50% o = 30%
0 0 0.35
03 03 03

price
. . .
o o = o N
8 = 2 g &
price
. . .
= ° s o °
8 = 2 s 8
rice
. . .
o o = o N C
8 = 2 s &
e /
5

i

0.75 0.88 1.00 113 125 0.75 0.88 1.00 1 113 1.25
strike K strike K strike K

p=70%0=10% p=70% 0 =20% p=70% 0 =30%

price
o =3 o
=) o = o N
a = a N q
price
o o o
=) o = o N
o = a N 9
price
o o o
=) o = o N <
a = a N a

i
]

0.75 0.88 1.00 113 125 0.75 0.88 1.00 113 125 0.75 0.88 1.00 113 1
strike K strike K strike K

FIGURE 1. Lower and upper bound on the price for a basket option on 50 stocks
(each one having a weight af/50) as a function ofK’. “+” denote Monte Carlo
results.

3.2. Discrete-time average Asian options.In the case of Asian option, we compare the lower bound
with another often used approximative lower bound for Asian option. This lower bound is obtained
by replacing an arithmetic average by a geometric one (see, for example, [4].) Results are reported
in Figure 2. Again, we take an option with 1 year to expiry and an initial value for the stock of
$1. Averaging is performed over 50 equally spaced dates. Results are given for different stock
volatilities (c = 10%, 20%, 30%.) The lower bound is uniformly better than the geometric average
approximation.
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o =10% o =20% o =30%

0.75 0.88 1.00 113 125 0.75 0.88 1.00 113 125 0.75 0.88 1.00 113 125
strike K strike K strike K

FIGURE 2. Lower and upper bound on the price of an Asian option. The dotted line
represents the geometric average approximation.

3.3. Basket options with barrier. In this subsection, we show how to extend the previous results
to the case of a basket option with a down-and-out barrier condition on the first stock of the basket.
More specifically, the option payoff is

n +
(Z w; Si(T) — K) Lint,or 510020}
i=1

With the notation used so far, the option pricg is

n +
(1) 1,2
E E 5iIL‘i€G’(1) 291 Gl0)— L1020 )
pars {inf9§1xle 1(0)-31 zH}

where{G(6);0 < 1} is a(n + 1)-dimensional Brownian motion starting from 0 with covariante
We propose to approximate the option price and its replicating strategy with an optimal lower bound.

n
px =supE {Z aixieGi(l)*%”gl

1.2 .
du = {infegl mlec’l(‘”‘2”102H;u-G(1)§d}}

Using Girsanov’s theorem, this rewrites

Ds = S;E);z—:imip{égfi G1(0) + (Zi1 —07/2)0 > In <$1> ju-G(1) <d-— (Eu)l} .

Let us define a new standard Brownian mot{d#i (0); ¢ < 1} independent of G;1(0);0 < 1} by

w-GO) = Ju-Su— (ZZ)%W(G) + (E@;)lcl(e)
01 01

3Assuming, without loss of generality, that = +1, 01 > 0 andH < x;.
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We choose to normalize by setting|(Xu);| = o?. Letting\; = ¥;1 — 02/2 andY = d — (Su); —

Vu - Xu—oiW(1), we get

Px = max< sup sup Zeixi]}” {inf G1(0) + X6 > In <H) ;G1(1) < Y} ;
deR (Zu)1:O'% i=0 o<1 1

sup Euiu_pial zgsa: {ggfl G1(6) + Xif > In (Z) G(1) > Y}} :
To compute these probabilities we use the following result (see, for example, [3] pp. 470.)
Lemma 1. Let B be standard Brownian motion an’l(6) = o B(#) + A0, then fory < 0,

B (22) —efe (12) — e (=52

P {é%le(‘)) 2y, X(1) < “7} = reH o (Fn) iy <o

0 otherwise,
21
} (I)(%H\)_GT;(I) %/\4‘29) ify <a
— 2
) (%“) —e D (%) otherwise.
Therefore, we have, by first conditioning ont

