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The Importance of Spread Options

European Call written on

I the Difference between two Underlying Interests
I a Linear Combination of several Underlying Interests



Calendar Spread Options

I Single Commodity at two different times

E{(I(T2)− I(T1)− K )+}

I Mathematically easier (only one underlier)

I Amaranth largest (and fatal) positions
I Shoulder Natural Gas Spread (play on inventories)
I Long March Gas / Short April Gas

I Depletion stops in March / injection starts in April
I Can be fatal: widow maker spread



Seasonality of Gas Inventory

9 
 

There is a long injection season from the spring through the fall when natural gas is 

injected and stored in caverns for use during the long winter to meet the higher residential 

demand, as in FIGURE 2.1.  The figure illustrates the U.S. Department of Energy’s total 

(lower 48 states) working underground storage for natural gas inventories over 2006.   

Inventories stop being drawn down in March and begin to rise in April.  As we will see in 

Section 2.1.3.2, the summer and fall futures contracts, when storage is rising, trade at a 

discount to the winter contracts, when storage peaks and levels off.  Thus, the markets 

provide a return for storing natural gas.  A storage operator can purchase summer futures 

and sell winter futures, the difference being the return for storage.  At maturity of the 

summer contract, the storage owner can move the delivered physical gas into storage and 

release it when the winter contract matures.  Storage is worth more if such spread bets are 

steep between near and far months.    

2.1.3 Risk Management Instruments 

Futures and forward contracts, swaps, spreads and options are the most standard 

tools for speculation and risk management in the natural gas market.   Commodities market 

U.S. Natural Gas Inventories 2005-6
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FIGURE 2.1: Seasonality in Natural Gas Weekly Storage 



What Went Wrong with Amaranth? 43 
 

November 2006 bets were particularly large compared to the rest, as Amaranth accumulated 

the largest ever long position in the November futures contract in the month preceding its 

downfall.  Regarding the Fund’s overall strategy, Burton and Strasburg (2006a) write that 

Amaranth was generally long winter contracts and short summer and fall ones, a winning bet 

since 2004.  Other sources affirm that Amaranth was long the far-end of the curve and short 

the front-end, and their positions lost value when far-forward gas contracts fell more than 

near-term contracts did in September 2006. 

 From these bets, Amaranth believed a stormy and exceptionally cold winter in 2006 

would result in excess usage of natural gas in the winter and a shortage in March of the 

following year.  Higher demand would result in a possible stockout by the end of February 

and higher March prices.  Yet April prices would fall as supply increases at the start of the 

injection season.  In this scenario, there is theoretically no ceiling on how much the price of 

the March contract can rise relative to the rest of the curve.  Fischer (2006), natural gas 

trader at Chicago-based hedge fund Citadel Investment Group, believes Amaranth bet on 

similar hurricane patterns in the previous two years.  As a result, the extreme event that hurt 

Amaranth was that nothing happened—there was no Hurricane Katrina or similar 

Shoulder Month Spread
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FIGURE 3.1: Natural Gas March-April Contract Spread Evolution 



More Spread Options

I Cross Commodity
I Crush Spread

I between Soybean and soybean products (meal & oil)
I Crack Spread

I gasoline crack spread between Crude and Unleaded
I heating oil crack spread between Crude and HO

I Spark Spread
I between price of 1 MWhe of Electric Power , and Natural Gas needed

to produce it

St = FE (t)− Heff FG(t)

Heff Heat Rate



(Classical) Real Option Power Plant Valuation

Real Option Approach
I Lifetime of the plant [T1,T2]

I C capacity of the plant (in MWh)
I H heat rate of the plant (in MMBtu/MWh)
I Pt price of power on day t
I Gt price of fuel (gas) on day t
I K fixed Operating Costs
I Value of the Plant (ORACLE)

C
T2∑

t=T1

e−rtE{(Pt − HGt − K )+}

String of Spark Spread Options



Beyond Plant Valuation: Credit Enhancement

(Flash Back)
The Calpine - Morgan Stanley Deal

I Calpine needs to refinance USD 8 MM by November 2004
I Jan. 2004: Deutsche Bank: no traction on the offering
I Feb. 2004: The Street thinks Calpine is ”heading South”
I March 2004: Morgan Stanley offers a (complex) structured deal

I A strip of spark spread options on 14 Calpine plants
I A similar bond offering

I How were the options priced?
I By Morgan Stanley ?
I By Calpine ?



