Optimal Execution Tracking a Benchmark

René Carmona
Bendheim Center for Finance
Department of Operations Research \& Financial Engineering Princeton University

Princeton, June 20, 2013

Optimal Execution Market Set-Up

R.C. - M. Li

Goal: sell $v>0$ shares by time $T>0$ (finite horizon)

- P_{t} mid-price (unaffected price),

$$
P_{t}=P_{0}+\int_{0}^{t} \sigma(u) d W_{u}, \quad 0 \leq t \leq T
$$

- $V(t)$ volume traded in the market up to (and including) time t
- Market VWAP $=\frac{1}{V} \int_{0}^{T} P_{t} d V(t)$
- Fraction of shares still to be executed in the market

$$
X(t)=\frac{V-V(t)}{V}=\frac{T-t}{T}
$$

(deterministic $V(t)$ used to change clock). Convenient simplification!

Broker Problem

v_{t} volume executed by the broker up to time t

$$
x_{t}=\frac{v-v_{t}}{v}
$$

fraction of shares left to be executed by the broker at time t

$$
x_{t}=1-\ell_{t}-m_{t}
$$

Where

- ℓ_{t} cumulative volume executed through limit orders
- m_{t} cumulative volume executed through market orders
- Broker average liquidation price vwap $=\frac{1}{v} \int_{0}^{T}\left(P_{t}-\frac{S}{2}\right) d m_{t}+\left(P_{t}+\frac{S}{2}\right) d \ell_{t}$
- Objective: Minimize discrepancy between vwap and VWAP

Naive Model for the Dynamics of the Order Book

Controls of the broker:

- $\left(m_{t}\right)_{0 \leq t \leq T}$ non-decreasing adapted process
- $\left(L_{t}\right)_{0 \leq t \leq T}$ predictable process

$$
\ell_{t}=\int_{0}^{t} \int_{[0,1]} y \wedge L_{u} \mu(d u, d y)=\sum_{i=1}^{N_{t}} Y_{i} \wedge L_{\tau_{i}}
$$

where

$$
\mu(d u, d y)
$$

point measure (Poisson) compensator $\nu_{t}(d u) \nu(t) d t$.

$$
x_{t}=1-\int_{0}^{t} \int_{[0,1]} y \wedge L_{u} \mu(d u, d y)-m_{t}=1-\sum_{i=1}^{N_{t}} Y_{i} \wedge L_{\tau_{i}}-m_{t}
$$

So the dynamics of x_{t} are given by

$$
d x_{t}=-\int_{[0,1]} y \wedge L_{t} \mu(d t, d y)-d m_{t}
$$

with initial condition $x_{0-}=1$.

Optimization Problem

Goal of the broker

$$
\sup _{(L, \underline{m}) \in \mathcal{A}} \mathbb{E}[U(\text { vwap - VWAP })]
$$

For the CARA exponential utility, approximately

$$
\inf _{(L, \underline{m}) \in \mathcal{A}} \mathbb{E}\left[\exp \left(-\gamma\left(\frac{S}{2}+\int_{0}^{T}\left[x_{u}^{L, m}-X(u)\right] d P_{u}-S d m_{u}\right)\right]\right.
$$

We will work with a Mean - Variance criterion

$$
\inf _{(L, m) \in \mathcal{A}} \mathbb{E}\left[\int_{0}^{T} \gamma \frac{\sigma(u)^{2}}{2}\left[x_{u}^{L, m}-X(u)\right]^{2} d u+S m_{T}\right]
$$

- S spread
- X(u) $=(T-u) / T$ fraction of shares left to be executed in the market.

Stochastic Control Problem

Singular control problem of a pure jump process
Value function

$$
J(t, x)=\inf _{(\underline{L}, \underline{m}) \in \mathcal{A}(t, x)} J(t, x, \underline{L}, \underline{m})
$$

where

$$
J(t, x, \underline{L}, \underline{m})=\mathbb{E}\left[\int_{t}^{T} \gamma \frac{\sigma(u)^{2}}{2}\left[x_{u}^{L, m}-X(u)\right]^{2} d u+S m_{T}\right]
$$

$J(t, x)$ is non-decreasing in t for $x \in[0,1]$ fixed. $\left(\mathcal{A}\left(t_{2}, x\right) \subset \mathcal{A}\left(t_{1}, x\right)\right.$ whenever $\left.t_{1} \leq t_{2}\right)$

Tough Luck: Problem is NOT Convex

The set \mathcal{A} of admissible controls is not convex.
For any number $\ell \in(0,1)$, the two controls $\left(\underline{L}^{1}, \underline{m}^{1}\right)$ and $\left(\underline{L}^{2}, \underline{m}^{2}\right)$ by:

$$
L_{t}^{1}=\mathbf{1}_{\left\{t \leq \tau_{1}\right\}}+\sum_{k=2}^{\infty} x_{\tau_{k-1}} \mathbf{1}_{\left\{\tau_{k-1}<t \leq \tau_{k}\right\}}, \quad \text { and } \quad m_{t}^{1}=x_{T-} \mathbf{1}_{\{T \leq t\}}
$$

and:

$$
L_{t}^{2}=\frac{\ell}{2} \mathbf{1}_{\left\{t \leq \tau_{1}\right\}}+\sum_{k=2}^{\infty} x_{\tau_{k-1}} \mathbf{1}_{\left\{\tau_{k-1}<t \leq \tau_{k}\right\}}, \quad \text { and } \quad m_{t}^{2}=x_{T-} \mathbf{1}_{\{T \leq t\}}
$$

are admissible, but the pair $(\underline{L}, \underline{m})$ defined by

$$
L_{t}=\frac{1}{2}\left(L_{t}^{1}+L_{t}^{2}\right), \quad \text { and } \quad m_{t}=\frac{1}{2}\left(m_{t}^{1}+m_{t}^{2}\right)
$$

