OMI Commodities:
 II. Spread Options \& Asset Valuation

René Carmona

Bendheim Center for Finance
Department of Operations Research \& Financial Engineering
Princeton University

OMI June 13, 2011

The Importance of Spread Options

European Call written on

- the Difference between two Underlying Interests
- a Linear Combination of several Underlying Interests

Calendar Spread Options

- Single Commodity at two different times

$$
\mathbb{E}\left\{\left(I\left(T_{2}\right)-I\left(T_{1}\right)-K\right)^{+}\right\}
$$

- Mathematically easier (only one underlier)
- Amaranth largest (and fatal) positions
- Shoulder Natural Gas Spread (play on inventories)
- Long March Gas / Short April Gas
- Depletion stops in March / injection starts in April
- Can be fatal: widow maker spread

Seasonality of Gas Inventory

U.S. Natural Gas Inventories 2005-6

What Went Wrong with Amaranth?

Shoulder Month Spread

$$
\text { - } 2007-2008-2009-2010-2011
$$

Dec-04 \quad Apr-05 \quad Jul-05 \quad Oct-05 \quad Feb-06 \quad May-06 \quad Aug-06 \quad Nov-0t

More Spread Options

- Cross Commodity
- Crush Spread
- between Soybean and soybean products (meal \& oil)
- Crack Spread
- gasoline crack spread between Crude and Unleaded
- heating oil crack spread between Crude and HO
- Spark Spread
- between price of 1 MWhe of Electric Power, and Natural Gas needed to produce it

$$
S_{t}=F_{E}(t)-H_{e f f} F_{G}(t)
$$

$H_{\text {eff }}$ Heat Rate

(Classical) Real Option Power Plant Valuation

Real Option Approach

- Lifetime of the plant [T_{1}, T_{2}]
- C capacity of the plant (in MWh)
- H heat rate of the plant (in MMBtu/MWh)
- P_{t} price of power on day t
- G_{t} price of fuel (gas) on day t
- K fixed Operating Costs
- Value of the Plant (ORACLE)

$$
C \sum_{t=T_{1}}^{T_{2}} e^{-r t} \mathbb{E}\left\{\left(P_{t}-H G_{t}-K\right)^{+}\right\}
$$

String of Spark Spread Options

Beyond Plant Valuation: Credit Enhancement

(Flash Back)
The Calpine - Morgan Stanley Deal

- Calpine needs to refinance USD 8 MM by November 2004
- Jan. 2004: Deutsche Bank: no traction on the offering
- Feb. 2004: The Street thinks Calpine is "heading South"
- March 2004: Morgan Stanley offers a (complex) structured deal
- A strip of spark spread options on 14 Calpine plants
- A similar bond offering
- How were the options priced?
- By Morgan Stanley?
- By Calpine ?

Calpine Debt

Calpine Debt with Deutsche Bank Financing

Debt Distribution for Calpine
with Deutsche Bank Refinancing

Calpine Debt with Morgan Stanley Financing

A Possible Model

Assume that Calpine owns only one plant
MS guarantees its spark spread will be at least κ for M years
Approach à la Leland's Theory of the Value of the Firm

$$
V=v-p_{0}+\sup _{\tau \leq T} \mathbb{E}\left\{\int_{0}^{\tau} e^{-r t} \bar{\delta}_{t} d t\right\}
$$

where

$$
\bar{\delta}_{t}= \begin{cases}\left(P_{t}-H * G_{t}-K\right) \vee \kappa-c_{t} & \text { if } 0 \leq t \leq M \\ \left(P_{t}-H * G_{t}-K\right)^{+}-c_{t} & \text { if } M \leq t \leq T\end{cases}
$$

and

- v current value of firm's assets
- p_{0} option premium
- M length of the option life
- κ strike of the option
- c_{t} cost of servicing the existing debt

Default Time

Expected Bankruptcy Time as function of Coupon

Plant Value

Plant Value as function of Coupon

Debt Value

Debt Value as function of Coupon

Spread Valuation Mathematical Challenge

$$
p=e^{-r T} \mathbb{E}\left\{\left(I_{2}(T)-I_{1}(T)-K\right)^{+}\right\}
$$

- Underlying indexes are spot prices
- Geometric Brownian Motions ($K=0$ Margrabe)
- Geometric Ornstein-Uhlembeck (OK for Gas)
- Geometric Ornstein-Uhlembeck with jumps (OK for Power)
- Underlying indexes are forward/futures prices
- HJM-type models with deterministic coefficients

Problem

finding closed form formula and/or fast/sharp approximation for

$$
\mathbb{E}\left\{\left(\alpha e^{\gamma X_{1}}-\beta e^{\delta X_{2}}-\kappa\right)^{+}\right\}
$$

for a Gaussian vector $\left(X_{1}, X_{2}\right)$ of $N(0,1)$ random variables with correlation ρ.
Sensitivities?

Easy Case : Exchange Option \& Margrabe Formula

$$
p=e^{-r T} \mathbb{E}\left\{\left(S_{2}(T)-S_{1}(T)\right)^{+}\right\}
$$

- $S_{1}(T)$ and $S_{2}(T)$ log-normal
- p given by a formula à la Black-Scholes

$$
p=x_{2} \Phi\left(d_{1}\right)-x_{1} \Phi\left(d_{0}\right)
$$

with

$$
d_{1}=\frac{\ln \left(x_{2} / x_{1}\right)}{\sigma \sqrt{T}}+\frac{1}{2} \sigma \sqrt{T} \quad d_{0}=\frac{\ln \left(x_{2} / x_{1}\right)}{\sigma \sqrt{T}}-\frac{1}{2} \sigma \sqrt{T}
$$

and:

$$
x_{1}=S_{1}(0), \quad x_{2}=S_{2}(0), \quad \sigma^{2}=\sigma_{1}^{2}-2 \rho \sigma_{1} \sigma_{2}+\sigma_{2}^{2}
$$

- Deltas are also given by "closed form formulae".

