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1.1 Introduction

1.1.1 Standard Assumptions in Finance

One of the basic assumptions of the early mathematical theory of financial markets
is the absence of friction and consequently, the fact that securities have one price
(law of one price), and that they can be sold and bought at this price in any desired
quantity. This form of infinite liquidity implies that the sizes and the frequencies of
the transactions have no impact on the prices at which the transactions take place.
This lack of price impact is often justified by limiting the scope of these models
to the behavior of so-called small investors. While this restriction can exonerate the
models of the lack of price impact, it cannot justify the side effect of infinite liquidity.

As demonstrated by the recent financial crisis, the existence of a quoted price is
not enough for transactions to be possible, and to actually occur. Financial agents
willing to sell and buy will have to agree on a price level, a quantity, and a specific
timing for the transaction to take place.

The above claims should be understood as a zealous invitation to the study of
market microstructure. This invitation does not imply that frictions have not been
studied mathematically. Indeed, transaction costs (at least proportional transaction
costs) have not been included in mathematical models for almost twenty years, and
many attempts have been made to extend Merton’s theory of optimal portfolio choice
in order to capture their impact. We refer the reader to [39, 44, 91] for the earliest
contributions, and to Muhle-Karbe’s lectures included in this volume and expanded
in [71], for recent developments and an up-to-date set of references.
? These notes cover the first five lectures of a ten lecture course on high frequency markets

at the first Princeton RTG Summer school on Financial Mathematics from June 21 to June
30, 2013. The last five lectures were given by A. Schied. They were based on advanced
material already published in [90], [9] and [8], so closely that A. Schied thought it was
neither appropriate nor necessary to provide still another exposé of the material.
This research was partially supported by NSF DMS-0456195.
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Similarly, attempts have been made to include liquidity frictions in mathematical
models. For example, [35] assimilates liquidity frictions to a form of added costs
to a transaction. While remaining an intuitively appealing way to include illiquidity
issues in the models, this approach is still unsatisfactory for large trades (especially
over short periods of time) and High Frequency Trading (HFT).

Our mild introduction to high frequency trading is aimed at mathematicians and
financial engineers curious about the most common forms of electronic trading.
Among many other things, we shall not consider the thread of literature on ”agent
based models”. See for example [94]. Still, this introduction is screaming for the
analysis of the market microstructure in order to understand how and why are buy
and sell orders are posted and executed.

1.1.2 Traditional Markets

In order to understand trading on the electronic markets and especially limit order
book trading, it is important to review the typical characteristics of the traditional
trading processes before the advent of the electronic markets. Most financial trades
used to take place in quote - driven markets where individual buy and sell orders are
collected by dealers and/or market makers who in turn publish the prices at which
they are subsequently willing to buy and sell the financial interest being traded. This
is the case for example in the New York Stock Exchange (NYSE) specialist system.
In order for the business of market making to make sense, the sell price published
needs to be higher than the buy price. The difference (often called the spread) is the
source of profit compensating the market maker for taking risk in making the market.
Market makers are considered as liquidity providers and in these lectures, we shall
use interchangeably the terms of market maker and liquidity provider. Typically, the
other market participants have only access to the prices published by the market-
makers, and their decisions to buy or sell are based on these prices.

For the sake of the following discussion we specify the meaning given to an ex-
pression which will be used often in the sequel: adverse selection is a term frequently
used in the economic literature to describe the quandary of a market maker facing
agents who have better information about the value of the financial interest being
traded, and who can therefore make a profit by buying or selling, often repeatedly,
with the market-maker [83]).

Liquidity is also a word often used despite the fact that it is rather difficult to
define. In these notes, we shall often use this word to qualify the level of friction in
a market, but also to identify certain types of agents by identifying forms of trading
behaviors. Case in point, some of the market models we discuss below are based on
the interactions between two families of traders whom we distinguish as liquidity
providers and liquidity takers.

1.1.3 New Markets

A second category of trading venue can be characterized as order-driven markets.
These are typically electronic platforms which aggregate all the available orders in
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a Limit Order Book (LOB). These markets include the New York Sock Exchange
(NYSE), NASDAQ and the London Stock Exchange (LSE). One of the special
features of these markets is that the same stock can be traded on several venues. This
makes price discovery more difficult, especially because most instruments can also
be traded off market, without printing the trades to a publicly accessible data source
like the so-called consolidated tape. As advocated by the proponents of the existence
of, and the competition between multiple exchanges, the resulting alternatives lead
to lower fees and smaller tick sizes. However, agents will have to decide how to split
and route their orders to best use the competing exchanges, relying more and more
on on hardware and software called smart order routers or SORs. See for example
[42] for an attempt at addressing the problem of optimal liquidation of a position
when several venues can be accessed by the (electronic) broker.

Even though we will not spend much time discussing these alternatives, we shall
also mention below the so-called dark pools. See nevertheless [75] for complements.
.

1.1.4 High Frequency Trading

High-frequency trading (HFT) is a specific form of algorithmic trading. Other forms
of algorithmic trading are implemented at low frequency. We discuss some of these
applications in Section 1.5. It implements proprietary trading strategies to move in
and out of positions in fractions of a second. Instead of relying on macro-economic
factors, these strategies depend on the detection of unusual patterns of market activi-
ties and price anomalies, and their success is mostly based on the speed of execution,
hence the reliance on sophisticated computer systems, and state of the art communi-
cation systems to facilitate access to the electronic markets.

It is often claimed that HFT accounts for 60 – 75% of all share volume on many
exchanges. While speculative, these figures are commonly accepted as they sound
plausible. Moreover, 10% of that is qualified as ”predatory”, which represents ap-
proximately 600 million shares per day. At $0.01-$0.02 per share, predatory HFT is
profiting $6-$12 million a day or $1.5-$3 billion per year.

Predatory trading, while possibly undesirable or unethical, is perfectly legal. It
has to be differentiated from front-running which is the illegal practice of using in-
sider information to trade ahead of customer orders. In the context of HFT, however,
this term is also used to describe firms using their speed advantage to trade before
slower participants.

Algorithmic trading is a source of serious concern. The most obvious are based
on the fact that trading firms are moving their computing facilities closer to the trad-
ing platform to avoid become victims of latency arbitrage, and increasingly rely on
benchmark tracking execution algorithms. Latency is the delay between the trans-
mission of information from a source and the reception of the signals at destination,
typically the time between the placement of an order on an electronic trading system,
and the actual execution of that order. This is the source of a new phenomenon called
co-location. This practice was made possible by exchanges or trading venues renting
out space in close physical proximity to their trading servers. Trading firms use this
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option to locate their computer systems near or at the exchanges systems to reduce
the distance traveled by their trading signals.

1.1.5 Pros & Cons of High Frequency Trading

The arguments most often used in favor of high frequency trading are based on the
fact that 1) high speed trading has reduced the size of the tick separating quotes,
and hence, the cost of transactions; 2) high frequency traders provide extra liquidity
to the market; 3) Dark pools reduce trade execution costs from price impact; 4) the
markets are more efficient.

However, detractors of HFT claim that 1) it is the source of a needless and ex-
pensive technological arms race; 2) dark trading incentivizes price manipulation,
fishing and predatory trading; 3) the fact that little or no human oversight is possible
increases systemic risk (see for example the reports [36] or [63] for a forensic analy-
sis of what is believed to be behind the flash crash of May 6, 2010); 4) high frequency
trading algorithms do not use economic fundaments (e.g. value & profitability of a
firm).

1.1.6 Some Highly Publicized Mishaps

The most significant mishap of high frequency trading is without the shadow of a
doubt the ndex[sub]flash crash Flash Crash of May 6, 2010. On that day, the Dow
Jones IA index plunged almost 1000 points, though ti recovered in minutes, the
biggest one-day point decline (998.5 points to be specific). According to the many
ensuing investigations, at 2:32 pm on that day, a mutual fund program started to
sell 75, 000 E-Mini S&P 500 contracts (≈ 4.1 billion USD) at an execution rate of
9%. High frequency trading (HFT) programs were among the buyers: they quickly
bought and resold contracts to each other, creating a hot-potato volume effect, and
combinied sales drove the E-mini price down 3% in just 4 minutes.

Many other notable market crashes occurred since then, including on the day
when the Associated Press (AP) Twitter account was hacked announcing that the
White House had been bombed and President Obama injured,causing the Dow Jones
Industrial average (DJIA) to loose 140 points (which were recovered in minutes).
Note also that the NASDAQ was the victim of several mini flash crashes in 2012.
ıindex[sub]mini flash crash

We close this introduction with a short list of the many topics related to high
frequency trading which we shall not discuss in this introductory chapter, provid-
ing references for the interested reader to find information. For example, we shall
not discuss price manipulation or arbitrage. The interested reader is referred to the
fundamental work of Kyle and Viswanathan [66] or [2], [3], [9, 49], [51], [59, 58]

Neither will we consider asset pricing in the presence of liquidity constraints like
in [21], [1], [35]
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Even though many low frequency applications require and/or benefit from opti-
mal execution algorithms, the latter became an integral part of electronic trading in
general, and high frequency trading in particular, and we shall concentrate on prob-
lems of optimal execution in an order book model like in [18], [22] or in a model
trying to capture price impact in a diffusion model like in the early work of Bertsi-
mas and Lo [19], Almgren and collaborators[10, 11, 13, 12, 14], and the fundamental
work of Obizhaeva and Wang [79] followed by the series of works of Schied and col-
laborators [4, 5, 6, 7, 88, 89]. See also [85]. [23], [62] [55] However, we shall not
dwell on models offering the several liquidity venues to choose from. to this effect,
smart order routing was developed to help traders seek out where prices are best
across a range of competing exchanges, platforms and dark pools, and route their or-
ders accordingly for execution. Theoretical and practical optimization of execution
in these conditions are discussed in [67], [42] or [64] for example.

Early discussions of the empirical properties of LOBs can be found in [82].
However, it is clear that the properties of the LOBs and their dynamics have
been a favorite of the early econo-physics literature. Notable works include [17],
[73, 24, 25, 26, 84], [47, 45], [57]

The interested reader is referred to the books of Hasbrouck [56], O’Hara [80],
LeHalle’s recent survey [69] or the recent book [68].

Dynamic models of LOBs are discussed in [41, 43] following early work of Rosu
[86].

In the finance literature, most of the important contributions owe to the funda-
mental works of Glosten and Milgrom [52] on competitive equilibriums between
informed and uninformed traders and Kyle and his collaborators [65] on the role of
noisy traders.

