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Abstract. The goal of this survey is to review the major idiosyncrasies of the commodity
markets and the methods which have been proposed to handle them in spot and forward
price models. We devote special attention to the most idiosyncratic of all: electricity mar-
kets. Following a discussion of traded instruments, market features, historical perspectives,
recent developments and various modeling approaches, we focus on the important role of
other energy prices and fundamental factors in setting the power price. In doing so, we
present a detailed analysis of the structural approach for electricity, arguing for its merits
over traditional reduced-form models. Building on several recent articles, we advocate a
broad and flexible structural framework for spot prices, incorporating demand, capacity
and fuel prices in several ways, while calculating closed-form forward prices throughout.

1. Introduction

The non-storability of electricity and the wide availability of supply and demand data allow
us to understand and analyze the relationship between prices and underlying drivers more
easily than in most other markets. These characteristics naturally led to the development of
a branch of literature which we refer to as structural models of electricity prices. Making use
of similar mathematical tools to the reduced-form models, structural models dig one level
deeper, by identifying at least some of the fundamental sources of randomness which appear
simply as unobservable diffusion or jump processes in a typical reduced-form approach. In
many cases, including such fundamental variables leads to new challenges, due to the very
complicated nature of the price setting mechanism in power markets, and difficulty in piec-
ing together the key components of the puzzle. Nonetheless, the extra insight on the causes
of power price movements brings significant benefits, both in terms of adapting to chang-
ing market environments and different locations, as well as in capturing cross-commodity
correlations and demand dependence which is crucial for accurate pricing of many common
derivatives products and physical assets. Structural models stop short of fully replicating the
intricacies of the price setting mechanism (as described by optimization-based stack models)
in order to retain tractability and emphasise dominant relationships. Thus, a balance is typ-
ically struck between mathematical convenience and model realism. As such, a broad range
of structural models exist, which differ both in the number of fundamental relationships they
choose to capture and in the techniques used to capture them.

Electricity is a commodity and as a result, the electricity markets are most often introduced
and studied within the broader framework of the commodity markets. Even though a sig-
nificant amount of electricity is generated from renewable sources (e.g. wind and solar) or
hydro or nuclear sources, the main production process remains the conversion of fossil fuels
like coal, gas and oil. Since electricity is often traded on exchanges just a few hours before
it is needed, the overall cost of production is essentially the cost of the fuels used in the
production, even in markets with a substantial amount of hydro and nuclear production as
these plants are hardly ever setting the price. In other words, since electricity is essentially
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not storable, it must be consumed as it is produced and the costs of production are an
important part of the computation of the supply curve. For this reason, electricity price
formation cannot be dissociated from the prices of the fuels used in its production.

In this context, it is clear that valuation should be done by equilibrium arguments matching
supply and demand. This paper reviews some of the mathematical models used by academics
and practitioners alike, and provides an introduction to the class of structural models which
build on this idea. The present introduction gives a series of anecdotes illustrating the
recurrent themes developed in the paper.

Electricity burst onto the financial scene with deregulation and the transition from a system
where production, transportation, and distribution of electricity were vertically integrated
under the monopoly of utilities, to a set of open competitive markets for production and
retail, while the grid remained under control. This unbundling happened over a few years
in several parts of the world, but was not equally successful. NordPool (Northern Europe),
ERCOT (Texas), PJM (North East of the US) are generally regarded as successes but the
California experience of the early 2000’s was controversial and most of its original initiatives
ended up being reversed in the long run. In any case, deregulation opened up new markets
and a new price formation mechanism emerged based on constant supply - demand balance.
While electricity shares equilibrium pricing with most other commodities, it stands out by
the construction of the supply curve where the different modes of production (hydro, nuclear,
solar, wind, coal, oil, gas, etc) are ordered (the resulting order being called merit order) in
increasing order of costs of production, resulting in what is known as the production stack.
Matching supply with demand leads to the concept of plant on the margin (or technology
on the margin) which is fundamental in the understanding of price formation for electricity,
and which is at the heart of the approach taken in this presentation.

The business of producing, delivering and retailing electricity is very complex. It requires
capital intensive investments and long term financing. Financial mathematics and financial
engineering have an important role to play, far beyond the traditional support of portfolio
management. The first challenge has to do with a very different breed of data analysis: costs
and prices are not always available, and when they are, the amount and the complexity of the
data can be overwhelming. The multitude of locations (e.g. nodal pricing), the diverse nature
of the electricity contracted (spot, day-ahead, on-peak, off-peak, firm, non-firm, forward,. . .),
and the fact that, contrary to other commodities and financial products, electricity prices can
be negative. And as if the challenges of the analysis of electricity price data was not enough,
quants have to deal with a slew of derivative products with embedded features rarely seen on
the traditional financial markets. They include features known as swings, recall / take-or-pay
options, etc, and new derivatives intended to help market participants hedge some of the risks
associated with physical factors impacting the bottom line (weather and emissions, tolling
agreements, shipping and freight, gas storage, cross commodity derivatives, etc). While
being a constant nightmare for regulators and managers, the complexity and the diversity
of these derivatives became a bonanza for financial engineers and financial mathematicians
who discovered a brand new source of challenging modeling and pricing problems. See for
example [57, 32, 23] and the more recent articles [80, 14, 75] for a sample of mathematical
and numerical developments prompted by the analysis of swing options.

Finally, the need to quantify the credit-worthiness of counter-parties and integrate this in-
formation in the valuation algorithms, became painfully obvious after the collapse of Enron
and the ensuing rash of defaults in the industry. Ironically, Enron was one of the very first
companies advocating the need to take counterparty credit-worthiness into account in any
valuation exercise. The avalanche of bankruptcies and credit downgrades following Enron’s
collapse highlighted the need for a deep understanding of the statistics of credit migration,
appropriate ways to include counter-party risk in the valuation of transactions, and possibly
the enhancement of credit protection with specific derivative instruments. Unfortunately,
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many of these derivatives depend upon industry indexes based on actual movements in the
markets and these indexes have been proven to be easy targets of manipulation. Systematic
reliance on clearing houses has been proposed as the ultimate solution to these uncertainties,
and living with collateral requirements and margin calls is part of the every-day life of an
energy trader. However, most transactions rely on tailor-made deals and it seems difficult to
imagine that a minimal set of instruments could be designed in order to span all the energy
contracts and make clearing a standard solution. We will not discuss these problems in this
survey any further.

Under the influence of Enron, quants and academics alike embraced the real option approach
to physical asset valuation, providing systematic ways to include the physical assets of a com-
pany (power plants, pipelines, barges, tankers, etc.) together with the financial instruments
held at a given time, into a single portfolio. This innovative way to put together apples and
oranges on the same book, opened the door to new forms of hedging the risks of financial
positions using physical assets, or vice-versa. Undoubtedly, one of the most exciting chal-
lenges of the energy markets is the new breed of hedging imposed by the physical nature of
the commodities underlying the financial contracts, and risk management of production and
transportation facilities. Indeed, hedging the risks associated with mixtures of physical and
financial assets is not part of the typical financial mathematics curriculum. While a necessity
for electricity producers and retailers, it was perfected and developed into an art form by
investment banks like Goldman Sachs, Morgan Stanley, JP Morgan and the like, which in
order to optimize returns, have sited and leased power plants, and taken control of storage
facilities and the transportation of goods via leasing of pipelines, tankers, etc. More than a
decade later, these problems are still important drivers in academic research in commodity
and energy market modeling, and the constant flow of academic publications on power plant
and gas storage facility valuations is a case in point. While no obvious benchmark emerged,
some of these methods are widely accepted and their use for marking to market purposes has
become a common practice accepted by regulators. However, the physical nature of some of
the assets in the portfolios of energy companies renders the computation of correlations and
risk measures like Value at Risk (VaR) very much a challenge.

The simplest form of real option valuation of a power plant is to equate its value to a string of
spread options, each option capturing the potential profit from the operation of the plant on
a given day. In a nutshell this approach says that on any given day, if the difference between
the price at which the electricity can be sold and the cost of the input fuels needed to produce
it (plus the fixed costs of operation and maintenance of the plant) is positive, the plant should
be run and this difference collected as a profit. While commonly relying on simple lognormal
models for the prices of electricity and the input fuels (see for example [49, 25]), any pricing
model with a new approach to capturing the dependence between electricity prices and the
prices of the input fuels is likely to produce new plant valuation results. In this spirit, [31]
suggests models integrating information about correlation contained in the prices of spread
options traded on the market in the form of implied correlations. In this survey, we will
review how the structural approach developed in [21] can provide valuations depending on
future demand expectations and information contained in the forward curves of the input
fuels. Viewing a power plant as a string of spread options is certainly not the only way to
value power plants. More sophisticated methods use stochastic control techniques to take
full advantage of the optionality of the plant. See for example [30, 3]. Moreover, some of
these methods have been extended to value gas storage and we refer the interested reader to
[28, 27, 50, 77]. and the references therein. However, as demonstrated in [21], the structural
approach focuses more on energy price correlations and offers the flexibility of adapting to
future scenarios for demand, capacity and input fuel forward prices.

The versatility and the adaptability of the structural approach is the main reason for our
shameless attempt to promote it. As discussed further in Subsection 2, the commodity
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and energy markets have seen dramatic changes in the last few years. The impact of some
of these changes on electricity prices is rather subtle and cannot be easily captured by
traditional reduced form models. The introduction of incentive programs favoring the use
of renewable energy such as wind in Germany or solar in the US, the impact of mandatory
regulations such as the European Union (EU) Emissions Trading Scheme (ETS) in Europe,
the recent physical coupling of markets (e.g. France and Germany), the increase in correlation
between stock and commodity prices due to index trading, the tightening of correlations
between commodities included in these indexes, the dramatic drop in US natural gas prices
following recent shale gas discoveries and large-scale development of fracking, etc. All of
these changes are screaming for the use of flexible models which can accommodate these new
relationships between the fundamental factors driving electricity prices. Historical prices
may not be as relevant as forward-looking information and market knowledge: this gives
structural approaches a big advantage over reduced-form models.

Excellent textbooks on mathematical models for the electricity (and other commodity) mar-
kets do exist, and we strongly recommend the reader to consult [13, 18, 38, 49, 52, 53, 67, 78]
for the many aspects of the markets which we will not be able to cover in this survey.

We close this introduction with an outline of the contents of the paper. Section 2 gives
a crash course on the commodity markets. The focus is mostly on energy and trading of
the fuels entering the production of electricity. A discussion of the impact of index trading
is included to emphasize, for better or worse, the growing socio-economic role played by
commodity trading. The specific nature of the data needed to understand these markets is
discussed and the importance of the forward markets is reflected in the construction of price
models. The goal of Section 3 is to highlight how different electricity is from the other energy
commodities. Its non-storability forces a difficult balancing act where supply and demand
need to be matched in real time since electricity needs to be consumed as it is produced.
Section 4 expands on the earlier discussions to introduce the building blocks of the structural
models which we advocate in this survey. Section 5 then uses these ingredients to propose
general classes of structural models for which closed-form prices of forward contracts can
be found. We also discuss various issues related to model fitting and calibration, before
concluding in Section 6.

2. Generalities on the Commodity Markets

As explained in the introduction, in order to understand the fundamentals of electricity
prices, and especially the rationale for the structural models which we advocate, it is impor-
tant to understand how electricity is produced, and the costs associated to the various fuels
used in the process. This is the main reason for the need to understand the crude oil, coal
and natural gas markets (before returning to electricity in the next section). Despite the
fact that these represent only a small part of the commodity world, we discuss their main
features as they pertain to commodity markets in general.

2.1. Trading Commodities. Commodities are considered as a separate asset class. Be-
cause of the physical nature of the interest underlying the contracts, their prices are deter-
mined by equilibrium arguments which involve matching supply and demand for the physical
commodity itself. On the supply side, estimating and predicting inventories and quantifying
the costs of storage and delivery are important factors which need to be taken into account.
This is not always easy in the context of standard valuation methods which are mostly based
on traditional finance theory (think for example of NPV which attempts to compute the
present value of the flow of future dividends).

Whether they were called spot markets (when they involved the immediate delivery of the
physical commodity), or forward markets (when delivery was scheduled at a later date),
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commodity markets started as physical markets. Trading volume exploded with the appear-
ance of financially settled contracts. While forward contracts are settled Over the Counter
(OTC), and as such, carry the risk that the counterparty may default and not meet the
terms of the contract, most of the financially settled contracts are exchange-traded futures
for which the exchange acts as clearing house controlling default risk by a system of mar-
gin calls and attracting speculators to provide liquidity to the markets. While trading in
physically and financially settled contracts were traditionally the two ways an investor could
gain exposure to commodities, the creation of indexes and the increasing popularity of in-
dex tracking Exchange Traded Funds (ETFs) have offered a new way to gain exposure to
commodities. Investing in commodities was promoted as the perfect portfolio diversification
tool as they were believed to be negatively correlated with stocks. The exponential growth of
this new form of investment in commodities which took place over the last decade may have
been a self-defeating prophecy as recent econometric studies have shown that this form of
index trading has created new correlations between commodities and stocks, and between
the commodities included in the same index. Furthermore, Bouchouev [17] argues that the
influence of investors has overturned Keynes’ well-known ‘theory of normal backwardation’,
causing a recent predominance of forward curves in contango, thus further weakening the
attractiveness of investing in these markets.

One of the many convenient features of commodity trading is the specialization of the ex-
changes, leading to a simple correspondence between commodities and locations where they
are traded. In other words, a given commodity is traded on one or a small number of spe-
cialized exchanges. The following table gives a few examples of some of these exchanges in
the US and in Europe.

Exchange Location Contracts

Chicago Board of Trade (CBOT) Chicago Grains, Ethanol, Metals
Chicago Mercantile Exch. (CME) Chicago, US Meats, Currencies, Eurodollars
Intercontinental Exch. (ICE) Atlanta, US Energy, Emissions, Agricultural
Kansas City Board of Trade (KCBT) Kansas City, US Agricultural
New York Merc. Exch. (NYMEX) New York, US Energy, Prec. Metals, Indust. Metals
Climex (CLIMEX) Amsterdam, NL. Emissions
NYSE Liffe Europe Agricultural
European Climate Exch. (ECX) Europe Emissions
London Metal Exch. (LME) London, UK Industrial Metals, Plastics

There are several ways in which investors gain exposure to commodities.