Proof of Margrabe Formula

$$
p=e^{-r T} \mathbb{E}_{\mathbb{Q}}\left\{\left(S_{2}(T)-S_{1}(T)\right)^{+}\right\}=e^{-r T} \mathbb{E}_{\mathbb{Q}}\left\{\left(\frac{S_{2}(T)}{S_{1}(T)}-1\right)^{+} S_{1}(T)\right\}
$$

- \mathbb{Q} risk-neutral probability measure
- Define (Girsanov) \mathbb{P} by:

$$
\left.\frac{d \mathbb{P}}{d \mathbb{Q}}\right|_{\mathcal{F}_{T}}=S_{1}(T)=\exp \left(-\frac{1}{2} \sigma_{1}^{2} T+\sigma_{1} \hat{W}_{1}(T)\right)
$$

- Under \mathbb{P},
- $\hat{W}_{1}(t)-\sigma_{1} t$ and $\hat{W}_{2}(t)$
- S_{2} / S_{1} is geometric Brownian motion under \mathbb{P} with volatility

$$
\begin{array}{r}
\sigma^{2}=\sigma_{1}^{2}-2 \rho \sigma_{1} \sigma_{2}+\sigma_{2}^{2} \\
p=S_{1}(0) \mathbb{E}_{\mathbb{P}}\left\{\left(\frac{S_{2}(T)}{S_{1}(T)}-1\right)^{+}\right\}
\end{array}
$$

Black-Scholes formula with $K=1, \sigma$ as above.

Pricing Calendar Spreads in Forward Models

Involves prices of two forward contracts with different maturities, say T_{1} and T_{2}

$$
S_{1}(t)=F\left(t, T_{1}\right) \quad \text { and } \quad S_{2}(t)=F\left(t, T_{2}\right)
$$

Remember forward prices are log-normal
Price at time t of a calendar spread option with maturity T and strike K

$$
\begin{gathered}
\alpha=e^{-r[T-t]} F\left(t, T_{2}\right), \quad \beta=\sqrt{\sum_{k=1}^{n} \int_{t}^{T} \sigma_{k}\left(s, T_{2}\right)^{2} d s}, \\
\gamma=e^{-r[T-t]} F\left(t, T_{1}\right), \quad \text { and } \quad \delta=\sqrt{\sum_{k=1}^{n} \int_{t}^{T} \sigma_{k}\left(s, T_{1}\right)^{2} d s}
\end{gathered}
$$

and $\kappa=e^{-r(T-t)}$ ($\mu \equiv 0$ per risk-neutral dynamics)

$$
\rho=\frac{1}{\beta \delta} \sum_{k=1}^{n} \int_{t}^{T} \sigma_{k}\left(s, T_{1}\right) \sigma_{k}\left(s, T_{2}\right) d s
$$

Pricing Spark Spreads in Forward Models

Cross-commodity

- subscript e for forward prices, times-to-maturity, volatility functions, ... relative to electric power
- subscript \mathbf{g} for quantities pertaining to natural gas.

Pay-off

$$
\left(F_{e}\left(T, T_{e}\right)-H * F_{g}\left(T, T_{g}\right)-K\right)^{+}
$$

- $T<\min \left\{T_{e}, T_{g}\right\}$
- Heat rate H
- Strike K given by O\& M costs

Natural

- Buyer owner of a power plant that transforms gas into electricity,
- Protection against low electricity prices and/or high gas prices.

Joint Dynamics of the Commodities

$$
\begin{aligned}
& d F_{e}\left(t, T_{e}\right)=F_{e}\left(t, T_{e}\right)\left[\mu_{e}\left(t, T_{e}\right) d t+\sum_{k=1}^{n} \sigma_{e, k}\left(t, T_{e}\right) d W_{k}(t)\right] \\
& d F_{g}\left(t, T_{g}\right)=F_{g}\left(t, T_{g}\right)\left[\mu_{g}\left(t, T_{g}\right) d t+\sum_{k=1}^{n} \sigma_{g, k}\left(t, T_{g}\right) d W_{k}(t)\right]
\end{aligned}
$$

- Each commodity has its own volatility factors
- between The two dynamics share the same driving Brownian motion processes W_{k}, hence correlation.

Fitting Join Cross-Commodity Models

- on any given day t we have
- electricity forward contract prices for $N^{(e)}$ times-to-maturity

$$
\tau_{1}^{(e)}<\tau_{2}^{(e)}, \ldots<\tau_{N^{(e)}}^{(e)}
$$

- natural gas forward contract prices for $N^{(g)}$ times-to-maturity

$$
\tau_{1}^{(g)}<\tau_{2}^{(g)}, \ldots<\tau_{N^{(g)}}^{(g)}
$$

Typically $N^{(e)}=12$ and $N^{(g)}=36$ (possibly more).

- Estimate instantaneous vols $\sigma^{(e)}(t) \& \sigma^{(g)}(t) 30$ days rolling window
- For each day t, the $N=N^{(e)}+N^{(g)}$ dimensional random vector $\mathbf{X}(t)$

$$
\mathbf{X}(t)=\left[\begin{array}{l}
\left(\frac{\log \tilde{F}_{e}\left(t+1, \tau_{j}^{(e)}\right)-\log \tilde{F}_{e}\left(t, \tau_{j}^{(e)}\right)}{\sigma^{(e)}(t)}\right)_{j=1, \ldots, N^{(e)}} \\
\left(\frac{\log \tilde{F}_{g}\left(t+1, \tau_{j}^{(g)}\right)-\log \tilde{F}_{g}\left(t, \tau_{j}^{(g)}\right)}{\sigma^{(g)}(t)}\right)_{j=1, \ldots, N^{(g)}}
\end{array}\right]
$$

- Run PCA on historical samples of $\mathbf{X}(t)$
- Choose small number n of factors
- for $k=1, \ldots, n$,
- first $N^{(e)}$ coordinates give the electricity volatilities $\tau \hookrightarrow \sigma_{k}^{(e)}(\tau)$ for $k=1, \ldots, n$
- remaining $N^{(g)}$ coordinates give the gas volatilities $\tau \hookrightarrow \sigma_{k}^{(g)}(\tau)$.

Skip gory details

Pricing a Spark Spread Option

Price at time t

$$
p_{t}=e^{-r(T-t)} \mathbb{E}_{t}\left\{\left(F_{e}\left(T, T_{e}\right)-H * F_{g}\left(T, T_{g}\right)-K\right)^{+}\right\}
$$

$F_{e}\left(T, T_{e}\right)$ and $F_{g}\left(T, T_{g}\right)$ are log-normal under the pricing measure calibrated by PCA

$$
F_{e}\left(T, T_{e}\right)=F_{e}\left(t, T_{e}\right) \exp \left[-\frac{1}{2} \sum_{k=1}^{n} \int_{t}^{T} \sigma_{e, k}\left(s, T_{e}\right)^{2} d s+\sum_{k=1}^{n} \int_{t}^{T} \sigma_{e, k}\left(s, T_{e}\right) d W_{k}(s)\right]
$$

and:

$$
F_{g}\left(T, T_{g}\right)=F_{g}\left(t, T_{g}\right) \exp \left[-\frac{1}{2} \sum_{k=1}^{n} \int_{t}^{T} \sigma_{g, k}\left(s, T_{g}\right)^{2} d s+\sum_{k=1}^{n} \int_{t}^{T} \sigma_{g, k}\left(s, T_{g}\right) d W_{k}(s)\right]
$$