Acknowledgements: I would like to thank Philip Oasis and Kevin Webster for sharing
their passion for the high frequency markets, and for helping me understand the
idiosyncrasies of the NASDAQ ITCH data.

1.2 Limit Order Books (LOBs)

Limit Order Books (LOBs) are today’s financial markets response to price formation.
By matching buyers and sellers on electronic platforms, they provide real-time access
to traders all over the world. By understanding their dynamics, we gain insight in
the role of limit and market order trading, and by abstracting their effects from the
microscopic level to the macroscopic level, it becomes possible to propose models
of price impact consistent with the microstructure of these electronic markets, and so
doing, offering a mathematical framework in which the important problem of optimal
trade execution can be formulated and tractable solutions can be derived.

LOBs are a form of double auction style trading (see for example [72, 92] for
a discussion of this mechanism). Our presentation of the LOBs is rather simplistic.
It is meant as an introduction in the style of book series LOBs for Dummies or in-
troductory classes LOBs 101, as it should be for a practitioner want-to-be, with no
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ambition to raise to the level of the sophisticated models introduced by economists
and econo-physicists, but with enough relevant information to understand the math-
ematical models which we introduce subsequently and benefit from their analyzes.
We proceed to give some formal definitions needed to understand the process of limit
order book trading.

In limit order markets, every market participant can post buy and sell orders in
multiples of a minimal number of units of the financial interest being traded. This
minimal number of units which can be traded is called the lot size. So when we talk
about an order of size k, or a volume k, we mean an order for k` units where `
denotes the lot size.

Definition 1. A buy (resp. sell) limit order of size k at price p is a commitment to buy
(resp. sell) up to k lots of the financial interest being traded at a price no greater
than (resp. no less than) p.

When a buy (resp. sell) limit order is first submitted, a matching algorithm checks
whether it is possible to match it to previously submitted sell (resp. buy) orders. If
so, the matching occurs immediately. If not, the newly submitted order becomes
active, and it will remain active until matched to an incoming sell (resp. buy) order,
or cancelled.

It is precisely the active orders in a market that make up the LOB.

Definition 2. The LOB L(t) is the set of all active orders in the market at time t.

The depth available at price p and time t is the total amount (in lot size) being
requested for purchase (resp. for sale) at price p in the LOB L(t).

• Prices are multiple of the tick size
• In most markets, for a given price, orders are arranged in a First-In-First-Out

(FIFO) stack
• At each time t

– The bid price Bt is the price of the highest waiting buy order
– The ask price At is the price of the lowest waiting sell order

• The state of the order book is modified by order book events arrivals, typically a)
limit orders; b) market orders; c) cancelations.

• When the stock is traded on several exchanges, a consolidated order book is
constructed by aggregation over all the visible trading venues.

1.2.1 The Role of a LOB

The limit order book plays a crucial role in high frequency finance. It is the only way
to understand price formation and the source of frictions such as transaction costs.
Recall that trading on a limit order book requires that

• Passive traders also called liquidity providers post trading intentions in the form
of bids and offers;
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• Aggressive traders also called liquidity takers execute certain orders, creating a
form of adverse selection.

There is an extensive literature describing the empirical properties of the LOBs. We
refer the interested reader to [20], [73], [84],[93], [77], [37, 38] for complements on
the idiosyncrasies of the LOBs.

Figure 1.1 gives a typical graphical representation of such a limit order book. We
use two different colors to distinguish the buy (green) and sell (blue) limit orders.
Clearly the green buy orders are offered at a lower price level than the sell orders,
so they form a histogram of their own to the left of the best bid. In this chapter, we
plot at most the 10 highest levels of bids in the left part of the plot, and the at most
10 of the lowest levels of ask (in the right part of the plot). By construction, the best
bid is smaller than the best ask, for if it was not the case, immediate matching would
remedy the situation. Because color graphics are not always an option, the volumes
of the bid orders on the left part of the limit order book are sometime made negative
for a monochromatic plot to still be able to distinguish between bids and offers. We
shall use this convention later in section 1.6 when we discuss mathematical models
for limit order book dynamics.
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Fig. 1.1. DELL Limit Order Book on May 18, 2013

1.2.2 Limit Orders

A limit order sits in the order book until it is a) either executed against a matching
market order; b) or it is canceled. It may be executed very quickly if it corresponds
to a price near the bid and the ask, but it may take a long time to be executed if a) the
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market price moves away from the requested price; b) or the requested price is too far
from the bid/ask. Most importantly, it is crucial to remember that it can be canceled
at any time. Typically, a limit order waits for a match, but two things are certain: the
cost of the transaction is known but the execution time is highly uncertain.

1.2.3 Market Orders

On the other end, a market order is an order to buy/sell a certain quantity of the asset
at the best available price in the book. When an (impatient) agent puts a market
order, say a buy (resp. sell) order: the first share(s) will be traded at the ask (resp.
bid) price and the remaining one(s) will be traded some ticks higher (resp. lower)
in order to fill the order size. The ask (resp. bid) price is then modified accordingly.
whenever either the bid or ask queue is depleted by market orders or cancelations,
and the price is updated up or down to the next level of the order book.

Typically a market order consumes the cheapest limit orders, but as before two
things are certain: execution is immediate (at least if the book is deep enough) but
the price per share is now uncertain as it depends upon the order size and the con-
figuration of the order book.

1.2.4 Cancellations

Cancellations occur when the owner of an order no longer wishes to trade at the
stated price, or when an order remained unmatched for too long and is automatically
removed by the operator. Exchange specific rules have been designed to clean up the
books of orders inactive for too long. When a program puts a cancellation of x lots
in a given queue, the queue size is reduce by the amount x. When either the bid or
the ask queue is depleted by market orders and/or cancelations, the price moves up
or down to the next level of the order book.

The superior speed of some computerized trading programs offer the possibility
to post orders for milliseconds with essentially no risk to be executed. This is an
invitation to new forms of trading strategies, some of them at the very boundary of
what can be considered as ethical, and now looked at seriously by the SEC. Quote
stuffing is one of the many examples of these new trading strategies.

Quote stuffing is the practice of sending multiple orders in a short period of time
with no real intention to transact, the orders being cancelled almost immediately.
Order stuffing has been used to hide the originator’s trading intentions, and in some
cases to overload the system and slow down the competition by de facto withdrawing
bandwidth. It can also be used to lure others into undesirable deals. See for example
[81] for an example of the latter.

1.2.5 LOB Dynamics Summary

An agent aiming at a trade in a LOB market can proceed in two different ways:
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• the agent can place a limit order and wait that the order is matched by another
one, typically a crossing market order. In this case, the agent is said to be a passive
trader, the cost of the transaction is known to the agent in advance, but the time
it will take for the order to be executed is uncertain.

• Alternatively, the agent can place a market order that consumes the cheapest
matching limit orders in the book. In this case, the agent is said to be an aggres-
sive or impatient trader. He or she benefits from immediate execution, at least as
long as the book has enough depth, but the price per share of the transaction is
uncertain as it depends upon the order size and the current depth of the book.

To be more specific, for a buy (resp. sell) market order, the first lots/shares will be
traded at the best ask (resp. best bid) price while the last ones can be traded several
ticks upper (resp. lower) in order for the order to be filled in full. The best ask (resp.
bid) price is then modified accordingly.

An agent can also place a cancellation order for a given number of lots/shares in
a given queue, reducing the length of the queue by the corresponding amount. As we
illustrate below, when either the best bid or ask queue is depleted by market orders
and cancelations, the best bid or ask moves up or down to the next populated level in
the order book, and the mid-price moves accordingly. These changes in the best bid
or ask and the mid-price are the main source of transaction cost in LOB trading, and
of adverse selection as the price moves in the direction of the market order.

1.2.6 Example of the Market Impact of a Large Fill

Let us assume that the current mid-price pmid = (pBid+pAsk)/2 is equal to pmid =
13.98, and that a buy of size N = 76015 arrives as a market order. We assume that
the configuration of the LOB is such that only n1 lots/shares are available at the best
ask p1, n2 lots/shares are available at price p2 > p1, . . ., and finally nk shares are
available at price pk > pk−1, making the order whole since N = n1 + n2 + n3 +
· · ·+ nk. The cost of the transaction is:

n1p1 + n2p2 + · · ·+ nkpk = 1064578,

and the effective price is given by:

peff =
1

N
(n1p1 + n2p2 + · · ·+ nkpk) = 14.00484.

Moreover, the new mid-price moved to pmid = 13.995. The market impact of such
a transaction is illustrated in Figure 1.3.
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Fig. 1.2. Illustration of the market impact of a large fill as described in the text.

1.2.7 A LOB Idiosyncrasy: Hidden Liquidity

Some exchanges (e.g. NASDAQ & NYSE) allow hidden orders to be posted. The
presence of these limit orders is revealed after their executions as they are made visi-
ble to the broader market after being executed. Allowing hidden orders is a common
practice, but it is still very controversial as it acts as a barrier to the implementation of
a fully transparent market place, and remains an impediment to price discovery and
information dissemination. Empirical analyzes (see for example [78]) have proven
that the presence of hidden liquidity encourages fishing: after it is revealed that a
hidden order was executed, a significant increase of order placement inside the bid-
ask has been documented. High frequency traders responsible for this rash of activity
inside the bid-ask (whose identities are not known) can be divided in two groups: 1)
Traders who try to take advantage of the remaining hidden liquidity; 2) Traders who
try to steal execution priority from the fully hidden orders.
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Fig. 1.3. Illustration (left) of one priority mechanism (if a sell market order comes in, the top
part of the best bid bar will be executed, then the middle part, . . .) and of the possible presence
of hidden liquidity (right).

1.2.8 ”Partially Hidden” Orders: Iceberg Orders

Most exchanges are not entirely lit, and allow dark liquidity to be posted inside the
LOB and be partially visible only. These orders are called iceberg orders. They have
two components: the shown quantity and the hidden remainder They are queued with
the visible part of the LOB, and obviously, only the shown quantity is visible. When
the order reaches the front of the queue, only the displayed quantity is filled. At that
time, the trade (price & quantity filled) is revealed and the hidden part of the iceberg
order is moved to the visible part of the book and placed at the back of the queue.
Some exchanges charge extra execution fees for these types of order.

Iceberg orders are used by brokers (mostly electronic) who need to place large
orders and try to avoid the negative effect of the price impact resulting from the large
size (a form of adverse selection) and fear to be taken advantage of by predators.
For this form of limit order to be rational, these benefits have to outweigh the loss of
priority (and the lower likelihood to be executed), and possible extra fees.