Calpine Debt



Calpine Debt with Deutsche Bank Financing



Calpine Debt with Morgan Stanley Financing



A Possible Model
Assume that Calpine owns only one plant

MS guarantees its spark spread will be at least κ for M years

Approach à la Leland’s Theory of the Value of the Firm

V = v − p0 + sup
τ≤T

E
{∫ τ

0
e−rtδt dt

}
where

δt =

{
(Pt − H ∗Gt − K ) ∨ κ− ct if 0 ≤ t ≤ M
(Pt − H ∗Gt − K )+ − ct if M ≤ t ≤ T

and
I v current value of firm’s assets
I p0 option premium
I M length of the option life
I κ strike of the option
I ct cost of servicing the existing debt



Default Time



Plant Value



Debt Value



Spread Valuation Mathematical Challenge

p = e−rTE{(I2(T )− I1(T )− K )+}

I Underlying indexes are spot prices
I Geometric Brownian Motions (K = 0 Margrabe)
I Geometric Ornstein-Uhlembeck (OK for Gas)
I Geometric Ornstein-Uhlembeck with jumps (OK for Power)

I Underlying indexes are forward/futures prices
I HJM-type models with deterministic coefficients

Problem

finding closed form formula and/or fast/sharp approximation for

E{(αeγX1 − βeδX2 − κ)+}

for a Gaussian vector (X1,X2) of N(0, 1) random variables with correlation ρ.

Sensitivities?



Easy Case : Exchange Option & Margrabe Formula

p = e−rTE{(S2(T )− S1(T ))+}

I S1(T ) and S2(T ) log-normal
I p given by a formula à la Black-Scholes

p = x2Φ(d1)− x1Φ(d0)

with

d1 =
ln(x2/x1)

σ
√

T
+

1
2
σ
√

T d0 =
ln(x2/x1)

σ
√

T
− 1

2
σ
√

T

and:

x1 = S1(0), x2 = S2(0), σ2 = σ2
1 − 2ρσ1σ2 + σ2

2

I Deltas are also given by ”closed form formulae”.



Proof of Margrabe Formula

p = e−rTEQ{
(
S2(T )− S1(T )

)+} = e−rTEQ

{(
S2(T )

S1(T )
− 1
)+

S1(T )

}

I Q risk-neutral probability measure
I Define ( Girsanov) P by:

dP
dQ

∣∣∣∣
FT

= S1(T ) = exp
(
−1

2
σ2

1T + σ1Ŵ1(T )

)
I Under P,

I Ŵ1(t)− σ1t and Ŵ2(t)
I S2/S1 is geometric Brownian motion under P with volatility

σ2 = σ2
1 − 2ρσ1σ2 + σ2

2

p = S1(0)EP

{(
S2(T )

S1(T )
− 1
)+}

Black-Scholes formula with K = 1, σ as above.



Pricing Calendar Spreads in Forward Models
Involves prices of two forward contracts with different maturities, say
T1 and T2

S1(t) = F (t ,T1) and S2(t) = F (t ,T2),

Remember forward prices are log-normal

Price at time t of a calendar spread option with maturity T and strike
K

α = e−r [T−t]F (t ,T2), β =

√√√√ n∑
k=1

∫ T

t
σk (s,T2)2ds,

γ = e−r [T−t]F (t ,T1), and δ =

√√√√ n∑
k=1

∫ T

t
σk (s,T1)2ds

and κ = e−r(T−t) (µ ≡ 0 per risk-neutral dynamics)

ρ =
1
βδ

n∑
k=1

∫ T

t
σk (s,T1)σk (s,T2) ds



Pricing Spark Spreads in Forward Models

Cross-commodity
I subscript e for forward prices, times-to-maturity, volatility

functions, . . . relative to electric power
I subscript g for quantities pertaining to natural gas.

Pay-off (
Fe(T ,Te)− H ∗ Fg(T ,Tg)− K

)+
.

I T < min{Te,Tg}
I Heat rate H
I Strike K given by O& M costs

Natural
I Buyer owner of a power plant that transforms gas into electricity,
I Protection against low electricity prices and/or high gas prices.



Joint Dynamics of the Commodities

dFe(t ,Te) = Fe(t ,Te)[µe(t ,Te)dt +
n∑

k=1

σe,k (t ,Te)dWk (t)]

dFg(t ,Tg) = Fg(t ,Tg)[µg(t ,Tg)dt +
n∑

k=1

σg,k (t ,Tg)dWk (t)]

I Each commodity has its own volatility factors
I between The two dynamics share the same driving Brownian

motion processes Wk , hence correlation.



