Optimal Execution Tracking a Benchmark

René Carmona

Bendheim Center for Finance Department of Operations Research & Financial Engineering Princeton University

Princeton, June 20, 2013

(日)

Optimal Execution Market Set-Up

R.C. - M. Li

Goal: sell v > 0 shares by time T > 0 (finite horizon)

► *P_t* **mid-price** (unaffected price),

$$P_t = P_0 + \int_0^t \sigma(u) dW_u, \qquad 0 \le t \le T,$$

- V(t) volume traded in the market up to (and including) time t
- Market **VWAP** = $\frac{1}{V} \int_0^T P_t dV(t)$
- Fraction of shares still to be executed in the market

$$X(t) = \frac{V - V(t)}{V} = \frac{T - t}{T}$$

(deterministic V(t) used to change clock). Convenient simplification !

Broker Problem

 v_t volume executed by the broker up to time t

$$x_t = \frac{v - v_t}{v}$$

fraction of shares left to be executed by the broker at time t

$$x_t = 1 - \ell_t - m_t$$

Where

- *l*_t cumulative volume executed through limit orders
- *m_t* cumulative volume executed through market orders
- Broker average liquidation price **vwap** = $\frac{1}{v} \int_0^T \left(P_t \frac{S}{2} \right) dm_t + \left(P_t + \frac{S}{2} \right) d\ell_t$

Objective: Minimize discrepancy between vwap and VWAP

Naive Model for the Dynamics of the Order Book

Controls of the broker:

- *(m_t)*_{0≤t≤T} non-decreasing adapted process
- ► (L_t)_{0<t<T} predictable process

$$\ell_t = \int_0^t \int_{[0,1]} y \wedge L_u \ \mu(du, dy) = \sum_{i=1}^{N_t} Y_i \wedge L_{\tau_i}$$

where

 $\mu(du, dy)$

point measure (Poisson) compensator $\nu_t(du)\nu(t)dt$.

$$x_t = 1 - \int_0^t \int_{[0,1]} y \wedge L_u \ \mu(du, dy) - m_t = 1 - \sum_{i=1}^{N_t} Y_i \wedge L_{\tau_i} - m_t$$

So the dynamics of x_t are given by

$$dx_t = -\int_{[0,1]} y \wedge L_t \ \mu(dt, dy) - dm_t,$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

with initial condition $x_{0-} = 1$.

Optimization Problem

Goal of the broker

$$\sup_{\underline{L},\underline{m})\in\mathcal{A}}\mathbb{E}\Big[U(\mathsf{vwap}-\mathsf{VWAP})\Big],$$

For the CARA exponential utility, approximately

$$\inf_{(\underline{L},\underline{m})\in\mathcal{A}} \mathbb{E}\bigg[\exp\bigg(-\gamma\left(\frac{S}{2}+\int_{0}^{T}[x_{u}^{L,m}-X(u)]dP_{u}-S\,dm_{u}\bigg)\bigg],$$

We will work with a Mean - Variance criterion

$$\inf_{(\underline{L},\underline{m})\in\mathcal{A}}\mathbb{E}\bigg[\int_0^T\gamma\frac{\sigma(u)^2}{2}[x_u^{L,m}-X(u)]^2du+S\,m_T\bigg],$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

S spread

• X(u) = (T - u)/T fraction of shares left to be executed in the market.

Stochastic Control Problem

Singular control problem of a pure jump process

Value function

$$J(t,x) = \inf_{(\underline{L},\underline{m})\in\mathcal{A}(t,x)} J(t,x,\underline{L},\underline{m})$$

where

$$J(t, x, \underline{L}, \underline{m}) = \mathbb{E}\bigg[\int_t^T \gamma \frac{\sigma(u)^2}{2} [x_u^{L,m} - X(u)]^2 du + Sm_T\bigg].$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

J(t, x) is non-decreasing in t for $x \in [0, 1]$ fixed. $(\mathcal{A}(t_2, x) \subset \mathcal{A}(t_1, x)$ whenever $t_1 \leq t_2$)

Tough Luck: Problem is NOT Convex

The set \mathcal{A} of admissible controls is not convex.

