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Optimal Execution Set-Up

Goal: sell xo > 0 shares by time T >0
X = (Xt)o<i<T execution strategy
» X; position (nb of shares held) attime t. Xo = xo, X7 =0
» Assume X; absolutely continuous (differentiable)
| 4

P, mid-price (unaffected price), P; transaction price, /; price
impact

v

P =P+
e.g. Linear Impact A-C model:
Iy = ~v[Xe — Xo] + AX;

» Objective: Maximize form of revenue at time T
Revenue R(X) from the execution strategy X

R - | "X Pt



Specific Challenges

» First generation: Price impact models (e.g. Aimgren - Chriss)
» Risk Neutral framework (maximize ER(X)) versus utility criteria
» More complex portfolios (including options)
» Robustness and performance constraints (e.g. slippage or tracking
market VWAP)

» Second generation: Simplified LOB models

» Simple liquidation problem
» performance constraints (e.g. slippage or tracking market VWAP)
and using both market and limit orders



Optimal Execution Problem in A-C Model

RO = [ "X Pt

T T
—/ X,Ptdt—/ Xilrdt
0 0

.
= xoPy+ / X;dP; — C(X)
0

with C(X) = [/ X:hat. Interpretation
» xoP, (initial) face value of the portfolio to liquidate

> fOT X:dP; volatility risk for selling according to X instead of
immediately!

» C(X) execution costs due to market impact



Special Case: the Linear A-C Model

T T
R(X) :x0150+/ Xtdl:",—)\/ X2dt — %xg
0 0

Easy Case: Maximizing E[R(X)]
T .
E[R(X)] = xoPo — %xg —\E / X2at
0

Jensen’s inequality & constraints Xy = X and X7 = 0 imply

_X
7

trade at a constant rate indpdt of volatility | Bertsimas - Lo (1998)

X; =



More Realistic Problem

Almgren - Chriss propose to maximize
E[R(X)] — avar[R(X)]
(« risk aversion parameter — late trades carry volatility risk)

For DETERMINISTIC trading strategies X

v T [ ao? :
E[R(X)] - avar[R(X)] = xoPo - 3§ - / (2)(,2 + )\Xf) dt
0

maximized by (standard variational calculus with constraints)

sinh k(T — 1) for B a;tz

sinh kT "=V ax
For RANDOM (adapted) trading strategies X, more difficult as
Mean-Variance not amenable to dynamic programming

Xt* = Xo



Maximizing Expected Utility

Choose U : R — R increasing concave and
maximize E[U(R(X7)]
Stochastic control formulation over a state process (X;, Rt)o<i<T-

v(t,x,r)= sup E[u(R7)|X; =x,Rr=r]
£e=(tx)

value function, where =(¢, x) is the set of admissible controls
T T
{5 = (&s)i<s<T: progressively measurable, / §§ds < 00, / £sds = x}
t t
¢ g -
Xs:X§:X*/§udUa Xs=—&s, Xr=x
t
and (choosing P; = o W)

S S
Rs = R: = R+o / Xy dW,—\ / €2du, dRs = oXsdWs—\¢2ds, Ry=r
t t



Finite Fuel Problem

Non Standard Stochastic Control problem because of the

constraints .
0

» For any admissible ¢, [v(t, Xté, F?té)]ogg is a super-martingale

Still, one expects

» For some admissible £*, [v(t, Xté , Ft’té )o<i<T is a true martingale

If v is smooth, and we set V; = v(t, X,é, Fff*), [t6’s formula gives
2
av, = <c‘),v(t7 X, Re) + %af,v(t, X, Ry

—XE2Orv(t, Xi, Rr) — &0xv(t, X, Ff,)) dt
+ oOxVv(t, X;, Ri)dW;



Hamilton-Jabobi-Bellman Equation

One expects that v solves the HJB equation (nonlinear PDE)

2
g .
OV + ?8§Xv - ggﬂ;[gﬁarv +&0xv] =0

in some sense, with the (non-standard) terminal condition

Ulr) iftx=Xo
—oo otherwise

v(T,x,r):{



Solution for CARA Exponential Utility

For u(x) = —e~** and « as before

V(t % I’) _ efaH»xga)mcoth K(T—1)
) ) -

solves the HJB equation and the unique maximizer is given by the

DETERMINISTIC
coshk(T —t)

R &
Schied-Schoneborn-Tehranchi (2010)

» Optimal solution same as in Mean - Variance case

» Schied-Schoneborn-Tehranchi’s trick shows that optimal
trading strategy is generically deterministic for exponential
utility

» Open problem for general utility function

» Partial results in infinite horizon versions



Shortcomings

» Optimal strategies

» are DETERMINISTIC

» do not react to price changes

» are time inconsistent

» are counter-intuitive in some cases
» Computations require

» solving nonlinear PDEs
» with singular terminal conditions



Recent Developments

Gatheral - Schied (2011), Schied (2012)
» In the spirit of Aimgren-Chriss mean-variance criterion, maximize

E {R(X) - /O TX,Ptdt]

» The solution happens to be ROBUST
» P,canbea semi-martingale, optimal solution does not change