Fitting Join Cross-Commodity Models
I on any given day t we have

I electricity forward contract prices for N(e) times-to-maturity
τ

(e)
1 < τ

(e)
2 , . . . < τ

(e)

N(e)

I natural gas forward contract prices for N(g) times-to-maturity
τ

(g)
1 < τ

(g)
2 , . . . < τ

(g)

N(g)

Typically N(e) = 12 and N(g) = 36 (possibly more).
I Estimate instantaneous vols σ(e)(t) & σ(g)(t) 30 days rolling window
I For each day t , the N = N(e) + N(g) dimensional random vector X(t)

X(t) =


(

log F̃e(t+1,τ (e)
j )−log F̃e(t,τ (e)

j )

σ(e)(t)

)
j=1,...,N(e)(

log F̃g (t+1,τ (g)
j )−log F̃g (t,τ (g)

j )

σ(g)(t)

)
j=1,...,N(g)


I Run PCA on historical samples of X(t)
I Choose small number n of factors
I for k = 1, . . . , n,

I first N(e) coordinates give the electricity volatilities τ ↪→ σ
(e)
k (τ) for

k = 1, . . . , n
I remaining N(g) coordinates give the gas volatilities τ ↪→ σ

(g)
k (τ).

Skip gory details



Pricing a Spark Spread Option

Price at time t

pt = e−r(T−t)Et
{

(Fe(T ,Te)− H ∗ Fg(T ,Tg)− K )+
}

Fe(T ,Te) and Fg(T ,Tg) are log-normal under the pricing measure calibrated
by PCA

Fe(T ,Te) = Fe(t ,Te) exp

[
−1

2

n∑
k=1

∫ T

t
σe,k (s,Te)2ds +

n∑
k=1

∫ T

t
σe,k (s,Te)dWk (s)

]

and:

Fg(T ,Tg) = Fg(t ,Tg) exp

[
−1

2

n∑
k=1

∫ T

t
σg,k (s,Tg)2ds +

n∑
k=1

∫ T

t
σg,k (s,Tg)dWk (s)

]

Set
S1(t) = H ∗ Fg(t ,Tg) and S2(t) = Fe(t ,Te)



Pricing a Spark Spread Option

Use the constants

α = e−r(T−t)Fe(t ,Te), and β =

√√√√ n∑
k=1

∫ T

t
σe,k (s,Te)2 ds

for the first log-normal distribution,

γ = He−r(T−t)Fg(t ,Tg), and δ =

√√√√ n∑
k=1

∫ T

t
σg,k (s,Tg)2 ds

for the second one, κ = e−r(T−t)K and

ρ =
1
βδ

∫ T

t

n∑
k=1

σe,k (s,Te)σg,k (s,Tg)ds

for the correlation coefficient.



Approximations

I Fourier Approximations (Madan, Carr, Dempster, Hurd et. al)
I Bachelier approximation (Alexander, Borovkova)
I Zero-strike approximation
I Kirk approximation
I CD Upper and Lower Bounds (R.C. - V. Durrleman)
I Bjerksund - Stensland approximation

Can we also approximate the Greeks ?



Bachelier Approximation

I Generate x (1)
1 , x (1)

2 , · · · , x (1)
N from N(µ1, σ

2
1)

I Generate x (2)
1 , x (2)

2 , · · · , x (2)
N from N(µ1, σ

2
1)

I Correlation ρ
I Look at the distribution of

ex (2)
1 − ex (1)

1 ,ex (2)
2 − ex (1)

2 , · · · ,ex (2)
N − ex (1)

N



Log-Normal Samples





Bachelier Approximation

I Assume (S2(T )− S1(T ) is Gaussian
I Match the first two moments

p̂BS =
(

m(T )− Ke−rT
)

Φ

(
m(T )− Ke−rT

s(T )

)
+ s(T )ϕ

(
m(T )− Ke−rT

s(T )

)

with:

m(T ) = (x2 − x1)e(µ−r)T

s2(T ) = e2(µ−r)T
[
x2

1

(
eσ

2
1T − 1

)
− 2x1x2

(
eρσ1σ2T − 1

)
+ x2

2

(
eσ

2
2T − 1

)]
Easy to compute the Greeks !



Zero-Strike Approximation

p = e−rTE{(S2(T )− S1(T )− K )+}

I Assume S2(T ) = FE (T ) is log-normal
I Replace S1(T ) = H ∗ FG(T ) by S̃1(T ) = S1(T ) + K
I Assume S2(T ) and S̃1(T ) are jointly log-normal
I Use Margrabe formula for p = e−rTE{(S2(T )− S̃1(T ))+}

Use the Greeks from Margrabe formula !



Kirk Approximation

p̂K = e−rT [x2Φ(d2)− (x1 + K )Φ(d1)]

where

d1 = d2 − σ
√

T

d2 =
log(x2/(x1 + K )) + σ2T/2)

σ
√

T

and

σ =

√
σ2

2 − 2
x1

x1 + K
ρσ1σ2 +

(
x1

x1 + K

)2

σ2
1

Exactly what we called ”Zero Strike Approximation”!!!