For any number $\ell \in (0, 1)$, the two controls $(\underline{L}^1, \underline{m}^1)$ and $(\underline{L}^2, \underline{m}^2)$ by:

$$L_t^1 = \mathbf{1}_{\{t \le \tau_1\}} + \sum_{k=2}^{\infty} x_{\tau_{k-1}} \mathbf{1}_{\{\tau_{k-1} < t \le \tau_k\}}, \quad \text{and} \quad m_t^1 = x_{T-1} \mathbf{1}_{\{T \le t\}},$$

and:

$$L_t^2 = \frac{\ell}{2} \mathbf{1}_{\{t \le \tau_1\}} + \sum_{k=2}^{\infty} x_{\tau_{k-1}} \mathbf{1}_{\{\tau_{k-1} < t \le \tau_k\}}, \quad \text{and} \quad m_t^2 = x_{T-} \mathbf{1}_{\{T \le t\}},$$

are admissible, but the pair $(\underline{L}, \underline{m})$ defined by

$$L_t = \frac{1}{2}(L_t^1 + L_t^2),$$
 and $m_t = \frac{1}{2}(m_t^1 + m_t^2),$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

IS NOT

Closest Related Works

- Poisson random measure $\mu(dt, dy)$ for claim sizes Y_t
- insurer pays $Y_t \wedge \alpha_t$ up to a retention level α_t
- **re-insurer** covers the excess $(Y_t \alpha_t)^+$

Wealth process of the Insurance Company

$$X_t = x + \int_0^t p(lpha_s) ds - \int_0^t y \wedge lpha_s \mu(ds, dy) - \int_0^t dD_s$$

- $p(\alpha)$ insurer net premium (after paying the reinsurance company)
- D_t cumulative dividends paid up to (and including) time t

$$\sup_{(\alpha_t)_t,(D_t)_t} \mathbb{E}\bigg[\int_0^\tau e^{-ru} dD_u\bigg]$$

• time of bankruptcy $\tau = \inf\{t \ge 0; X_t \le 0\}$

Jeanblanc-Shyryaev (1995) optimal dividend distribution for Wiener process, Asmunssen- Hjgaard-Taksar (1998) optimal dividend distribution for diffusion, Mnif-Sulem (2005) prove existence and uniqueness of a viscosity solution, Goreac (2008) multiple contracts

Similarities & Differences

Similarities

- $\alpha_t \leftrightarrow$ standing limit orders L_t
- $D_t \leftrightarrow$ cumulative market orders m_t

Differences

- We work in a finite horizon (PDEs instead of ODEs)
- We use a Mean Variance criterion
- We exhibit a classical solution (as opposed to a viscosity solution)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- We derive a system of ODEs identifying
 - the value function
 - the optimal stratagy

Technical Assumptions

 $\nu_t(dy)\nu(t)dt$ intensity of Poisson measure $\mu(dt, dy)$ with $\nu_t([0, 1]) = 1$.

- $\int_0^T \sigma(t)^2 dt < \infty$
- ► $\sup_{0 \le t \le T} \nu(t) < \infty$
- $t \hookrightarrow \frac{\sigma(t)^2}{\nu(t)}(X(t) x)$ is increasing for each $x \in [0, 1]$
- $t \hookrightarrow \frac{1}{\nu(t)} \nu_t(\cdot)$ is decreasing (in the sense of *stochastic dominance*)

(日) (日) (日) (日) (日) (日) (日)

Hamilton-Jabobi-Bellman Equation (QVI)

 $\min\left[[A\phi](t,x),\partial_t\phi(t,x)+[B\phi](t,x)\right]=0.$

where

$$[A\phi](t,x) = S - \partial_x \phi(t,x)$$

and

$$[B\phi](t,x) = \gamma \frac{\sigma(t)^2}{2} [X(t) - x]^2 + \nu(t) \inf_{0 \le L \le x} \int_{[0,1]} [\phi(t, x - y \land L) - \phi(t, x)] \nu_t(dy)$$

with terminal condition

$$\phi(T-,x) = Sx$$
, (notice that $\phi(T,x) = 0$)

and boundary condition:

$$\phi(t,0) = \int_t^T \frac{\gamma \sigma(u)^2}{2} X(u) du.$$

▲□▶▲圖▶▲≣▶▲≣▶ = ● のへで

Classical Solution

Theorem

The value function is the unique solution of

$$-\dot{J}(t,x) = \min\left[\inf_{0 \le y \le x} -\dot{J}(t,x), \\ \gamma \frac{\sigma(t)^2}{2} [X(t) - x]^2 + \nu(t) \int_{[0,1]} [J(t,(x-y) \lor \tilde{L}(t,y)) - J(t,x)] \nu_t(dy)\right]$$

with

$$J(t,0) = \gamma \int_0^t \frac{\sigma(u)^2}{2} X(u)^2 du$$
, and $J(T,x) = Sx$

where

$$\tilde{L}(t,x) = \arg\min_{0 \le y \le x} J(t,y)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▶ J is C^{1,1}