1. The old fashion way to invest in commodities is to actually purchase the physical com-
modity itself. However most investors are not ready or equipped to deal with issues of
transportation, delivery, storage and perishability. This form of involvement in commodities
was created for and is essentially limited to the naturals, namely the hedgers who mitigate
the financial risks associated with uncertainties in their production and delivery of these
commodities.

2. Another way to gain exposure to commodities is to invest in stocks in commodity intensive
businesses: for example buying shares of Exxon or Shell as a way to invest in oil. However,
this type of investment offers at best an indirect exposure as shares of natural resource
companies are not perfectly correlated with commodity prices.

3. A more direct form is straight investment in commodity futures and options. The ex-
changes offer transparency and integrity through clearing and relatively small initial invest-
ments are needed to take large positions through leverage. However, this convenience comes
at a serious price as discovered by many rookies who ended up choking, unable to face the
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margin calls triggered by adverse moves of the values of the interests underlying the futures
contracts. Also, purely speculative investments of this type may need to be structured with
a careful rolling forward of the contracts approaching maturity in order to avoid having to
take physical delivery of the commodity: trading wheat futures can be done from the comfort
of an office set up in a basement, but taking physical delivery of one lot (i.e. 5, 000 bushels)
of wheat requires a large backyard!

4. The final way to gain exposure to commodity which we discuss is investing directly in
Commodity Indexes or in Exchange Traded Funds (ETFs) tracking these commodity indexes.
Many ETFs simply invest in the nearest forward contract and automatically ‘roll’ the in-
vestment into the next month’s contract near maturity. This form of passive investment
(after all there is no need for a Commodity Trading Advisor (CTA) for that), has become
very popular as a way to diversify an investment portfolio with an exposure to commodities
without having to deal with the gory details of all the convoluted idiosyncrasies of the rel-
evant markets. Nevertheless, an understanding of forward curve dynamics and the effect of
monthly rolls is still vital, as a recent investor in the natural gas ETF would undoubtedly
agree: between June 2008 and March 2012 this ETF (called UNG) lost a shocking 96% of its
value, with roughly half attributable to the spot price drop and half to the steep contango
witnessed throughout this period.
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Figure 1. Instantaneous Dependence (β) of GSCI-TR returns upon S&P 500 returns.

According to Barclays’ internal reports, in 2006 - 2007, index fund investment increased from
90 billion to 200 billion USD. Simultaneously, commodity prices increased 71% as measured
by the CRB index. However, when prices declined dramatically from June 2008 through
early 2009, many pointed to the large scale speculative buying by index funds, arguing that
this created a bubble as futures prices far exceeded fundamental values. Some economists
(including Nobel Prize winner P. Krugman, Pirrong, Sanders, Irwin, Hamilton and Kilian)
remained skeptic about the “bubble theory” arguing that prices of commodities are set by
supply and demand, and that rapid growth in emerging economies (e.g. China) increased
demand and caused the 2008 surge in price. This did not stop commodity index investing
from being under attack. Increased participation in futures markets by non-traditional in-
vestors was deemed disruptive and blamed for the 2007-2008 “Food Crisis” that is at the
origin of the famous “Casino of Hunger: How Wall Street Speculators Fueled the Global
Food Crisis”. A report from the U.S. Senate Permanent Subcommittee on Investigation
“... finds that there is significant and persuasive evidence to conclude that these commodity
index traders, in the aggregate, were one of the major causes of unwarranted increases in the
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price of wheat futures contracts relative to the price of wheat in the cash market.....” . To
add insult to injury, a group of 48 agriculture ministers meeting in Berlin said they were “...
concerned that excessive price volatility and speculation on international agricultural markets
might constitute a threat to food security....”, according to a joint statement handed out to
reporters on Jan. 22, 2011. It is an empirical fact that return correlations are no longer
what they used to be and now commonly accepted that commodity index trading tightened
correlations between commodities [73]. However, many argue that this is a scale dependent
phenomenon and it seems that high frequency traders do not see (and hence ignore) these
correlation increases. Broadly speaking, the financialization of commodities should refer to
the increased leverage and the exponential growth of financially settled contracts dwarfing
their physically settled counterparts. More recently, this term has been used to refer to the
significant impact of index trading on commodity prices, and even more narrowly speaking,
to the increased correlations between the commodities included in the same index and also
between equity returns and commodity index returns. This last fact is illustrated in Figure
1 which shows the time evolution as given by a Kalman filter, of the time-dependent “beta”
of the least squares linear regression of the Goldman Sachs Commodity Index Total Return
against the returns of the S&P 500 index.

In this paper, our interest in commodities is mostly focused on the commodities used in the
production of electricity, and in particular to crude oil and natural gas which are heavily
represented in most commodity indexes. What we learn from the above discussion is that
recent changes may affect their correlation and the correlation they have with the broader
financial markets. Figure 2 shows weekly average spot (or nearest forward) prices for elec-
tricity, natural gas and crude oil, and illustrates the strong correlations between these energy
commodities over a ten-year period. While the 2008 ‘bubble’ is most dramatic for crude oil,
natural gas and power prices also rose sharply. In our search for electricity pricing models, it
is important to bear in mind the diverse and changing factors affecting commodity markets
in general.
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Figure 2. Weekly average prices for PJM (US electricity), Henry Hub (US natural
gas) and WTI (US crude oil). Natural gas is multiplied by 10 to use the same axis.

2.2. Spot and Forward Prices. As we explained in the introduction, commodities are
mostly traded through forward contracts and the first challenge of a quantitative analysis
is the computation of the term structure of forward prices. Figures 3 and 4 give the time
evolution of the price of the nearest forward contract of crude oil and natural gas respectively,
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as used as a proxy for the spot price. In each case, we chose a few dates and superimpose
the entire forward curve on these dates. We shall come back to these figures later in this
section when we discuss the forward prices as expectations of future values of the spot
price. In the case of crude oil or natural gas for which data are readily available, standard
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Figure 3. Crude oil: time series of nearest forward prices and of a few forward curves
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Figure 4. Natural gas: time series of nearest forward prices and of a few forward curves

Principal Component Analysis (PCA) gives satisfactory results and shows that three factors
are typically enough to explain over 95% of the variation in the daily changes in the forward
curve. Like in the original analysis of the yield curve by Litterman and Scheinkman [63],
the three factors are identified as parallel shift, tilt, and convexity. These account for the
backwardation/contango duality illustrated in Figure 5 for the case of crude oil. However,
the strong seasonality of natural gas (NG) forward curves makes an analysis in pricipal
components more problematic and quite a significant “massaging” of the data is required for
PCA to be used with any kind of success. Later in the section, we discuss a standard model
for the time evolution of commodity forward curves. We use this theoretical model to give
the fundamental rationale for PCA, and we explain within this framework, how seasonality
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Figure 5. Four different crude oil forward curves. Two are rather flat, one is in
contango, the last one in backwardation.

can be identified and accounted for. This leads to a procedure suggested first in [38] to
perform PCA in the case of commodities with a strong seasonal component.

The analysis of electricity data can be more challenging as extreme complexity involving
location, grade, peak/off peak, firm/non firm, interruptible, swings, etc, can muddy the water
for the data analyst. Inconsistencies between different sources of information, illiquidity,
wide bid-ask spreads, and delivery periods cascading from annual to quarterly to monthly as
maturity approaches, etc, all require specific data manipulations which affect the outcome
of the analysis. Nevertheless, Koekebakker and Ollmar [62] used PCA to show that 75% of
the forward price variation can be explained by two factors, while this number is closer to
95% in other markets such as interest rates. Evidence from the Nordpool market indicates
that long term forwards appear to be driven by different factors from short term forwards.
Based on a similar PCA, Audet et al [5] propose a forward price structure with decreasing
correlation as difference between maturity increases.

Throughout the paper, we shall use the notation F (t, T ) for the value at time t of a forward
contract with maturity T , and S(t) (or St) for the spot price at time t. We use the term
maturity by analogy with the fixed income markets, although delivery date is a term better
suited to commodities. Forward contracts include the exact grade of the commodity to be
delivered, and the terms of the delivery. For some commodities (for example natural gas and
electricity), the date of delivery is not really a date, but a period over which the delivery is
taking place. So a more appropriate notation would be F (t, T1, T2) if the delivery is spread
uniformly over the time interval between T1 and T2. In the case of electricity prices, we refer
the interested reader to [13] for a lucid mathematical treatment of this issue, explanations
of how to relate F (t, T ) to F (t, T1, T2), and modelling approaches geared towards handling
delivery periods.

For commodities, the term spot price means the price of the commodity for immediate de-
livery. Mathematically, this would mean that S(t) = limT↘t F (t, T ). In practice, immediate
delivery is highly unrealistic, and different time lags before delivery exist for different mar-
kets. In many cases, we use the price of the nearest contract as a proxy for the spot price.
This is in analogy with the use of the three month T-bill as a proxy for the instantaneous
(short) interest rate in many studies. However, it is important to keep in mind the differences
between commodities. Using the price F (t, T ) of the nearest contract (i.e. the maturity date
T closest to t) gives a time-to-maturity lag T − t which varies from a few days to almost one
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month as t varies. So when we use such a proxy for the spot price of crude oil or natural gas,
the resulting approximation evolves over time as an accordion. However, when treating the
price for next day delivery as the spot price of electricity, this phenomenon is not present
since T − t remains constant and equal to one day!

One of the most useful concepts for the analysis of instruments traded on a forward basis is
the Spot - Forward relationship which was proven to be a powerful tool in the analysis of
financial markets where one can hold positions at no cost and easily take short positions. In
that case, a simple arbitrage argument shows that

F (t, T ) = S(t)er(T−t),

where r denotes the short interest rate. Since we are using a deterministic interest rate,
forward and futures prices coincide in our mathematical treatment. Furthermore

F (t, T ) = Et[S(T )]

where the above expectation is a risk neutral expectation conditioned by all the informa-
tion available at time t. However, when bought with the intent to be sold later, a physical
commodity needs to be transported and stored, adding to the cost of the financing of the
purchase. On the other hand, holding the physical commodity can be advantageous, particu-
larly in times of market stress or during supply shocks. The theory of storage was developed
with the intention of explaining normal backwardation arguing that F (t, T ) is a downward
biased estimate of S(T ), namely the spot price exceeds the forward prices. (See Figures 3
and 4 for examples.) In order to translate this into a reduced-form expression and explain the
different relationships between spot and forward prices, the notion of convenience yield was
introduced. Next we review some of the quirks of this theory, even though we should keep
in mind that while it can be applied to crude oil, natural gas, coal (fuels used in electricity
production), it does not apply to electricity prices since for all practical purposes, electricity
is not a storable commodity.

The Case of Storable Commodities. The argument above leads to the formula

F (t, T ) = S(t)e(r−δ)(T−t)

for some quantity δ ≥ 0 which is called the convenience yield. If we decompose this quantity
in the form δ = δ1 − c with δ1 modeling the benefit from owning the physical commodity
and c the costs of storage, then

F (t, T ) = er(T−t)e−δ1(T−t)e−c(T−t)

where er(T−t) represents the cost of financing the purchase, ec(T−t) the cost of storage, and
e−δ1(T−t) the sheer benefit from owning the physical commodity. The advantage of this
representation, as artificial as it may be, is to explain the backwardation / contango duality
within the proposed framework. Indeed, backwardation which occurs when the curve T ↪→
F (t, T ) = S(t)e(r+c−δ1)(T−t) is decreasing holds when r + c < δ1, namely when benefits
of holding the commodity outweigh interest rates and storage costs. On the other hand,
the forward curve is in contango, namely the curve T ↪→ F (t, T ) = S(t)e(r+c−δ1)(T−t) is
increasing, when r + c ≥ δ1. Empirical evidence shows that the convenience yield changes
over time, and that it is related to several economic indicators, and in particular, inversely
related to inventory levels. So it is natural, as we do next, to include it as a stochastic factor
in a pricing model.

2.3. Convenience Yield Models. For quite a long time, the standard model has been the
Gibson-Schwartz [55] two-factor model with factors given by the commodity spot price St
and the convenience yield δt. It posits risk neutral dynamics of the form

(1)

{
dSt = (rt − δt)St dt+ σSt dW

1
t ,

dδt = κ(θ − δt)dt+ σδ dW
2
t .
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One of the major attraction of the model is that, being a particular case of the so-called
exponential affine models, explicit formulas are available for many derivatives. In particular
the prices of the forward contracts are given by

F (t, T ) = Ste
∫ T
t rsdseB(t,T )δt+A(t,T )

where

B(t, T ) =
e−κ(T−t) − 1

κ
,

A(t, T ) =
κθ + ρσsγ

κ2
(1− e−κ(T−t) − κ(T − t)) +

+
γ2

κ3
(2κ(T − t)− 3 + 4e−κ(T−t) − e−2κ(T−t)).

However, as demonstrated in [29], this strength of the model comes at a price. For any given
maturity T , one can follow the time evolution of the forward price F (t, T ) from market quotes,
and from the above formulae, one can infer for each day t, the value of the convenience yield δt.
Internal consistency of the model requires that this implied convenience yield is independent
of the choice of the particular contract maturity T . However, Figure 6 borrowed from [29]
shows that this is not the case. Instabilities and inconsistencies in the implied δt demonstrate
that the two factor model ignores significant maturity specific effects.

Figure 6. Crude oil convenience yield implied by a 3 month futures contract (left);
Difference in implied convenience yields between 3 and 12 month contracts. (right)

As suggested in [29], one possible way out of this quandary is to model directly the historical
dynamics, for each fixed maturity T0, of the forward price Ft = F (t, T0) instead of the spot
St, assuming that

dFt = (µt − δt)Ft dt+ σFt dW
1
t ,

dδt = κ(θ − δt)dt+ σδ dW
2
t

or more generally
dδt = b(δt, Ft)dt+ σδ(δt, Ft)dW

2
t .

One can still compute the values of the convenience yield implied by the model. Indeed the
assumption that Ft is tradable and observable while the forward convenience yield δt is not,
sets up a standard filtering problem which can be solved to construct a convenience yield
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for each maturity. See [29] for details. There are other approaches to modeling the term
structure of convenience yield, and the reader may want to consult [15] for a risk neutral
approach à la Heath-Jarrow-Morton (HJM) which bares to the Gibson-Schwartz model (1)
the same relationship as the classical HJM models to the standard short rate models.

