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Plan of the Course

Commodity Markets
Production, Transportation, Storage, Delivery
Spot / Forward Markets

Spread Option Valuation
Why Spread Options
First Asset Valuation

Gas and Power Markets
Physical / Financial Contracts
Price Formation
Load and Temperature

Weather Markets
Weather Exposure
Temperature Options

More Asset Valuation
Plant Optionality Valuation
Financial Valuation
Valuing Storage Facilities

Emission Markets
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Deregulated Electiricty Markets

No More Utilities monopolies

Vertical Integration of production, transportation, distribution of electricity

Unbundling

Open competitive markets for production and retail
(Typically, grid remains under control)

New Price Formation
Constant supply - demand balance (Market forces)
Commodities form a separate asset class!

LOCAL STACK – MERIT ORDER (plant on the margin)
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Role of Financial Mathematics & Financial Engineering

Support portfolio management
(producer, retailer, utility, investment banks, . . .)

Different data analysis
(spot, day-ahead, on-peak, off-peak, firm, non-firm, forward,· · · ,
negative prices)

New instrument valuation
(swing / recall / take-or-pay options, weather and credit derivatives, gas
storage, cross commodity derivatives, .....)

New forms of hedging using physical assets
Perfected by GS & MS (power plants, pipelines, tankers, .....)
Marking to market and new forms of risk measures
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FE for the post-ENRON Power Markets

Degradation of credit exacerbated liquidity problems

Credit risk
Understanding the statistics of credit migration
Including counter-party risk in valuation
Credit derivatives and credit enhancement

Reporting and indexes
Could clearing be a solution?

Exchange traded instruments pretty much standardized, but OTC!
Design of a minimal set of instruments for standardization

Collateral requirements / margin calls
Objective valuation algorithms widely accepted for frequent
Mark-to-Market
Netting

Challenge of the dependencies (correlations, copulas, ....)
Integrated approach to risk control
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Commodities

Physical Markets
Spot (immediate delivery) Markets
Forward Markets

Volume Explosion with Financially Settled Contracts
Physical / Financial Contracts
Exchanges serve as Clearing Houses
Speculators provide Liquidity

In IB, part of Fixed Income Desk
Seasonality / Storage / Convenience Yield
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First Challenge:
Constructing Forward Curves

How can it be a challenge?
Just do a PCA !

”OK” for Crude Oil (backwardation/contango→ 3 factors)
Not settled for Gas
Does not work for Electricity

Extreme complexity & size of the data (location, grade, peak/off
peak, firm/non firm, interruptible, swings, etc)
Incomplete and inconsistent sources of information
Liquidity and wide Bid-Ask spreads (smoothing)
Length of the curve (extrapolation)

Dynamic models à la HJM:
Seasonality? Mean reversion? Jumps? Spot models? Factor Models?
Cost of carry / convenience yield? Consistency? Historical? Risk neutral
models? .....
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Crude Oil
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More Crude Oil Data
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Spot Volatility
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Is the Forward the Expected Value of Future Spots?
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Spot Forward Relationship

In financial models where one can hold positions at no cost

F (t ,T ) = S(t)er(T−t)

by a simple cash & carry arbitrage argument. In particular

F (t ,T ) = E{S(T ) | Ft}

for risk neutral expectations.

Perfect Price Discovery

In general (theory of normal backwardation)
F (t ,T ) is a downward biased estimate of S(T )

Spot price exceeds the forward prices
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Notion of Convenience Yield

Forward Price = (risk neutral)
conditional expectation of future values of Spot Price

No cash & carry arbitrage argument
Is the spot really tradable?
What are its dynamics?
How do we risk-adjust them?

Convenience Yield for storable commodities
Natural Gas, Crude Oil, . . .
Correct interest rate to compute present values
Does not apply to Electricity
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Spot-Forward Relationship in Commodity Markets

For storable commodities (still same cash & carry arbitrage
argument)

F (t ,T ) = S(t)e(r−δ)(T−t)

for δ ≥ 0 called convenience yield. (NOT FOR ELECTRICITY !)
Decompose δ = δ1 − c with

δ1 benefit from owning the physical commodity
c cost of storage

Then
f (t ,T ) = er(T−t)e−δ1(T−t)e−c(T−t)

er(T−t) cost of financing the purchase
ec(T−t) cost of storage
e−δ1(T−t) sheer benefit from owning the physical commodity
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Backwardation / Contango Duality