1.2.9 Dark Pools / Crossing Networks

Dark pools are anonymous trading venues where quotes on securities or FX are not
displayed publicly and trades are executed anonymously. They are run by private bro-
kerage firms, e.g. Liquidnet, Pipeline, ITG’s Posit, Goldman’s SIGMA X. In the US,
they are regulated by the SEC as Alternative Trading Systems. Their raison d’être
is to move large numbers of lots without impacting the price or requiring iceberg
orders. Typically, they consist of electronic engines that match buy and sell orders
without routing them to lit exchanges. Participants submit (wish) lists of orders to
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a matching engine. and matched orders are executed at the midpoint of the bid-ask
spread.

Dark pools appeal to traders who need large transactions. Indeed, the latter can
rarely be executed without creating adverse price impacts. Their proponents argue
that trading in a dark pool at the mid-point can be better than on a lit market On the
other side of the divide, opponents complain about the lack of control and having to
wait a long time for a match to occur.

Dark pools remain controversial because of the lack public disclosure, and de-
spite the complains of many market participants, not much has been done to increase
transparency. This is the more relevant that they represent a significant proportion of
the trading activity. Indeed, it was estimated that trading on dark pools represented
approximately 32% of the trades in 2012 (!).

This justifies the fact that part of the research on optimal execution includes mod-
els in which the broker has access to dark pools. Including such a possible alternative
venue to route trades increases significantly the complexity of the optimization prob-
lem. The interested reader is referred to [64] for an example of a possible approach.

The reader interested in any of these forms of hidden liquidity is invited to consult
the report [60] which, even though a few years old, is still quite informative on the
subject.

1.3 Accounting Relationships on a Limit Order Book and Low
Frequency Trading Models

The main purpose of this section is analyze the microstructure of the limit order book
markets from a purely accounting perspective, trying to keep track of the impact of
limit and market orders on the inventories, cash holding and wealth of the market
participants. We use NASDAQ ITCH data which includes all limit and market orders
and allow for a perfect reconstruction of the visible limit order book. For the sake of
illustration, we consider the case of KO (Coca Cola) on 18/04/13. One of our goals is
to differentiate between the agents using market orders (whom we also call liquidity
takers or aggressive traders) and the agents using limit orders (whom we also call
liquidity providers or passive traders).

In the second half of this section, we consider possible transitions from discrete
to continuous models, trying to allow the latter (mostly diffusion models intended for
low frequency traders) to incorporate macroscopic forms of the idiosyncrasies of the
order books and the accounting relationships we identified at the microscopic level.
We shall use the so-called self-financing condition as a testbed for our demonstration
of how the low frequency trading models should incorporate the properties of high
frequency markets, and we shall provide a simple example of option hedging to
highlight the provocative consequences of the transition.

The material of this section is borrowed from [32, 31].
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1.3.1 Evolution of the Limit Order Book in the Trade Clock

Following [81], we analyze the succession of trades in an event clock. So for us,
time is discrete and n = 1, ...N correspond to the times t1 < ... < tN at which
trades occur . For any quantity xn depending upon the trade time n, we denote by
∆nx = xn+1−xn the forward increment. We denote by pn the mid-price just before
the trade taking place at time tn. So in some sense, we could think of pn as of ptn−
if these mid-prices were the samples of a continuous time pt.

Fig. 1.4. Mid-price time evolution for KO on April 18, 2013 as a function of the trade clock
time n

For the first part of this discussion, we assume that All the trades happen at the
best bid or best ask. This means that for all practical purposes, the limit order book
is nothing more than a stack of limit orders sitting on the best bid and another stack
sitting on the best ask ! The fact that this appears to be overwhelmingly the case
on NASDAQ ITCH data is merely an artifact of the interpretation of the successive
messages comprising the ITCH data. We take them at face value for the time being,
postponing to a later subsection the reconstruction of large orders from their child
orders and the construction of a limit order book with depth on both sides.

We denote by sn the bid-ask spread (i.e. the distance between the best ask and
the best bid) just before the trade. Empirical studies have argued that sn ≈ |∆np|,
claim which we shall revisit later on.
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Fig. 1.5. Bid-ask spread time evolution for KO on April 18, 2013 as a function of the trade
clock time n over a short period of the day (left) and over the whole day (right).

Most of the ITCH messages do not include the identity of the agent whose action
triggered the message. So since we cannot keep track of who does what, for the sake
of definiteness, we choose to work with the aggregate passive trader, and by duality,
the aggregate aggressive trader. So we denote by Ln the inventory of the aggregate
passive trader (liquidity provider) just before the n-th trade. In particular, ∆nL < 0
means that a market order bo

Fig. 1.6. Inventory (left) and cash account (right) of the aggregate liquidity provider for KO
on April 18, 2013 as a function of the trade clock time n.
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It is argued in [32] that ∆nL∆np ≤ 0 holds 99.1% of the time and statistical
tests are used to show the overwhelming significance of this hypothesis. In fact, its
interpretation is quite intuitive: prices move in favor of market orders. This price
impact of the market orders is a form of adverse selection.

Continuing our search for accounting relationships, we introduce Kn as the level
of cash held by the aggregate passive trader just before the trade. By convention the
changes in cash need to be the amounts exchanged during trades, no more, no less.
This is a form of the self-financing property used frequently in financial mathematics.

Finally, we define the wealth of the aggregate passive trader (liquidity provide)
as the quantity

Xn = Lnpn +Kn

Our accounting convention is that the wealth is the value of the inventory as marked
to the mid-price plus the cash holdings.

Fig. 1.7. Wealth of the aggregate liquidity provider for KO on April 18, 2013 as a function of
the trade clock time n.

1.3.2 Self-financing equations

We consider three possible wealth dynamics:
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∆nX = Ln∆np (1)

∆nX = Ln∆np+
sn
2
|∆nL| (2)

∆nX = Ln∆np+
sn
2
|∆nL|+∆np∆nL (3)

These relationships can be rewritten in terms of the cash account values instead
of the wealth. They read

∆nK = −pn+1∆nL (1.1)

∆nK = −pn+1∆nL+
sn
2
|∆nL| (1.2)

∆nK = −pn∆nL+
sn
2
|∆nL| (1.3)

In both equivalent formulations, the first equation is a form of the classical self-
financing condition of the classical Black-Scholes theory. The second equation is
reminiscent of studies on proportional transaction costs as the correction term in-
volves the size of the transaction |∆nL| (irrespective of the direction buy or sell)
multiplied by the spread. Finally, the third equation in the first set of bullet points
includes a price impact term.

The obvious question is which one is right? We show that, when all the trades
take place at the best bid or best ask, the third relationship holds true.

When a trade happens, the following five bullet points exhaust all the possibili-
ties.

1. trader triggers a buy with a market order;
2. trader triggers a sell with a market order;
3. trader has his buy limit order executed;
4. trader has his sell limit order executed;
5. trader is not part of the current trade.

In case 1, the trader buys at the ask (Ln+1 − Ln > 0)

Kn+1 −Kn = − (pn + sn/2) (Ln+1 − Ln)

In case 2, the trader sells at the bid (Ln+1 − Ln < 0)

Kn+1 −Kn = − (pn − sn/2) (Ln+1 − Ln)

In case 3, the trader buys at the bid (Ln+1 − Ln > 0)

Kn+1 −Kn = − (pn − sn/2) (Ln+1 − Ln)

In case 4, the trader sells at the ask (Ln+1 − Ln < 0)

Kn+1 −Kn = − (pn + sn/2) (Ln+1 − Ln)

Finally, in case 5, Kn+1 = Kn and Ln+1 = Ln.
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The net result is that these five cases can be summarized into the single equation

∆nK = −pn∆nL±
sn
2
|∆nL|

where ”±” means

• ”+” when trading with limit orders
• ”−” when trading with market orders.

Using the definition Xn = Lnpn +Kn. of the wealth we get

∆nX = Ln∆np±
sn
2
|∆nL|+∆nL∆np

Figure 1.8 compares the aggregate wealths computed from the three self-financing
condition candidates with the true wealth computed from the data, and already plot-
ted in Figure 1.7.

Fig. 1.8. Comparison of the aggregate wealths computed from the three potential self-
financing condition with the true wealth.

The result is striking. It appears clearly that the true wealth coincides perfectly
with the wealth computed with the third candidate. Moreover, we see that the dif-
ference between the wealths computed from the first two equations is large, proving
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the significance of transaction costs. Finally, it is clear from this plots that the dif-
ference between the last two self-financing equations, as given by the price impact
term, cannot be neglected.

Prompted by this surprising graphical evidence, the natural questions should be:
Did We Miss Something?, and Could we be misled by artifacts of the special nature
of NASDAQ messaging system?

Despite the fact that all the ITCH messages overwhelmingly point to trades at
best-bid or best-ask, we believe that this is the result of large order splitting into
smaller (child) orders which can be executed against waiting limit orders from a
single agent. So we developed and implemented simple algorithms reconstructing
the parent orders from the child orders, though we can never be sure that we actu-
ally reversed engineered the NASDAQ order splitting process. Using these aggregate
messages, we cannot assume that a typical order book is merely a combination of two
delta functions as it is now the superposition of two full histograms. The good news
is that, even with more general LOB models, we can still derive a self-financing con-
dition with three similar terms playing the same roles, and test its validity on data
from our reconstructed transactions. We refer the interested reader to [32, 31] for
details and more applications. Here we limit ourselves to state the results without
proofs.

1.3.3 The Case of More General Order Books

We assimilate the histograms forming the order book, after centering around the
mid-price, to a non-negative continuous function and we define the order book shape
function γ as the second anti-derivative of this function. So γ′′(u) ≥ 0 and γ′′(0) =
0. γ is convex by definition. Next, we define the transaction cost function c as the
Legendre transform of γ. More precisely:

c(`) = sup
u

(u`− γ(u)) .

As a consequence, the function c is convex and satisfies c(0) = 0. The construction
of the function γ from the order book,is illustrated in Figure 1.9. Notice that

• c(`) = c`2 corresponds to flat order book
• c(`) = c|`| corresponds to best bid / best ask order book

In the above setting of a general order book function, we can still derive the form of
the self-financing condition. It is given by

∆K = −p∆L+ c (−∆L) , (1.4)

in its cash form, and the wealth form generalizes to

∆X = L∆p+ c(−∆L) +∆p∆L. (1.5)

As earlier, we favor the form (1.5) of the self-financing condition because of the in-
tuitive interpretation of its three terms: frictionless changes in portfolio value, trans-
action costs, and price impact / adverse selection.
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Fig. 1.9.