2.4. Dynamic Model for the Forward Curves. In this subsection, we follow [38] to
describe a standard HJM-like n-factor forward curve model which we use to derive the
dynamics of the spot commodity model, and prepare for the explanations given in the next
subsection on how to calibrate the model to price data using PCA, even when strong seasonal
effects spoil a direct and naive application of the method. We start with a model under the
historical measure

(2)
dF (t, T )

F (t, T )
= µ(t, T )dt+

n∑
k=1

σk(t, T )dWk(t) t ≤ T

where W = (W1, . . . ,Wn) is a n-dimensional standard Brownian motion, and the drift µ and
the volatilities σk are deterministic functions of t and the time-of-maturity T . Notice that
µ(t, T ) will be set to zero for pricing purposes. In general, µ(t, T ) is calibrated to historical
data for risk management applications. By the simplicity of this lognormal model, explicit
solutions exist for the forward prices:

F (t, T ) = F (0, T ) exp

[∫ t

0

[
µ(s, T )− 1

2

n∑
k=1

σk(s, T )2

]
ds+

n∑
k=1

∫ t

0
σk(s, T )dWk(s)

]
and the forward prices are log-normal random variables of the form

F (t, T ) = αeβX−β
2/2

with X ∼ N(0, 1) and

α = F (0, T ) exp

[∫ t

0
µ(s, T )ds

]
, and β =

√√√√ n∑
k=1

∫ t

0
σk(s, T )2ds

From these, we can derive an expression for the spot price S(t) = F (t, t) defined as the left
hand point of the forward curve:

S(t) = F (0, t) exp

[∫ t

0
[µ(s, t)− 1

2

n∑
k=1

σk(s, t)
2]ds+

n∑
k=1

∫ t

0
σk(s, t)dWk(s)

]
and differentiating both sides we get an equation for its dynamics:

dS(t) = S(t)

[(
1

F (0, t)

∂F (0, t)

∂t
+ µ(t, t) +

∫ t

0

∂µ(s, t)

∂t
ds− 1

2
σS(t)2

−
n∑
k=1

∫ t

0
σk(s, t)

∂σk(s, t)

∂t
ds+

n∑
k=1

∫ t

0

∂σk(s, t)

∂t
dWk(s)

)
dt+

n∑
k=1

σk(t, t)dWk(t)

]
from which we can identify the spot volatility

(3) σS(t)2 =

n∑
k=1

σk(t, t)
2.

Hence, if we define the Wiener process W̃t by W̃t = σS(t)−1
∑n

k=1 σk(t, t)dWk(t), then the
dynamics of the spot can be rewritten in the form:

dS(t)

S(t)
=

[
∂ logF (0, t)

∂t
+ d(t)

]
dt+ σS(t)dW̃t
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provided we define the drift component d(t) by:

d(t) = µ(t, t)− 1

2
σS(t)2 +

∫ t

0

∂µ(s, t)

∂t
ds−

n∑
k=1

∫ t

0
σk(s, t)

∂σk(s, t)

∂t
ds

+

n∑
k=1

∫ t

0

∂σk(s, t)

∂t
dWk(s).

Looking more closely at the expression giving the drift we notice that, in a risk-neutral
setting, the logarithmic derivative of the forward can be interpreted as a discount rate, while
d(t) can be interpreted as a convenience yield. We also notice that the drift is generally
not Markovian. However, in the particular case of a single factor, when µ(t, T ) ≡ 0, and

σS(t) = σ1(t, T ) = σe−λ(T−t) which is consistent with what is known as the Samuelson’s
effect, we have

d(t) = λ[logF (0, t)− logS(t)] +
σ2

4λ
(1− e−2λt),

and the dynamics of the spot become

dS(t)

S(t)
= [µ(t)− λ logS(t)]dt+ σdW (t),

which shows that in this case, the spot price is an exponential Ornstein Uhlenbeck process,
an instance of the formal equivalence between mean reversion and the exponential decay of
the forward volatility away from maturity.

2.5. Rationale for PCA. For data analysis and computational purposes, it is convenient
to change variable from the time-of-maturity T to the time-to-maturity τ . This changes the
dependence upon t in several formulae. To be specific, if we set

t ↪→ F (t, T ) = F (t, t+ τ) = F̃ (t, τ)

for pricing purposes, it is important to keep in mind that for T fixed, {F (t, T )}0≤t≤T is a

martingale while for τ fixed, {F̃ (t, τ)}0≤t is NOT ! The dynamics of the forward prices in
this parameterization (known as Musiela parameterization) become

dF̃ (t, τ) = F̃ (t, τ)

[(
µ̃(t, τ) +

∂

∂τ
log F̃ (t, τ)

)
dt+

n∑
k=1

σ̃k(t, τ)dWk(t)

]
, τ ≥ 0

if we set:

µ̃(t, τ) = µ(t, t+ τ), and σ̃k(t, τ) = σk(t, t+ τ).

We use the above model for the evolution of the forward curves to justify PCA, and in so
doing, we explain how to handle seasonal effects (as seen in the case of natural gas). Our
fundamental assumption is that the volatilities appearing in (2) are of the form

σk(t, T ) = σ(t)σk(T − t) = σ(t)σk(τ)

for some function t ↪→ σ(t). Then, the spot volatility σS(t) defined in (3) becomes

σS(t) = σ̃(0)σ(t)

provided we set

σ̃(τ) =

√√√√ n∑
k=1

σk(τ)2,

and as a consequence, t ↪→ σ(t) is (up to a constant) the instantaneous spot volatility. This
simple remark provides us with a rationale for a new form of PCA which we now describe.
First we fix times-to-maturity τ1, τ2, . . ., τN and we assume that on each day t, quotes for
the forward prices with times-of-maturity T1 = t + τ1, T2 = t + τ2, . . ., TN = t + τN are



14 RENE CARMONA AND MICHAEL COULON

available (some smoothing is required beforehand as these exact maturity dates are typically
not available). From the model we know that

dF̃ (t, τi)

F̃ (t, τi)
=

(
µ̃(t, τi) +

∂

∂τ
log F̃ (t, τi)

)
dt+ σ(t)

n∑
k=1

σk(τi)dWk(t) i = 1, . . . , N.

So if we define the matrix F by F = [σk(τi)]i=1,...,N, k=1,...,n, the instantaneous variance/covariance
matrix {M(t); t ≥ 0} defined by

Mi,j(t)dt = d[log F̃ ( · , τi), log F̃ ( · , τj)]t

and satisfies

M(t) = σ(t)2

(
n∑
k=1

σk(τi)σk(τj)

)
= σ(t)2FF∗.

We summarize the successive steps of the procedure in the following way:

• Estimate the instantaneous volatility σ(t) (e.g. in a rolling window);
• Estimate FF∗ from historical data as the empirical auto-covariance of ln(F (t, ·))−

ln(F (t− 1, ·)) after normalization by σ(t);
• Perform a Singular Value Decomposition (SVD) of the auto-covariance matrix

and extract the eigenvectors τ ↪→ σk(τ);
• Choose the order n of the model according to the rate of decay of the correspond-

ing eigenvalues.

2.6. New Commodity Markets. While several new markets were introduced in the recent
past, including for example freight trading, we limit this review to a short discussion of the
two markets with relevance to electricity.

2.6.1. The Weather Markets. As will be emphasized once more in the next section, temper-
ature is typically the dominant variable determining demand for electricity. This is certainly
true in countries like the US, where air conditioning is the major source of demand in the
summer, and heating is often a significant factor during the winter. In order to mitigate
some of the risks associated with unpredictable fluctuations in demand, electricity producers
and merchants have been the major driving force behind the design and the development of
the weather markets. “Weather is not just an environmental issue; it is a major economic
factor. At least 1 trillion USD of our economy is weather-sensitive.” (William Daley, 1998,
US Commerce Secretary). It is estimated that 20% of the world economy is directly affected
by weather, with the energy sector being concerned the most, followed by the entertainment
and tourism industries. While we are not discussing these markets further for fear of dis-
tracting the reader from the main thrust of this review article, we refer the interested reader
to a sample of papers addressing valuation issues [20, 69], risk transfer mechanism [10], the
comprehensive book [6], and to the web site of the Weather Risk Management Association
(WRMA) for more information about these markets. While temperature is the deepest and
most liquid of the weather markets, other meteorological variables such as humidity and
precipitation have also been shown to have significant correlations with electricity demand,
while rainfall, cloud cover and wind speed clearly also affect electricity supply from hydro,
solar and wind energy. Coupled with the impact of these variables on the revenues of busi-
nesses such as amusement parks or road construction, separate instruments were introduced,
though not with the appeal and the success of temperature options. See for instance [24] for
an example of rainfall option pricing.
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2.6.2. The Emissions Markets. As equilibrium pricing of commodities is based on matching
demand with supply, the latter being directly affected by the costs of production of electricity,
any regulation changing these costs will have a significant impact on the price of electricity.
Modelled after the successful cap-and-trade schemes used in the US acid rain program to
control SOx and NOx emissions, the mandatory Emission Trading Scheme (ETS) created
by the European Union (EU) for the purpose of meeting its CO2 emissions commitments
within the framework of the Kyoto protocol, has demonstrated that for pricing purposes, the
cost of emissions must be included in the costs of production. So for all practical purposes,
CO2 emissions can be considered as an additional fuel and carbon allowance price as an
additional factor driving electricity price. While early incarnations of allowance redemption
for the purpose of emission offsetting was mostly done on a voluntary basis in the US,
RGGI (Regional Green House Gas Initiative) covering 10 states in the North East of the
country and the recently adopted California legislation have prompted electricity producers
and merchants to include, like their European counterparts, the price of CO2 emissions in
the price of electricity. We shall not dwell on this issue in this survey paper, but the reader
may wish to consult [26, 56] for more on the link between power markets and equilibrium
emissions allowance prices, as well as [22], where the structural approach in this paper is
extended to include the cost of CO2 emissions when pricing spreads for the purpose of power
plant valuation.

3. What is so Special About Electricity?

Given the material reviewed earlier, the obvious answer which first comes to mind is the fact
that one cannot store the physical commodity (economically, in any meaningful quantity).
But there are many other features which distinguish electricity from other commodities and
this section is attempting to review how they impact electricity price formation.

The services provided by power traders include physical delivery of electricity as well as
financial obligations. The delivery may be firm or non-firm, short or long term, one-time or
stretching over time. In order for mathematical models for electricity prices to be tractable,
they often ignore the diversity of these conditions and concentrate on easier to capture fea-
tures. Like with other commodities, trading is mostly done on a forward basis but the nature
of the delivery as well as the spectrum of delivery dates common in the electricity markets
is quite peculiar. Typically what we mean by spot market is in fact a day-ahead market,
so what we shall mean by forward market is a market on which contracts with deliveries
beyond one day are traded. For longer term contracts, the delivery of the power as specified
in the indenture of the contract has to take place over a period [T1, T2] as opposed to a
fixed date as assumed by most mathematical models. Delivery periods are often monthly,
but restricted to certain times of the day or week (e.g. on-peak or off-peak), and these
should be treated differently because of significant differences in price levels and volatilities.
Here, for the sake of simplicity, we shall only deal with contracts with fixed maturity dates
and also avoid differentiating between deliveries at different times of the day or any other
contract variations. While voluminous, electricity forward data are still sparse because of
the large number of locations and flavors of deliveries, and despite the encouragements of the
Committee of Chief Risk Officers of energy companies and their upbeat white papers, prices
still lack transparency and poor reporting (or lack thereof) still hinder the development of
healthy electricity markets.

Given the complexities of forward curve data, it is perhaps not surprising that the spot
price often serves as the preferred starting point for modellers. Figure 8a gives a time series
plot of the daily average spot price of electricity on the PJM exchange between 2000 and
2010. What we call the spot price is the market clearing price set for each hour in the day-
ahead auction. The system operator needs advanced notice to make sure that the schedule
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is feasible and transmission constraints are met. Hence a ‘day-ahead’ price is determined
via a large optimization problem, but as rebalancing of supply and demand is required up
until actual delivery, a ‘real-time’ price also exists (and is sometimes referred to as the spot
price). In any case, the type of time evolution shown in Figure 8a has nothing in common
with equity prices or even other commodity prices. The most obvious difference is the high
frequency of sudden spikes when the price jumps up very quickly before dropping down to
near its previous level in a very short amount of time. As a result, the volatility of the
‘returns’ (a questionable term for a non-storable commodity!) is excessively high, say in
a range from 50% up to 200% which is very different from the volatility of other financial
products.

In line with the structural approach described in the next section, we made a definite choice
to answer the question “Which spot price should one use?”. But mathematical models could
also be developed for the real-time price, the price on the balancing market, the balance-of-
the-week price, the balance-of-the-month price, etc. For all these mathematical models to
be consistent, the diversity of candidates begs the question: can a complete forward curve
be constructed (for all T ) and does the forward price then converge to spot as the time
to maturity goes to zero? If this is indeed the case, it would make sense to define the
“mathematical spot price” as

S(t) = lim
T↓t

F (t, T )

as we did in Subsection 2.4, and expect that its statistical properties will coincide with those
of the day-ahead price chosen as a proxy.

3.1. More Data Peculiarities. Beyond the issues already mentioned (e.g. integrity, spar-
sity, etc), one of the most surprising features of electricity prices is the fact that some of
them are frequently negative. If we consider for example the case of the PJM (Pensylvania,
New Jersey, Maryland) region in the North East of the US, every single day, real-time and
day-ahead prices as well as hour by hour load prediction for the following day are published
for over 3, 000 nodes in the transmission network, and many negative prices can be found.
For example, in 2003 over 100, 000 such hourly instances occurred across the grid. They
come in geographic clusters, at special times of the year (shoulder months) and times of
the day (night and early morning). The first suspects are obviously errors in predictions of
the load, and high temperature volatilities. More sophisticated explanations involve network
transmission and congestion, causing an oversupply in one location and an undersupply in
another. While we do not want to dwell on the issue of negative prices, it is a useful example
to highlight the fact that electricity pricing cannot be done by mere application of techniques
and results developed for the financial markets, and that the physical nature of the com-
modity, its demand patterns and the idiosyncrasies of its production and transmission need
to be taken into account.