Recent Developments
Almgren - Li (2012), Hedging a large option position

a(t, f’f) price at time t of the option (from Black-Scholes theory)

v

v

Revenue

T T .
R(X) =9(T,Pr)+ XrPr — / P Xidt — X / XCdt
0 0

v

Using 1té’s formula and the fact that g solves a PDE,

T T . . .
R(K) = Fl'o+/ [X,Jraxg(t, Pt)]dt*/\/ thdt Ro = X0P0+g(0, Po)
0 0

v

Introduce Y; = X; + dxg(t, P:) for hedging correction

dP; = v Xdt + ocdW;
dYy = [1 +~d29(t, P)|dt + 0d2,9(t, P)dW;

v

Minimize
~ T 0'2 . .
E |:G(PT7 Yr) + / (? YE — X Yi+ )\th) df}
0

Explicit solution in some cases (e.g. 92,9(t, x) = ¢, G quadratic)



Transient Price Impact

Flexible price impact model
» Resilience function G : (0, c0) — (0, co) measurable bounded
» Admissible X = (X;)o<:<7 cadlag, adapted, bounded variation
» Transaction price

t
P,:I5t+/ G(t — 5) dXs
0

» Expected cost of strategy X given by
—XoPo + E[C(X)]

where

cx)= [ [ @it - shaxeax



Transient Price Impact: Some Results

» No Price Manipulation in the sense of Huberman - Stanzl
(2004) if G(| - |) positive definite

» Optimal strategies (if any) are deterministic
» Existence of an optimal X* < solvability of a Fredholm equation
» Exponential Resilience G(t) = e=*!

. X0
» X" purely discrete measure on [0, T] when G(t) = (1 — pt)™ with
p>0
> dX; = [5o(dt) +or(dt)]ifp<1/T
> dX{ = —7% Y1 diryn(dt) if p < n/T for some integer n > 1

Obizhaeva - Wang (2005), Gatheral - Schied (2011)



Optimal Execution in a LOB Model

» Unaffected price P; (e.g. P; = Py + o W;)
» Trader places only market sell orders
» Placing buy orders is not optimal

» Bid side of LOB given by a function f : R — (0, 00) s.t.
Jo© f(x)dx = co. At any time t

b
/ f(x)dx = bids available in the price range [P; + a, P; + b]
a
» The shape function f does not depend upon t or P,

Obizhaeva - Wang (2006), Alfonsi - Schied - Schulz
(2011),Predoiu - Shaikhet - Shreve (2011)



Optimal Execution in a LOB Model (cont.)

» Price Impact process D = (D;)o<i<7 adapted, cadlag

At time t a market order of size A moves the price from P, + D,
to P + D; where

Dy
/ f(x)dx =A
Di—

» Volume Impact Q; = F(D;) where F(x) = fo
» LOB Resilience: Q; and D; decrease between trades, e.g.

adQ; = —pQydt, for some p > 0

» Attime ¢, a sell of size A will bring

DRﬁ+nnnw

D

D,
AR+/'mHm
Dy

- Qt -
AP;-‘r w(X)dX:APt—‘r\U(Qt)—\U(Qtf)
Qi

ify=F'and ¥(x) = [; ¢



Stochastic Control Formulation

Holding trajectories / Trading strategies

=(t,x) = {(Es)tgsgr . cadlag, adapted, bounded variation, =; = x}

S
Zac(t, X) = {(Es)tgng DS = x+/ &,dr for (£s)i<s<7 bounded adapted }
t

aXi = —d=;
dOt = —dEt — pOtdt

dFl't = —poﬂ/}(at)dt — UEtth



Value Function Approach

State space process Z; = (X;, Q;, R;), value function
v(t,x,q,r) = v(t, z) = supec=,x)E[U(Rr — V(Qr)]

First properties
> U(r—V(g+r)) <v(tx,q,r) < U(r—Vv(q))
» v(t,x,q,r)=U(r—V(g+r))forx=0and t=T
» Functional approximation arguments imply

v(t,x,q,r) = sup E[U(Rr —Vv(Qr)]
EEZ(txX)

= sup E[U(Rr —V(Qr)]
EE€Z4e(t,x)

= sup E[U(Rr —V¥(Qr)]

£e=4(t,x)



QVI Formulation

As before
» Assume v smooth and apply It6’s formula to v(t, X:, Q:, R;)
> v(t, Xi, Qt, Ry) is a super-martingale for a typical £ implies

6,v+ zaf,v—pqqp( )Orv — pqdgv > 0
> OV —0qv >0
QVI (Quasi Variational Inequality) instead of HJB nonlinear PDE
2
min[o:v + %x28,2,v — pqu(q)0rV — pQ0qVv,0xV — Oqv] =0

with terminal condition v(T, x,q,r) = U(r — V(x + q))

Existence and Uniqueness of a viscosity solution
R.C.-H. Luo (2012)



Special Cases
Assuming a flat LOB f(x) = ¢ and U(c) = x

(1 - e ) (x+ge ps)’

v(t.x,q,r) =r - 2c T+ p(T—t—9)

with s = (T —t) Ainflu e [0, T]; (1 + p(T —t—u))ge " < x}
Still with f(x) = ¢ but for a CARA utility U(x) = —e~ ¥

«

v(t,x,q,r) = —exp |—ar— c

(aco®xx®+qP(1—e %)+ o(t+5)(x+ge *°)?

where ¢ is the solution of the Ricatti’s equation

2

SO — P 2
o(t) = 2p+a<:a2“0(t) +

B 2paca?®
2p + aco?’

2paco?
2p + aco?

w(t) o(T)=1

and
s=(T -t Ainf{u [0, T]; (aco?® + pp(t + u))x > p(2 — @(t + u))ge "}