C-Durrleman Upper and Lower Bounds

Π(α, β, γ, δ, κ, ρ) = E
{(

αeβX1−β2/2 − γeδX2−δ2/2 − κ
)+
}

where
I α, β, γ, δ and κ real constants
I X1 and X2 are jointly Gaussian N(0,1)

I correlation ρ
α = x2e−q2T β = σ2

√
T γ = x1e−q1T δ = σ1

√
T and κ = Ke−rT .



A Precise Lower Bound

p̂CD = x2e−q2T Φ
(

d∗ + σ2 cos(θ∗ + φ)
√

T
)

− x1e−q1T Φ
(

d∗ + σ1 sin θ∗
√

T
)
− Ke−rT Φ(d∗)

where
I θ∗ is the solution of

1
δ cos θ

ln
(
− βκ sin(θ + φ)

γ[β sin(θ + φ)− δ sin θ]

)
− δ cos θ

2

=
1

β cos(θ + φ)
ln
(
− δκ sin θ
α[β sin(θ + φ)− δ sin θ]

)
− β cos(θ + φ)

2

I the angle φ is defined by setting ρ = cosφ
I d∗ is defined by

d∗ =
1

σ cos(θ∗ − ψ)
√

T
ln
(

x2e−q2Tσ2 sin(θ∗ + φ)

x1e−q1Tσ1 sin θ∗

)
−1

2
(σ2 cos(θ∗+φ)+σ1 cos θ∗)

√
T

I the angles φ and ψ are chosen in [0, π] such that:

cosφ = ρ and cosψ =
σ1 − ρσ2

σ
,



Remarks on this Lower Bound

I p̂ is equal to the true price p when
I K = 0
I x1 = 0
I x2 = 0
I ρ = −1
I ρ = +1

I Margrabe formula when K = 0 because

θ∗ = π + ψ = π + arccos
(
σ1 − ρσ2

σ

)
.

with:
σ =

√
σ2

1 − 2ρσ1σ2 + σ2
2



Delta Hedging

The portfolio comprising at each time t ≤ T

∆1 = −e−q1T Φ
(

d∗ + σ1 cos θ∗
√

T
)

and
∆2 = e−q2T Φ

(
d∗ + σ2 cos(θ∗ + φ)

√
T
)

units of each of the underlying assets is a sub-hedge

its value at maturity is a.s. a lower bound for the pay-off



The Other Greeks

� ϑ1 and ϑ2 sensitivities w.r.t. volatilities σ1 and σ2
� χ sensitivity w.r.t. correlation ρ
� κ sensitivity w.r.t. strike price K
� Θ sensitivity w.r.t. maturity time T

ϑ1 = x1e−q1Tϕ
(

d∗ + σ1 cos θ∗
√

T
)

cos θ∗
√

T

ϑ2 = −x2e−q2Tϕ
(

d∗ + σ2 cos(θ∗ + φ)
√

T
)

cos(θ∗ + φ)
√

T

χ = −x1e−q1Tϕ
(

d∗ + σ1 cos θ∗
√

T
)
σ1

sin θ∗

sinφ

√
T

κ = −Φ (d∗) e−rT

Θ =
σ1ϑ1 + σ2ϑ2

2T
− q1x1∆1 − q2x2∆2 − rKκ



Comparisons

Behavior of the tracking error as the number of re-hedging times increases.
The model data are x1 = 100, x2 = 110, σ1 = 10%, σ2 = 15% and T = 1.
ρ = 0.9, K = 30 (left) and ρ = 0.6, K = 20 (right).



Generalization: European Basket Option

Black-Scholes Set-Up
I Multidimensional model
I n stocks S1, . . . ,Sn

I Risk neutral dynamics

dSi (t)
Si (t)

= rdt +
n∑

j=1

σijdBj (t),

I initial values S1(0), . . . ,Sn(0)
I B1, . . . ,Bn independent standard Brownian motions
I Correlation through matrix (σij )



European Basket Option (cont.)

I Vector of weights (wi )i=1,...,n (most often wi ≥ 0)
I Basket option struck at K at maturity T given by payoff(

n∑
i=1

wiSi (T )− K

)+

(Asian Options)

Risk neutral valuation: price at time 0

p = e−rTE


(

n∑
i=1

wiSi (T )− K

)+




Down-and-Out Call on a Basket of n Stocks

Option Payoff (
n∑

i=1

wiSi (T )− K

)+

1{inft≤T S1(t)≥H}.