1.3.4 Continuous Limits and Slow Frequency Trading Models

We now consider a market model in which a quantity pt, which we assimilate to a
mid-price at time t, is given by an Itô’s diffusion and a Low Frequency Trader (LFT)
inventory Lt at time t which is also given by an Itô’s diffusion. So we assume that:{

dpt = µtdt+ σtdWt

dLt = btdt+ `tdW
′
t

(1.6)

for some adapted processes µt, bt, σt > 0, `t > 0, which we may want to assumed
to be bounded for the purpose of the present discussion, and two dependent Wiener
processes W and W ′ satisfying

[W,W ′]t =

∫ t

0

ρsds

for some adapted process ρt ∈ [−1, 1]. Next, we assume that st is a continuous
adapted process. This will be our proxy for what happened to the spread in the con-
tinuous time limit.

Our goal is to identify the forms taken in this continuous time set-up, by the
self-financing conditions identified earlier at the level of trading on the order book.
While the impact of the choice of a discretization is not innocent (see [32, 31] for a
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discussion of the different limits which can be obtained from different discretization
choices), we shall choose

pNn = pbn/Nc; LNn = Lbn/Nc

and
sNn =

1√
N
sbn/Nc.

So if we believe that these discrete time processes correspond to the mid-price, the
inventory of the aggregate passive trader, and the spread in a LOB market, then if we
first consider the simpler case of trading exclusively at the best bid or best ask, the
wealth dynamics ought to be given by the formula

∆nX
N = LNn ∆np

N +
sbn/Nc

2
√
N
|∆nL

N |+∆np
N∆nL

N

and the price impact constraint

∆np
N∆nL

N ≤ 0

should hold if we want the discretization to mimic the micro structure of a LOB.
Because of the specific scaling we chose to obtain the discrete time processes

from the continuous time processes we started from, we can use standard diffusion
limit arguments to control the limit N → ∞ and return to the initial low frequency
set-up. The wealth processes of the discretized trading models converge to a limit X
which naturally represents the wealth of the aggregate passive trader:

Xt = lim
N→∞

XN
bNtc

in u.c.p. and the dynamics of this wealth process are given by:

dXt = Ltdpt +
st`t√

2π
dt+ d[L, p]t (1.7)

in the case of the Best-Bid / Best-Ask order book trading model, and in the general
case

dXt = Ltdpt + Φlt(ct)dt+ d[L, p]t (1.8)

with
Φσ(F ) =

∫
F (y)φσ2(y)dy

Notice that the price impact constraint, a necessary condition for an inventory ob-
tained by limit orders becomes:

d[L, p]t ≤ 0. (1.9)

Proofs and further discussions are given in [32, 31]
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1.3.5 An Application to Option Hedging in a Complete Model

For the sake of this application, we assume that the midprice pt is given exogenously
by a regular diffusion process

dpt = µ(pt)dt+ σ(pt)dWt, (1.10)

and we assume that the limit order book shape function γt is given by a continuous
process in the form of a Markovian function of the price level p. More precisely we
assume that it is of the form

γt(α) = γ(pt, α),

for some deterministic function (p, α) ↪→ γ(p, α). In this application, the admissible
inventories are Itô processes of the form

Lt = L0 +

∫ t

0

budu+

∫ t

0

ludWu (1.11)

where lt is signed. Typically,

• lt < 0 when trading with limit orders
• lt ≥ 0 when trading with market orders.

We define the function
g(p, l) = sign(l)Φl(c(p, ·)) (1.12)

for later convenience. Notice that the model is complete since both diffusion pro-
cesses pt and Lt are driven by the same Wiener process. We denote by f ∈ C0 the
payoff function of a European option with maturity T , by K0 the trader’s initial cash
endowment, and given the nature of the self-financing condition, the value at time t
of the hedging port olio by

Xt = L0p0+K0+

∫ t

0

Ludpu+

∫ t

0

(σ(pu)lu − g(pu, lu)) du+r

∫ t

0

(Xu−puLu)du

Definition 3. An initial cash endowment K0 and an inventory process Lt replicate
the European payoff f(pT ) at maturity T if

XT = f(pT ) and X0 = K0 + p0L0. (1.13)

NB: When quoting a price for the option, the trader needs to quote an initial delta
asked of the buyer of the option !

The following proposition is the mere result of a classical verification argument
applied to the present situation:

Proposition 1. If f ∈ C0, T > 0 and v ∈ C1,3 satisfies:

∂v

∂t
(t, p) + g

(
p, σ(p)

∂2v

∂p2
(t, p)

)
− σ2(p)

2

∂2v

∂p2
(t, p) + rp

∂v

∂p
(t, p) = rv(t, p)
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with terminal condition v(T, p) = f(p), then

Lt =
∂v

∂p
(t, pt), and K0 = v(0, p0)− ∂v

∂p
(0, p0)p0

replicate the payoff f(pT ) at maturity T , its volatility is given by

lt = σ(pt)
∂2v

∂p2
(t, pt),

and the replication price of the option is X0 = v(0, p0).

The main take-home message from the present model is the following striking
conclusion:

Corollary 1. In the above complete model:

• Positive gamma options can only be hedged with market orders !
• Negative gamma options can only be hedged with limit orders !

For the sake of illustration, we go over the argument and the conclusions in the
special case of Best-Bid / Best-Ask limit order books. Under the same model as-
sumptions (1.10) and (1.11) as above, we state a continuous time limit for the spread
by assuming

st =
√

2πλσt, with λ > 1/2

This relationship between the spread and the mid-price volatility has been argued in
the empirical literature, and it is rather universally accepted. Notice that choosing
λ = 1 implies that the self-financing condition becomes dXt = Ltdpt since the last
two terms cancel each other, reducing this condition to the frictionless case! For the
sake of simplicity, we assume that interest rates and dividends are null

We now address the following question: Given the model for p and s, find L such
that X hedges a European option with payoff f(pT ). Working in the Markovian set-
up, we posit that the price of the option at time t is given by a function v(t, p), if the
mid-price is p, and assuming that this function is smooth, we apply Itô’s formula and
get:

d(Xt − v(t, pt)) = (Lt −∆t) dpt − (Θt +
1

2
Γtσ

2(t, pt))dt

+
st√
2π
`tdt+ d[p, L]t

where we isolated on the second line the extra term due to the special form of the
self-financing condition we are using, from which we obtain (by mere matching of
the two possible Itô decompositions)

Lt = ∆t

which also implies
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−`t = Γtσ(t, pt)

So the final solution of the Delta hedging procedure is given by{
Lt = ∆t

`t = −Γtσ(t, pt)

and we recover the conclusion highlighted earlier: only negative Gamma options can
be replicated via limit orders! As a final remark, we notice that the pricing PDE is
given by

∂tv(t, p) +

(
λ− 1

2

)
σ2(t, p)∂2pv(t, p) = 0

which is the same type of PDE as the pricing PDE from the Black-Scholes theory,
except for the fact that the local volatility is now multiplied by a factor of

√
2λ− 1

1.4 Heterogenous Beliefs and High Frequency Market Making

The goal of this section is to discuss market making in the context of high frequency
trading. Early approaches based on agent based models can be found in Hasbrouck’s
book [56] and in the surveys [37, 38] by Chakrborti, Toke, Patriarca and Abergel.
Inventory models were used by Garman in [50], and Amihud and Mendelson in [15].
The most famous model among economists is without a shadow of a doubt Kyle’s
model of informed traders [65]. See also the book of Maureen O’Hara [80]. Zero-
intelligence models have been used by Gode and Sunder in [53], Maslov and Mills
in [73], and Cont in [40]. Finally, we mention the models of market impact which
are the most popular among practitioners as well as financial mathematicians. See
for example Almgren-Chriss [13, 12], Bouchaud-Potters [84] or Schied [87].

The following discussion is based on [30]. The goal is to set up a tractable stochas-
tic agent-based model in which realistic properties of the limit order book appear
endogenously as outputs of the analysis, and not as hypotheses. It is important to
emphasize that we are not searching for optimal execution strategies. We are merely
proposing and analyzing a model for a possible interaction between a representative
market maker and his clients.

1.4.1 The Agents

We first describe the market participants.

• One market maker.
According to the definition given by NASDAQ, this is an agent who places com-
petitive orders on both sides of the order book in exchange for privileges. For
the purpose of the present discussion, we shall assimilate this agent to a liq-
uidity provider, someone who posts an order book or equivalently, a transaction
cost curve. As we shall see, his trategy will be to adjust pricing and volumes by
guessing the client order flows.
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• Clients.
For the purpose of this discussion, we shall identify the clients to liquidity takers,
agents who trade with the market maker. These clients place market orders, each
client acting according to his/her own information.

The market maker model is based on the assumption that the clients are rational. He
optimizes his order book choice. On the other end, given the order book posted by
the market maker, the clients use their own information to capture he dependence
between trades and price dynamics.

1.4.2 Mathematical Setup

We first describe the anatomy of a trade in our market model. We assume that the
midprice Pt is given exogenously and is announced by the market at time t. Once
this knowledge is made public, the market maker proposes an order book around Pt,
namely a distribution of bids below the mid-price and a distribution of asks above
the mid price. It is understood that the market maker cannot differentiate clients pre-
trade. Then, each client can trigger trades. In order to obtain a volume lt of the stock,
a client needs to pay Ptlt+ ct(lt), the function ` ↪→ ct(` representing the transaction
cost function at time t. Finally, the identity of the client is revealed to the market
maker post-trade. While this last assumption may seem inaccurate depending upon
the market, it is generally true for FX trading.

It is important to emphasize that the market maker controls the transaction costs
via his choice of the transaction cost function ` ↪→ ct(`). while for each index i,
client i controls his trading volume lit. We assume that

1. The marginal costs are defined in the sense that the function ` ↪→ ct(`) is differ-
entiable in `;

2. The clients may choose not to trade, i.e. ct(0) = 0;
3. The midprice is well defined in the sense that c′t(0) = 0;
4. The marginal costs increase with volume in the sense that ct is convex;
5. ct is equal to∞ outside an interval.

The duality relationship between order book distribution function γt and trans-
action cost function ct is crucial to the following developments. For each time t, the
function α ↪→ γt(alpha) is defined as the Legendre transform of the transaction cost
function ct:

γt(α) := sup
l∈supp(ct)

(αl − ct(l))

The fact that ct is convex with compact domain implies that γ′′t is a positive finite
measure. This distribution γ′′t represents the order book formed by the limit orders
of the market maker. If γ′′t has a density f(x), it is given by the shape function which
we used earlier.