Backwardation
T ↪→ F (t ,T ) = S(t)e(r+c−δ1)(T−t) decreasing if r + c < δ1

Low cost of storage
Low interest rate
High benefit in holding the commodity

Contango
T ↪→ F (t ,T ) = S(t)e(r+c−δ1)(T−t) increasing if r + c ≥ δ1

Carmona Energy Markets, Munich



Natural Gas
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Commodity Convenience Yield Models

Gibson-Schwartz Two-factor model
St commodity spot price
δt convenience yield

Risk Neutral Dynamics

dSt = (rt − δt)St dt + σSt dW 1
t ,

dδt = κ(θ − δt)dt + σδ dW 2
t

Major Problems
Explicit formulae (exponential affine model)

Convenience yield implied from forward contract prices

Unstable & Inconsistent (R.C.-M. Ludkovski)

Carmona Energy Markets, Munich



Lack of Consistency

Exponential Affine Model

F (t ,T ) = St e
R T

t rsdseB(t,T )δt+A(t,T )

where

B(t ,T ) =
e−κ(T−t) − 1

κ
,

A(t ,T ) =
κθ + ρσsγ

κ2 (1− e−κ(T−t) − κ(T − t)) +

+
γ2

κ3 (2κ(T − t)− 3 + 4e−κ(T−t) − e−2κ(T−t)).

For each T , one can imply δt from F (t ,T )

Inconsistency in the implied δt

Ignores Maturity Specific effects
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Crude Oil convenience yield implied by a 3 month futures contract (left)
Difference in implied convenience yields between 3 and 12 month contracts.
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Convenience Yield Models Revisited

Use forward Ft = F (t ,T0) instead of spot St (T0 fixed maturity)
Historical Dynamics

dFt = (µt − δt)Ft dt + σFt dW 1
t ,

dδt = κ(θ − δt)dt + σδ dW 2
t

or more generally

dδt = b(δt ,Ft)dt + σδ(δt ,Ft)dW 2
t

We assume
Ft is tradable (hence observable)
(Forward) convenience yield δt not observable (filtering)

Different from Bjork-Landen’s Risk Neutral Term Structure of
Convenience Yield
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The Case of Power

Several obstructions
Cannot store the physical commodity

Which spot price? Real time? Day-ahead? Balance-of-the-week?
month? on-peak? off-peak? etc

Does the forward price converge as the time to maturity goes to 0?

Mathematical spot?
S(t) = lim

T↓t
F (t ,T )

Sparse Forward Data
Lack of transparency (manipulated indexes)

Poor (or lack of) reporting by fear of law suits

CCRO white paper(s)
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Dynamic Model for Forward Curves

n-factor forward curve model

dF (t ,T )

F (t ,T )
= µ(t ,T )dt +

n∑
k=1

σk (t ,T )dWk (t) t ≤ T

W = (W1, . . . ,Wn) is a n-dimensional standard Brownian motion,
drift µ and volatilities σk are deterministic functions of t and
time-of-maturity T
µ(t ,T ) ≡ 0 for pricing
µ(t ,T ) calibrated to historical data for risk management
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Explicit Solution

F (t ,T ) = F (0,T ) exp

"Z t

0

"
µ(s,T )− 1

2

nX
k=1

σk (s,T )2

#
ds +

nX
k=1

Z t

0
σk (s,T )dWk (s)

#

Forward prices are log-normal (deterministic coefficients)

F (t ,T ) = αeβX−β2/2

with X ∼ N(0,1) and

α = F (0,T ) exp
»Z t

0
µ(s,T )ds

–
, and β =

vuut nX
k=1

Z t

0
σk (s,T )2ds
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Dynamics of the Spot Price
Spot price left hand of forward curve

S(t) = F (t , t)

We get

S(t) = F (0, t) exp

"Z t

0
[µ(s, t)− 1

2

nX
k=1

σk (s, t)2]ds +
nX

k=1

Z t

0
σk (s, t)dWk (s)

#
and differentiating both sides we get:

dS(t) = S(t)
»„

1
F (0, t)

∂F (0, t)
∂t

+ µ(t , t) +

Z t

0

∂µ(s, t)
∂t

ds −
1
2
σS(t)2

−
nX

k=1

Z t

0
σk (s, t)

∂σk (s, t)
∂t

ds +
nX

k=1

Z t

0

∂σk (s, t)
∂t

dWk (s)

!
dt +

nX
k=1

σk (t , t)dWk (t)

#
Spot volatility

σS(t)2 =
nX

k=1

σk (t , t)2. (1)
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Spot Dynamics cont.