3.2. Modeling the Demand: the Load / Temperature Relationship. As explained
earlier, demand for electricity in the US is in great part driven by weather conditions and
especially temperature. Figure 7 illustrates this fact by showing that a simple regression
can be used to predict the demand for electricity as a function of the temperature. As a
result, weather dynamics need to be included in pricing and this adds another source of
incompleteness to the mathematical models.

3.3. Reduced-Form Models. By nature, reduced-form models try to identify stylized
properties of electricity prices, and capture them in simple relationships from which deriva-
tive prices can be obtained, preferably through analytic formulae. So instead of modeling the
fundamentals of supply and demand and having prices appear as the result of equilibrium
considerations, reduced-form models strive for tractability, and for this reason, they usually
involve a small number of factors and parameters. The source of their popularity is the



COMMODITIES AND ELECTRICITY MODELING 17

Figure 7. Daily Load versus Daily Temperature (PJM)

fact that their fairly simple formulation often leads to theoretical developments which can
be tested against empirical evidence. In this spirit, the term structure of forward prices is
most often derived from simple reduced-form models for the spot price via the spot-forward
relationship discussed earlier.

An early spot price model by Lucia and Schwartz [64] proposed a two-factor diffusion model
to capture the different short and long-term dynamics of power prices. Building on ideas in
[71], this model was based on an ansatz of the form St = exp(f(t) + Xt + Yt) where f(t) is
a seasonality function and the two factors Xt and Yt satisfy

(4)

{
dXt = −κXtdt+ σXdWt

dYt = µdt+ σY dW̃t

and the two Brownian Motions Wt and W̃t can be correlated. The initial success of the
model can be attributed to the fact that spot and forward prices are lognormal in this model
and Black-Scholes like formulae can be derived for option prices. However, the importance
of electricity spikes prompted many authors to add jumps to the mix, leading to the popu-
larity of jump-diffusion processes (cf. [34, 61]). As noticed in the analysis of credit models,
including jumps does not necessarily mean giving up on closed-form formulae for forwards
and options. Indeed working in the affine jump-diffusion framework promoted in [46] by
Duffie, Pan and Singleton, still leads to convenient formulas for derivative prices. Indeed, if
we assume that Xt ∈ Rn is a vector of state variables, Wt a standard n-dimensional Wiener
process, and Zt a pure jump process, the times of jump forming a point process on [0,∞)
with intensity λ(Xt), the jumps sizes being independent and identically distributed in Rn
with common distribution ν, and if they satisfy

(5) dXt = µ(Xt)dt+ σ(Xt)dWt + dZt

with

µ(Xt) = A1 +A2Xt σ(Xt)σ(Xt)
† = A3 +A4Xt and λ(Xt) = A5 +A6Xt,

where A1 ∈ Rn, A2, A3 ∈ Rn×n, A4 ∈ Rn×n×n, A5 ∈ Rm, and A6 ∈ Rm×n and we use the
notation † to denote the transpose of a vector or a matrix, then the conditional characteristic
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function of Xt has the form

ψ(u) = Et[e
u†XT ] = eα(t)+β(t)†Xt for t ≤ T

for any u ∈ C, where α(t) ∈ R and β(t) ∈ Rn satisfy the Riccati ordinary differential
equations

d

dt
α(t) = −A†1β(t)− 1

2
β(t)†A3β(t)−A†5[ζ(β(t))− 1]

d

dt
β(t) = −A†2β(t)− 1

2
β(t)†A4β(t)−A†6[ζ(β(t))− 1]

with α(t) = 0 and β(t) = u, and where ζ(c) =
∫
Rn e

c†zdv(z).

Deng [45] considers three cases of two-factor affine jump-diffusions, including deterministic
volatility, stochastic volatility and regime-switching jumps. Exploiting the results above,
derivative prices are calculated throughout, including cross-commodity spread options and
locational spread options. Although Deng incorporates fuel prices in his models, correlation
with power is achieved only through the matrix σ(Xt), as opposed to the power price actually
being a function of fuel prices (as we shall see later).

As another example, Culot et al [41] apply affine jump-diffusion models to the Amsterdam
Power Exchange. The authors propose a three-factor mean-reverting component Xt, (dif-

ferent reversion speeds), combined with an independent three-factor jump component X̃t.

With spot price St = exp(γ†Xt + γ̃†X̃t), this approach allows log forward prices to be affine
functions of the state variables, and hence the Kalman Filter can easily be implemented for
calibration. Derivative prices are calculated using a Fourier transform technique based on
the work of Carr and Madan [33]. The jump (or spike) component involves regime-switching

ideas, as γ̃†X̃t can only equal zero or one of three possible spike levels, so jump sizes are
fixed and a Markov chain transition matrix governs the intensities of all the possible jumps.

Benth et al [11, 13] have suggested several alternative jump-based models, using Ornstein-
Uhlenbeck processes driven by Levy processes instead of Brownian Motions. In particular,
they suggest approaches of the form

St =
n∑
i=1

wiY
i
t , where dY i

t = −λiY i
t dt+ σitdL

i
t

where Lit are increasing pure jump processes, used to capture both small variations in the
price (for certain i), and the spikes (for other i). By avoiding diffusion processes while
maintaining an additive structure (instead of the more common exponential structure), the
authors are able to find explicit formulas for forward prices without ignoring or approxi-
mating delivery periods. We recommend the book [13] for an exposition of various related
approaches and extensions of this framework, including capturing cross-commodity correla-
tion. More recently, Barndorff-Nielsen et al [9, 8] propose a new approach for both spot and
forward prices using ambit fields, and in particular Levy semi-stationary processes.

In a reduced-form model, at least partial separation of jumps (or spikes) from more ‘normal’
diffusion factors is needed due to the large difference in spike recovery speed relative to other
mean-reverting behavior. Possible approaches include the use of multiple factors with many
speeds of mean reversion, regime switching jumps (which lead to downwards jumps to recover
from spikes) or pure regime switching models. The last of these has been studied for example
by De Jong and Huisman [43] and Weron et al [79], where independent dynamics are given
for the ‘spike’ and ‘non-spike’ regime. Kholodnyi [60] retains a closer connection between
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the two regimes in his model, instead suggesting that the price jumps from Xt to λXt for
some constant λ when there is a regime switch. Regime switching models benefit from the
fact that high prices can last for several time periods (typically just a few hours, so one
should not interpret the terminology ‘regime’ to mean a lasting paradigm shift), reflecting
for example periods of generator outages. The recovery from an outage can be as sudden
as the outage itself, a characteristic difficult to mimic with mean-reverting jump-diffusions.
A variation proposed by Geman and Roncoroni [54] is a jump-diffusion model which forces
jumps to be downwards when prices are above a certain threshold.

While many of the models discussed above produce useful results and realistic price dynam-
ics, they often face calibration challenges due to the need for multiple unobservable factors,
an inability to adapt to changing market conditions, or to the complication of identifying
historical spikes (or regimes). In addition, and perhaps more importantly from an industry
perspective when managing complex portfolios of assets, they typically fail to capture the
important correlations between power prices, other energy prices and power demand.
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Figure 8. Historical prices and bids from the PJM market in the North East US

3.4. A First Structural Model for Spot Prices. For electricity as for all other com-
modities, the balancing act between supply and demand in the price formation leads to
mean reversion of prices towards costs of production. Furthermore, the relationships be-
tween underlying supply and demand factors in electricity markets are more observable and
better understood than in other markets. This has naturally led to the development of
so-called structural models. In this category, the first real proposal for a tractable spot pric-
ing model based on a supply/demand argument is due to Martin Barlow [7] and we review
briefly the main components of his pricing model. Motivated by observed auction data, Bar-
low proposed to use a vertical demand curve (reminiscent of the inelasticity of the demand
for electricity) and a supply curve given by a nonlinear function of a simple diffusion process:

S(t) =

{
fα(Xt) 1 + αXt > ε0

ε
1/α
0 1 + αXt ≤ ε0

for the non-linear function

fα(x) =

{
(1 + αx)1/α, α 6= 0

ex α = 0
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of an Ornstein-Uhlenbeck diffusion (representing demand)

dXt = −λ(Xt − x)dt+ σdWt

By varying the choice of α, one can clearly vary the steepness of the supply stack. In par-
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Figure 9. Monte Carlo sample from Barlow’s spot model (left) “cheap” alternative
from the exponential of an Ornstein− Uhlenbeck squared (right).

ticular, any α < 0 corresponds to a function steeper than the exponential, while the special
cases of α = 0 and α = 1 are linear and exponential respectively. Given the ‘spiky’ price data
used to calibrate the model, Barlow finds negative values of α for both Canadian and US
markets. Barlow’s simple model is a natural starting point for understanding the structural
approach, as demand is the one random factor and the transformation is described by a sim-
ple one-parameter function. An Ornstein-Uhlenbeck process is a common choice to capture
the mean-reverting behaviour of demand, driven by temperature fluctuations. While most
demand models include a deterministic seasonal function, Barlow omits this for simplicity
as his data shows relatively little seasonality. Power demand typically includes deterministic
components for both annual and intra-day periodicities, as well as weekly patterns to capture
weekend and holiday effects.

Even in such a simple model, we can begin to see benefits of the structural approach. With
an appropriate parameter α, Barlow’s model can capture extreme spikes with a one-factor
pure diffusion process, and without excessively large parameters κ or σ (see Figure 9 for a
simulated price path). In contrast, a reduced-form one-factor jump diffusion price process
might still capture the extreme spikes, but at the expense of a very high κ, dampening the
volatility of prices at other times. On the other hand, Barlow’s approach also highlights an
important challenge for structural models, namely capturing accurately the top of the bid
stack function, which determines the range of spike levels attained in the market. In order
to avoid unreasonably high values, Barlow suggests to cap the price at a maximum level,
corresponding to the event that demand reaches maximum capacity. This is a reasonable
assumption, especially as maximum bid levels exist in most markets (eg, $3000 in ERCOT,
e3000 in EEX, $1000 in PJM). However one should be mindful of possible limitations. If the
tail of the demand distribution and the shape of the stack combine to create a very thin tail
for the price distribution, model simulations may reveal a rather high proportion of spikes
ending up at the price cap, instead of more evenly spread below the cap.

4. Building Blocks of Structural Modeling

A broad range of structural models exists, ranging from Barlow’s simple approach above
to complicated multi-fuel approaches, which attempt to get ever closer to the true price
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setting mechanism of the power market auction, all the while retaining a certain level of
mathematical elegance and tractability. In this section, we discuss the key relationships
between spot prices and factors, while reviewing existing approaches in this branch of the
literature, and piecing together the important components of a successful structural model
for electricity.

4.1. Price Relationship with Demand. The most striking characteristic of wholesale
electricity demand is arguably its degree of price-inelasticity, perhaps unmatched among all
commodity markets. As end-users typically do not feel the impact of short term price fluctu-
ations (paying instead slow-moving retail prices), and black-outs are understandably rather
frowned upon, utilities are often faced with buying last-minute power in the spot market to
satisfy their obligations, no matter what the cost! Coupled with the lack of any inventories
to help guard against supply or demand shocks, this extreme inelasticity of demand to price
is directly responsible for the well-known and dramatic spikes in power prices. Moreover,
historical price and load data provides compelling evidence for the important role of demand
in driving prices both during spikes and in quieter times (as shown in Figure 10a). In most
markets, detailed historical load (demand) data is readily available, and thanks to the in-
elasticity described above, no rough estimation is needed to produce a reasonable inverse
demand curve - it’s hard to go wrong with a vertical line! It is therefore not surprising that
all structural models (including Barlow’s described above) are built first and foremost on
a process for demand, and a function to capture the link with price. This function can be
described in traditional economic terms as the inverse supply curve, or in terms more specific
to power markets, the bid stack.

The bid stack is a concept closely linked to the production stack discussed earlier, as both are
driven by the merit order of fuels. The bid stack is constructed by the market administrator
using daily auction data, whereby generators submit price and quantity pairs describing how
much power they are willing to sell at a certain price. Thus, if the market is competitive
and generators bid at or near cost, then the bid stack and production stack are very similar,
and move in close tandem. (see [49] for more discussion on the relationship between the
two.) Figure 8b shows sample bids from PJM for two dates in February and March 2003,
between which the price of natural gas increased rapidly. Note that in reality both supply and
demand side bids (sometimes called offers and bids) are submitted, but in many markets the
demand side bids are predominantly made at the maximum price level (price cap) due to the
inelasticity discussed above. Notable exceptions are markets (such as EEX in Europe) where
only a fraction of actual load is traded on the market, implying that if market prices are low,
companies may choose to buy from the market in order to satisfy off-market commitments,
while switching off their regular generators. Such behaviour leads to significant demand
side elasticity in bids, even if overall demand is still inelastic, due to the interplay between
market and off-market dynamics. Nonetheless, the relationship between price and load can
still be approximated by a bid stack approach, even if the bidding behaviour itself is more
complicated.

4.2. Price Relationship with Capacity or Margin. Barlow’s key contribution was the
basic idea of a parametric relationship between St and an underlying demand process Dt,
which can be adapted to local market conditions, for example the ‘spikyness’ of a given
market. Another similar approach by Kanamura and Ohashi [59] proposes an alternative
parametric form, with price piecewise quadratic in demand. However, while it is clear that
demand is a key driver of spot prices, it is also clear that they are not perfectly correlated,
as illustrated by Figure 10. The first plot shows the price to load relationship in the Texas
market (ERCOT) over the year 2011, for the price interval [$0,$200]. This plot does not show
the very high spikes, but more clearly shows the price to load dependence in the normal price
region. Note that ERCOT is a particularly ‘spiky’ market, and that such extreme values
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can be observed even for low values of load, although the probability of a spike certainly
increases with demand. This is illustrated in Figure 10b, which also compares with EEX, a
market with some but fewer spikes than ERCOT.

Many authors have built on Barlow’s seminal contribution, extending the tight link between
price and demand to a more sophisticated model, capable of replicating the typical price-
load scatter plots shown in Figure 10a. A common remedy is the inclusion of a stochastic
process for the availability of generation capacity. Indeed, generator outages can be common
occurrences in some markets, while seasonal maintenance patterns also serve to shift supply.
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(b) ‘Spike’ probability against load

Figure 10. Left plot illustrates the price to load relationship in ERCOT (all hours
included) in the year 2011. Price axis is cut at $200 but values up to $3000 occurred.
Right plot illustrates the relative frequency of a ‘spike’ in both ERCOT (2005-11 data)
and EEX (2007-09 data). Here a spike is crudely defined as an hourly price greater
than 3 times the average monthly value for the period.