Mathematically speaking, the assumption of heterogeneous beliefs means that
each agent (the market maker maker as well as each individual client) has his own
information represented by a specific filtration, and his own probability measure on
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Fig. 1.10. Transaction cost function l ↪→ ct(l) (left) and its derivative (right) giving the virtual
market impact.

Fig. 1.11. Plot of the graph of the Legendre transform γt of the transaction cost function ct
(left) and its derivative (right) giving the marginal costs as functions of volume.

Fig. 1.12. Plot of the graph of the order book distribution γ′′t (l).
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this filtration. These filtrations (information structures) are potentially different, but
we assume that the price process is adapted to all of them (i.e each client sees the
price). So if we label the agents by k = 0, 1, · · · , n, k = 0 standing for the market
maker and k = i = 1, · · · , n for client i

1. (Ω,F ,F = (Ft)t≥0 ,P) with W a P-BM that generates F.
2. Fk ⊂ F generated by a P-BM W k.
3. Pk s.t. Pk|Fkt ∼ P|Fkt .
4. Pt an Itô process adapted to all

(
Fk
)
k=0...n

.

1.4.3 Client Optimization Problem

As explained earlier, we assume that at each time t, the market maker moves first
by posting his choice for the order book γ′′t centered around the mid-price Pt which
is common knowledge. Equivalently, he announces his choice for the transaction
cost function ct. Subsequently, the clients try to predict, as opposed to cause, the
next price movements. In any case, their decisions do not affect ct. The optimization
problem for client i can be summarized as follows:

• Exogeneous state variables
– Pt non-negative Itô process
– ct (random adapted) convex function in a fixed domain

• Endogeneous state variables{
dLit = litdt
dXi

t = LitdPt − ct(lit)dt

Here, lit appears as the control variable of client i, it is the rate at which he trades.
Lit is his inventory, in other words the volume or total position of the client, and
Xi
t is his wealth marked to the mid-price.

• Objective function
J i = ePi

[
U i(Xi

τ i , Pτ i)
]

where U i is the utility function of client i, and τ i stopping time.

It is possible to solve this optimization problem and identify the optimal trading
strategy.

Theorem 1. Under suitable integrability assumptions on U i and τ i, the optimal
strategy is given by:

αit := c′t(l
i
t) = EQi

[
Pτ i − Pt| F it

]
with dQi

dPi =
∂XU

i(Xi
τi
,Pτi )

EPi [∂XUi(Xiτi ,Pτi )]
.
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Remark 1. Testing the Client Model It is possible to test specific forms of the client
model empirically. For example, if we assume that

• Under Qi, the stopping times are exponential, say τ i ∼ exp
(
βi
)

and indepen-
dent of Pt.;

• The volatilities are controlled by the spread in the sense that

σit := | c′t(l
i
t)︸ ︷︷ ︸

Implied alpha

− (pτ i − Pt)︸ ︷︷ ︸
Realized alpha

| ≤ spread
2

,

leading to a two parameter model linking trade to price dynamics: (βi, σi). If we
further assume that all the clients have one of two time scales, and choose (β1, β2)
that minimizes error between implied and realized alpha, we can use NASDAQ ’ful-
lview’ data (providing all public quotes and all trades with nanosecond timestamps)
to test this form of the two time scale model. We refer to [31] for further details.

1.4.4 The Market Maker Optimization Problem

The market maker does not control his inventory. It is dictated by the trading deci-
sions of his clients, so using primal variables, the dynamics of his inventory and his
wealth are governed by the stochastic differential equations:{

dLt = − 1
n

∑
i l
i
tdt

dXt = LtdPt + 1
n

∑
i ct(l

i
t)dt

We use the transaction cost function ct as control for the market maker, and assuming
that the clients acts rationally, he can assume that αit = c′t(l

i
t) so equivalently lit =

[c′t]
−1(αit) = γ′t(α

i
t). So equivalently, we can rewrite his optimization problem in

terms of his dual variables as:{
dLt = − 1

n

∑
i γ
′
t

(
αit
)
dt

dXt = LtdPt + 1
n

∑
i

[
αitγ
′
t

(
αit
)
− γt

(
αit
)]
dt

Despite our simplifying assumption that the market maker is risk-neutral this form
of Stackelberg game is difficult to solve in its full generality. So for the sake of
illustration, we propose a computation of an optimal choice for the market maker if
we remove the feedback coupling between the clients alphas and the choice of the
market maker, and we model the dynamics of the clients’ alphas exogenously. This
reduces the game to an optimal control problem for the market maker, making his
optimization problem tractable.

1.4.5 Approximation and Corresponding Solution

We model the dynamics of the clients αit by the following system of coupled stochas-
tic differential equations:

dαit = −ραitdt+ σdBit + νdB0
t
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for some positive constant ρ > 0. The mean reversion nature of the drift corresponds
to a form of decay of information. Here the Wiener processes (Bkt )t≥0 are assumed
to be independent of each other for k = 0, 1, . . .. The term dB0

t can be interpreted as
a common noise coupling these dynamics. If we see these dynamics as a microscopic
description of the model, we could wonder what would happen to the statistical dis-
tribution of the αit when the number n of clients grows without bounds. This leads
to a macroscopic description of the model. It is easy to see that the empirical dis-
tribution of the αit for i = 1, · · · , n converges to a probability measure µt when
n → ∞. This limiting measure µt(dα) can be interpreted as the client belief distri-
bution. It is easy to see that the dynamics of these probability measures are given by
the following stochastic partial differential equation:

dµt(α) =

[
1

2

(
σ2 + ν2

)
∆µt(α) + ρ∇ (αµt(α))

]
dt− ν∇µt(α)dBt

Even though we mentioned earlier that the mid-price process (Pt) was given exoge-
nously, we refrain from making explicit assumptions for this price process because
of the heavy set of assumptions we just made on the dynamics of the αit. Instead,
we would like to infer properties of the price from the client trades. Recalling the
implied alpha relationship

αit := c′t(l
i
t) = EQi

[∫ ∞
t

e−β
i(t−s)dPs

∣∣∣∣F it]
we introduce a price proxy

dPλt :=

n∑
i=1

λi
(
βiαitdt− dαit

)
for any set of non-negative weights λi summing up to one, i.e. for which

∑
λi = 1.

Choosing this set of weights appropriately, one can control of the expected quadratic
error in prices

E
∣∣Pt − Pλt ∣∣2 ≤ ε2 1

n

∑
i

I(Qi,P) ≈ −ε2
∫ t

0

〈
log

(
γ′′s
µs

)
, µs

〉
ds

where we used the standard notation I for the Kullback - Leibler distance between
probability distributions given by their relative entropy, and where:

ε =

√
n∑

i (σi)
−2 ≤

1

n

∑
i

σi

Based on these, we formulate a mean field approximate control problem for the mar-
ket maker interacting with the continuum limit of clients as given by the limit of their
empirical distribution. The state dynamics are given by:{

dLt = −〈γ′t, µt〉 dt
dµt(α) =

[
1
2

(
σ2 + ν2

)
∆µt(α) + ρ∇ (αµt(α))

]
dt− ν∇µt(α)dBt
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and the objective function to maximize is now:

Jλ =

∫ ∞
0

e−βtE [Lt 〈id, (βλ)t〉+ 〈−Ltβid+ (id− ᾱt) γ′t − γt, µt〉] dt

under the constraint
∫∞
0

〈
e−βt log

(
γ′′t
µt

)
, µt

〉
dt ≤ C. Recall that we assume that

the market maker is risk neutral. Despite the infinite dimensional nature of the state
dynamics, we can solve this problem using an appropriate version of the Pontryagin
stochastic maximum principle. We can formally write the Hamiltonian of the prob-
lem and solve the adjoint backward stochastic differential equation, leading to the
market maker’s ’shadow alpha:

α∗t =

〈
id, λt +

(βλ)t − βµt
β + ρ

〉
and the maximized Hamiltonian:

H(γ, µ, α∗) = 〈(id− α∗)γ′ − γ + ε log γ′′, µ〉

Introducing the profitability function:

m(α) = (α− α∗)︸ ︷︷ ︸
spread

·
∫ ∞
α

µ︸ ︷︷ ︸
filling probability

if α ≥ 0

the maximized Hamiltonian can be rewritten as:

H(γ, µ, α∗) = 〈γ′′,m〉+ ε 〈log γ′′, µ〉

and the optimal strategy can be found as the solution of the equation:

γ′′(α)

µ(α)
=

ε

C −m(α)

where C is a renormalization constant. Figure 1.13 gives a sample example of opti-
mal order book posted by the market maker in this model. Details can be found in
[31]

1.4.6 Comments and Possible Extensions.

• In the above discussion, the mid-price (Pt) was given exogenously. However,
minor modifications can extend the model to achieve, like in Kyle’s model [65],
a price process derived endogenously from a known (though random) terminal
value PT .

• In our model, the clients and the market maker are clearly separated. This set-up
is consistent with some of the FX markets. However, in most equity markets,
agents act both as liquidity providers and liquidity takers. This suggests a desir-
able extension of the model.
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Fig. 1.13. Blue: Optimal order book γ′′. Green: Client alpha distribution µ.

• We could postulate a nonlinear microscopic dynamics for the implied alphas of
the clients in the form:

dαit = f(αit,
1

n

∑
j

δαjt
)dt+ σdBit + νdBt

This would lead, at the macroscopic level, to a stochastic partial differential equa-
tion of the McKean-Vlasov type

dµt =

[
1

2

(
σ2 + ν2

)
∆µt(α) +∇ (f(α, µt))µt(α)

]
dt

+ ν∇µt(α)dBt

for the distribution of the alphas, another challenging extension of our model.
• Order books are additive in the sense that, when there are multiple liquidity

providers, one has:
γ′′aggregate =

∑
j

γ′′j

This suggests that extending the analysis to the case of multiple liquidity providers
should be possible.

• Finally, we mention the challenging problem of the modeling of price impact
from option trading. Clearly, trades contain information. Indeed, as we argued
throughout, a trade is followed by a price movement, and the trade says some-
thing about the direction the traded asset is heading. However, if the traded asset
is a derivative, the information about the underlying contained in the trade is now
non-directional .
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1.5 Predatory Trading

Instances of predatory trading are not limited to high frequency trading. As for the
optimal execution problems discussed in Section 1.7, the models of predatory trading
are used and implemented in applications with different time scales. However, their
impact has been publicized (and often criticized) as part of the case against program
trading in general, and high frequency trading in particular. So it is important to
understand the reasons in the context of the mathematics of high frequency trading
which is often assimilated to algorithmic trading.