Hence

dS(t)
S(t)

=

»
∂ log F (0, t)

∂t
+ D(t)

–
dt +

nX
k=1

σk (t , t)dWk (t)

with drift

D(t) = µ(t , t)− 1
2
σS(t)2 +

Z t

0

∂µ(s, t)
∂t

ds −
nX

k=1

Z t

0
σk (s, t)

∂σk (s, t)
∂t

ds

+
nX

k=1

Z t

0

∂σk (s, t)
∂t

dWk (s)
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Remarks

Interpretation of drift (in a risk-neutral setting)
logarithmic derivative of the forward can be interpreted as a
discount rate (i.e., the running interest rate)
D(t) can be interpreted as a convenience yield

Drift generally not Markovian
Particular case n = 1, µ(t ,T ) ≡ 0, σ1(t ,T ) = σe−λ(T−t)

D(t) = λ[log F (0, t)− log S(t)] +
σ2

4
(1− e−2λt)

dS(t)
S(t)

= [µ(t)− λ log S(t)]dt + σdW (t)

exponential OU
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Changing Variables

time-of-maturity T ⇒ time-to-maturity τ

changes dependence upon t

t ↪→ F (t ,T ) = F (t , t + τ) = F̃ (t , τ)

Fixed Domain [0,∞) for τ ↪→ F̃ (t , τ)
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Heating Oil Forward Surface
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Plain Forward HO PCA
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Changing Variables

time-of-maturity T ⇒ time-to-maturity τ

changes dependence upon t

t ↪→ F (t ,T ) = F (t , t + τ) = F̃ (t , τ)

For pricing purposes
For T fixed, {F (t ,T )}0≤t≤T is a martingale

For τ fixed, {F̃ (t , τ)}0≤t is NOT a martingale

F̃ (t , τ) = F (t , t+τ), µ̃(t , τ) = µ(t , t+τ), and σ̃k (t , τ) = σk (t , t+τ),

In general dynamics become

dF̃ (t , τ) = F̃ (t , τ)

[(
µ̃(t , τ) +

∂

∂τ
log F̃ (t , τ)

)
dt +

n∑
k=1

σ̃k (t , τ)dWk (t)

]
, τ ≥ 0.
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PCA with Seasonality

Fundamental Assumption

σk (t ,T ) = σ(t)σk (T − t) = σ(t)σk (τ)

for some function t ↪→ σ(t)

Notice
σS(t) = σ̃(0)σ(t)

provided we set:

σ̃(τ) =

√√√√ n∑
k=1

σk (τ)2.

Conclusion

t ↪→ σ(t) is (up to a constant) the instantaneous spot volatility
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Rationale for a New PCA

Fix times-to-maturity τ1, τ2, . . ., τN

Assume on each day t , quotes for the forward prices with
times-of-maturity T1 = t + τ1, T2 = t + τ2, . . ., TN = t + τN are
available

dF̃ (t , τi)

F̃ (t , τi)
=

„
µ̃(t , τi) +

∂

∂τ
log F̃ (t , τi)

«
dt+σ(t)

nX
k=1

σk (τi)dWk (t) i = 1, . . . ,N

Define F = [σk (τi)]i=1,...,N, k=1,...,n.

d log F̃ (t , τi) =

„
µ̃(t , τi) +

∂

∂τi
log F̃ (t , τi)−

1
2
σ(t)2σ̃(τi)

2
«

dt+σ(t)
nX

k=1

σk (τi)dWk (t),

Instantaneous variance/covariance matrix {M(t); t ≥ 0} defined by:

d [log F̃ ( · , τi), log F̃ ( · , τj)]t = Mi,j(t)dt

satisfies

M(t) = σ(t)2

 
nX

k=1

σk (τi)σk (τj)

!
or equivalently

M(t) = σ(t)2FF∗
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Strategy Summary

Estimate instantaneous spot volatility σ(t) (in a rolling window)
Estimate FF∗ from historical data as the empirical
auto-covariance of ln(F (t , ·))− ln(F (t − 1, ·)) after normalization
by σ(t)
Instantaneous auto-covariance structure of the entire forward
curve becomes time independent
Do SVD of auto-covariance matrix and get