In a detailed stack model, the removal of a generating unit due to an outage can be simulated
by explicitly removing a particular section of the stack function, and shifting the remainder
to the left (see chapter on hybrid models in [49] for further discussion of this style of model).
However, calibration requires detailed market data, and it is difficult to adopt this approach
while retaining a convenient mathematical function for the stack at all times. Instead, several
authors (cf. [72, 36, 65]) have proposed writing prices directly as a function of both demand
Dt and total market capacity Ct using an exponential form such as

(6) St = exp (aDt + bCt) , where a > 0, b < 0.

Skantze et al [72] proposed an early model of this form, with both demand Dt and ‘supply’
Ct driven by two-factor Ornstein-Uhlenbeck plus arithmetic Brownian motion models, with
additional outage effects for Ct. In their model, the supply factor Ct is not assumed to be
observed but instead calibrated as a residual of the model’s fit to price and load. Cartea
and Villaplana [36] also suggest the form (6), but instead estimate ‘generation capacity’ Ct
directly either from hydro reservoir levels for the Nordpool market, or available / installed
capacity data for England and Wales, and for PJM. They model Dt and Ct as correlated
Ornstein-Uhlenbeck process with seasonality and seasonal volatility. As power prices are
then lognormal, forward prices are easy to calculate, and the authors investigate the model’s
implications for risk premia in the forward curve. Option prices can also be found in this
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lognormal special case, as discussed for example by Lyle and Elliot [65].

While the simplicity of equation (6) is attractive, it raises several questions.

• Firstly, is Ct really an observable variable, or simply a noise term which approxi-
mates the shifts in the stack which distort the price-load relationship? If capacity
data is available, will it be enough to explain the price variations as suggested by
the model? In practice, prices may spike not because of a lack of total capacity in
the market, but because of difficulty in matching the capacity with the demand,
due to either transmission constraints through the grid or operational constraints
such as ramp-up times.

• Secondly, should decreases in Ct lead to parallel shifts in the bid stack, as sug-
gested by (6)? If all generating units are equally likely to be removed from the
stack, then the effect should be multiplicative, not additive, making power price
a function of Dt/Ct, not Dt − Ct. Parallel shifts suggest that capacity is being
primarily removed from the far left of the stack, and therefore not steepening the
relationship with demand.

• Thirdly, should the event Dt ≤ Ct be guaranteed by the model, implying that
demand never exceeds available capacity? If so, how should this be achieved
mathematically, as all processes forDt mentioned above have unbounded support?

A large variety of models exist which take various approaches to the three interrelated is-
sues raised above. Broadly speaking we can categorize structural models into two groups
depending on their treatment of the supply-driven process Ct. If Ct is modelled strictly
as the available capacity in the market, then the treatment of the second and third issues
above is more important, as there is a clear benefit to using the ratio Dt/Ct, and ensur-
ing that it always remains between 0 and 1, either through direct capping or something
more sophisticated. We shall call this interpretation of Ct Version A. However, in practice
it may be beneficial to treat Ct as an unobserved residual noise process, backed-out from
prices and implicitly capturing a range of other ‘capacity-related’ effects, including outages,
reserves, maintenance, market constraints, and imports or exports. In this case, which we
shall call Version B, both the ordering of Dt and Ct and the distinction between parallel and
non-parallel shifts in the stack is less important, suggesting that the form of (6) can suf-
fice. Some authors have proposed models which straddle both of these categories, as in [19].
Here the authors introduce a non-parametric ‘price-load curve’ f(t,Dt/c(t)) to represent the
inverse supply curve, where c(t) tracks the seasonal level of capacity available, driven by
weather and maintenance patterns. However, they also add additional noise terms Xt and
Yt, and define

St = exp

{
f

(
t,
Dt

c(t)

)
+Xt + Yt

}
, t = 0, 1, . . .

where Xt and Yt are unobservable short term and long term factors both attributed primar-
ily to “psychological aspects of the behaviour of speculators and other influences”. Using
Ct as a noise term, or adding other unobservable factors to capture all residual effects is
an effective way of ensuring that the model reflects the high volatility witnessed in power
markets, without worrying about the exact source.

On the other hand, evidence suggests that the level of demand relative to available capacity
is crucial. If Ct truly tracks total capacity, then times when Dt approaches Ct should intu-
itively be those which lead to price spikes. Some authors have given special attention to such
effects by directly modeling the behaviour of the ‘reserve margin’ Ct −Dt (or the percent-
age reserve margin 1 − Dt/Ct), emphasizing the advantage of capturing both demand and
capacity movements in a single variable. Boogert and Dupont [16] analyse the relationship
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between margin and spot price as well as margin and spike probability, and suggest a non-
parametric approach. Cartea et al [35] advocate using forward-looking margin information
as an indicator of when a spike is likely to occur, and defining a separate price regime when
a threshold level of margin is reached. Similarly, Mount et al [66] and Anderson and Davi-
son [4] propose regime-switching frameworks whereby either mean price levels or transition
probabilities between regimes are allowed to depend on the margin level. In [40], Coulon et
al make use of the exponential form in (6), but with a second exponential for a spike regime,
whose probability is linear in the quantile of demand. Note that while these models can still
be thought of as structural in spirit, some do not necessarily rely on the notion of a supply
curve mapping demand to price, since demand (or margin) may instead be used to determine
which of two or more spot price processes is most likely to apply at a given time.

4.3. Price Relationship with a Single Marginal Fuel. Figure 10 confirms that while
demand and capacity are very important drivers of power prices over short time horizons,
Figure 2 (and 8a) shows that the long term levels of prices tend to match closely with costs
of production. This is particularly striking during the period of record highs in almost all
commodity prices in 2008, as discussed in detail in Section 2. Hence, any structural model
to be used for medium to long-term purposes must incorporate the risk of movements in the
fuel prices appropriate for that market, and preferably also the information contained in fuel
forward curves. One could argue that these factors essentially inherit the role of the longer
term (non-stationary) factor in the classical reduced-form model of Schwartz and Smith pre-
sented in [71]. The challenge is how to incorporate fuel price movements into supply curve
movements, particularly in markets with multiple production technologies and complicated
merit orders. Hydropower, renewables and nuclear all require slightly different considera-
tions as well, since the quantity of power generated from these sources is driven not by fuel
price movements but instead by resource availability (in the case of hydro and renewables)
and the need to avoid shut-down costs (for nuclear).

Pirrong and Jermakyan [68, 67] stress the importance of writing power as a function of
marginal fuel, and propose a useful model for a heavily gas-based market. They assume that
power prices are driven by two factors, both observable: fuel prices (natural gas specifically)
and demand. Demand Dt is assumed to be driven by an exponential Ornstein-Uhlenbeck
process with seasonality, while gas prices Gt follow a Geometric Brownian Motion. The
authors assume that the inverse supply curve is multiplicative in fuel price, meaning that
St = Gtφ(lnDt), or more generally St = Gγt φ(lnDt), for γ ≥ 0. They then suggest several
methods for determining the function φ(x) (and possibly γ too, noting γ = 1 is a natural
choice, for which φ can be thought of as a ‘heat rate’ curve). One option is to use specific
data on marginal costs of power production to construct the ‘generation stack’, a second
option is assuming a parametric form for φ, and a third (which they favour) is to directly use
historical bid data from one year earlier, rescaled by the change in gas price. Various other
authors discuss the need to include marginal fuel prices when modeling power. Eydeland
and Geman [48] suggest multiplying an exponential function of demand by the marginal
fuel price in the market, while Coulon et al [40] multiply two exponential functions (for two
regimes) by natural gas price in the gas-dominated ERCOT market.

4.4. Price Relationship with Multiple Fuels. In some electricity markets (particularly
those dominated by natural gas generators), a single fuel factor combined with demand
and/or capacity effects is sufficient to describe very well the dynamics of power prices. How-
ever, in other cases, one fuel is simply not enough, leading various authors to propose models
which incorporate two or more different fuel prices. In the reduced-form world, some authors
have suggested modeling power and fuels as cointegrated processes (cf. [47, 18, 44, 74]), while
others have suggested multi-commodity Lévy based models with various ways of capturing
correlations between jumps and/or diffusion components. (cf. [45, 58, 51]). However, these
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approaches fail to capture the intricate dependencies between fuel prices, demand and capac-
ity, which lead to state-dependent correlations. For example, at times of low demand, power
prices are correlated more closely with fuel prices of cheaper technologies, while at times
of high demand, more expensive fuels tend to set the power price and produce a stronger
correlation. This can perhaps be most easily illustrated by looking at actual bid data from
PJM, as shown in Figure 11. Here we see that over more than 10 years of historical data, the
overall pattern of bid movements lower in the stack (at 40% of total capacity) tends to follow
trends in coal prices, while the higher portion of the PJM stack (at 70% of total capacity)
has a remarkably strong link with natural gas. However, it is important to note that the
relatively stable historical PJM merit order is particularly susceptible to merit order changes
today, as US natural gas prices have fallen to record lows of under $2 in 2012. An increasing
number of gas generators are displacing coal generators in the stack, and impacting electric-
ity price correlations in the process.
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(a) Coal vs. 40% point on PJM stack
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(b) Gas vs. 70% point on PJM stack

Figure 11. Illustration of correlation between bid stack dynamics and fuel prices
(with left axes used for stack level, and right axes used for fuel prices, all in $)

In the context of structural models, key modeling questions include whether to impose a
strict ordering of fuel types by demand, whether to allow regions of overlap between fuels,
and how to reconcile the fuel price dependence with other features such as spikes. Coulon
and Howison [39] proposed an innovative approach to handling such merit order changes,
constructing the stack by approximating the distribution of the clusters of bids from each
technology. Hence they write the bid stack as the inverse cumulative distribution function
of a mixture distribution for bids, and model demand and margin as correlated exponential
Ornstein-Uhlenbeck processes, with jumps in margin added. In this approach, all regions
of the bid stack are technically driven by all fuels (since the bid clusters have unbounded
support), but to very different degrees at times when the cluster means are far apart. In the
work of Aı̈d et al [1], the authors simplify the stack construction by assuming only one bid
price per fuel type, corresponding to a constant heat rate per technology. Hence there is no
region of overlap between fuels, and the marginal fuel type changes at a series of demand
thresholds corresponding to capacity per technology. This provides much more convenient
formulas for pricing derivatives, but at the expense of a major oversimplification of spot
price dynamics. In an extension of the earlier model, Aı̈d et al [2] extended this approach
to improve spot price dynamics and capture spikes, by multiplying a ‘scarcity function’ (of
margin) by the heat rate and fuel price of the marginal fuel. They choose this function to
be a power law of the reserve margin (with a cap), arguing this to be more effective than
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the common choice of exponential. While the choice of marginal fuel is still determined
by demand, they sacrifice the possibility of merit order changes, by assuming the ordering
of fuels is fixed initially, arguing that this is reasonable over short horizons. Carmona et
al [21] propose instead a framework based on different exponential bid curves for each fuel
(corresponding intuitively to the range of heat rates per technology), and combine these
precisely as the merit order dictates to produce a piecewise exponential function for the
market as a whole. Hence demand thresholds exist where marginal fuel type(s) changes,
but these are highly dynamic, with overlap regions appearing and disappearing in the stack,
and the merit order changing as fuel prices move. The model is particularly convenient for
the two-fuel case as closed-form expressions exist for forwards and spread options. However,
it is fair to say that for three or more fuels the calculations become unmanageable. In
the following section, we will present a broad multi-fuel structural framework which builds
perhaps most closely on the last of these models, but draws on ideas from all existing work
discussed here. Note that for simplicity we do not include carbon emissions prices into our
structural framework here, and instead refer the interested reader to [22, 42, 56] for stack-
based models which include carbon emissions prices as additional production costs, typically
in conjunction with multiple fuel types with different emissions rates.

5. Forward Pricing in a Structural Approach

While reduced-form models are often designed specifically to facilitate derivative pricing
(including those mentioned in Section 3.3), structural models often face a choice between
staying true to the market’s structure and cutting some corners to price forwards or op-
tions efficiently. Ideally, a model should capture the structural relationships accurately while
retaining convenient expressions for derivatives, but in some markets this may be very chal-
lenging indeed. As forward contracts are by far the most widely and liquidly traded contracts,
allowing for rapid calibration to the observed forward curve is typically a top priority for any
model, while convenient option pricing results are a welcome bonus but secondary concern.
In this section, we discuss the challenges of derivative pricing in structural models, and sug-
gest general frameworks which allow for the explicit calculation of at least forward prices.
(In some special cases, options and other derivatives can be priced, as discussed for power
plant valuation in [21], but we do not investigate this here.)

As several authors have discussed (cf. [21, 1, 39]), one advantage of using structural price
models for pricing forwards is to capture the dependence of electricity forwards on fuel
forwards in a manner which is consistent with their stack-based relationship in the spot mar-
ket. Another advantage is to capture forward-looking information about upcoming market
changes, such as a changing generation mix (e.g. increased renewables, technological devel-
opments, the nuclear moratorium in Germany, etc.), or the introduction of new regulation
(e.g. emissions markets, market coupling). Finally, one might wish to include a view on load
growth or upcoming maintenance schedules. No matter the motivation, the core goal here
is to choose a flexible and realistic functional relationship between price and its underlying
drivers, such that expectations of future spot prices can be explicitly calculated, and hence
forward prices found.

Let F p(t, T ) denote the forward price of electricity at time t for delivery at time T . Recall
that F p(t, T ) = Et[ST ] where Et[·] denotes the conditional expectation given time t informa-
tion with respect to a risk neutral probability measure. (We assume this measure is given,
and relegate a discussion of risk premia to Section 5.3.) The same equation holds for fuel
prices, so for example we write F g(t, T ) = Et[SgT ] for the forward price of gas.
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Our aim is to build a general framework that draws on techniques introduced in a number
of different papers, highlighting the assumptions needed to provide closed-form expressions
for forward prices. We will make use of the following ingredients:

• Lognormal fuel spot prices - This assumption is a very common and natural choice
for modeling energy (non-power) prices. Geometric Brownian Motion (GBM)
with constant convenience yield, the classical exponential Ornstein-Uhlenbeck
model of Schwartz [70], and its two-factor extensions [71, 55] all satisfy the log-
normality assumption, as does the general forward curve model given in (2).