Set

$$
S_{1}(t)=H * F_{g}\left(t, T_{g}\right) \quad \text { and } \quad S_{2}(t)=F_{e}\left(t, T_{e}\right)
$$

Pricing a Spark Spread Option

Use the constants

$$
\alpha=e^{-r(T-t)} F_{e}\left(t, T_{e}\right), \quad \text { and } \quad \beta=\sqrt{\sum_{k=1}^{n} \int_{t}^{T} \sigma_{e, k}\left(s, T_{e}\right)^{2}} d s
$$

for the first log-normal distribution,

$$
\gamma=H e^{-r(T-t)} F_{g}\left(t, T_{g}\right), \quad \text { and } \quad \delta=\sqrt{\sum_{k=1}^{n} \int_{t}^{T} \sigma_{g, k}\left(s, T_{g}\right)^{2} d s}
$$

for the second one, $\kappa=e^{-r(T-t)} K$ and

$$
\rho=\frac{1}{\beta \delta} \int_{t}^{T} \sum_{k=1}^{n} \sigma_{e, k}\left(s, T_{e}\right) \sigma_{g, k}\left(s, T_{g}\right) d s
$$

for the correlation coefficient.

Approximations

- Fourier Approximations (Madan, Carr, Dempster, Hurd et. al)
- Bachelier approximation (Alexander, Borovkova)
- Zero-strike approximation
- Kirk approximation
- CD Upper and Lower Bounds (R.C. - V. Durrleman)
- Bjerksund - Stensland approximation

Can we also approximate the Greeks ?

Bachelier Approximation

- Generate $x_{1}^{(1)}, x_{2}^{(1)}, \cdots, x_{N}^{(1)}$ from $N\left(\mu_{1}, \sigma_{1}^{2}\right)$
- Generate $x_{1}^{(2)}, x_{2}^{(2)}, \cdots, x_{N}^{(2)}$ from $N\left(\mu_{1}, \sigma_{1}^{2}\right)$
- Correlation ρ
- Look at the distribution of

$$
e^{x_{1}^{(2)}}-e^{x_{1}^{(1)}}, e^{x_{2}^{(2)}}-e^{x_{2}^{(1)}}, \cdots, e^{x_{N}^{(2)}}-e^{x_{N}^{(1)}}
$$

Log-Normal Samples

Histogram of the Difference between two Log-normals

Bachelier Approximation

- Assume $\left(S_{2}(T)-S_{1}(T)\right.$ is Gaussian
- Match the first two moments

$$
\hat{p}^{B S}=\left(m(T)-K e^{-r T}\right) \Phi\left(\frac{m(T)-K e^{-r T}}{s(T)}\right)+s(T) \varphi\left(\frac{m(T)-K e^{-r T}}{s(T)}\right)
$$

with:

$$
\begin{aligned}
m(T) & =\left(x_{2}-x_{1}\right) e^{(\mu-r) T} \\
s^{2}(T) & =e^{2(\mu-r) T}\left[x_{1}^{2}\left(e^{\sigma_{1}^{2} T}-1\right)-2 x_{1} x_{2}\left(e^{\rho \sigma_{1} \sigma_{2} T}-1\right)+x_{2}^{2}\left(e^{\sigma_{2}^{2} T}-1\right)\right]
\end{aligned}
$$

Easy to compute the Greeks !

Zero-Strike Approximation

$$
p=e^{-r T} \mathbb{E}\left\{\left(S_{2}(T)-S_{1}(T)-K\right)^{+}\right\}
$$

- Assume $S_{2}(T)=F_{E}(T)$ is log-normal
- Replace $S_{1}(T)=H * F_{G}(T)$ by $\tilde{S}_{1}(T)=S_{1}(T)+K$
- Assume $S_{2}(T)$ and $\tilde{S}_{1}(T)$ are jointly log-normal
- Use Margrabe formula for $p=e^{-r T} \mathbb{E}\left\{\left(S_{2}(T)-\tilde{S}_{1}(T)\right)^{+}\right\}$

Use the Greeks from Margrabe formula !

Kirk Approximation

$$
\hat{p}^{K}=e^{-r T}\left[x_{2} \Phi\left(d_{2}\right)-\left(x_{1}+K\right) \Phi\left(d_{1}\right)\right]
$$

where

$$
\begin{aligned}
& d_{1}=d_{2}-\sigma \sqrt{T} \\
& d_{2}=\frac{\left.\log \left(x_{2} /\left(x_{1}+K\right)\right)+\sigma^{2} T / 2\right)}{\sigma \sqrt{T}}
\end{aligned}
$$

and

$$
\sigma=\sqrt{\sigma_{2}^{2}-2 \frac{x_{1}}{x_{1}+K} \rho \sigma_{1} \sigma_{2}+\left(\frac{x_{1}}{x_{1}+K}\right)^{2} \sigma_{1}^{2}}
$$

Exactly what we called 'Zero Strike Approximation"!!!!

C-Durrleman Upper and Lower Bounds

$$
\Pi(\alpha, \beta, \gamma, \delta, \kappa, \rho)=\mathbb{E}\left\{\left(\alpha e^{\beta X_{1}-\beta^{2} / 2}-\gamma e^{\delta X_{2}-\delta^{2} / 2}-\kappa\right)^{+}\right\}
$$

where

- $\alpha, \beta, \gamma, \delta$ and κ real constants
- X_{1} and X_{2} are jointly Gaussian $N(0,1)$
- correlation ρ

$$
\alpha=x_{2} e^{-q_{2} T} \quad \beta=\sigma_{2} \sqrt{T} \quad \gamma=x_{1} e^{-q_{1} T} \quad \delta=\sigma_{1} \sqrt{T} \quad \text { and } \quad \kappa=K e^{-r T} .
$$

A Precise Lower Bound

$$
\begin{aligned}
\hat{p}^{C D}= & x_{2} e^{-q_{2} T} \Phi\left(d^{*}+\sigma_{2} \cos \left(\theta^{*}+\phi\right) \sqrt{T}\right) \\
& -x_{1} e^{-q_{1} T} \Phi\left(d^{*}+\sigma_{1} \sin \theta^{*} \sqrt{T}\right)-K e^{-r T} \Phi\left(d^{*}\right)
\end{aligned}
$$

where

- θ^{*} is the solution of

$$
\begin{aligned}
& \frac{1}{\delta \cos \theta} \ln \left(-\frac{\beta \kappa \sin (\theta+\phi)}{\gamma[\beta \sin (\theta+\phi)-\delta \sin \theta]}\right)-\frac{\delta \cos \theta}{2} \\
& =\frac{1}{\beta \cos (\theta+\phi)} \ln \left(-\frac{\delta \kappa \sin \theta}{\alpha[\beta \sin (\theta+\phi)-\delta \sin \theta]}\right)-\frac{\beta \cos (\theta+\phi)}{2}
\end{aligned}
$$