τ ↪→ σk (τ)

Choose order n of the model from their relative sizes
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The Case of Natural Gas

Instantaneous standard deviation of the Henry Hub natural gas spot price
computed in a sliding window of length 30 days.
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Demand, Risk Neutral Firms & Price Formation

Finite set I of risk neutral agents/firms
Producing a finite set K of goods
Firm i ∈ I can use technology j ∈ J i,k to produce good k ∈ K
Discrete time {0,1, · · · ,T}
Demand for Goods

{Dk (t); t = 0,1, · · · ,T − 1, k ∈ K}.

Production Capacity Limits κi,j,k ≥ 0
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Goal of Equilibrium Analysis

Find a stochastic process
for the Prices of goods

S = {Sk
t }k∈K , t≥0

satisfying the usual conditions for the existence of a

competitive equilibrium
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Individual Firm Problem

If price of goods S given exogenously

If firm i ∈ I produces ξi,j,k
t of good k ∈ K with technology

j ∈ J i,k during time period [t , t + 1)

then P&L of firm i given by

LS,i(ξi) :=
∑
k∈K

∑
j∈J i,k

T−1∑
t=0

(Sk
t − C i,j,k

t )ξi,j,k
t

Problem for (risk neutral) firm i ∈ I

max
ξi , 0≤ξi,j,k≤κi,j,k

E{LS,i(ξi)}
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Solution

Classical competitive equilibrium problem!

Representative Agent / Informed Central Planner

chooses optimal production schedules and the equilibrium prices S∗ are set so that
supply meets demand.For each time t

(ξ∗i,j,kt )i,j,k = arg max
((ξ

i,j,k
t )i,j,k

X
i∈I

X
j∈J i,k

−C i,j,k
t ξ

i,j,k
t

X
i∈I

X
j∈J i,k

ξ
i,j,k
t = Dk

t k ∈ K

0 ≤ ξi,j,k
t ≤ κi,j,k for i ∈ I, j ∈ J i,k k ∈ K
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Solution

Classical competitive equilibrium problem!

Representative Agent / Informed Central Planner

chooses optimal production schedules and the equilibrium prices S∗ are set so that
supply meets demand.For each time t

(ξ∗i,j,kt )i,j,k = arg max
((ξ

i,j,k
t )i,j,k

X
i∈I

X
j∈J i,k

−C i,j,k
t ξ

i,j,k
t

X
i∈I

X
j∈J i,k

ξ
i,j,k
t = Dk

t k ∈ K

0 ≤ ξi,j,k
t ≤ κi,j,k for i ∈ I, j ∈ J i,k k ∈ K
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Business As Usual (cont.)

The corresponding prices of the goods are

S∗kt = max
i∈I, j∈J i,k

C i,j,k
t 1{ξ∗i,j,k

t >0},

Classical MERIT ORDER
At each time t and for each good k

Production technologies ranked by increasing production costs C i,j,k
t

Demand Dk
t met by producing from the cheapest technology first

Equilibrium spot price is the marginal cost of production of the most
expansive production technoligy used to meet demand

Business As Usual
(typical scenario in Deregulated electricity markets)
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Business As Usual (cont.)

The corresponding prices of the goods are

S∗kt = max
i∈I, j∈J i,k

C i,j,k
t 1{ξ∗i,j,k

t >0},

Classical MERIT ORDER
At each time t and for each good k

Production technologies ranked by increasing production costs C i,j,k
t

Demand Dk
t met by producing from the cheapest technology first

Equilibrium spot price is the marginal cost of production of the most
expansive production technoligy used to meet demand

Business As Usual
(typical scenario in Deregulated electricity markets)
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Reduced Form Models

Based on idea that

”Commodities Mean Revert” toward the cost of production

Case of power prices
Models for ”Spot” Pirce

Nonlinear effects (exponential OU2)
Jumps diffusion models

Structural Models
Inelastic Demand =⇒ Supply Stack & Merit Order

Barlow
st(x) supply at time t when power price is x
dt(x) demand at time t when power price is x

Power price at time t is number St such that

s(St) = dt(St)
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Example of a merit graph (Alberta Power Pool, courtesy M. Barlow)
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Barlow’s Proposal for a Dynamic Model
Same supply every day

st(x) = g(x)