• Power price multiplicative in marginal fuel - This assumption is made by many
authors (cf. [48, 68, 21, 2] among others), and reflects the fact that fuel costs
are the dominant drivers of power bids, and large compared to other operational
costs. The power price can be thought of as a product of the marginal fuel cost
and a ‘heat rate function’, describing the heat rate of the marginal generator at
the appropriate demand level. The more possible marginal fuels in a market, the
greater the challenge in building a structural model!

• Gaussian demand (and possibly ‘capacity’) - Power demand is often assumed to
be Gaussian and modelled as an Ornstein-Uhlenbeck process (cf. [7, 36, 65, 59]
among others). This is consistent with the (piecewise) linear dependence we high-
lighted in the discussion surrounding Figure 7, and the fact that temperature is
reasonably well modelled by a Gaussian autoregressive model with strong seasonal
components. Depending on the role and treatment of capacity, the process may
need to be strictly capped at the top and bottom of the stack, or alternatively an
additional Gaussian noise term may be added to represent capacity changes.

• Exponential heat rate functions - The relationship between price and load is typ-
ically convex and often modelled with an exponential function, as discussed in
Subsection 4.1. Coupled with Gaussian demand, this set-up can provide conve-
nient flexibility to produce specialized results.

• Multiple spot price regimes - The assumptions listed above are typically not suf-
ficient to capture the heavy-tailed nature of spot prices, with both positive and
negative spikes possible. Various authors have proposed regime-switching mod-
els (cf. [43, 79, 66, 4] among others) to handle this primary feature of power
prices. While some of these are pure reduced-form approaches, others merge
regime-switching with a structural framework.

5.1. Single Fuel Markets. We begin with a single fuel model, suitable for markets in which
the marginal generator is almost always of the same fuel type. Note that generators which
always bid at very low price levels (or simply at zero) can be incorporated into this frame-
work most easily by replacing the demand process Dt by the residual demand process after
subtracting their capacity. This is particularly relevant for generation types such as nuclear
and renewables. Note that this does not mean that these generators are simply ignored, as
the adjustment to model residual demand may require some care, as discussed for wind and
solar power in Germany in [76]. For example the volatility of wind availability may mean
that the residual demand distribution has a significantly higher volatility than the original
demand distribution. Hence, while it is assumed these units don’t set the power price, they
may well influence the power price. For simplicity, we shall call the unique marginal fuel
natural gas, with spot price denoted Sgt . We now divide our framework into two types of
models, which differ in their treatment of capacity Ct. Version A will treat Ct as strictly the
available generation capacity in the market, while Version B will treat Ct more loosely as a
stochastic perturbation driven by capacity changes.
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Throughout, we consider one particular maturity of interest, T , and specify the conditional
distributions (given time t information) of gas price as lognormal, and both demand and
capacity as normal and possibly correlated. We assume the fuel price to be independent of
demand and capacity. This is a reasonable assumption as power demand is typically driven
predominantly by temperature, which fluctuates at a faster time scale and depends more on
local or regional conditions than fuel prices. In summary, the random factors determining
ST are

(7)

[
DT | Dt

CT | Ct

]
∼ N

([
µd
µc

]
,

[
σ2
d ρσdσc

ρσdσc σ2
c

])
, logSgT | S

g
t ∼ N(µg, σ

2
g)

Indeed, we stress that we are interested in making minimal assumptions on the behaviour of
these factors, as different markets may have different characteristics, and different authors
may favour different Gaussian processes, seasonal patterns and other variations. Our em-
phasis is instead primarily on the stack-based mapping to power prices.

Useful Notation and Results:

The calculation of forward prices throughout this section relies on the computation of vari-
ous integrals over the multivariate Gaussian density, and thus repeatedly makes use of the
following standard result:

(8)

∫ h

−∞
ecxΦ

(
a+ bx

d

)
e−

1
2
x2

√
2π

dx = e
1
2
c2Φ2

(
h− c, a+ bc√

b2 + d2
;
−b√
b2 + d2

)
where a, b, c, d, h are constants (with h = ∞ in some cases), and Φ(·) and Φ2(·, ·; ρ) the cu-
mulative distribution functions of the univariate and bivariate (correlation ρ) standard (i.e.
mean zero and variance one) Gaussian distributions respectively. Note that the constant d
is redundant in the expression above, but in practice it is convenient to use this form.

In addition, in some multi-fuel cases, we may require integrating over a bivariate Gaussian
distribution function, in which case the following related result is used:∫ h

−∞
ecxΦ2

(
a1 + b1x

d1
,
a2 + b2x

d2
;λ

)
1√
2π

e−
1
2
x2dx

= e
1
2
c2Φ3

h− c, a1 + b1c√
b21 + d2

1

,
a2 + b2c√
b22 + d2

2

;

 1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

(9)

where a1, a2, b1, b2, c, d1, d2, h, λ are constants (with h =∞ in some cases), Φ3(·, ·, ·; Σ) is the
standard trivariate Gaussian cumulative distribution function with correlation matrix Σ, and

ρ12 =
−b1√
b21 + d2

1

, ρ13 =
−b2√
b22 + d2

2

, ρ23 =
b1b2 + λd1d2√

(b21 + d2
1)(b22 + d2

2)
.

Finally, given the frequency of integrating between two finite limits and obtaining a differ-
ence between Gaussian cumulative distribution functions, we introduce the following useful
shorthand notation:

Φ2

([
x1

x2

]
, y; ρ

)
:= Φ2(x1, y; ρ)− Φ2(x2, y; ρ).

5.1.1. Version A:. In a model for which Ct is strictly the maximum capacity in the market, we
require 0 ≤ Dt ≤ Ct, and define a functional form for the bid stack over this range. However,
allowing for the possibility of multiple, say N , price regimes (e.g., a normal regime, spike
regime, negative price regime), we define multiple functional forms and attach probabilities
pi (for i = 1, . . . , N) to being in each regime. As evidence suggests that the likelihood of a
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spike is load-dependent but spikes do occasionally occur even for low load (see Figure 10),
we allow also for load dependent probabilities pi(Dt) as suggested in [40]. Since electricity
spot prices are discrete time processes (typically taking 24 values per day, one for each hour,
and with relatively weak links between neighboring hours due to non-storability), we do
not necessarily need to define a continuous time Markov chain to drive transitions between
regimes. However, for modeling purposes, one can choose to interpret electricity prices as the
discrete time observation of a hidden continuous time process (see [13] for more discussion)
in which case the probabilities here could be the result of a rapidly moving continuous time
Markov Chain, which approximately reaches its stationary distribution in less than an hour.
More generally, we could also allow for pi to depend on the current regime (e.g. for spikes
which last several hours) but we do not consider this complication here, as capturing the
timing of clusters of spike values is not our priority. In our current model, the spot power
price St at any t is given by

(10) St = (−1)δ̃i(Sgt )δi exp
(
αi + βiD̂t

)
with probability pi(Dt)

where D̂t = max (0,min(Ct, Dt)) is capped demand. The parameters δi, δ̃i ∈ {0, 1} allow for
switching on and off fuel price dependence and negative prices respectively, and

pi(Dt) = pi + p̄iΦ

(
Dt − µd
σd

(−1)δ̃i
)

for i = 1, . . . , N − 1,(11)

and pN (Dt) = 1−
N−1∑
i=1

pi(Dt).

For the N -th regime (with is most intuitively thought of as the ‘normal’ regime when no
extreme events occur), we can write its probability in the same form as all other regimes:

(12) pN (Dt) = pN + p̄NΦ

(
Dt − µd
σd

(−1)δ̃N
)

where, defining the sets I = {i : δ̃i = 0} and J = {1, . . . , N − 1} \ I, we have

pN = 1−
N−1∑
i=1

pi −
∑
i∈J

p̄i

p̄N =
∑
i∈J

p̄i −
∑
i∈I

p̄i

δ̃N = 0

We require pi(Dt) ∈ (0, 1) for all Dt and all i = 1, . . . , N , which is guaranteed if
∑N−1

i=1 (pi +
p̄i) < 1. Note that the probabilities pi(Dt) are chosen to be linear functions of the quantile

of the demand at time t (or of the quantile of −Dt if δ̃i = 1). Intuitively, for a ‘spike’

regime with δ̃i = 0 (and relatively high αi and/or βi), the likelihood of being in such a
regime increases gradually with load, from pi up to a maximum of pi + p̄i. On the other

hand, for a negative price regime with δ̃i = 1, the likelihood decreases steadily with load.
The use of the quantile of load is both convenient mathematically and supported by em-
pirical evidence (see Figure 10b), although for some markets a piecewise linear function of
the quantile seems more appropriate (and still leads to closed-form formulas, just a little
messier!). Finally, note that we expect δi = 1 for the ‘normal’ regime(s) where the price
is most typically set, but may prefer to set δi = 0 for other regimes such as the negative
price regime since the size of a downwards spike is unlikely to depend on the current gas price.
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Consider first the case that generation capacity CT = ξ̄ is constant (or known in advance),
so that σc = 0. The forward price for time T delivery in this case is given by:

F p(t, T ) = Et[ST ]

= Et [Et[ST |DT ]]

= Et

[
N∑
i=1

(−1)δ̃iEt[(SgT )δi ] exp
(
αi + βi max

(
0,min(ξ̄, DT )

))
pi(DT )

]

=
N∑
i=1

(−1)δ̃i(F g(t, T ))δiEt
[
pi(DT )

(
eαiIDt≤0 + eαi+βiDtI0≤Dt≤ξ̄ + eαi+βiξ̄IDt≥ξ̄

)]
Given the form of pi(DT ) in (11), the approach of first conditioning on DT , allows us to use
(8) for each term above. We obtain

(13) F p(t, T ) =
N∑
i=1

(−1)δ̃i(F g(t, T ))δif(µd, σd, ξ̄, pi, p̄i, αi, βi, δ̃i)

where the function f(µd, σd, ξ̄, pi, p̄i, αi, βi, δ̃i) is given by

(14) f(µd, σd, ξ̄, pi, p̄i, αi, βi, δ̃i) =

{
eαi
(

piΦ

(
−µd
σd

)
+ p̄iΦ2

(
−µd
σd

, 0;
−1√

2

))
+eαi+βiµd

(
piΦ

([
(ξ̄ − µd − βiσ2

d)/σd
(−µd − βiσ2

d)/σd

])
+ p̄iΦ2

([
(ξ̄ − µd − βiσ2

d)/σd
(−µd − βiσ2

d)/σd

]
,
βiσd(−1)δ̃i√

2
;−(−1)δ̃i√

2

))

+ eαi+βiξ̄

(
piΦ

(
− ξ̄ − µd

σd

)
+ p̄iΦ2

(
− ξ̄ − µd

σd
, 0;−(−1)δ̃i√

2

))}
.

While the expression above may appear involved, this is only because of the truncation of
demand. The terms are readily identifiable, as the first line corresponds to the event of
hitting the bottom of the stack (Dt ≤ 0) for each regime, second line the middle of the stack
(Dt ∈ (0, ξ̄)) and third line the top (Dt ≥ ξ̄). Typically we would expect parameters µd, σd
to be such that the first and third lines play very little role, but are of course still necessary.

Treatment of Capacity

For fixed capacity CT = ξ̄, the version of the model presented above captures several of
the key structural relationships discussed in Section 3, and allows for load-dependent spikes,
both upwards and downwards. However, without any randomness in CT , it may not be
able to reproduce the high intra-day price volatility often observed in electricity markets,
as both DT and GT are relatively slow moving from hour to hour. Moreover, maintenance
schedules often lead to seasonal patterns in available capacity. Adding time-dependence and
randomness to CT is a natural remedy, but unfortunately not necessarily an easy one. In
particular, in (10) in its current form, a decrease in capacity can only lower the spot price
St, since the price will be capped at a lower level when Dt = Ct. In other words, all the
capacity is removed from the top of the bid stack, causing it to end at a lower level. Several
alternative formulations are possible:

• Deterministic Capacity: Firstly, if we are interested primarily in capturing de-
terministic changes in capacity (e.g. maintenance schedules), then we choose
a deterministic function c(t) representing the percentage of installed capacity ξ̄
available at time t. Next, we assume that capacity is removed evenly throughout
the stack. In other words, the range of market heat rates implied by the model
should remain fixed. Hence set βi(t) = ξ̄/c(t), such that the time dependence
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in βi(t) exactly offsets c(t), ensuring that (in regime i) the highest price set is
Sgt exp(αi + βiξ̄), for any value of c(t).

• Demand Over Capacity: The approach above is equivalent to writing the stack as
a function of Dt/C(t) directly (as suggested for example in [19, 39]). Extending
this idea, one could think of modeling Dt/Ct directly as a Gaussian process,
without disentangling the role of demand and capacity changes. We then still
have only two random variables (including gas), but are likely to have a more
volatile demand process, as it incorporates additional supply-related uncertainty.
It may be convenient to treat Dt and Ct jointly if we want the dynamics of the
process to be specified to match observed forward or option prices, as we shall
discuss briefly in Section 5.3.

• Stochastic Capacity: Finally, we note that the full version of the model with
Gaussian CT , correlated with DT (as in (7)), is also possible. We suggest in
this case a slight modification to the expression (10), replacing capped demand

D̂t = max (0,min(Ct, Dt)) with capped margin M̂t = Ct − D̂t. In this case
exp(αi) needs to be interpreted as the highest, not lowest, heat rate, and βi < 0.
Effectively, an outage (a decrease in Ct) then removes capacity from the bottom
of the stack instead of the top. However, the resulting expression for forward
prices F p(t, T ) is significantly more complicated, both because of the additional
random variable and because of the need for additional caps or floors on this
variable (e.g. at Ct = 0), producing additional terms.