- the angle ϕ is defined by setting $\rho=\cos \phi$
- d^{*} is defined by

$$
d^{*}=\frac{1}{\sigma \cos \left(\theta^{*}-\psi\right) \sqrt{T}} \ln \left(\frac{x_{2} e^{-q_{2} T} \sigma_{2} \sin \left(\theta^{*}+\phi\right)}{x_{1} e^{-q_{1} T} \sigma_{1} \sin \theta^{*}}\right)-\frac{1}{2}\left(\sigma_{2} \cos \left(\theta^{*}+\phi\right)+\sigma_{1} \cos \theta\right.
$$

- the angles ϕ and ψ are chosen in $[0, \pi]$ such that:

$$
\cos \phi=\rho \quad \text { and } \quad \cos \psi=\frac{\sigma_{1}-\rho \sigma_{2}}{\sigma}
$$

Remarks on this Lower Bound

- \hat{p} is equal to the true price p when
- $K=0$
- $x_{1}=0$
- $x_{2}=0$
- $\rho=-1$
- $\rho=+1$
- Margrabe formula when $K=0$ because

$$
\theta^{*}=\pi+\psi=\pi+\arccos \left(\frac{\sigma_{1}-\rho \sigma_{2}}{\sigma}\right)
$$

with:

$$
\sigma=\sqrt{\sigma_{1}^{2}-2 \rho \sigma_{1} \sigma_{2}+\sigma_{2}^{2}}
$$

Delta Hedging

The portfolio comprising at each time $t \leq T$

$$
\Delta_{1}=-e^{-q_{1} T} \Phi\left(d^{*}+\sigma_{1} \cos \theta^{*} \sqrt{T}\right)
$$

and

$$
\Delta_{2}=e^{-q_{2} T} \Phi\left(d^{*}+\sigma_{2} \cos \left(\theta^{*}+\phi\right) \sqrt{T}\right)
$$

units of each of the underlying assets is a sub-hedge
its value at maturity is a.s. a lower bound for the pay-off

The Other Greeks

$\diamond \vartheta_{1}$ and ϑ_{2} sensitivities w.r.t. volatilities σ_{1} and σ_{2}
$\diamond \chi$ sensitivity w.r.t. correlation ρ
$\diamond \kappa$ sensitivity w.r.t. strike price K
$\diamond \Theta$ sensitivity w.r.t. maturity time T

$$
\begin{aligned}
\vartheta_{1} & =x_{1} e^{-q_{1} T} \varphi\left(d^{*}+\sigma_{1} \cos \theta^{*} \sqrt{T}\right) \cos \theta^{*} \sqrt{T} \\
\vartheta_{2} & =-x_{2} e^{-q_{2} T} \varphi\left(d^{*}+\sigma_{2} \cos \left(\theta^{*}+\phi\right) \sqrt{T}\right) \cos \left(\theta^{*}+\phi\right) \sqrt{T} \\
\chi & =-x_{1} e^{-q_{1} T} \varphi\left(d^{*}+\sigma_{1} \cos \theta^{*} \sqrt{T}\right) \sigma_{1} \frac{\sin \theta^{*}}{\sin \phi} \sqrt{T} \\
\kappa & =-\Phi\left(d^{*}\right) e^{-r T} \\
\Theta & =\frac{\sigma_{1} \vartheta_{1}+\sigma_{2} \vartheta_{2}}{2 T}-q_{1} x_{1} \Delta_{1}-q_{2} x_{2} \Delta_{2}-r K \kappa
\end{aligned}
$$

Comparisons

Behavior of the tracking error as the number of re-hedging times increases.
The model data are $x_{1}=100, x_{2}=110, \sigma_{1}=10 \%, \sigma_{2}=15 \%$ and $T=1$.
$\rho=0.9, K=30$ (left) and $\rho=0.6, K=20$ (right).

Generalization: European Basket Option

Black-Scholes Set-Up

- Multidimensional model
- n stocks S_{1}, \ldots, S_{n}
- Risk neutral dynamics

$$
\frac{d S_{i}(t)}{S_{i}(t)}=r d t+\sum_{j=1}^{n} \sigma_{i j} d B_{j}(t)
$$

- initial values $S_{1}(0), \ldots, S_{n}(0)$
- B_{1}, \ldots, B_{n} independent standard Brownian motions
- Correlation through matrix ($\sigma_{i j}$)

European Basket Option (cont.)

- Vector of weights $\left(w_{i}\right)_{i=1, \ldots, n}$ (most often $\left.w_{i} \geq 0\right)$
- Basket option struck at K at maturity T given by payoff

$$
\left(\sum_{i=1}^{n} w_{i} S_{i}(T)-K\right)^{+}
$$

(Asian Options)
Risk neutral valuation: price at time 0

$$
p=e^{-r T} \mathbb{E}\left\{\left(\sum_{i=1}^{n} w_{i} S_{i}(T)-K\right)^{+}\right\}
$$

Down-and-Out Call on a Basket of n Stocks

Option Payoff

$$
\left(\sum_{i=1}^{n} w_{i} S_{i}(T)-K\right)^{+} \mathbf{1}_{\left\{\inf _{t \leq T} S_{1}(t) \geq H\right\}} .
$$

Option price is

$$
\mathbb{E}\left\{\left(\sum_{i=0}^{n} \varepsilon_{i} x_{i} e^{G_{i}(1)-\frac{1}{2} \sigma_{i}^{2}} \mathbf{1}_{\left\{\inf _{\theta \leq 1} x_{1} e^{G_{1}(\theta)-\frac{1}{2} \sigma_{1}^{2} \theta} \geq H\right\}}\right)^{+}\right\}
$$

where

- $\varepsilon_{1}=+1, \sigma_{1}>0$ and $H<x_{1}$
- $\{G(\theta) ; \theta \leq 1\}$ is a $(n+1)$-dimensional Brownian motion starting from 0 with covariance Σ.