Inelastic demand
dt(x) = Dt

So

St = g−1(Dt) = f (Dt)

Barlow chooses

St =

(
fα(Xt ) 1 + αXt > ε0

ε
1/α
0 1 + αXt ≤ ε0

for the non-linear function, including a ”cut-off”,

fα(x) =

(
(1 + αx)1/α, α 6= 0
ex α = 0

of an OU diffusion
dXt = −λ(Xt − x)dt + σdWt
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Monte Carlo Sample from Barlow’s Spot Model (courtesy M. Barlow)
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Cheap Alternative

0 50 100 150 200 250 300
50

100

150

200

250

300

350
Typical Exp OU2 Sample

Example of a Monte Carlo Sample from the Exponential of an OU2
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Negative Prices

Consider the case of PJM
(Pennsylvania - New Jersey - Maryland)

Over 3,000 nodes in the transmission network
Each day, and for each node

Real time prices
Day-ahead prices
Hour by hour load prediction for the following day

Historical prices
In 2003 over 100,000 instances of NEGATIVE PRICES

Geographic clusters
Time of the year (shoulder months)
Time of the day (night)

Possible Explanations
Load miss-predicted
High temperature volatility
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Other Statistical Issues: Modelling Demand

For many contracts, delivery needs to match demand

Demand for energy highly correlated with temperature
Heating Season (winter) HDD
Cooling Season (summer) CDD

Stylized Facts and First (naive) Models
Electricity demand = β * weather + α
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Load / Temperature

Daily Load versus Daily Temperature (PJM)
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Other Statistical Issues: Modelling Demand

For many contracts, delivery needs to match demand

Demand for energy highly correlated with temperature
Heating Season (winter) HDD
Cooling Season (summer) CDD

Stylized Facts and First (naive) Models
Electricity demand = β * weather + α

Not true all the time
Time dependent β by filtering !

From the stack: Correlation (Gas,Power) = f(weather)
No significance, too unstable
Could it be because of heavy tails?

Weather dynamics need to be included
Another Source of Incompleteness
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First Faculty Meeting of New PU President

Princeton University Electricity Budget

2.8 M $ over (PU is small)

The University has its own Power Plant
Gas Turbine for Electricity & Steam

Major Exposures
Hot Summer (air conditioning) Spikes in Demand, Gas & Electricity
Prices
Cold Winter (heating) Spikes in Gas Prices
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Risk Management Solution

Never Again such a Short Fall !!!
Student (Greg Larkin) Senior Thesis
Hedging Volume Risk

Protection against the Weather Exposure
Temperature Options on CDDs (Extreme Load)

Hedging Volume & Basis Risk
Protection against Gas & Electricity Price Spikes
Gas purchase with Swing Options
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Mitigating Volume Risk with Swing Options

Exposure to spikes in prices of
Natural Gas (used to fuel the plant)
Electricity Spot (in case of overload)

Proposed Solution
Forward Contracts
Swing Options

Pretty standard
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Mitigating Volume Risk

Use Swing Options
Multiple Rights to deviate (within bounds) from base load
contract level
Pricing & Hedging quite involved!

Tree/Forest Based Methods
Direct Backward Dynamic Programing Induction
(à la Jaillet-Ronn-Tompaidis)

New Monte Carlo Methods
Nonparametric Regression (à la Longstaff-Schwarz) Backward
Dynamic Programing Induction
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Mathematics of Swing Contracts: a Crash Course

Review: Classical Optimal Stopping Problem: American Option
X0,X1,X2,· · · ,Xn, · · · rewards
Right to ONE Exercise
Mathematical Problem

sup
0≤τ≤T

E{Xτ}

Mathematical Solution
Snell’s Envelop
Backward Dynamic Programming Induction in Markovian Case

Standard, Well Understood
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New Mathematical Challenges

In its simplest form the problem of Swing/Recall option pricing is an

Optimal Multiple Stopping Problem

X0,X1,X2,· · · ,Xn,· · · rewards
Right to N Exercises
Mathematical Problem

sup
0≤τ1<τ2<···<τN≤T

E{Xτ1 + Xτ2 + · · ·+ XτN}

Refraction period θ

τ1 + θ < τ2 < τ2 + θ < τ3 < · · · < τN−1 + θ < τN

Part of recall contracts & crucial for continuous time models
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Instruments with Multiple American Exercises