- $x \hookrightarrow J(t, x)$ convex for *t* fixed
- $t \hookrightarrow J(t, x)$ non-decreasing for x fixed

►
$$\partial_x \dot{J}(t, x) \ge 0$$

Free Boundary (No-Trade Region)

$$[0,T]\times[0,1]=A\cup B\cup C$$

with

•
$$A = \{(t, x); \partial_x J(t, x) < 0\} = \{(t, x); 0 \le t < \tau_{\ell}(x)\}$$

►
$$B = \{(t, x); 0 \le \partial_x J(t, x) \le S\} = \{(t, x); \tau_\ell(x) \le t \le \tau_m(x)\}$$

•
$$C = \{(t, x); \partial_x J(t, x) = S\} = \{(t, x); \tau_m(x) \le t\}$$

where

•
$$\tau_{\ell}(x) = \inf\{t > 0; \ \partial_x J(t, x) \ge 0\}$$

•
$$\tau_m(x) = \inf\{t > 0; \ \partial_x J(t, x) \ge S\}$$

 $\tau_{\ell}(x) \leq T(1-x) \leq \tau_m(x)$

・ロト・(四ト・(日下・(日下・))への)

Optimal Trading Strategy

- If $t > \tau_m(x_t)$ i.e. $(t, x_t) \in C$ (never happens)
 - place market orders
 - $\Delta m_t > 0$ (just enough to get into *B*)
- If $t = \tau_m(x_t)$ i.e. $(t, x_t) \in \partial C$
 - place market orders at a rate $dm_t = -\dot{\tau}_m(x_t)dt$

(just enough so not to exit B)

• If $\tau_{\ell}(x_t) \leq t < \tau_m(x_t)$ i.e. $(t, x_t) \in B \cup \partial A$

• place $L_t = x_t - \tilde{L}(t)$ limit orders

(as much as possible without getting ahead too much)

A D F A 同 F A E F A E F A Q A

▶ If $t < \tau_{\ell}(x_t)$ i.e. $(t, x_t) \in A$ (never happens)

no trade

Special Case I: Large Fill Distribution

 $\nu_t(dy) = \delta_1(dy)$: the crossings, when they occur, fill all the requested limit orders.

Theorem

The value function solves

$$-\dot{J}(t,x) = \min\left[\inf_{0 \le y \le x} -\dot{J}(t,x), \gamma \frac{\sigma(t)^2}{2} [X(t) - x]^2 + \nu(t) [J(t,\tilde{L}(t,x)) - J(t,x)]\right]$$

with

$$J(t,0) = \gamma \int_0^t \frac{\sigma(u)^2}{2} X(u)^2 du, \quad \text{and} \quad J(T,x) = Sx$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Special Case II: Arrival Price Benchmark

This specific model corresponds to the case $X(\tau) = 0$ for all $\tau \in [0, T]$.

Theorem

The value function is the unique solution of

$$-\dot{J}(t,x) = \min\left[\inf_{0 \le y \le x} -\dot{J}(t,x), \gamma \frac{\sigma(t)^2}{2}x^2 + \nu(t) \int_{[0,1]} [J(t,(x-y)^+) - J(t,x)]\nu_t(dy)\right]$$

with

$$J(t,0) = \gamma \int_0^t \frac{\sigma(u)^2}{2} X(u)^2 du, \quad \text{and} \quad J(T,x) = Sx$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Special Case III: Stationary Approximation

When (t, x) is far enough from the corners (0, 1) and (T, 0), *J* looks like a function of x - X(t) (deviation from the benchmark).

Stationarity assumption

- $\nu_1(dt) = \lambda dt$ for some constant $\lambda > 0$
- $\nu_t(dy) = \nu(dy)$ for all $t \in [0, T]$.
- $\sigma(t) = \sigma$ for all $t \in [0, T]$

Look for an approximation of the form

$$J(t,x) \approx \alpha + \beta x + w(x - X(t))$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

for some function w to be determined.