Price and Hedges

Use lower bound.

$$
p_{*}=\sup _{d, u} \mathbb{E}\left\{\sum_{i=0}^{n} \varepsilon_{i} x_{i} e^{G_{i}(1)-\frac{1}{2} \sigma_{i}^{2}} \mathbf{1}_{\left\{\inf _{\theta \leq 1} x_{1} e^{G_{1}(\theta)-\frac{1}{2} \sigma_{1}^{2} \theta} \geq H ; u \cdot G(1) \leq d\right\}}\right\} .
$$

Girsanov implies

$$
\begin{aligned}
p_{*}=\sup _{d, u} & \sum_{i=0}^{n} \varepsilon_{i} x_{i} \mathbb{P}\left\{\inf _{\theta \leq 1} G_{1}(\theta)\right. \\
& \left.+\left(\Sigma_{i 1}-\sigma_{1}^{2} / 2\right) \theta \geq \ln \left(\frac{H}{x_{1}}\right) ; u \cdot G(1) \leq d-(\Sigma u)_{i}\right\} .
\end{aligned}
$$

Numerical Results

σ	ρ	H / x_{1}	$n=10$	$n=20$	$n=30$
0.4	0.5	0.7	0.1006	0.0938	0.0939
0.4	0.5	0.8	0.0811	0.0785	0.0777
0.4	0.5	0.9	0.0473	0.0455	0.0449
0.4	0.7	0.7	0.1191	0.1168	0.1165
0.4	0.7	0.8	0.1000	0.1006	0.0995
0.4	0.7	0.9	0.0608	0.0597	0.0594
0.4	0.9	0.7	0.1292	0.1291	0.1290
0.4	0.9	0.8	0.1179	0.1175	0.1173
0.4	0.9	0.9	0.0751	0.0747	0.0745
0.5	0.5	0.7	0.1154	0.1122	0.1110
0.5	0.5	0.8	0.0875	0.0844	0.0816
0.5	0.5	0.9	0.0518	0.0464	0.0458
0.5	0.7	0.7	0.1396	0.1389	0.1388
0.5	0.7	0.8	0.1103	0.1086	0.1080
0.5	0.7	0.9	0.0631	0.0619	0.0615
0.5	0.9	0.7	0.1597	0.1593	0.1592
0.5	0.9	0.8	0.1328	0.1322	0.1320
0.5	0.9	0.9	0.0786	0.0782	0.0780

Bjerksund-Stensland Approximation

$$
\hat{p}^{K}=x_{2} \Phi\left(d_{2}\right)-x_{1} \Phi\left(d_{1}\right)-K \Phi\left(d^{\prime}\right)
$$

where

$$
\begin{aligned}
d_{1} & =\frac{\left.\log \left(x_{2} / a\right)-\left(\sigma_{2}^{2}-2 \rho \sigma_{1} \sigma_{2}+b^{2} \sigma_{1}^{2}-2 b \sigma_{1}^{2}\right) T / 2\right)}{\sigma \sqrt{T}} \\
d_{2} & =\frac{\left.\log \left(x_{2} / a\right)+\sigma^{2} T / 2\right)}{\sigma \sqrt{T}} \\
d_{3} & =\frac{\left.\log \left(x_{2} / a\right)+\left(-\sigma_{2}+b^{2} \sigma_{1}^{2}\right) T / 2\right)}{\sigma \sqrt{T}}
\end{aligned}
$$

and
$\sigma=\sqrt{\sigma_{2}^{2}-2 b \rho \sigma_{1} \sigma_{2}+b^{2} \sigma_{1}^{2}}, \quad a=x_{1}+K, \quad$ and $\quad b=\frac{x_{1}}{x_{1}+K}$

More on Existing Literature

- Jarrow and Rudd
- Replace true distribution by simpler distribution with same first moments
- Edgeworth (Charlier) expansions
- Bachelier approximation when Gaussian distribution used
- SemiParametric Bounds (known marginals)
- Fully NonParametric No-arbitrage Bounds (Laurence, Obloj)
- Intervals too large
- Used only to rule out arbitrage
- Replacing Arithmetic Averages by Geometric Averages (Musiela)

Valuing a Tolling Agreement

Stylized Version

- Leasing an Energy Asset
- Fossil Fuel Power Plant
- Oil Refinery
- Pipeline
- Owner
- Decides when and how to use the asset (e.g. run the power plant)
- Has someone else do the leg work

Plant Operation Model: the Finite Mode Case

R.C - M. Ludkovski

- Markov process (state of the world) $X_{t}=\left(X_{t}^{(1)}, X_{t}^{(2)}, \cdots\right)$ (e.g. $X_{t}^{(1)}=P_{t}, \quad X_{t}^{(2)}=G_{t}, \quad X_{t}^{(3)}=O_{t} \quad$ for a dual plant)
- Plant characteristics
- $\mathbb{Z}_{M} \triangleq\{0, \cdots, M-1\}$ modes of operation of the plant
- $H_{0}, H_{1} \cdots, H_{M-1}$ heat rates
- $\{C(i, j)\}_{(i, j) \in \mathbb{Z}_{M}}$ regime switching costs $(C(i, j)=C(i, \ell)+C(\ell, j))$
- $\psi_{i}(t, x)$ reward at time t when world in state x, plant in mode i
- Operation of the plant (control) $u=(\xi, \mathcal{T})$ where
- $\xi_{k} \in \mathbb{Z}_{M} \triangleq\{0, \cdots, M-1\}$ successive modes
- $0 \leqslant \tau_{k-1} \leqslant \tau_{k} \leqslant T$ switching times
- T (horizon) length of the tolling agreement
- Total reward

$$
H(x, i,[0, T] ; u)(\omega) \triangleq \int_{0}^{T} \psi_{u_{s}}\left(s, X_{s}\right) d s-\sum_{\tau_{k}<T} C\left(u_{\tau_{k}-}, u_{\tau_{k}}\right)
$$

Stochastic Control Problem

- $\mathcal{U}(t))$ acceptable controls on $[t, T]$ (adapted càdlàg \mathbb{Z}_{M}-valued processes u of a.s. finite variation on $[t, T]$)

Optimal Switching Problem

$$
J(t, x, i)=\sup _{u \in \mathcal{U}(t)} J(t, x, i ; u)
$$

where

$$
\begin{aligned}
J(t, x, i ; u) & =\mathbb{E}\left[H(x, i,[t, T] ; u) \mid X_{t}=x, u_{t}=i\right] \\
& =\mathbb{E}\left[\int_{0}^{T} \psi_{u_{s}}\left(s, X_{s}\right) d s-\sum_{\tau_{k}<T} C\left(u_{\tau_{k}-}, u_{\tau_{k}}\right) \mid X_{t}=x, u_{t}=i\right]
\end{aligned}
$$