1.5.1 Premises for Predatory Trading

The typical instances we should have in mind involve a large trader facing a forced
liquidation, especially if the need to liquidate is known to other traders. They include
hedge funds nearing margin calls, traders who use portfolio insurance, stop loss or-
ders, etc., institutions and funds which cannot hold on to downgraded instruments,
index tracking funds at re-balancing dates (e.g. when the next composition of the
Russell 3000 is announced). These forced liquidations can be very costly because
of significant price impact. Important examples to keep in mind include the famous
Metallgesellschaft (MG) blunder, and the spectacular failure of the hedge fund Ama-
ranth precipitated by the aggressive natural gas trades of his star trader Brian Hunter.

The following examples will be used as illustrations. The quotes highlight the is-
sues we will emphasize in our discussions of the results of the mathematical models:

• In the case of the 1987 crash, the Brady’s report states: ”several triggers ... ig-
nited mechanical, price-insensitive selling by a number of institutions following
portfolio insurance strategies ... The selling by these investors, and the prospect
of further selling by them, encouraged a number of aggressive trading-oriented
institutions to sell in anticipation of further declines.”

• In the case of the UBS Warburg’s take over of Enron trading platform, ”UBS
Warburgs proposal to take over Enrons traders without taking over the trading
book was opposed on the ground that it would present a predatory trading risk,
as Enron traders effectively knew the contents of the trading book.”

• In reference to the collapses of Long-Term Capital Management (LTCM) one can
read in Business Week on February 26, 2001, ”... if lenders know that a hedge
fund needs to sell something quickly, they will sell the same asset, driving the
price down even faster. Goldman Sachs and other counter-parties to LTCM did
exactly that in 1998. Goldman admits it was a seller but says it acted honorably
and had no confidential information.”

As a final quote, we cite Jim Cramer, the host of NBC show Mad Money who once
said, ” ... When you smell blood in the water, you become a shark . . . . when you
know that one of your number is in trouble . . . you try to figure out what he owns
and you start shorting those stocks . . .”

As illustrated by the above examples and quotes, most often, predatory trading
takes the form of front running, whose instances can be illegal when triggered by
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inside information. In any case, we shall refrain from discussing the moral and eth-
ical issues marring this practice and concentrate on mathematical models trying to
capture the main stylized facts of predatory trading.

The review of the present section is based on the fundamental works of Brunner-
meier and Pedersen [28], Carlin, Lobo and Viswanathan [29], and of the extension
by Schied and Schöneborn [88] of [29].

1.5.2 Typical Predatory Trading Scenario

The goal of our theoretical analysis is to provide a set of mathematical models which
can account for some of the most typical behaviors associated to predatory trading.
Among them, we would like for example to account for the behavior of a distressed
trader (whom we shall also call the prey) who needs to unload a large position in
the presence of predators when trade size has a significant impact on price. One of
the behaviors expected from the predators would be to initially trade in the same
direction as the prey in order to 1) withdraw liquidity; 2) increase the market impact
of the liquidation; 3) exacerbate the price change and force a costly over-shooting.

Next, we would like to see the model predict that the predator 1) reverses trading
direction, profiting from the price over-shoot; 2) closes his position for a profit.

1.5.3 Multi-Player Game Model Mathematical Analysis

We now provide the details of the mathematical model. We assume that trading takes
place in continuous time, in the presence of one risk free asset and one risky asset,
that interest rate is zero, and that the market comprises n + 1 strategic players and
a number of noise traders. We denote by X0(t), X1(t), · · · , Xn(t) the risky asset
positions of the strategic players. Working directly with a limit order book model
would be too difficult for an equilibrium problem to be solved, so we choose to
use an effective diffusion model based on the Almgren - Chriss linear price impact
model. According to this model trades at time t are executed at the price

P (t) = P̃ (t) + γ

n∑
i=0

[Xi(t)−Xi(0)] + λ

n∑
i=0

Ẋi(t)

where P̃ (t) is a mean zero martingale, which we shall choose to be a Wiener process.

Our goal is to understand predation, illustrate the benefits of stealth trading, and
sunshine trading in extreme market conditions such as 1) elastic markets for which
the temporary price impact λ is much larger than the permanent price impact γ;
2) plastic markets in which the permanent price impact γ is much larger than the
temporary price impact λ.

1.5.4 The One Period Game

We first concentrate on the simple case of one period models. We assume that each
strategic player i ∈ {0, 1, · · · , n} knows the initial asset positions Xj(0) for j 6= i
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of all other strategic players as well as their target Xj(T ) at some fixed time point
T > 0 in the future. We also assume that all the players are risk neutral in the
sense that they seek to maximize their expected terminal wealth. In order to do so,
they choose a trading strategy Xi(t) satisfying their constraints Xi(0) and Xi(T )
with the hope that it will end up being optimal. The set of players comprises one
distressed trader whom we shall call prey from time to time and whom we cast as
player 0.

X0(0) = x0 > 0, X0(T ) = 0,

and n predators, namely players 1, 2, · · · , n for whom:

Xi(0) = Xi(T ) = 0, i = 1, · · · , n.

We now define the optimization problem leading (hopefully) to equilibriums. A strat-
egy Xi = (Xi(t))0≤t≤T is said to be admissible for player i if it is an adapted
process with continuously differentiable sample paths. This last assumption is very
restrictive, despite the fact that it is extremely popular with all the optimal execution
problems based on price impact models. Indeed, the optimal solution of the Merton
problem with proportional transaction costs does not satisfy this property as it has
jumps (see for example [91]) and our earlier discussion of the self-financing condi-
tion for the high frequency markets argued that it could rule out price impact due to
adverse selection.

In any case, given a set X = (X0, X1, · · · , Xn) of admissible strategies each
player i ∈ {0, 1, · · · , n} tries to maximize his expected return

J i(X) = E[

∫ T

0

(−Ẋi(t))P (t)dt]

under the constraint

P (t) = P̃ (t) + γ

n∑
i=0

[Xi(t)−Xi(0)] + λ

n∑
i=0

Ẋi(t).

Proving existence of Nash equilibriums and identifying their properties is the main
mathematical challenge.

If we restrict the admissible strategies X = (X0, X1, · · · , Xn) to be determinis-
tic, then the objective functions become:

J i(X) = E[

∫ T

0

(−Ẋi(t))P (t)dt] =

∫ T

0

(−Ẋi(t))P (t)dt

where

P (t) = P (0) + γ

n∑
i=0

[Xi(t)−Xi(0)] + λ

n∑
i=0

Ẋi(t)
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and the source of randomness disappeared ! This simple remark was exploited by
Carlin, Lobo and Viswanathan in [29], and Schied and Schoeneborn in [88] to pro-
vide explicit solutions in the deterministic case. It is shown in [29] that there exist
unique optimal strategies given by:

Xi(t) = ae−
n
n+2

γ
λ t + bie

γ
λ t

where

a =
n

n+ 2

γ

λ

(
1− e−

n
n+2

γ
λT

)−1
1

n+ 1

n∑
i=0

[Xi(T )−Xi(0)]

bi =
γ

λ

(
e
γ
λT − 1

)−1(
Xi(T )−Xi(0)− 1

n+ 1

n∑
i=0

[Xi(T )−Xi(0)]

)
The following figures have been chosen to illustrate the impact of the values of the
parameters on these solutions. We concentrate on the impact of the number of preda-
tors as well as the elasticity or plasticity of the market as given by the relative values
of γ and λ governing the relative sizes of the permanent and temporary impacts on
the price.

Fig. 1.14. n = 1 predator, γ/λ = 0.3 (left), γ = λ (center), γ = 15.5λ (right)

1.5.5 Two Period Game Model

For the sake of completeness, we state the conditions and the results obtained in [88]
in the case of the extension of the previous model to a two period game. In such an
extension, one assumes that:

• The prey has to liquidate X0 > 0 units by time T1, i.e. X0(T1) = 0;
• The predators can stay in the game longer Xi(0) = Xi(T2) = 0 for some T2 >

T1 for i = 1, · · · , n;
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Fig. 1.15. Impact of the Number of Predators: γ = λ (top), γ = 15.5λ (bottom)

• The prey does not trade in second period [T1, T2], i.e. X0(t) = 0 for T1 ≤ t ≤
T2.

Because of the Markovian structure of the problem, the solution is completely de-
termined by the predators’ positions at time T1. The main result is the existence of
a unique Nash Equilibrium for deterministic strategies in which ALL the predators
have the same position at time T1

Xi(T1) =
A2n

2 +A1n+A0

B3n3 +B2n2 +B1n+B0
X0, i = 1, · · · , n.

This formula is deceptively simple because the coefficients actually depend upon
n. However, because they converge as n → ∞ toward constants A0, A1, A2, B0,
B1, and B2, the position is written in the form of a rational fraction in n as if the
coefficients were constants independent of n. From these formulas, one can derive
asymptotic formulas for the expected returns, providing an asymptotic comparison
of stealth versus sunshine trading for some regimes of the ratio γ/λ (which is called
GOL for Gamma Over Lambda in the titles of a couple of figures).
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Fig. 1.16. Expected Price: γ = λ (top), γ = 15λ (bottom)

Fig. 1.17. Impact of Nb of Predators on Expected Returns
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The deterministic Nash equilibriums identified above can be shown to remain
optimal if the players are allowed to use more general adapted trading strategies
(analogs of the open loop strategies in the present context). We learned this fact from
a private conversation with A. Schied. However, as shown in [33], the situation seems
to be different if the admissible strategies are required to be Markovian.

1.5.6 Forensic Analysis

Losses from predatory trading can be significant, and disruptions to the financial
system can create havoc. Moreover, the moral and ethical issues associated with this
trading practice also contribute to the need for better understanding and detection.
This calls for forensic analysis of the known instances of predatory trading, espe-
cially the many instances of high frequency trading mishaps discussed in this chap-
ter. However, the application of forensic techniques to the financial markets is still in
its infancy.

1.6 Mathematical Models for LOB Dynamics

One of the main goals of LOB modeling is to offer a framework to investigate the
impact of orders on execution prices. The framework has to be detailed enough to
capture some of the important stylized facts reviewed above. But at the same time,
it has to be simple enough to allow for the solution of stochastic optimization prob-
lems like: 1) optimal multi-period liquidation strategies against a limit order book; 2)
optimal benchmark tracking and slippage control. We discuss some of these difficult
optimization problems in the next section. In the meantime, we try to design and an-
alyze detailed but tractable stochastic models for the bid-ask spread and transaction
costs which can serve as inputs to the optimization problems.