True in the Large Fill case (use the Lambert function)

The Discrete Case and Approximation Results

- The integer v denotes the quantity of shares (expressed as a number of lots) the broker has to sell by time T,
- Trades can only be in multiples of one lot.
- $t \hookrightarrow x_t$ looks like a staircase starting from $x_0 = 1$ and ending at $x_T = 0$.
- ► In units of v lots, the measures $v_t(dy)$ are supported by the grid $\{1/v, 2/v, \cdots, (v-1)/v, 1\}$
- ▶ The process $\underline{x} = (x_t)_{0 \le t \le T}$. and the controls $\underline{L} = (L_t)_{0 \le t \le T}$ and $\underline{m} = (m_t)_{0 \le t \le T}$ take values in the grid $\mathcal{I}_{\nu} := \{0, 1/\nu, \cdots, (\nu 1)/\nu, 1\}$.
- The sets of admissible controls are defined accordingly.
- ► Identify functions φ on the grid \mathcal{I}_v with finite sequence $(\varphi_i)_{0 \le i \le v}$ where $\varphi_i = \varphi(i/v)$.
- ▶ Denote by I_{φ} the piecewise linear continuous function $[0, 1] \ni x \hookrightarrow [I_{\varphi}](x)$ which coincides with φ on the grid \mathcal{I}_{v} and which is linear on each interval [i/v, (i+1)/v].
- (φ_i)_{0≤i≤v} is said to be convex if Iφ is convex
- For any integers v and v', and functions φ and φ' on the grids I_v and I_{v'}, we have:

$$\|l\varphi - l\varphi'\|_{\infty} = \sup_{x \in [0,1]} |[l\varphi](x) - [l\varphi'](x)| = \sup_{x \in \mathcal{I}_{V} \cup \mathcal{I}_{V'}} |[l\varphi](x) - [l\varphi'](x)|.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Characterization of the Solution

The operators A and B become

$$[\mathbf{A}\varphi]_{i}(t) = \mathbf{S} - \varphi_{i}(t) + \varphi_{i-1}(t), \qquad i = 1, \cdots, v,$$

and

$$[B\varphi]_i(t) = \gamma \frac{\sigma(t)^2}{2} [X(t) - i/\nu]^2 + \nu(t) \min_{0 \le \ell \le i} \sum_{j=1}^{\nu} [\varphi_{i-j \land \ell}(t) - \varphi_i(t)] \nu_t(j/\nu)$$

so the HJB QVI remains the same:

$$\min\left[[A\varphi]_i(t), \dot{\varphi}_i(t) + [B\varphi]_i(t)\right] = 0, \qquad i = 1, \cdots, v.$$

As before we have existence and uniqueness of a C^1 functions of $t \in [0, T]$ satisfying

$$\varphi_i(t) = Si/v + \int_t^T \min_{0 \le j \le i} [B\varphi]_i(u) du, \quad i = 0, 1, \cdots, v.$$

Interpreting the solution φ as a function on $[0, T] \times \mathcal{I}_{v}$ defined by $\varphi(t, i/v) = \varphi_{i}(t)$, since $\varphi_{i}(T) = Si/v$ and:

$$\dot{\varphi}_i(t) = -\min_{0 \le j \le i} [B\varphi]_j(t)$$

we get

$$\dot{\varphi}_i(t) + [B\varphi]_i(t) \ge 0, \qquad i = 0, 1, \cdots, v$$

and

$$\dot{\varphi}_i(t) = \max_{0 \leq j \leq i} \partial_t \varphi_j(t)$$

so that $i \hookrightarrow \dot{\varphi}_i(t)$ is non-decreasing and

$$-\dot{\varphi}_i(t) = \min\left[\min_{0 \le j \le i} -\dot{\varphi}_j(t), [B\varphi]_i(t)\right].$$

Characterization of the Value Function in the Discrete Case

Theorem

The value function J of the problem can be identified to the sequence $(J_i)_{0 \le 1 \le v}$ of C^1 functions of $t \in [0, T]$ satisfying:

$$J_0(t) = \int_t^T \frac{\gamma \sigma(u)^2}{2} X(u)^2, \qquad J_i(T) = Si/v, \quad i = 0, 1, \cdots, v$$
$$\partial_t J_i(t) = \min \left[\partial_t J_{i-1}(t), \\ \nu(t) \sum_{j=1}^v [\varphi_{(i-j)} \lor \tilde{\ell}_i(t)(t) - \varphi_i(t)] \nu_t(j) + \frac{\gamma \sigma(t)^2}{2} [X(t) - i/v]^2 \right]$$

where

$$\tilde{\ell}_i(t) = \min\{\ell; \varphi_\ell(t) = \min_{0 \le j \le i} \varphi_j(t)\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Optimal Solution in the Discrete Case