Iterative Optimal Stopping

Consider problem with at most k mode switches

$$
\mathcal{U}^{k}(t) \triangleq\left\{(\xi, \mathcal{T}) \in \mathcal{U}(t): \tau_{\ell}=T \text { for } \ell \geqslant k+1\right\}
$$

Admissible strategies on $[t, T]$ with at most k switches

$$
J^{k}(t, x, i) \triangleq \operatorname{esssup}_{u \in \mathcal{U}^{k}(t)} \mathbb{E}\left[\int_{t}^{T} \psi_{u_{s}}\left(s, X_{s}\right) d s-\sum_{t \leqslant \tau_{k}<T} C\left(u_{\tau_{k}-}, u_{\tau_{k}}\right) \mid x_{t}=x, u_{t}=i\right] .
$$

Alternative Recursive Construction

$$
\begin{aligned}
J^{0}(t, x, i) & \triangleq \mathbb{E}\left[\int_{t}^{\tau} \psi_{i}\left(s, X_{s}\right) d s \mid X_{t}=x\right], \\
J^{k}(t, x, i) & \triangleq \sup _{\tau \in \mathcal{S}_{t}} \mathbb{E}\left[\int_{t}^{\tau} \psi_{i}\left(s, X_{s}\right) d s+\mathcal{M}^{k, i}\left(\tau, X_{\tau}\right) \mid X_{t}=x\right] .
\end{aligned}
$$

Intervention operator \mathcal{M}

$$
\mathcal{M}^{k, i}(t, x) \triangleq \max _{j \neq i}\left\{-C_{i, j}+J^{k-1}(t, x, j)\right\} .
$$

Hamadène - Jeanblanc ($\mathrm{M}=2$)

Variational Formulation

Notation

- $\mathcal{L}_{X} X$ space-time generator of Markov process X_{t} in \mathbb{R}^{d}
- $\mathcal{M} \phi(t, x, i)=\max _{j \neq i}\left\{-C_{i, j}+\phi(t, x, j)\right\}$ intervention operator

Assume

- $\phi(t, x, i)$ in $\mathcal{C}^{1,2}\left(\left([0, T] \times \mathbb{R}^{d}\right) \backslash D\right) \cap \mathcal{C}^{1,1}(D)$
- $D=\cup_{i}\{(t, x): \phi(t, x, i)=\mathcal{M} \phi(t, x, i)\}$
- (QVI) for all $i \in \mathbb{Z}_{M}$:

1. $\phi \geqslant \mathcal{M} \phi$,
2. $\mathbb{E}^{x}\left[\int_{0}^{T} \nVdash_{\phi \leqslant \mathcal{M} \phi} d t\right]=0$,
3. $\mathcal{L}_{X} \phi(t, x, i)+\psi_{i}(t, x) \leqslant 0, \quad \phi(T, x, i)=0$,
4. $\left(\mathcal{L}_{X} \phi(t, x, i)+\psi_{i}(t, x)\right)(\phi(t, x, i)-\mathcal{M} \phi(t, x, i))=0$.

Conclusion
ϕ is the optimal value function for the switching problem

Reflected Backward SDE's

Assume

- $X_{0}=x \& \exists\left(Y^{x}, Z^{x}, A\right)$ adapted to $\left(\mathcal{F}_{t}^{X}\right)$

$$
\mathbb{E}\left[\sup _{0 \leqslant t \leqslant T}\left|Y_{t}^{x}\right|^{2}+\int_{0}^{T}\left\|Z_{t}^{x}\right\|^{2} d t+\left|A_{T}\right|^{2}\right]<\infty
$$

and

$$
\begin{aligned}
& Y_{t}^{x}=\int_{t}^{T} \psi_{i}\left(s, X_{s}^{x}\right) d s+A_{T}-A_{t}-\int_{t}^{T} Z_{s} \cdot d W_{s}, \\
& Y_{t}^{x} \geqslant \mathcal{M}^{k, i}\left(t, X_{t}^{X}\right), \\
& \int_{0}^{T}\left(Y_{t}^{X}-\mathcal{M}^{k, i}\left(t, X_{t}^{x}\right)\right) d A_{t}=0, \quad A_{0}=0 .
\end{aligned}
$$

Conclusion: if $Y_{0}^{x}=J^{k}(0, x, i)$ then

$$
Y_{t}^{X}=J^{k}\left(t, X_{t}^{x}, i\right)
$$

System of Reflected Backward SDE's

QVI for optimal switching: coupled system of reflected BSDE's for $\left(Y^{i}\right)_{i \in \mathbb{Z}_{M}}$,

$$
\begin{aligned}
& Y_{t}^{i}=\int_{t}^{T} \psi_{i}\left(s, X_{s}\right) d s+A_{T}^{i}-A_{t}^{i}-\int_{t}^{T} Z_{s}^{i} \cdot d W_{s} \\
& Y_{t}^{i} \geqslant \max _{j \neq i}\left\{-C_{i, j}+Y_{t}^{j}\right\}
\end{aligned}
$$

Existence and uniqueness Directly for $M>2$? $M=2$, Hamadène - Jeanblanc use difference process $Y^{1}-Y^{2}$.

Discrete Time Dynamic Programming

- Time Step $\Delta t=T / M^{\sharp}$
- Time grid $\mathcal{S}^{\Delta}=\left\{m \Delta t, m=0,1, \ldots, M^{\sharp}\right\}$
- Switches are allowed in \mathcal{S}^{Δ}

DPP
For $t_{1}=m \Delta t, t_{2}=(m+1) \Delta t$ consecutive times

$$
\begin{align*}
& J^{k}\left(t_{1}, X_{t_{1}}, i\right)=\max \left(\mathbb{E}\left[\int_{t_{1}}^{t_{2}} \psi_{i}\left(s, X_{s}\right) d s+J^{k}\left(t_{2}, X_{t_{2}}, i\right) \mid \mathcal{F}_{t_{1}}\right], \mathcal{M}^{k, i}\left(t_{1}, X_{t_{1}}\right)\right) \\
\simeq & \left(\psi_{i}\left(t_{1}, X_{t_{1}}\right) \Delta t+\mathbb{E}\left[J^{k}\left(t_{2}, X_{t_{2}}, i\right) \mid \mathcal{F}_{t_{1}}\right]\right) \vee\left(\max _{j \neq i}\left\{-C_{i, j}+J^{k-1}\left(t_{1}, X_{t_{1}}, j\right)\right\}\right) . \tag{1}
\end{align*}
$$