Option price is

E


(

n∑
i=0

εixieGi (1)− 1
2σ

2
i 1{

infθ≤1 x1eG1(θ)− 1
2σ

2
1θ≥H

}
)+
 ,

where
I ε1 = +1, σ1 > 0 and H < x1

I {G(θ); θ ≤ 1} is a (n + 1)-dimensional Brownian motion starting
from 0 with covariance Σ.



Price and Hedges

Use lower bound.

p∗ = sup
d,u

E

{
n∑

i=0

εixieGi (1)− 1
2σ

2
i 1{

infθ≤1 x1eG1(θ)− 1
2σ

2
1θ≥H;u·G(1)≤d

}
}
.

Girsanov implies

p∗ = sup
d,u

n∑
i=0

εixiP
{

inf
θ≤1

G1(θ)

+
(
Σi1 − σ2

1/2
)
θ ≥ ln

(
H
x1

)
; u ·G(1) ≤ d − (Σu)i

}
.



Numerical Results

σ ρ H/x1 n = 10 n = 20 n = 30
0.4 0.5 0.7 0.1006 0.0938 0.0939
0.4 0.5 0.8 0.0811 0.0785 0.0777
0.4 0.5 0.9 0.0473 0.0455 0.0449
0.4 0.7 0.7 0.1191 0.1168 0.1165
0.4 0.7 0.8 0.1000 0.1006 0.0995
0.4 0.7 0.9 0.0608 0.0597 0.0594
0.4 0.9 0.7 0.1292 0.1291 0.1290
0.4 0.9 0.8 0.1179 0.1175 0.1173
0.4 0.9 0.9 0.0751 0.0747 0.0745
0.5 0.5 0.7 0.1154 0.1122 0.1110
0.5 0.5 0.8 0.0875 0.0844 0.0816
0.5 0.5 0.9 0.0518 0.0464 0.0458
0.5 0.7 0.7 0.1396 0.1389 0.1388
0.5 0.7 0.8 0.1103 0.1086 0.1080
0.5 0.7 0.9 0.0631 0.0619 0.0615
0.5 0.9 0.7 0.1597 0.1593 0.1592
0.5 0.9 0.8 0.1328 0.1322 0.1320
0.5 0.9 0.9 0.0786 0.0782 0.0780



Bjerksund-Stensland Approximation

p̂K = x2Φ(d2)− x1Φ(d1)− K Φ(d ′)

where

d1 =
log(x2/a)− (σ2

2 − 2ρσ1σ2 + b2σ2
1 − 2bσ2

1)T/2)

σ
√

T

d2 =
log(x2/a) + σ2T/2)

σ
√

T

d3 =
log(x2/a) + (−σ2 + b2σ2

1)T/2)

σ
√

T

and

σ =
√
σ2

2 − 2bρσ1σ2 + b2σ2
1 , a = x1+K , and b =

x1

x1 + K



More on Existing Literature

I Jarrow and Rudd
I Replace true distribution by simpler distribution with same first

moments
I Edgeworth (Charlier) expansions
I Bachelier approximation when Gaussian distribution used

I SemiParametric Bounds (known marginals)
I Fully NonParametric No-arbitrage Bounds (Laurence, Obloj)

I Intervals too large
I Used only to rule out arbitrage

I Replacing Arithmetic Averages by Geometric Averages (Musiela)



Valuing a Tolling Agreement

Stylized Version

I Leasing an Energy Asset
I Fossil Fuel Power Plant
I Oil Refinery
I Pipeline

I Owner
I Decides when and how to use the asset (e.g. run the power plant)
I Has someone else do the leg work



Plant Operation Model: the Finite Mode Case
R.C - M. Ludkovski

I Markov process (state of the world) Xt = (X (1)
t ,X (2)

t , · · · )
(e.g. X (1)

t = Pt , X (2)
t = Gt , X (3)

t = Ot for a dual plant)
I Plant characteristics

I ZM
M
= {0, · · · ,M − 1} modes of operation of the plant

I H0,H1 · · · ,HM−1 heat rates
I {C(i , j)}(i,j)∈ZM regime switching costs (C(i , j) = C(i , `) + C(`, j))
I ψi (t , x) reward at time t when world in state x , plant in mode i

I Operation of the plant (control) u = (ξ, T ) where

I ξk ∈ ZM
M
= {0, · · · ,M − 1} successive modes

I 0 6 τk−1 6 τk 6 T switching times
I T (horizon) length of the tolling agreement
I Total reward

H(x , i , [0,T ]; u)(ω)
M
=

∫ T

0
ψus (s,Xs) ds −

∑
τk<T

C(uτk−, uτk )