5.1.2. Version B:. If we choose instead to treat Ct as an additional noise term which moves
the bid stack left or right in parallel shifts, but is not interpreted strictly as the maximum
capacity available, then we avoid many of the complications discussed above. In particular,
we do not impose the restriction that Dt = 0 and Dt = Ct correspond to the lowest and
highest power prices possible (for a given fuel price), and hence we do not introduce a capped

demand process D̂t. In all other respects, the model retains the features of Version A. We
define the power spot price by

(15) St = (−1)δ̃i(Sgt )δi exp (αi + βiDt − γiCt) with probability pi(Dt, Ct)

where

pi(Dt, Ct) = pi + p̄iΦ ((ζi + ηiDT + θiCt)) for i = 1, . . . , N − 1,(16)

and pN (Dt, Ct) = 1−
N−1∑
i=1

pi(Dt, Ct).

Notice that this time we let the regime probabilities be more general than in (11), allowing
dependence on both Dt and Ct. However, in practice, we might prefer to return to the earlier
special case where pi is linear in the quantile of demand (as in [40]) by simply setting

(17) ζi = −µd
σd
, ηi =

1

σd
, θi = 0.

On the other hand, if we prefer a linear function of the quantile of capacity (with pi decreasing
in Ct, say) then we could set

ζi =
µc
σc
, ηi = 0, θi = − 1

σc
.

Assuming the stack model in (15) and (16), along with distributions given by (7) and pi by
(17), the forward power price for time T delivery can be found (again using (8)) to be
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F p(t, T ) =

N∑
i=1

(−1)δ̃ihi(F
g(t, T ))δi

[
pi + p̄iΦ

(
(−1)δ̃i(βiσd − ργiσc)√

(1− ρ2)(2− ρ2)

)]
where the constant hi = Et [exp (αi + βiDt − γiCt)] is given by

(18) hi =
1√

1− ρ2
exp

(
αi + βiµd − γiµc +

β2
i σ

2
d − 2ρβiγiσdσc + γ2

i σ
2
c

2(1− ρ2)

)
.

The general framework introduced above essentially models the electricity price as a mixture
of lognormal random variables (and/or the negative of a lognormal when δ̃i = 1), with
mixing probabilities which can be state dependent. Given the distributions in (7), this
characterization is accurate for Version B of the framework, and approximate for Version
A where demand is truncated at the top and bottom of the stack. Recall that in practice
we are likely to have only two or three regimes at most, corresponding to ‘normal prices’,
unusually high prices, and possibly unusually low or negative prices. However, the very
general framework above allows for the possible subdivision of spikes into low, medium or
high spikes, as is sometimes suggested (cf. [41]). If we were instead in the case N = 1,
(e.g. in a spike-free market), then in Version B the spot price St becomes lognormal and we
return to the special case of some early models discussed in Section 4, as in (6). Although
the multiple regimes depart somewhat from the strictest definition of a bid stack model,
it is well-known that during times of extreme market stress, the price can be set at levels
which depart wildly from the typical stack prediction, and hence we argue that allowing for
multiple exponential curves is well-justified as a form of hybrid structural approach.

5.2. Multi-Fuel Markets. In many electricity markets, two or more fuel types may be
present and set the power price at different times, depending both on demand and the rel-
ative prices of the fuels. In particular, the ‘merit order’ determines the sequence in which
different fuels become marginal as demand increases. While an easy concept to explain
and understand, this provides a big challenge for structural models, particularly in markets
driven by several correlated fuels which can overlap and also swap places in the bid stack.
As discussed in Section 3, only a few existing papers fully address the multi-fuel case via a
structural approach.

In this section, we build on the framework introduced for a single fuel market above, and
again price power forwards for a given maturity T , where the distributions of the underlying
factors are lognormal or normal. We now include n correlated fuel spot prices S1

t , S
2
t , . . . , S

n
t :

(19)[
DT | Dt

CT | Ct

]
∼ N

([
µd
µc

]
,

[
σ2
d ρσdσc

ρσdσc σ2
c

])
,

 logS1
T | S1

t
...

logSnT | Snt

 ∼ N

 µ1

...
µn

 ,Σ(S)


where Σ(S) is the covariance matrix with j, k entry Σ

(S)
j,k = ρjkσjσk corresponding to covari-

ance between fuels j and k. As before, we split our approach into Version A and Version B
depending on the treatment of capacity and the capping of demand.

5.2.1. Version A. In the single fuel case, Version A provided us with relatively few advantages
over Version B, except perhaps a clearer intuition regarding the meaning of Ct, and possible
avoidance of unrealistic prices thanks to bounded demand. In contrast, in the multi-fuel
setting, treating capacity truly in terms of installed or available quantity gives us a natural
way to capture the relative chance of each technology being marginal. Hence let ξ1, . . . , ξn

represent available capacity from fuel types 1, . . . , n, and ξ̄ =
∑n

j=1 ξ
i. We assume these are
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known with certainty, and hence set CT = ξ̄ (so σc = 0). As discussed in the single fuel case,
stochastic capacity greatly increases the complexity of the computation of forward prices in
Version A, and thus alternatives such as deterministic capacity trends and the treatment of
Dt/Ct directly as a single random factor are advisable. The priority in the multi-fuel case is
typically the relationship between the various energy prices.

We aim to build on the model developed by Carmona et al [21], by including multiple
regimes with demand-dependent probabilities. Note that in [21], spikes and negative prices
are incorporated as well, but only at the top and bottom of the stack, thus triggered by the
events Dt ≤ 0 and Dt ≥ ξ̄. Instead, here we allow for the possibility of spikes even for lower
levels of demand, as can sometimes occur in practice. Furthermore, via the regime-switching
set-up, we obtain closed-form forward prices for a market with more than two fuels, by
considering the interaction of bids from only two fuel types within each regime. First, for

each fuel type j = 1, . . . , n, we define a fuel bid curve as a function of Dt and Sjt with the
usual form:

(20) bi(Dt, S
j
t ) := Sjt exp(αj + βjDt), for Dt ∈ [0, ξj ]

Note that parameters α1, α2, . . . and β1, β2, . . . now correspond to fuels, not regimes. These
will be used in the N1 ‘normal’ spot price regime(s), where the usual merit order rules will
apply to combine the fuel bid curves, producing a piecewise exponential function as in [21].
For each regime i ∈ {1, . . . , N1}, the spot price is driven by two fuels (say i+, i− ∈ {1, . . . , n}).
Let D̃i

t represent capped demand renormalized to the capacities of regime i fuels. Hence for
i ∈ {1, . . . , N1}, set

D̃i
t =

(
ξi+ + ξi−

ξ̄

)
D̂t, and µ̃id =

(
ξi+ + ξi−

ξ̄

)
µd, σ̃id =

(
ξi+ + ξi−

ξ̄

)
σd

Then we define the spot price (for regime i ∈ {1, . . . , N1}) by

St =



S
i+
t exp

(
αi+ + βi+D̃

i
t

)
if bi+(D̃i

t, S
i+
t ) ≤ bi−(0, S

i−
t )

S
i−
t exp

(
αi− + βi−D̃

i
t

)
if bi−(D̃i

t, S
i−
t ) ≤ bi+(0, S

i+
t )

S
i+
t exp

(
αi+ + βi+(D̃i

t − ξ̃i−)
)

if bi+(D̃i
t − ξ̃i− , S

i+
t ) > bi−(ξ̃i− , S

i−
t )

S
i−
t exp

(
αi− + βi−(D̃i

t − ξ̃i+)
)

if bi−(D̃i
t − ξ̃i+ , S

i−
t ) > bi+(ξ̃i+ , S

i+
t )

bi+,i−(D̃i
t, S

i+
t , S

i−
t ) otherwise,

where bi+,i−(D̃i
t, S

i+
t , S

i−
t ) = (S

i+
t )γ

i+
0 (S

i−
t )γ

i−
0 exp

(
γ1 + γ2D̃

i
t

)
and

γ
i+
0 =

βi−
βi+ + βi−

, γ
i−
0 = 1− γi+0 , γ1 =

αi+βi− + αi−βi+
βi+ + βi−

, γ2 =
βi+βi−
βi+ + βi−

and with probability pi(Dt) (for regime i ∈ {1, . . . , N1}) as given in (11). Note that the five
cases above have a straightforward interpretation as follows: only one fuel is marginal and
the other unused since Dt is low (cases 1-2), only one fuel is marginal and the other is used
to capacity since Dt is high (cases 3-4), or both fuels are jointly marginal (case 5).

In addition, we define N2 ‘spike’ regimes (including negative spikes), where the price will be
set by a single exponential function of demand, with the choice of fuel price dependence (all
or none) and negative prices similarly to earlier. For regimes i = N1 + 1, . . . , N1 +N2,

St = (−1)δ̃i
n∏
j=1

(
Sjt exp(αj)

)δi
exp

(
αi + βiD̂t

)
again with probability pi(Dt) as given in (11).
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We let Ji = {i+, i−} represent the set of two fuels (with prices SJit = (S
i+
t , S

i−
t )) driving

power prices in ‘normal’ regime i, for i ∈ {1, . . . , N1} and hence use notation bJi(Dt,S
Ji
t )

for the case of jointly margin fuels (case 5 above). Without loss of generality, we assign i+
and i− such that ξi+ ≥ ξi− . Finally, as all terms have approximately the same form, we
introduce one more piece of useful notation:

Φpi
3

([
x1

x2

]
, y, z; ρ

)
:= piΦ2

([
x1

x2

]
, y; ρ

)
+ p̄i

(
Φ3(x1, y, z2; Σ)− Φ3(x2, y, z2; Σ)

)
where

Σ =

 1 ρ −1/
√

2

ρ 1 −ρ/
√

2

−1/
√

2 −ρ/
√

2 1

 .

Then (using (9)) the forward power price F pt for time T delivery can be written as follows
in terms of the forward fuel prices F 1

t , . . . , F
n
t (notation shortened for convenience):

F pt =

N1∑
i=1

∑
j∈Ji

e
β2j (σ̃

i
d)

2

2

bj (µ̃id, F jt )Φpi
3

 ξ̃j−µ̃id
σ̃id
− βj σ̃id

−µ̃id
σ̃id
− βj σ̃id

 , Rjk(µ̃id, 0)− β2
j (σ̃id)

2

σj,d
,
βj σ̃

i
d√

2
;
βj σ̃

i
d

σj,d


+bj

(
µ̃id − ξ̃k, F

j
t

)
Φpi

3

 ξ̄−µ̃id
σ̃id
− βj σ̃id

ξ̃k−µ̃id
σ̃id
− βj σ̃id

 , −Rjk
(
µ̃id − ξ̃k, ξ̃k

)
+ β2

j (σ̃id)
2

σj,d
,
βj σ̃

i
d√

2
;
−βj σ̃id
σj,d


+
∑
j∈Ji

δ̂je
ηbJi(µ̃

i
d,F

Ji
t )

−Φpi
3

 ξ̃j−µ̃id
σ̃id
− γ2σ̃

i
d

−µ̃id
σ̃id
− γ2σ̃

i
d

 , Rjk(µ̃id, 0) + γk0σ
2 − γ2βj(σ̃

i
d)

2

δ̂jσj,d
,
γ2σ̃

i
d√

2
;
βj σ̃

i
d

δ̂jσj,d


+ Φpi

3

 ξ̄−µ̃id
σ̃id
− γ2σ̃

i
d

ξ̃k−µ̃id
σ̃id
− γ2σ̃

i
d

 , Rjk
(
µ̃id − ξ̃k, ξ̃k

)
+ γk0σ

2 − γ2βj(σ̃
i
d)

2

δ̂jσj,d
,
γ2σ̃

i
d√

2
;
βj σ̃

i
d

δ̂jσj,d


+

[
piΦ

(
−µ̃id
σ̃id

)
+ p̄iΦ2

(
−µ̃id
σ̃id

, 0;
−1√

2

)]∑
j∈Ji

bj

(
0, F jt

)
Φ

(
Rjk(0, 0)

σJi

)

+

[
piΦ

(
µ̃id − ξ̄
σ̃id

)
+ p̄iΦ2

(
µ̃id − ξ̄
σ̃id

, 0;
−1√

2

)]∑
i∈I

bj

(
ξ̃j , F jt

)
Φ

−Rjk
(
ξ̃j , ξ̃k

)
σJi


+

N2∑
i=N1+1

(−1)δ̃i

 n∏
j=1

F jt

δi

exp

δi n∑
j=1

(
αj −

1

2
σ2
j +

n∑
k=1

Σ
(S)
j,k

) f(µd, σd, ξ̄, pi, p̄i, αi, βi, δ̃i)

where k = Ji \ {j}, δ̂j = (−1)
I{j=i+} (for j ∈ Ji, where i ∈ {1, . . . N1}), with f(·) as defined

in (14) and

σ2
Ji := σ2

i+ − 2ρi+i−σi+σi− + σ2
i− ,

σ2
j,d := β2

j (σ̃id)
2 + σ2

Ji ,

η :=
γ2

2(σ̃id)
2 − αcαgσ2

2

Rjk (ξj , ξk) := αk + βkξk − αj − βjξj + log
(
F kt

)
− log

(
F jt

)
− 1

2
σ2
Ji .

Although the formula above appears remarkably involved, note that for a two fuel market
(e.g. gas and coal) we are likely to only have one ‘normal’ regime (N1 = 1) and one or two
other regimes, reducing the complexity of the formula. If N2 = 0, we return to the result
of [21]. However, the additional generality allows extra flexibility. For example, in a market
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with three fuels but very little chance of overlap between the highest and lowest, we might
set N1 = 2, prescribing one regime where the highest fuel mixes with the middle fuel, and
one where the middle fuel mixes with the lowest.

5.2.2. Version B. In the second version of the multi-fuel framework, we do not define ca-
pacities ξ1, . . . , ξn. Hence it is less clear how to capture changes in the merit order, because
there is no concept of a threshold capacity level where the marginal fuel type changes when
demand crosses that threshold. Instead, the only way to approximate the subtle interplay
between demand and marginal fuel type is to use the idea of regimes instead. For example,
for an n fuel market, one might define n+1 regimes, one driven by each underlying fuel, and
one for spikes. Although this does not incorporate an overlap regime, the simplification to
a single marginal fuel is intuitively appealing and similar in spirit to the work of Aı̈d et al
[1, 2]. Instead of their strict capacity-driven thresholds, we then use our demand-dependent
regime probabilities to ensure that fuels higher in the merit order are more likely to be
used when demand is high. A big obstacle to either approach is that the merit order may
change, particularly over medium to long time horizons. Indeed, in [2], to retain mathemat-
ical tractability in the n fuel case, the authors assume that the initial merit order is fixed
and enforce this by modeling the spreads between neighbouring fuels as Geometric Brownian
Motions, a departure from commonly-used models for fuel prices. In this section, we present
another variation in order to retain the chance of future merit order changes, following more
closely the original setup of [1].