The following is a short list of works which can be consulted for complements
to the presentation of this section. This list is far from exhaustive, but indicative
enough of the spirit of these lectures. Equilibrium models can be found in [82, 47,
86, 32], empirical studies in [23, 24, 26, 46, 57], and stochastic dynamic models in
[73, 24, 92, 27, 72], while the queuing theory based model discussed in detail below
is borrowed from [43].

LOB models cannot be simple, even if one chooses to use only Markovian re-
duced form models. Indeed, since a LOB is a set of two histograms (a histogram for
the bids and a histogram for the asks), the state space has to be large, typically infi-
nite dimensional. We shall denote by L the state space of order books, and by L(t),
a Markov process in L giving its time evolution.

The most commonly referred to dynamic model for the order book is due to
Smith, Farmer, Guillemot and Krishnamurthy, and is known as the SFGK model
[92]. In a nutshell, it can be described as a model in which market orders (both buys
and sells) arrive according to a Poisson process with a given rate µ/2, cancellations
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of existing limit orders being modeled in such a way that outstanding limit orders die
at a rate ν.

In this section, we present a simpler model (still inspired by the SFGK model)
for the dynamics of a limit order book. We follow Cont, Stoikov and Talreja [43] in
constructing a stochastic model from elementary building blocks. For the purpose of
illustration, we depart from the graphical convention used so far to represent order
book buy and sell orders with different colors. For mathematical convenience, we
posit that the depth available is negative for buy orders and positive for sell orders.
Moreover, for the sake of simplicity we assume that the possible price levels are
limited and we denote by P = {1, 2, · · · , n} the price grid in multiples of the price
tick. The LOB at time t can be represented in the form of a vector of signed integers,
say L(t) = (L1(t), L2(t), · · · , Ln(t)) where |Lp(t)| is the volume of active limit
orders at price p at time t. According to our convention,

• There are −Lp(t) bid orders at price p if Lp(t) < 0;
• There are Lp(t) ask orders at price p if Lp(t) > 0.

So the state space of the Markov process used as a model is given by

L =

{
L ∈ Zn; Lp < 0 for p ≤ k, Lp = 0 for k < p < `,

and Lp > 0 for ` ≤ p for some 1 ≤ k ≤ ` ≤ n
}
.

The (best) ask price at time t is then:

At := (n+ 1) ∧ inf{p; 1 ≤ p ≤ n, Lp(t) > 0}

while the best bid price is given by:

Bt := 0 ∨ sup{p; 1 ≤ p ≤ n, Lp(t) < 0}

As usual, the mid-price is defined as pmid(t) = 1
2 [At + Bt] and the bid-ask spread

by s(t) = At −Bt
In the next few figures, we describe a few specific transitions in the dynamics

of the LOB using the notation introduced above. For the sake of simplicity we only
review the most typical events causing the LOB state transitions. The following no-
tation Lp±v will come handy to denote the transition from the state L of the order
book to a state following an order of size (volume) v.

Lp±vi =

{
Li if i 6= p

Li ± v if i = p

We shall use Lp−v only when Lp ≥ v in the sequel. For the sake of simplicity, in the
following illustrations, we implicitly assume that the requested volume v is smaller
than what is available at the relevant level. We already illustrated in Figure 1.3 the
impact of a large fill. Figure 1.18 illustrates the impact on the LOB of the arrival of
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a limit buy order at price level p < Bt. The effect is to increase the volume of buy
limit orders at price level p
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Fig. 1.18. Limit Order Book before (left) and after (right) the arrival of a limit buy order at
price level p < Bt: L(t) ↪→ L(t)p+v

Figure 1.19 illustrates the impact on the LOB of the arrival of a limit buy order
at price level Bt < p < At. The effect is to increase the best bid Bt.
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Fig. 1.19. Limit Order Book before (left) and after (right) the arrival of a limit buy order at
price level Bt < p < At: L(t) ↪→ L(t)p+v
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Similarly, Figure 1.20 illustrates the impact on the LOB of the arrivals of a limit
sell order at price level At < p (left) and of a limit sell order at price level Bt < p <
At (right) whose effect is to lower the best ask At.
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Fig. 1.20. Limit Order Book after the arrival of a limit sell order at price level At < p (left)
and of a limit sell order at price level Bt < p < At (right) whose effect is to lower the best
ask At

We now switch to the impact of market orders. Figure 1.21 illustrates the transi-
tion due to the execution of a market buy order. The effect of such an execution is to
decrease the volume at the best ask.
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Fig. 1.21. Limit Order Book after the arrival of a market buy order with volume smaller than
what was in the book at the best ask (left) L(t) ↪→ L(t)At−v , and after the arrival of a market
buy order with volume equal to what was in the book at the best ask, lowering At.

Figure 1.22 illustrates the impacts of cancellations. The cancellation of an out-
standing limit buy order at price level p < Bt decreases the quantity at level p:
L(t) ↪→ L(t)p−v . Similarly, the cancellation of an outstanding limit sell order at
price level p > At (right) decreases the quantity at level p: L(t) ↪→ L(t)p−v .
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Fig. 1.22. Cancellation of an outstanding limit buy order at price level p < Bt (left) and
cancellation of an outstanding limit sell order at price level p > At (right).



44 R. Carmona

1.6.1 Probabilistic Assumptions

Following [43] we assume that

• The limit buy and sell orders arrive at a distance of i ticks from the opposite best
quote at independent, exponential times with rate λ(i) = Ki−β for some K > 0
and β > 0;

• The market buy and sell orders arrive at independent, exponential times with
constant rate µ;

• Cancellations of limit orders at a distance of i ticks from the opposite best quote
occur at a rate proportional to the number of outstanding orders: If the number of
outstanding orders at that level is x, then the cancellation rate is θ(i)x;

• The above events are mutually independent.

Under these assumptions, L = [L(t)]t≥0 is a continuous-time Markov chain with
state space L and transition rates:

• L ↪→ Lp−1 with rate λ(At − p) for p < At
• L ↪→ Lp−1 with rate θ(p−Bt)|Lp| for p > Bt
• L ↪→ Lp+1 with rate λ(p−Bt) for p > Bt
• L ↪→ Lp+1 with rate θ(At − p)|Lp| for p < At
• L ↪→ LBt+1 with rate µ
• L ↪→ LAt−1 with rate µ

While this is not as obvious as it may seem, this chain does remain in L if it starts
from there, i.e.

Bt ≤ At, far all t > 0

if it is true at time t = 0. Moreover, using ideas from queuing theory and first pas-
sage times of birth-and-death processes (usually proven with Laplace transform tech-
niques) one can compute and estimate the probabilities of many events relative to the
evolution of the market.

These queuing - like models are rather technical and difficult to manipulate. How-
ever, the wide-spread use of diffusion limit approximation results in queuing theory
problems gives a glimmer of hope and it may be possible in the near future to incor-
porate important stylized facts of order flow into these models. The following list is
a reasonable set of desirable extensions which would validate some of the empirical
results reported in the literature cited earlier:

• Estimation of the limit order arrival rates conditional on distance from e.g. best
price on same side;

• Statistics of the active limit orders cancelled and immediately resubmitted;
• Quantification of the aggressiveness of order placement as a function of the

depth;
• Frequency of market order arrivals when the spread is large;
• Show that the limit order placement inside the bid-ask spread increases when the

depth at best is large;
• (Long-range) autocorrelation of signs of consecutive market orders;



1 High Frequency Markets 45

Finally, and this is very unfortunate if not anti-climatic, the dynamic models
presented in this section are too cumbersome for the problems of optimal execution
which we discuss later.

1.7 Optimization Problems

The goal of a LOB model is to capture enough of the stylized facts of actual real
market LOBs to offer a realistic model of the costs of potential transactions and
make it possible to develop efficient (if not optimal) trading algorithms. The review
of predatory trading of Section 1.5 offers a typical example of the trade-offs needed
in order to be able to reach manageable results: the complexity of the trading rules
need to be watered down for the costs and benefits of trading to have simple enough
dynamics so the optimization problems can be solved. Case in point, we needed to
choose the simplest possible form of price impact, as given by the linear form of the
Almgren-Chriss’ model in order to identify and study equilibriums between preys
and predators. And as already mentioned earlier, we shall not discuss here optimal
algorithms to split orders into sub-orders to be routed to different exchanges for
execution. We refer to [42] for a first attempt in this direction. But again, because of
the inherent difficulties in solving the optimization problem, the sophistcation of the
order book trading model needs to be reduced to a minimum, in order for the smart
routing problem to be tackled with any hope of success.

1.7.1 Generic Optimal Execution Problem

A typical challenge is to schedule the sale of x0 units of an asset in order to maxi-
mize the revenues, using a limited number of market orders. Roughly speaking, the
corresponding mathematical problem is to solve the optimization

sup
τ1<···<τn<T

E
[
U(

n∑
i=1

PB(τi))

]
where U is a utility function and E is the expectation over the stochastic model
chosen for the dynamics of the LOB Lt. For all practical purposes, the search for
optimal strategies and market timing rules is a difficult stochastic control problem in
prohibitively high dimension. Its solution is clearly out of reach for the current tech-
nology and stylized versions based on simplified models are all that can be wished
for at this stage of the theory and practice of these models. While the literature on
these simplified models is growing at an exponential pace, we review a couple of
contributions for the purpose of illustration. We apologize in advance for the bias in
our choice of these contributions. While optimal execution is not an exclusive issue
of the high frequency markets, the majority of the financial mathematic and finan-
cial engineering publications on high frequency trading, still to this day, focus on the
optimization of execution or liquidation strategies.
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1.7.2 Optimal Execution Tracking a Benchmark

Here we review, without giving any proof, the main results of M. Li’s Ph.D. thesis
[70].

The goal is to solve an optimal liquidation problem, the originality of the ap-
proach being to include slippage in the model. The (electronic) broker is penalized
for deviating from an agreed upon benchmark, and face a balancing act between liq-
uidating at a best price and avoiding slipping away from the benchmark and having
to pay penalties. The results were presented in April 2013 at the UCL Conference
Recent Advances in Algo and HF Trading where similar, though different results
were presented [48]. Note that trading tracking the VWAP (Volume Weighted Aver-
age Price) was previously considered in [74]. Since then, a few papers appear with a
similar concern about slippage, e.g. [34].