Tsitsiklis - van Roy

Longstaff-Schwartz Version

Recall

$$
J^{k}(m \Delta t, x, i)=\mathbb{E}\left[\sum_{j=m}^{\tau^{k}} \psi_{i}\left(j \Delta t, X_{j \Delta t}\right) \Delta t+\mathcal{M}^{k, i}\left(\tau^{k} \Delta t, X_{\tau^{k} \Delta t}\right) \mid X_{m \Delta t}=x\right]
$$

Analogue for τ^{k} :

$$
\tau^{k}\left(m \Delta t, x_{m \Delta t}^{\ell}, i\right)= \begin{cases}\tau^{k}\left((m+1) \Delta t, x_{(m+1) \Delta t}^{\ell}, i\right), & \text { no switch; } \tag{2}\\ m, & \text { switch }\end{cases}
$$

and the set of paths on which we switch is given by $\left\{\ell: \hat{\jmath}^{\ell}(m \Delta t ; i) \neq i\right\}$ with

$$
\begin{equation*}
\hat{\jmath}^{\ell}\left(t_{1} ; i\right)=\arg \max _{j}\left(-C_{i, j}+J^{k-1}\left(t_{1}, x_{t_{1}}^{\ell}, j\right), \psi_{i}\left(t_{1}, x_{t_{1}}^{\ell}\right) \Delta t+\hat{E}_{t_{1}}\left[J^{k}\left(t_{2}, \cdot, i\right)\right]\left(x_{t_{1}}^{\ell}\right)\right) . \tag{3}
\end{equation*}
$$

The full recursive pathwise construction for J^{k} is
$J^{k}\left(m \Delta t, x_{m \Delta t}^{\ell}, i\right)= \begin{cases}\psi_{i}\left(m \Delta t, x_{m \Delta t}^{\ell}\right) \Delta t+J^{k}\left((m+1) \Delta t, x_{(m+1) \Delta t}^{\ell}, i\right), & \text { no switch; } \\ -C_{i, j}+J^{k-1}\left(m \Delta t, x_{m \Delta t}^{\ell}, j\right), & \text { switch to } j .\end{cases}$

Remarks

- Regression used solely to update the optimal stopping times τ^{k}
- Regressed values never stored
- Helps to eliminate potential biases from the regression step.

Algorithm

1. Select a set of basis functions $\left(B_{j}\right)$ and parameters $\Delta t, M^{\sharp}, N^{p}, \bar{K}, \delta$.
2. Generate N^{p} paths of the driving process: $\left\{x_{m \Delta t}^{\ell}\right\}_{m=0,1, \ldots, M^{\sharp}}$ for $\ell=1,2, \ldots, N^{p}$ with fixed initial condition $x_{0}^{\ell}=x_{0}$.
3. Initialize the value functions and switching times $J^{k}\left(T, x_{T}^{\ell}, i\right)=0$,

$$
\tau^{k}\left(T, x_{T}^{\ell}, i\right)=M^{\sharp} \forall i, k .
$$

4. Moving backward in time with $t=m \Delta t, m=M^{\sharp}, \ldots, 0$ repeat:

- Compute inductively the layers $k=0,1, \ldots, \bar{K}$ (evaluate $\mathbb{E}\left[J^{k}(m \Delta t+\Delta t, \cdot, i) \mid \mathcal{F}_{m \Delta t}\right]$ by linear regression of $\left\{J^{k}\left(m \Delta t+\Delta t, x_{m \Delta t+\Delta t}^{\ell}, i\right)\right\}$ against $\left\{B_{j}\left(x_{m \Delta t}^{\ell}\right)\right\}_{j=1}^{N^{B}}$, then add the reward $\left.\psi_{i}\left(m \Delta t, x_{m \Delta t}^{\ell}\right) \cdot \Delta t\right)$
- Update the switching times and value functions

5. end Loop.
6. Check whether \bar{K} switches are enough by comparing $J^{\bar{K}}$ and $J^{\bar{K}-1}$ (they should be equal).

Observe that during the main loop we only need to store the buffer $J(t, \cdot), \ldots, J(t+\delta, \cdot)$; and $\tau(t, \cdot), \cdots, \tau(t+\delta, \cdot)$.

Convergence

- Bouchard - Touzi
- Gobet - Lemor - Warin

Example 1

$$
d X_{t}=2\left(10-X_{t}\right) d t+2 d W_{t}, \quad X_{0}=10
$$

- Horizon $T=2$,
- Switch separation $\delta=0.02$.
- Two regimes
- Reward rates $\psi_{0}\left(X_{t}\right)=0$ and $\psi_{1}\left(X_{t}\right)=10\left(X_{t}-10\right)$
- Switching cost $C=0.3$.

Value Functions

Exercise Boundaries

$$
k=2 \text { (left) }
$$

$$
k=7 \text { (right) }
$$

NB: Decreasing boundary around $t=0$ is an artifact of the Monte Carlo.

One Sample

Example 2: Comparisons

Spark spread $X_{t}=\left(P_{t}, G_{t}\right)$

$$
\left\{\begin{array}{l}
\log \left(P_{t}\right) \sim O U(\kappa=2, \theta=\log (10), \sigma=0.8) \\
\log \left(G_{t}\right) \sim O U(\kappa=1, \theta=\log (10), \sigma=0.4)
\end{array}\right.
$$

- $P_{0}=10, G_{0}=10, \rho=0.7$
- Agreement Duration [0, 0.5]
- Reward functions

$$
\begin{aligned}
\psi_{0}\left(X_{t}\right) & =0 \\
\psi_{1}\left(X_{t}\right) & =10\left(P_{t}-G_{t}\right) \\
\psi_{2}\left(X_{t}\right) & =20\left(P_{t}-1.1 G_{t}\right)
\end{aligned}
$$

- Switching costs

$$
C_{i, j}=0.25|i-j|
$$

Numerical Comparison

Method	Mean	Std. Dev	Time (m)
Explicit FD	5.931	-	25
LS Regression	5.903	0.165	1.46
TvR Regression	5.276	0.096	1.45
Kernel	5.916	0.074	3.8
Quantization	5.658	0.013	400^{*}

Table: Benchmark results for Example 2.