Similarly to (20), we define an exponential curve for each fuel type, but now treating Ct as
an additional stochastic factor

bi(Dt, Ct, S
i
t) := Sit exp(αi + βiDt − γiCt), for i = 1, . . . , n.

Regimes 1, . . . , n (the ‘normal’ regimes) will be driven by fuels 1, . . . , n only. Note that it is
certainly possible to incorporate ‘overlap’ regimes in this framework, for example by choosing
the function (S1

t )ε(S2
t )1−ε exp(α1,2 + β1,2Dt − γ1,2Ct) for a regime driven jointly by fuels 1

and 2. While explicit forward curves can still be found, this adds unnecessary complications
for our illustrative purposes here. Regimes n+ 1, . . . , N (the ‘spike’ regimes) will be driven
by either no fuels or all fuels jointly. Thus,

bi(Dt, Ct, S
i
t) := (−1)δ̃i

n∏
j=1

(
Sjt exp(αj)

)δi
exp (αi + βiDt − γiCt) for i = n+ 1, . . . , N

Next, before defining the power price St, we define a permutation {πt(1), . . . , πt(n)} over the
set {1, . . . , n} of fuels, such that

S
πt(1)
t exp(απt(1) + βπt(1)µd) ≥ . . . ≥ S

πt(n)
t exp(απt(n) + βπt(n)µd).

This is similar to the approach followed in [1], but without the restriction of a single heat
rate per fuel type (i.e. a step function bid stack). We then define the spot price as

(21) St = bπt(i)(Dt, Ct, S
πt(i)
t ) with probability pi(Dt, Ct)

where again (in the most general form)

pi(Dt, Ct) = pi + p̄iΦ ((ζi + ηiDt + θiCt)) for i = 1, . . . , N − 1,

and pN (Dt, Ct) = 1−
N−1∑
i=1

pi(Dt, Ct).

In other words, the idea is that πt approximately captures the ordering of fuel types (the
merit order), using the average demand level in the market. Then the regime probabilities
pi (increasing in Dt for lower values of i, decreasing in Dt for higher values of i) can do
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the work of linking the more expensive fuel types to higher demand states, and the cheaper
ones to lower demand states. Unlike in Version A, determining which fuel price sets the
power prices does not depend on a function of both Dt and S1

t , . . . , S
n
t jointly, thus easing

the computation of forward prices. While the connection between demand and price is looser
than in a strict stack model, this is not necessarily unrealistic for a market with significant
noise from Ct.

Assuming the model in (21), distributions in (19) and pi given by (17) for simplicity, in the
case of two fuels (n = 2) the forward power price F pt for time T delivery is given by

F pt =

2∑
i=1


2∑
j=1

hjF
j
t Φ

(
(−1)iRjk(µd, µd)√
σ2

1 − 2ρ12σ1σ2 + σ2
2

)[
pi + p̄iΦ

(
(βjσd − ργjσc)√
(1− ρ2)(2− ρ2)

)]
+

N∑
i=3

(−1)δ̃ihi

F 1
t F

2
t exp

2ρ12σ1σ2 +
2∑
j=1

(αj +
1

2
σ2
j )

δi [
pi + p̄iΦ

(
(−1)δ̃i(βiσd − ργiσc)√

(1− ρ2)(2− ρ2)

)]
where k = {1, 2}\j and as before, hi = Et [exp (αi + βiDt − γiCt)] as given (for i = 1, . . . , N)
in (18) and Rjk also as defined earlier.

At the expense of a weaker link to the merit order, this result is clearly much simpler than
the Version A forward price, due to the lack of any indicator functions involving demand.
Nonetheless the complexity increases rapidly for more than two fuels. The three fuel case
(n = 3) is still realistic to write out on paper (using the trivariate relationship in (9) and some
determination!), but for n > 3 the increasing dimensionality of the multivariate Gaussian
and the increasing number of permutations of fuels renders a closed-form solution nearly
infeasible, although numerical implementation is still straightforward.

5.3. Parameter Estimation and Forward Curve Calibration. The choice of structural
model clearly depends on both the electricity market in question and the goals of the model.
The framework above and its many versions were intended to emphasize the variety of tools
available for modeling the many features we observe in price dynamics, while retaining a
common core to the model and a reasonable level of mathematical tractability. No matter
which specific model is ultimately chosen, an important next step is a reliable and robust
method for parameter estimation and forward curve calibration. These two issues are most
often tackled in stages, first estimating some parameters from history, and then selecting
others to match forward looking market quotes. In all cases, the explicit formulas above for
F p(t, T ) (and their explicit dependence on fuel forwards) provide a valuable computational
benefit, as an optimal fit to observed forward curves in a high dimensional model quickly
becomes unmanageable if limited to Monte Carlo simulation. In this subsection we discuss
briefly the main challenges involved in fitting a structural model to data.

• Observable vs Unobservable Factors: As discussed throughout this paper, many
of the underlying factors (e.g. demand, fuel prices) in electricity markets are eas-
ily observable and exogenously modelled, meaning that their parameters can be
estimated independently of the power price model itself, by standard techniques
such as maximum likelihood. However, the sheer complexity of the market typ-
ically means that some factors are either truly unobservable or their treatment
in the model approximates several effects, making them effectively unobservable
for modeling purposes. In our framework, ‘capacity’ Ct typically falls in this cat-
egory, particularly when treated as a catch-all noise process (i.e. Version B). In
such cases the model-implied history of the process can be backed out from spot
price histories as a model residual (as suggested in [72, 68, 39] among others),
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typically producing a closer fit to historical price dynamics. However this benefit
must be weighed against the risk that structural or regulatory changes can make
market price histories unreliable, a weakness not suffered by models driven only
by observed factors.

• Stack Parameters: As discussed by [68] and [49] among others, the estimation
of stack parameters (α’s and β’s in our expressions) can be achieved in several
ways. In summary, (i) from costs, (ii) from bids, (iii) from prices. The first of these
relies somewhat on the assumption of competitive markets and limited strategy
bidding (ie, generators bidding their production costs), but has the significant
advantage of avoiding messy estimation and fixing some key parameters to well
understood market variables. For example, in the multi-fuel case (Version A),
we may be able to easily approximate the range of heat rates (efficiencies) in the
market for each technology j ∈ {1, . . . , n}, which can then be equated to the range
[exp(αj), exp(αj+βjξ

j)] for the ‘normal’ regimes. On the other hand, if historical
auction data is available, then parameters α and β can be fitted directly to the bid
stack (as in [39]), though this is less suitable if there are multiple ‘normal’ regimes.
Finally, the use of only prices to fit the exponential bid curves is disadvantageous
since we only observe one point on the curve each hour. Hence regions of the
curves which only rarely set the price may be harder to accurately estimate than
when using the historical stack data. However, as the occurrence of ‘spike’ regimes
in history is unobservable, price data may be particularly useful for filtering out
these extreme points, and fitting their parameters separately. In practice, good
judgement is needed from market to market when deciding how best to tackle
stack calibration, and a combination of the above options may be preferable.

• History vs Market Quotes: The choice between using history and using current
market quotes revolves around several key questions, including the availability and
reliability of data, the treatment of risk premia, and the desired model inputs.
Variables such as temperature (which can be mapped to demand, as discussed in
Section 3.2) have long and reliable histories, and are hence one of the arguments
in favor of structural models over reduced-form. However, fitting all parameters
to history and assuming a constant market price of risk when needed will of course
fail to reproduce the market forward prices, a typical first step in any modeling
problem. Therefore, a balance must be struck between parameters matched to
history and parameters matched to future risk-neutral dynamics (i.e. to observed
prices). The simplest approach in the structural framework described above is to
first fit everything to history, before allowing the mean level of demand µd (or
capacity µc) to be time-dependent, chosen precisely to reproduce each market
forward price F p(t, T ) (see, [37] for a similar approach in reduced-form). Solving
for µd numerically is straightforward given the expressions above, giving an exact
calibration to the forward curve. In other cases, we may be interested in allowing
more parameters to be free, in order to match other input prices from the market,
such as at-the-money options if they are sufficiently liquid.

• Risk premia: A key advantage of the expressions above is that power forwards
F p(t, T ) are written directly in terms of fuel forwards (say F g(t, T )), which can be
treated as observed market prices. Hence, for the fuel component of our model, no
assumption regarding risk premia is needed, as the risk-neutral drift is implicitly
specified by observed forwards. Moreover, no calibration technique is needed for
the fuel forward curves. On the other hand, the dynamics of other factors such
as demand and capacity can only be estimated under the physical measure via
history (unless the careful use of weather derivatives can provide information for
demand via temperature). Hence, rather arbitrary assumptions about the form



38 RENE CARMONA AND MICHAEL COULON

of the market price(s) of risk may be required. However, as discussed in the
previous paragraph, we typically desire exact calibration to the observed power
forward curve, through which the market price of risk can be absorbed into the
mean level µd (or µc) needed to match forwards. While this may simply sweep
the issue under the carpet, for many practical applications it should suffice as a
reasonable assumption and claims of incompleteness can be politely ignored by
pointing to a liquid forward curve for all maturities.

• Delivery Periods: As we gently sweep one issue under the carpet, another crops up
around the corner! While it may be true that liquid forward prices exist covering
several years from the current time, they certainly do not exist for every specific
maturity T , simply because of delivery periods. As mentioned in Section 2, the
convention in all electricity markets is that forward contracts specify electricity
delivery over a period of time, often one month, but sometimes even a quarter
or a year for longer contracts. Hence the price should be written F (t, T1, T2) and
correspond to an average of the expected spot price for all hours in the month (or
delivery period). While some authors have approximated this in continuous time
as an integral over the delivery period and designed models for which the integral
simplifies (cf. [13, 11]), in reality a sum is arguably more appropriate, since St
is indeed a discrete time process. Adding an outer summation to our expressions
above is a simple adjustment, but in this case we should note that fuel forward
prices then also require single hour maturities, which is unfortunately not the
case, as these are typically also monthly. Various remedies are possible, including
the smoothing of observed forward curves to obtain prices for all T (cf. [12, 61]
for smoothing electricity forward quotes), the assumption of piecewise constant
fuel forwards, or the choice of a representative single date per delivery period
(reasonable for longer maturities). Unfortunately, there is no clear answer, and
such implementation challenges exist no matter what price model we use!

• Hour of Day Considerations: Finally, we note that observed power forward curves
often exist for delivery over different hours of the day (day vs. night) and days of
the week (weekday vs. weekend), categorized as peak, off-peak or base-load con-
tracts. Hence, the calibration to observed forward quotes may require multiple
calibrations per delivery month. In the simplest case, one might simply adjust
the mean demand µd (or µc) by a different amount for peak and off-peak hours.
A well-fitted model for load should first capture the well-known hourly patterns
across the day, as well as seasonal periodicities which may vary significantly for
different hours of the day. While some authors have chosen to treat each hour
of the day as a separate (but correlated) stochastic process, others treat only the
deterministic component of demand differently by hour. Having 24 separate pro-
cesses may introduce too many parameters, particularly as the historical sample
size drops significantly, making it hard for example to stably model the tail of the
price distribution.

In conclusion, the fitting procedure for structural models is typically a fine art, combining
different approaches for different components of the overall framework. As with all models
for electricity, approximations must be made. Structural models in particular may have very
many parameters to estimate, but in exchange can have much data available to help.

6. Conclusion

In this survey, we have attempted to give the reader a flavour of many of the interesting
and unique characteristics of energy (and commodity) markets, and in particular the most
unusual of all, electricity. While many different price modeling approaches now exist, the
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topic still provides many avenues for important new research, both building on current work
and addressing new questions as they arise. For example, how will electricity grids manage
the rapid growth of renewable energy with large supply variability, and how will prices be
affected? Will the emissions markets grow in importance globally and produce more dramatic
changes in the merit order? Will the smart grid and growth of electric vehicles cause a
structural change, with both the demand inelasticity and non-storability assumptions under
threat? Will new storage technology bring electricity price dynamics closer in line with other
commodities? What about the ‘financialization’ of electricity, if power forwards some day
begin to appear in commodity indices? How global can electricity markets become (e.g. with
solar panels in the Sahara powering much of Europe and Africa)? Some of these thoughts
may be a long way off, but others could be just around the corner! We do not promote
the structural approach discussed in detail here as an answer to such intriguing speculative
questions, but we do recommend thinking beyond the historical price series, especially at
times of fundamental market change. We have presented and discussed structural models
which meet this criteria by directly incorporating demand, capacity and fuel prices, and
without necessarily sacrificing the mathematical benefits traditionally reserved for reduced-
form approaches. We hope that the flexible, intuitive and practical framework we advocate
can play a useful role in understanding and tackling the many risks ahead in the fascinating
next chapter of the global energy markets.
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[2] R. Aı̈d, L. Campi, and N. Langrené. A structural risk-neutral model for pricing and hedging power
derivatives. Mathematical Finance. Published on Line Feb. 13, 2012.

[3] R. Aı̈d, A. Chemla, A. Porchet, and N. Touzi. Hedging and vertical integration in electricity markets.
Management Science, 57:1438–1452, 2011.

[4] C.L. Anderson and M. Davison. A hybrid system-econometric model for electricity spot prices: Consid-
ering spike sensitivity to forced outage distributions. IEEE Transactions on Power Systems, 23:927–937,
2008.

[5] N. Audet, P. Heiskanen, J. Keppo, and I. Vehvilainen. Modeling electricity forward curve dynamics in the
nordic market. In D. Bunn, editor, Modelling Prices in Competitive Electricity Markets, pages 251–265.
Wiley, 2004.

[6] E. Banks. Weather Risk Management: Markets, Products and Applications. Palgrave, 2002.
[7] M. Barlow. A diffusion model for electricity prices. Mathematical Finance, 12(4):287–298, 2002.
[8] O.E. Barndorff-Nielsen, F.E. Benth, and A.E.D. Veraart. Modelling electricity forward prices by ambit

fields. Technical report, 2011. Preprint.
[9] O.E. Barndorff-Nielsen, F.E. Benth, and A.E.D. Veraart. Modelling energy spot prices by Lévy semista-
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