Ubiquitous in Energy Sector
Swing / Recall contracts
End user contracts (EDF)

Present in other contexts
Fixed income markets (e.g. chooser swaps)
Executive option programs
Reload→ Multiple exercise, Vesting→ Refraction, · · ·
Fleet Purchase (airplanes, cars, · · · )

Challenges
Valuation
Optimal exercise policies
Hedging
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Some Mathematical Problems

Recursive re-formulation into a hierarchy of classical optimal stopping
problems

Development of a theory of Generalized Snell’s Envelop in continuous
time setting

Find a form of Backward Dynamic Programing Induction in Markovian
Case

Design & implement efficient numerical algorithms for finite horizon case

Results
Perpetual case: abstract nonsense
R.C.& S.Dayanik (diffusion), R.C.& N.Touzi (GBM)

Perpetual case: Characterization of the optimal policies
R.C.& S.Dayanik (diffusion), R.C.& N.Touzi (GBM)

Finite horizon case
Jaillet - Ronn - Tomapidis (Tree) R.C. N.Touzi (GBM) B.Hambly (chooser
swap)
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R.C.-Touzi, (Bouchard)

Exercise regions for N = 5 rights and finite maturity computed by
Malliavin-Monte-Carlo.
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Mitigation of Volume Risk with Temperature Options

Rigorous Analysis of the Dependence between the Budget
Shortfall and Temperature in Princeton
Use of Historical Data (sparse) & Define of a Temperature
Protection

Period of the Coverage
Form of the Coverage

Search for the Nearest Weather Stations with HDD/CDD Trades

La Guardia Airport (LGA)
Philadelphia (PHL)

Define a Portfolio of LGA & PHL forward / option Contracts
Construct a LGA / PHL basket
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Pricing: How Much is it Worth to PU?

Actuarial / Historical Approach
Burn Analysis
Temperature Modeling & Monte Carlo VaR Computations
Not Enough Reliable Load Data

Expected (Exponential) Utility Maximization (A. Danilova)
Use Gas & Power Contracts
Hedging in Incomplete Models
Indifference Pricing
Very Difficult Numerics (whether PDE’s or Monte Carlo)
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The Weather Markets

Weather is an essential economic factor

’Weather is not just an environmental issue; it is a major
economic factor. At least 1 trillion USD of our economy is
weather-sensitive’ (William Daley, 1998, US Commerce
Secretary)
20% of the world economy is estimated to be affected by
weather
Energy and other industrial sectors, Entertainment and Tourism
Industry, ...
WRMA

Weather Derivatives as a Risk Transfer Mechanism (El Karoui -
Barrieu)
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Size of the Weather Market

Total Notional Value of weather contracts: (in million USD) Price Waterhouse
Coopers market survey).
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Weather Derivatives

OTC Customer tailored transactions
Temperature, Precipitation, Wind, Snow Fall, .....

CME (≈ 50%) (Tempreature - Launched in 1999)
18 American cities
9 European cities (London, Paris, Amsterdam, Berlin, Essen,
Stockholm, Rome, Madrid and Barcelona)
2 Japanese cities (Tokyo and Osaka)
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An Example of Precipitation Contract

Physical Underlying Daily Index:
Precipitation in Paris
A day is a rainy day if precipitation exceeds 2mm

Season
2000: April thru August + September weekends
2001: April thru August + September weekends
2002: April thru August + September weekends

Aggregate Index
Total Number of Rainy Days in the Season

Pay- Off
Strike, Cap, Rate
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RainFall Option Continued

Who Wanted this Deal?
A Natural Trying to Hedge RainFall Exposure (Asterix Amusement
Park)

Who was willing to take the other side?
Speculators
Insurance Companies
Re-insurance Companies
Statistical Arbitrageurs
Investment Banks
Hedge Funds
Endowment Funds
.................
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Other Example: Precipitation / Snow Pack

City of Sacramento
HydroPower Electricity

Who was on the other side?
Large Energy Companies (Aquila, Enron)

Who is covering for them?
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Jargon of Temperature Options

For a given location, on any given day t

CDDt = max{Tt − 65, 0} HDDt = max{65− Tt , 0}

Season

One Month (CME Contracts)

May 1st September 30 (CDD season)

November 1st March 31st (HDD season)

Index

Aggregate number of DD in the season

I =
X

t∈Season
CDDt or I =

X
t∈Season

HDDt

Pay-Off

Strike K , Cap C, Rate α
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Call with Cap

DD

C

K

ξ=f(DD)

Pay-off = min{max{α ∗ (I − K ), 0},C}
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Put with a Floor

DD

F

K

ξ=f(DD)

Pay-off = min{max{α ∗ (K − I), 0},C}

Carmona Energy Markets, Munich



Collar

DD

C

K

ξ=f(DD)

-F

p K c
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Folklore of Data Reliability

Famous Example of Weather Station Change in Charlotte (NC).