Stochastic Control Problem

I U(t)) acceptable controls on [t ,T ]
(adapted càdlàg ZM -valued processes u of a.s. finite variation on [t ,T ])

Optimal Switching Problem

J(t , x , i) = sup
u∈U(t)

J(t , x , i ; u),

where

J(t , x , i ; u) = E
[
H(x , i , [t ,T ]; u)|Xt = x ,ut = i

]
= E

[∫ T

0
ψus (s,Xs) ds −

∑
τk<T

C(uτk−,uτk )|Xt = x ,ut = i
]



Iterative Optimal Stopping

Consider problem with at most k mode switches

Uk (t) M
= {(ξ, T ) ∈ U(t) : τ` = T for ` > k + 1}

Admissible strategies on [t ,T ] with at most k switches

Jk (t , x , i) M
= esssupu∈Uk (t)E

[∫ T

t
ψus (s,Xs) ds−

∑
t6τk<T

C(uτk−, uτk )
∣∣∣Xt = x , ut = i

]
.



Alternative Recursive Construction

J0(t , x , i) M
= E

[∫ T

t
ψi (s,Xs) ds

∣∣∣Xt = x
]
,

Jk (t , x , i) M
= sup
τ∈St

E
[∫ τ

t
ψi (s,Xs) ds +Mk,i (τ,Xτ )

∣∣∣Xt = x
]
.

Intervention operatorM

Mk,i (t , x)
M
= max

j 6=i

{
−Ci,j + Jk−1(t , x , j)

}
.

Hamadène - Jeanblanc (M=2)



Variational Formulation

Notation
I LX X space-time generator of Markov process Xt in Rd

I Mφ(t , x , i) = maxj 6=i{−Ci,j + φ(t , x , j)} intervention operator

Assume
I φ(t , x , i) in C1,2(([0,T ]× Rd ) \D

)
∩ C1,1(D)

I D = ∪i
{

(t , x) : φ(t , x , i) =Mφ(t , x , i)
}

I (QVI) for all i ∈ ZM :

1. φ >Mφ,
2. Ex[∫ T

0 1φ6Mφ dt
]

= 0,
3. LXφ(t , x , i) + ψi (t , x) 6 0, φ(T , x , i) = 0,
4.
(
LXφ(t , x , i) + ψi (t , x)

)(
φ(t , x , i)−Mφ(t , x , i)

)
= 0.

Conclusion

φ is the optimal value function for the switching problem



Reflected Backward SDE’s

Assume
I X0 = x & ∃(Y x ,Z x ,A) adapted to (FX

t )

E
[

sup
06t6T

|Y x
t |2 +

∫ T

0
‖Z x

t ‖2 dt + |AT |2
]
<∞

and

Y x
t =

∫ T

t
ψi (s,X x

s ) ds + AT − At −
∫ T

t
Zs · dWs,

Y x
t >Mk,i (t ,X x

t ),∫ T

0
(Y x

t −Mk,i (t ,X x
t )) dAt = 0, A0 = 0.

Conclusion: if Y x
0 = Jk (0, x , i) then

Y x
t = Jk (t ,X x

t , i)



System of Reflected Backward SDE’s

QVI for optimal switching: coupled system of reflected BSDE’s for
(Y i )i∈ZM ,

Y i
t =

∫ T

t
ψi (s,Xs) ds + Ai

T − Ai
t −
∫ T

t
Z i

s · dWs,

Y i
t > max

j 6=i
{−Ci,j + Y j

t }.

Existence and uniqueness Directly for M > 2?
M = 2, Hamadène - Jeanblanc use difference process Y 1 − Y 2.



Discrete Time Dynamic Programming

I Time Step ∆t = T/M]

I Time grid S∆ = {m∆t , m = 0,1, . . . ,M]}
I Switches are allowed in S∆

DPP

For t1 = m∆t , t2 = (m + 1)∆t consecutive times

Jk (t1,Xt1 , i) = max
(
E
[∫ t2

t1

ψi (s,Xs) ds + Jk (t2,Xt2 , i)| Ft1

]
,Mk,i (t1,Xt1 )

)
'
(
ψi (t1,Xt1 ) ∆t + E

[
Jk (t2,Xt2 , i)| Ft1

])
∨
(

max
j 6=i

{
−Ci,j + Jk−1(t1,Xt1 , j)

})
.

(1)

Tsitsiklis - van Roy



Longstaff-Schwartz Version
Recall

Jk (m∆t , x , i) = E
[ τk∑

j=m

ψi (j∆t ,Xj∆t ) ∆t +Mk,i (τ k ∆t ,Xτk ∆t )
∣∣Xm∆t = x

]
.