Example 3: Dual Plant \& Delay

$$
\left\{\begin{array}{l}
\log \left(P_{t}\right) \sim O U(\kappa=2, \theta=\log (10), \sigma=0.8), \\
\log \left(G_{t}\right) \sim O U(\kappa=1, \theta=\log (10), \sigma=0.4) \\
\log \left(O_{t}\right) \sim O U(\kappa=1, \theta=\log (10), \sigma=0.4),
\end{array}\right.
$$

- $P_{0}=G_{0}=O_{0}=10, \rho_{\rho g}=0.5, \rho_{p o}=0.3, \rho_{g o}=0$
- Agreement Duration $T=1$
- Reward functions

$$
\begin{aligned}
\psi_{0}\left(X_{t}\right) & \equiv 0 \\
\psi_{1}\left(X_{t}\right) & =5 \cdot\left(P_{t}-G_{t}\right) \\
\psi_{2}\left(X_{t}\right) & =5 \cdot\left(P_{t}-O_{t}\right), \\
\psi_{3}\left(X_{t}\right) & =5 \cdot\left(3 P_{t}-4 G_{t}\right) \\
\psi_{4}\left(X_{t}\right) & =5 \cdot\left(3 P_{t}-4 O_{t}\right) .
\end{aligned}
$$

- Switching costs $C_{i, j} \equiv 0.5$
- Delay $\delta=0,0.01,0.03$ (up to ten days)

Numerical Results

Setting	No Delay	$\delta=0.01$	$\delta=0.03$
Base Case	13.22	12.03	10.87
Jumps in P_{t}	23.33	22.00	20.06
Regimes 0-3 only	11.04	10.63	10.42
Regimes 0-2 only	9.21	9.16	9.14
Gas only: 0,1,3	9.53	7.83	7.24

Table: LS scheme with 400 steps and 16000 paths.

Remarks

- High δ lowers profitability by over 20%.
- Removal of regimes: without regimes 3 and 4 expected profit drops from 13.28 to 9.21 .

Example 4: Exhaustible Resources

Include I_{t} current level of resources left (I_{t} non-increasing process).

$$
\begin{equation*}
J(t, x, c, i)=\sup _{\tau, j} \mathbb{E}\left[\int_{t}^{\tau} \psi_{i}\left(s, X_{s}\right) d s+J\left(\tau, X_{\tau}, I_{\tau}, j\right)-C_{i, j} \mid X_{t}=x, I_{t}=c\right] \tag{5}
\end{equation*}
$$

\diamond Resource depletion (boundary condition) $J(t, x, 0, i) \equiv 0$.
\diamond Not really a control problem I_{t} can be computed on the fly

Mining example of Brennan and Schwartz varying the initial copper price X_{0}

Method $/ X_{0}$	0.3	0.4	0.5	0.6	0.7	0.8
BS '85	1.45	4.35	8.11	12.49	17.38	22.68
PDE FD	1.42	4.21	8.04	12.43	17.21	22.62
RMC	1.33	4.41	8.15	12.44	17.52	22.41

Extension to Gas Storage \& Hydro Plants

- Accomodate outages
- Include switch separation as a form of delay
- Was extended (R.C. - M. Ludkovski) to treat
- Gas Storage
- Hydro Plants
- More (rigorous) Mathematical Analysis
- Porchet-Touzi (BSDEs)
- Forsythe-Ware (Numeric scheme to solve HJB QVI)
- Bernhart-Pham (reflected BSDEs)

What Else Needs to be Done

- limprove delays
- Provide convergence analysis
- Finer analysis of exercise boundaries
- Duality upper bounds
- we have approximate value functions
- we have approximate exercise boundaries
- so we have lower bounds
- need to extend Meinshausen-Hambly to optimal switching set-up

Financial Hedging

Extending the Analysis Adding Access to a Financial Market

Porchet-Touzi

- Same (Markov) factor process $X_{t}=\left(X_{t}^{(1)}, X_{t}^{(2)}, \cdots\right)$ as before
- Same plant characteristics as before
- Same operation control $u=(\xi, \mathcal{T})$ as before
- Same maturity T (end of tolling agreement) as before
- Reward for operating the plant

$$
H(x, i, T ; u)(\omega) \triangleq \int_{0}^{T} \psi_{u_{s}}\left(s, X_{s}\right) d s-\sum_{\tau_{k}<T} C\left(u_{\tau_{k}-}, u_{\tau_{k}}\right)
$$

Hedging/Investing in Financial Market

Access to a financial market (possibly incomplete)

- y initial wealth
- π_{t} investment portfolio
- $Y_{T}^{y, \pi}$ corresponding terminal wealth from investment
- Utility function $U(y)=-e^{-\gamma y}$
- Maximum expected utility

$$
v(y)=\sup _{\pi} \mathbb{E}\left\{U\left(Y_{T}^{y, \pi}\right)\right\}
$$

Indifference Pricing

- With the power plant (tolling contract)

$$
V(x, i, y)=\sup _{u, \pi} \mathbb{E}\left\{U\left(Y_{T}^{y, \pi}+H(x, i, T ; u)\right)\right\}
$$

INDIFFERENCE PRICING

$$
\bar{p}=p(x, i, y)=\sup \{p \geq 0 ; V(x, i, y-p) \geq v(y)\}
$$

Analysis of

- BSDE formulation
- PDE formulation

Implied Correlation

Given market prices of

- Options on individual underlying interests
- Spread options

INFER / IMPLY a (Pearson) correlation and

- Smiles
- Skews
in the spirit of implied volatility

Major Difficulty:

- Data NOT available!
- Need to rely on trader's observations / speculations

Implied Correlation

R.C. - Y. Sun

Given market prices of

- Options on individual underlying interests
- Spread options

INFER / IMPLY a (Pearson) correlation and

- Smiles
- Skews
in the spirit of implied volatility
Major Difficulty:
- Data NOT available!
- Need to rely on trader's observations / speculations

Clean Spark Spread

Given

- $P(t)$ sale price of 1 MWhr of electricity
- $G(t)$ price of 1 MBtu natural gas
- $A(t)$ price of an allowance for 1 ton of CO_{2} equivalent compute

$$
e^{-r T} \mathbb{E}\left\{\left(P(T)-H_{e f f} G(T)-e_{G} A(T)\right)^{+}\right\}
$$

where e_{G} is the emission coefficient of the technology.
Requires

- Joint model for $\left\{(P(t), G(t), A(t)\}_{0 \leq t \leq T}\right.$

Clean Spark Spread

R.C. - M. Coulon - D. Schwarz

Given

- $P(t)$ sale price of 1 MWhr of electricity
- $G(t)$ price of 1 MBtu natural gas
- $A(t)$ price of an allowance for 1 ton of CO_{2} equivalent compute

$$
e^{-r T} \mathbb{E}\left\{\left(P(T)-H_{e f f} G(T)-e_{G} A(T)\right)^{+}\right\}
$$

where e_{G} is the emission coefficient of the technology.
Requires

- Joint model for $\left\{(P(t), G(t), A(t)\}_{0 \leq t \leq T}\right.$

FIRST CLASS MAIL
Att. Rene Carmona
Princeton University
ORFE Dept
Princeton NJ 08544