Carmona Energy Markets, Munich



Stylized Spreadsheet of a Basket Option

Structure: Heating Degree Day (HDD) Floor (Put)
Index: Cumulative HDDs
Term: November 1, 2007 February 28, 2008
Stations:

New York, LaGuardia 57.20%
Boston, MA 24.5%
Philadelphia, PA 12.00%
Baltimore, MD 6.30%

Floor Strike: 3130 HDDs
Payout: USD 35,000/HDD
Limit: USD 12,500,000
Premium: USD 2,925,000
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Weather and Commodity

Stand-alone
temperature (≈ 80%)
precipitation (≈ 10%)
wind (≈ 5%)
snow fall (≈ 5%)

In-Combination
natural gas
power
heating oil
propane

Agricultural risk (yield, revenue, input hedges and trading)
Power outage - contingent power price options
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Weather (Temperatures) Derivatives

Still Extremely Illiquid Markets (except for front month)
Misconception: Weather Derivative = Insurance Contract

No secondary market (Except on Enron-on-Line!!!)

Mark-to-Market (or Model)
Essentially never changes
At least, Not Until Meteorology kicks in (10-15 days before maturity)
Then Mark-to-Market (or Model) changes every day
Contracts change hands
That’s when major losses occur and money is made

This hot period is not considered in academic studies
Need for updates: new information coming in (temperatures,
forecasts, ....)
Filtering is (again) the solution
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Daily Average Temperature at La Guardia.
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Prediction on 6/1/2001 of daily temperature over the next four months.
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The Future of the Weather Markets

Social function of the weather market
Existence of a Market of Professionals (for weather risk transfer)

Under attack from
(Re-)Insurance industry (but high freuency / low cost)
Utilities (trying to pass weather risk to end-customer)

EDF program in France
Weather Normalization Agreements in US

Cross Commodity Products
Gas & Power contracts with weather triggers/contingencies
New (major) players: Hedge Funds provide liquidity

World Bank
Use weather derivatives instead of insurance contracts
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The Weather Market Today

Insurance Companies: Swiss Re, XL, Munich Re, Ren Re
Financial Houses: Goldman Sachs, Deutsche Bank, Merrill
Lynch, SocGen, ABN AMRO
Hedge funds: D. E. Shaw, Tudor, Susquehanna, Centaurus,
Wolverine

Where is Trading Taking Place?
Exchange: CME (Chicago Mercantile Exchange) 29 cites
globally traded, monthly / seasonal contracts
OTC
Strong end-user demand within the energy sector
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Incomplete Market Model & Indifference Pricing

Temperature Options: Actuarial/Statistical Approach
Temperature Options: Diffusion Models (Danilova)
Precipitation Options: Markov Models (Diko)

Problem: Pricing in an Incomplete Market
Solution: Indifference Pricing à la Davis

dθt = p(t , θ)dt + q(t , θ)dW (θ)
t + r(t , θ)dQ(θ)

t

dSt = St [µ(t , θ)dt + σ(t , θ)dW (S)
t ]

θt non-tradable
St tradable

Carmona Energy Markets, Munich



Mathematical Models for Temperature Options
Example: Exponential Utility Function

p̃t =
E{φ̃(YT )e−

R T
t V (s,Ys)ds}

E{e−
R T

t V (s,Ys)ds}

where

φ̃ = e−γ(1−ρ2)f

where f (θT ) is the pay-off function of the European call on the
temperature

p̃t = e−γ(1−ρ2)pt

where pt is price of the option at time t

Yt is the diffusion:

dYt = [g(t ,Yt)−
µ(t ,Yt)− r
σ(t ,Yt)

h(t ,Yt)]dt + h(t ,Yt)dW̃t

starting from Y0 = y

V is the time dependent potential function:

V (t , y) = −1− ρ2

2
(µ(t , y)− r)2

σ(t , y)2
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