Analogue for τ k :

τ k (m∆t , x`m∆t , i) =

{
τ k ((m + 1)∆t , x`(m+1)∆t , i), no switch;
m, switch,

(2)

and the set of paths on which we switch is given by {` : ̂`(m∆t ; i) 6= i} with

̂`(t1; i) = arg max
j

(
−Ci,j + Jk−1(t1, x`t1 , j), ψi (t1, x`t1 )∆t + Êt1

[
Jk (t2, ·, i)

]
(x`t1 )

)
.

(3)

The full recursive pathwise construction for Jk is

Jk (m∆t , x`m∆t , i) =

{
ψi (m∆t , x`m∆t ) ∆t + Jk ((m + 1)∆t , x`(m+1)∆t , i), no switch;
−Ci,j + Jk−1(m∆t , x`m∆t , j), switch to j .

(4)



Remarks

I Regression used solely to update the optimal stopping times τ k

I Regressed values never stored
I Helps to eliminate potential biases from the regression step.



Algorithm

1. Select a set of basis functions (Bj ) and parameters ∆t ,M],Np, K̄ , δ.

2. Generate Np paths of the driving process: {x`m∆t}m=0,1,...,M] for ` = 1, 2, . . . ,Np

with fixed initial condition x`0 = x0.

3. Initialize the value functions and switching times Jk (T , x`T , i) = 0,
τ k (T , x`T , i) = M] ∀i, k .

4. Moving backward in time with t = m∆t , m = M], . . . , 0 repeat:

I Compute inductively the layers k = 0, 1, . . . , K̄ (evaluate
E
[
Jk (m∆t + ∆t , ·, i)| Fm∆t

]
by linear regression of

{Jk (m∆t + ∆t , x`m∆t+∆t , i)} against {Bj (x`m∆t )}NB

j=1, then add the
reward ψi (m∆t , x`m∆t ) ·∆t)

I Update the switching times and value functions
5. end Loop.

6. Check whether K̄ switches are enough by comparing J K̄ and J K̄−1 (they should
be equal).

Observe that during the main loop we only need to store the buffer
J(t , ·), . . . , J(t + δ, ·); and τ(t , ·), · · · , τ(t + δ, ·).



Convergence

I Bouchard - Touzi
I Gobet - Lemor - Warin



Example 1

dXt = 2(10− Xt ) dt + 2 dWt , X0 = 10,

I Horizon T = 2,
I Switch separation δ = 0.02.
I Two regimes
I Reward rates ψ0(Xt ) = 0 and ψ1(Xt ) = 10(Xt − 10)

I Switching cost C = 0.3.



Value Functions
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Exercise Boundaries
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One Sample
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Example 2: Comparisons

Spark spread Xt = (Pt ,Gt ){
log(Pt ) ∼ OU(κ = 2, θ = log(10), σ = 0.8)

log(Gt ) ∼ OU(κ = 1, θ = log(10), σ = 0.4)

I P0 = 10, G0 = 10, ρ = 0.7
I Agreement Duration [0,0.5]

I Reward functions

ψ0(Xt ) = 0
ψ1(Xt ) = 10(Pt −Gt )

ψ2(Xt ) = 20(Pt − 1.1 Gt )

I Switching costs
Ci,j = 0.25|i − j |



Numerical Comparison

Method Mean Std. Dev Time (m)
Explicit FD 5.931 − 25
LS Regression 5.903 0.165 1.46
TvR Regression 5.276 0.096 1.45
Kernel 5.916 0.074 3.8
Quantization 5.658 0.013 400∗

Table: Benchmark results for Example 2.



Example 3: Dual Plant & Delay


log(Pt ) ∼ OU(κ = 2, θ = log(10), σ = 0.8),

log(Gt ) ∼ OU(κ = 1, θ = log(10), σ = 0.4),

log(Ot ) ∼ OU(κ = 1, θ = log(10), σ = 0.4), .

I P0 = G0 = O0 = 10, ρpg = 0.5,ρpo = 0.3, ρgo = 0
I Agreement Duration T = 1
I Reward functions

ψ0(Xt ) ≡ 0

ψ1(Xt ) = 5 · (Pt −Gt )

ψ2(Xt ) = 5 · (Pt −Ot ),

ψ3(Xt ) = 5 · (3Pt − 4Gt )

ψ4(Xt ) = 5 · (3Pt − 4Ot ).