P{ggfl G1(6) + A6 > In (Z) LGh(1) < y} _
) - () o () o (5)

23,
H\ 2 Y +2In(H/z1)
+ <961> ' q’( or lana/en<yerd ¢ =

@(A — In( H/a:l ) <> = o (W) o (d—(zu);f;—_ljf(ﬂ/xlv
d—

_@2< d—(Lu); d—(Sw)i+ A H/w) [ oF )

i >, >
P{égle(a) >y X(1) >z

Vu-Su Vu-Su—o? ’ u-Xu
. <H> 7 o) (_d— (Sw); —2In(H/x1) d— (Suw)i+ A —In(H/z) [ of ) |

I

U DU ’ \/u-zu—g% ’ U DU

4<1>2 denotes the cumulative distribution function of the standard bivariate Gaussian distribution, i.e.,

1u — 2puv + 02
Dy (x ex ——— | dudv.
wrn=zm=[ [ (55
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()=} -
{q} ( ~n( H/:c1> ( > <>\ +ln(H/x1)>

Similarly,

P{infGl )+ i > In
0<1

. (a — (Su); — \i + ln(H/m)

o1 \/ul]u—a%
s d— (Xu); — (Bu)i — A+ In(H/21) | o?
2 u~2u’ - Zu—a% ' u - 2u
23
_(H)a%q) d—(Zu); —2In(H/z1) d— (Zu)i — A +In(H/z1) | o?
x1 ? Vu - Xu 7 Vu-Yu—o? ’ u-Yu |’

Table 1 below gives prices for such options for various parameters. Framework and notation are
the same as section 3.1. There arstocks whose initial values are $1 and whose volatilities are
all equal too. Correlation between any two distinct stocksiand options are at-the-money, i.e.,
K=1.

o p H/xzq n =10 n =20 n = 30
0.4 0.5 0.7 0.1006 0.0938 0.0939
0.4 0.5 0.8 0.0811 0.0785 0.0777
0.4 0.5 0.9 0.0473 0.0455 0.0449
0.4 0.7 0.7 0.1191 0.1168 0.1165
0.4 0.7 0.8 0.1000 0.1006 0.0995
0.4 0.7 0.9 0.0608 0.0597 0.0594
0.4 0.9 0.7 0.1292 0.1291 0.1290
0.4 0.9 0.8 0.1179 0.1175 0.1173
0.4 0.9 0.9 0.0751 0.0747 0.0745
0.5 0.5 0.7 0.1154 0.1122 0.1110
0.5 0.5 0.8 0.0875 0.0844 0.0816
0.5 0.5 0.9 0.0518 0.0464 0.0458
0.5 0.7 0.7 0.1396 0.1389 0.1388
0.5 0.7 0.8 0.1103 0.1086 0.1080
0.5 0.7 0.9 0.0631 0.0619 0.0615
0.5 0.9 0.7 0.1597 0.1593 0.1592
0.5 0.9 0.8 0.1328 0.1322 0.1320
0.5 0.9 0.9 0.0786 0.0782 0.0780

TAaBLE 1. Lower bounds for a down-and-out call option on a basket stocks.

4. CONCLUSION

This paper showed how to efficiently compute approximate prices and hedges of options on any
linear combination of assets. Our general method allowed us to treat all these options in a common
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framework. Lower bounds prove to be extremely accurate. This methodology was applied to the
pricing of basket, discrete-time average Asian options and basket options with barrier.

As an important by-product of this method, first and second order sensitivities are given in closed
form at no extra cost. This is a clear advantage over Monte Carlo methods. Indeed, first order
derivatives are also easily computable along with the price as explained, for example, in [1]. In the
one-dimensional case, there is only one second order derivative (Gamma) and it can be computed by
imposing that it satisfy Black-Scholes equation. In dimension 2, this PDE involves alh second
order partial derivatives, and it seems we need to computd of them, if we want to use the same
trick.
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