The objective is to sell a quantity v > 0 of shares by time T > 0, and the trading
model involves a mid-price Pt (unaffected price) modeled as a martingale

Pt = P0 +

∫ t

0

σ(u)dWu, 0 ≤ t ≤ T,

the volume V (t) traded in the market up to (and including) time t, the market VWAP
= 1

V

∫ T
0
PtdV (t) where V is the total volume traded on the market during the period

[0, T ]. The fraction of shares still to be executed in the market

X(t) =
V − V (t)

V

will be expressed in the so-called trade clock, and after a time change, this fraction
of shares becomes

X(t) =
T − t
T

= 1− t

T

which is now deterministic and linear in time: this is a very convenient simplification
which we will take advantage of.

Accordingly, we denote by vt the volume executed by the broker up to time t,
and by

xt =
v − vt
v

the fraction of shares left to be executed by the broker at time t. We write:

xt = 1− `t −mt

where we use the notation

• `t for the (relative) cumulative volume executed through limit orders;
• mt for the (relative) cumulative volume executed through market orders.

The broker average liquidation price is given by:
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vwap =
1

v

∫ T

0

(
Pt −

S

2

)
dmt +

(
Pt +

S

2

)
d`t

and the objective is to minimize the discrepancy between vwap and VWAP
As explained earlier, in order to have any chance to solve the optimization prob-

lem, we need to simplify dramatically the model for the dynamics of the order book.
Assuming that the broker controls

• a non-decreasing adapted process (mt)0≤t≤T , and
• a predictable process (Lt)0≤t≤T

for the amount of limit orders posted at time t, the part which is not executed instantly
being immediately cancelled, so that we have:

`t =

∫ t

0

∫
[0,1]

y ∧ Lu µ(du, dy) =

Nt∑
i=1

Yi ∧ Lτi

where µ(du, dy) is a Poisson random measure on [0,∞) × [0, 1] whose atoms are
the (τi, Yi). Here τi should be interpreted as the times at which the crossing market
orders arrive, and Yi should be understood as the size of the market order arriving at
time τi to cross the existing limit orders. µ(du, dy) is a Poisson point measure with
compensator νt(du)ν(t)dt.

xt = 1−
∫ t

0

∫
[0,1]

y ∧ Lu µ(du, dy)−mt = 1−
Nt∑
i=1

Yi ∧ Lτi −mt.

So the dynamics of xt are given by

dxt = −
∫
[0,1]

y ∧ Lt µ(dt, dy)− dmt,

with initial condition x0− = 1. We now formulate precisely the optimization prob-
lem. The goal of the broker is to solve

sup
(L,m)∈A

E
[
U(vwap− VWAP)

]
where U denotes the broker’s utility function. If we use the CARA (Constant Ab-
solute Risk Aversion) exponential utility, a simple approximation shows that our
optimization problem is essentially equivalent to the optimization

inf
(L,m)∈A

E
[

exp

(
− γ

(
S

2
+

∫ T

0

[xL,mu −X(u)]dPu − S dmu

)]
,

where S denotes the spread (difference between the best ask and the best bid) and
X(u) = (T−u)/T represents the fraction of shares left to be executed in the market.
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Standard approximation arguments can be used to show that this problem is es-
sentially equivalent to the minimization of a Mean - Variance criterion

inf
(L,m)∈A

E
[ ∫ T

0

γ
σ(u)2

2
[xL,mu −X(u)]2du+ S mT

]
,

which look deceivingly simpler because it appears as a linear quadratic stochastic
control problem, but which remains extremely challenging because the resulting
stochastic control problem is in fact a singular and involves the control of a pure
jump process. The value function

J(t, x) = inf
(L,m)∈A(t,x)

J(t, x, L,m)

where

J(t, x, L,m) = E
[ ∫ T

t

γ
σ(u)2

2
[xL,mu −X(u)]2du+ SmT

]
.

J(t, x) is non-decreasing in t for x ∈ [0, 1] fixed. Indeed, it is easy to see that
A(t2, x) ⊂ A(t1, x) whenever t1 ≤ t2.
Unfortunately, as we are about to demonstrate, the optimization problem is not con-
vex, because the set A of admissible controls is not convex.

Indeed, for any number ` ∈ (0, 1), the two controls (L1,m1) and (L2,m2) by:

L1
t = 1{t≤τ1} +

∞∑
k=2

xτk−1
1{τk−1<t≤τk}, and m1

t = xT−1{T≤t},

and:

L2
t =

`

2
1{t≤τ1} +

∞∑
k=2

xτk−1
1{τk−1<t≤τk}, and m2

t = xT−1{T≤t},

are admissible, but the pair (L,m) defined by

Lt =
1

2
(L1

t + L2
t ), and mt =

1

2
(m1

t +m2
t ),

is not!

1.7.3 Bibliographical Review of some of the Closest Related Works

Very similar mathematical models have been introduced and studied to determine
the optimal amount of reinsurance needed by insurance companies. In these types of
insurance models,

• µ(dt, dy) is a Poisson random measure whose points give the times and sizes Yt
of the claims;
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• The insurer pays Yt ∧ αt up to a chosen retention level αt;
• and the remaining excess (Yt − αt)+ is passed along to a re-insurer.

The wealth process of the insurance company is given by:

Xt = x+

∫ t

0

p(αs)ds−
∫ t

0

y ∧ αs µ(ds, dy)−
∫ t

0

dDs

where

• p(α) denotes the insurer net premium (after paying the reinsurance company);
• Dt represents the cumulative dividends paid up to (and including) time t.

The optimization problem is then to compute

sup
(αt)t,(Dt)t

E
[ ∫ τ

0

e−rudDu

]
and the time of bankruptcy is defined as τ = inf{t ≥ 0; Xt ≤ 0}. A similar op-
timization set-up was used by Jeanblanc and Shyryaev in [61] to study the optimal
dividend distribution for a Wiener process. Asmussen, Hojgaard and Taksar general-
ized this work in [16] to the optimal dividend distribution for diffusion. Finally, Mnif
and Sulem used exactly the same set-up to prove existence and uniqueness of a vis-
cosity solution for single contracts in [76], while Goreac treats the case of multiple
contracts in [54].
Comparing with the singular stochastic control problem considered in this section
we find similarities in that:

• αt plays the same role as the amount Lt of standing limit orders;
• Dt plays the same role as the cumulative amount mt market orders.

However, there are also significant differences, among them the fact that

• we work here in with finite horizon, so we need to deal with Partial Differential
Equations (PDEs) instead of Ordinary Differential Equations (ODEs);

• we are using a mean - variance criterion;
• finally, we exhibit a classical solution (as opposed to a viscosity solution) as

the solution of a hierarchy of ODEs identifying both the value function and an
optimal strategy.

1.7.4 Main Result

Under the following technical assumptions (recall that νt(dy)ν(t)dt is the intensity
of the Poisson measure µ(dt, dy) with νt([0, 1]) = 1)

1.
∫ T
0
σ(t)2dt <∞

2. sup0≤t≤T ν(t) <∞
3. t ↪→ σ(t)2

ν(t) (X(t)− x) is increasing for each x ∈ [0, 1]
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4. t ↪→ 1
ν(t)νt( · ) is decreasing (in the sense of stochastic dominance)

It is possible to prove that a form of the dynamic programming principle holds, and
that the ensuing Hamilton-Jabobi-Bellman equation takes the form of the following
Quasi Variational Inequality (QVI)

min
[
[Aφ](t, x), ∂tφ(t, x) + [Bφ](t, x)

]
= 0,

where
[Aφ](t, x) = S − ∂xφ(t, x)

and

[Bφ](t, x) = γ
σ(t)2

2
[X(t)−x]2+ν(t) inf

0≤L≤x

∫
[0,1]

[φ(t, x−y∧L)−φ(t, x)]νt(dy)

with terminal condition φ(T−, x) = Sx, (notice that φ(T, x) = 0) and boundary
condition:

φ(t, 0) =

∫ T

t

γσ(u)2

2
X(u)du.

In [70] intricate approximation arguments are used to show that a classical solution
can be obtained by solving a system of integro-differential equations, and that in the
limit:

Theorem 2. Under the above assumptions, the value function is the unique solution
of

− J̇(t, x) = min

[
inf

0≤y≤x
−J̇(t, x),

γ
σ(t)2

2
[X(t)− x]2 + ν(t)

∫
[0,1]

[J(t, (x− y) ∨ L̃(t, y))− J(t, x)]νt(dy)

]
with

J(t, 0) = γ

∫ t

0

σ(u)2

2
X(u)2du, and J(T, x) = Sx,

and
L̃(t, x) = arg min

0≤y≤x
J(t, y),

which is C1,1, convex in x for t fixed, non-decreasing in t for x fixed, and satisfying
∂xJ̇(t, x) ≥ 0.

Numerical computations based on discrete approximations to the integro-differential
system lead to a free boundary (or equivalently a no-trade region) of the form

[0, T ]× [0, 1] = A ∪B ∪ C

with
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• A = {(t, x); ∂xJ(t, x) < 0} = {(t, x); 0 ≤ t < τ`(x)}
• B = {(t, x); 0 ≤ ∂xJ(t, x) ≤ S} = {(t, x); τ`(x) ≤ t ≤ τm(x)}
• C = {(t, x); ∂xJ(t, x) = S} = {(t, x); τm(x) ≤ t}
where

τ`(x) = inf{t > 0; ∂xJ(t, x) ≥ 0} and τm(x) = inf{t > 0; ∂xJ(t, x) ≥ S}

because one can prove that

τ`(x) ≤ T (1− x) ≤ τm(x).

These three regions are represented graphically in Figure 1.23.

Fig. 1.23. Schematic of the division of the (t, x)-plane into three regions by the (optimal) free
boundary.

The corresponding optimal strategy can be summarized as follows:

• If t > τm(xt) i.e. (t, xt) ∈ C (this should never happens if we start from x = 1
and use this optimal strategy)
– place market orders ∆mt > 0 (just enough to get into B)

• If t = τm(xt) i.e. (t, xt) ∈ ∂C
– place market orders at a rate dmt = −τ̇m(xt)dt
(just enough so not to exit B)

• If τ`(xt) ≤ t < τm(xt) i.e. (t, xt) ∈ B ∪ ∂A
– place Lt = xt − L̃(t) limit orders (as much as possible without getting too

much ahead)
• If t < τ`(xt) i.e. (t, xt) ∈ A

– no trade (but for the same reason as above, this should never happen).
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