I Switching costs Ci,j ≡ 0.5
I Delay δ = 0, 0.01, 0.03 (up to ten days)



Numerical Results

Setting No Delay δ = 0.01 δ = 0.03
Base Case 13.22 12.03 10.87
Jumps in Pt 23.33 22.00 20.06

Regimes 0-3 only 11.04 10.63 10.42
Regimes 0-2 only 9.21 9.16 9.14
Gas only: 0,1,3 9.53 7.83 7.24

Table: LS scheme with 400 steps and 16000 paths.

Remarks
I High δ lowers profitability by over 20%.
I Removal of regimes: without regimes 3 and 4 expected profit drops from

13.28 to 9.21.



Example 4: Exhaustible Resources
Include It current level of resources left (It non-increasing process).

J(t , x , c, i) = sup
τ,j

E
[∫ τ

t
ψi (s,Xs) ds + J(τ,Xτ , Iτ , j)− Ci,j |Xt = x , It = c

]
.

(5)

� Resource depletion (boundary condition) J(t , x ,0, i) ≡ 0.
� Not really a control problem It can be computed on the fly

Mining example of Brennan and Schwartz varying the initial
copper price X0

Method/ X0 0.3 0.4 0.5 0.6 0.7 0.8
BS ’85 1.45 4.35 8.11 12.49 17.38 22.68

PDE FD 1.42 4.21 8.04 12.43 17.21 22.62
RMC 1.33 4.41 8.15 12.44 17.52 22.41



Extension to Gas Storage & Hydro Plants

I Accomodate outages
I Include switch separation as a form of delay
I Was extended (R.C. - M. Ludkovski) to treat

I Gas Storage
I Hydro Plants

I More (rigorous) Mathematical Analysis
I Porchet-Touzi (BSDEs)
I Forsythe-Ware (Numeric scheme to solve HJB QVI)
I Bernhart-Pham (reflected BSDEs)



What Else Needs to be Done

I Iimprove delays
I Provide convergence analysis
I Finer analysis of exercise boundaries
I Duality upper bounds

I we have approximate value functions
I we have approximate exercise boundaries
I so we have lower bounds
I need to extend Meinshausen-Hambly to optimal switching set-up



Financial Hedging

Extending the Analysis Adding Access to a Financial Market

Porchet-Touzi

I Same (Markov) factor process Xt = (X (1)
t ,X (2)

t , · · · ) as before
I Same plant characteristics as before
I Same operation control u = (ξ, T ) as before
I Same maturity T (end of tolling agreement) as before
I Reward for operating the plant

H(x , i ,T ; u)(ω)
M
=

∫ T

0
ψus (s,Xs) ds −

∑
τk<T

C(uτk−,uτk )



Hedging/Investing in Financial Market

Access to a financial market (possibly incomplete)
I y initial wealth
I πt investment portfolio
I Y y,π

T corresponding terminal wealth from investment
I Utility function U(y) = −e−γy

I Maximum expected utility

v(y) = sup
π

E{U(Y y,π
T )}



Indifference Pricing

I With the power plant (tolling contract)

V (x , i , y) = sup
u,π

E{U(Y y,π
T + H(x , i ,T ; u))}

INDIFFERENCE PRICING

p = p(x , i , y) = sup{p ≥ 0; V (x , i , y − p) ≥ v(y)}

Analysis of
I BSDE formulation
I PDE formulation



Implied Correlation

Given market prices of
I Options on individual underlying interests
I Spread options

INFER / IMPLY a (Pearson) correlation and
I Smiles
I Skews

in the spirit of implied volatility

Major Difficulty:
I Data NOT available !
I Need to rely on trader’s observations / speculations



Implied Correlation

R.C. - Y. Sun

Given market prices of
I Options on individual underlying interests
I Spread options

INFER / IMPLY a (Pearson) correlation and
I Smiles
I Skews

in the spirit of implied volatility

Major Difficulty:
I Data NOT available !
I Need to rely on trader’s observations / speculations



Clean Spark Spread

Given
I P(t) sale price of 1 MWhr of electricity
I G(t) price of 1 MBtu natural gas
I A(t) price of an allowance for 1 ton of CO2 equivalent

compute
e−rTE{(P(T )− Heff G(T )− eGA(T ))+}

where eG is the emission coefficient of the technology.

Requires
I Joint model for {(P(t),G(t),A(t)}0≤t≤T



Clean Spark Spread

R.C. - M. Coulon - D. Schwarz

Given
I P(t) sale price of 1 MWhr of electricity
I G(t) price of 1 MBtu natural gas
I A(t) price of an allowance for 1 ton of CO2 equivalent

compute
e−rTE{(P(T )− Heff G(T )− eGA(T ))+}

where eG is the emission coefficient of the technology.

Requires
I Joint model for {(P(t),G(t),A(t)}0≤t≤T