IS NOT

Closest Related Works

- Poisson random measure $\mu(d t, d y)$ for claim sizes Y_{t}
- insurer pays $Y_{t} \wedge \alpha_{t}$ up to a retention level α_{t}
- re-insurer covers the excess $\left(Y_{t}-\alpha_{t}\right)^{+}$

Wealth process of the Insurance Company

$$
X_{t}=x+\int_{0}^{t} p\left(\alpha_{s}\right) d s-\int_{0}^{t} y \wedge \alpha_{s} \mu(d s, d y)-\int_{0}^{t} d D_{s}
$$

- $p(\alpha)$ insurer net premium (after paying the reinsurance company)
- D_{t} cumulative dividends paid up to (and including) time t

$$
\sup _{\left(\alpha_{t}\right)_{t},\left(D_{t}\right)_{t}} \mathbb{E}\left[\int_{0}^{\tau} e^{-r u} d D_{u}\right]
$$

- time of bankruptcy $\tau=\inf \left\{t \geq 0 ; X_{t} \leq 0\right\}$

Jeanblanc-Shyryaev (1995) optimal dividend distribution for Wiener process, Asmunssen- Hjgaard-Taksar (1998) optimal dividend distribution for diffusion, Mnif-Sulem (2005) prove existence and uniqueness of a viscosity solution, Goreac (2008) multiple contracts

Similarities \& Differences

Similarities

- $\alpha_{t} \leftrightarrow$ standing limit orders L_{t}
- $D_{t} \leftrightarrow$ cumulative market orders m_{t}

Differences

- We work in a finite horizon (PDEs instead of ODEs)
- We use a Mean - Variance criterion
- We exhibit a classical solution (as opposed to a viscosity solution)
- We derive a system of ODEs identifying
- the value function
- the optimal stratagy

Technical Assumptions

$\nu_{t}(d y) \nu(t) d t$ intensity of Poisson measure $\mu(d t, d y)$ with $\nu_{t}([0,1])=1$.

- $\int_{0}^{T} \sigma(t)^{2} d t<\infty$
- $\sup _{0 \leq t \leq T} \nu(t)<\infty$
- $t \hookrightarrow \frac{\sigma(t)^{2}}{\nu(t)}(X(t)-x)$ is increasing for each $x \in[0,1]$
- $t \hookrightarrow \frac{1}{\nu(t)} \nu_{t}(\cdot)$ is decreasing (in the sense of stochastic dominance)

Hamilton-Jabobi-Bellman Equation (QVI)

$$
\min \left[[A \phi](t, x), \partial_{t} \phi(t, x)+[B \phi](t, x)\right]=0 .
$$

where

$$
[A \phi](t, x)=S-\partial_{x} \phi(t, x)
$$

and

$$
[B \phi](t, x)=\gamma \frac{\sigma(t)^{2}}{2}[X(t)-x]^{2}+\nu(t) \inf _{0 \leq L \leq x} \int_{[0,1]}[\phi(t, x-y \wedge L)-\phi(t, x)] \nu_{t}(d y)
$$

with terminal condition

$$
\phi(T-, x)=S x, \quad \text { (notice that } \phi(T, x)=0)
$$

and boundary condition:

$$
\phi(t, 0)=\int_{t}^{T} \frac{\gamma \sigma(u)^{2}}{2} X(u) d u
$$

Classical Solution

Theorem

The value function is the unique solution of

$$
\begin{aligned}
& -\dot{J}(t, x)=\min \left[\inf _{0 \leq y \leq x}-\dot{J}(t, x)\right. \\
& \left.\quad \gamma \frac{\sigma(t)^{2}}{2}[X(t)-x]^{2}+\nu(t) \int_{[0,1]}[J(t,(x-y) \vee \tilde{L}(t, y))-J(t, x)] \nu_{t}(d y)\right]
\end{aligned}
$$

with

$$
J(t, 0)=\gamma \int_{0}^{t} \frac{\sigma(u)^{2}}{2} X(u)^{2} d u, \quad \text { and } \quad J(T, x)=S x
$$

where

$$
\tilde{L}(t, x)=\arg \min _{0 \leq y \leq x} J(t, y)
$$

- J is $C^{1,1}$
- $x \hookrightarrow J(t, x)$ convex for t fixed
- $t \hookrightarrow J(t, x)$ non-decreasing for x fixed
- $\partial_{x} \dot{J}(t, x) \geq 0$

Free Boundary (No-Trade Region)

$$
[0, T] \times[0,1]=A \cup B \cup C
$$

with

- $A=\left\{(t, x) ; \partial_{x} J(t, x)<0\right\}=\left\{(t, x) ; 0 \leq t<\tau_{\ell}(x)\right\}$
- $B=\left\{(t, x) ; 0 \leq \partial_{x} J(t, x) \leq S\right\}=\left\{(t, x) ; \tau_{\ell}(x) \leq t \leq \tau_{m}(x)\right\}$
- $C=\left\{(t, x) ; \partial_{x} J(t, x)=S\right\}=\left\{(t, x) ; \tau_{m}(x) \leq t\right\}$
where
- $\tau_{\ell}(x)=\inf \left\{t>0 ; \partial_{x} J(t, x) \geq 0\right\}$
- $\tau_{m}(x)=\inf \left\{t>0 ; \partial_{x} J(t, x) \geq S\right\}$

$$
\tau_{\ell}(x) \leq T(1-x) \leq \tau_{m}(x)
$$

Optimal Trading Strategy

- If $t>\tau_{m}\left(x_{t}\right)$ i.e. $\left(t, x_{t}\right) \in C$ (never happens)
- place market orders
$\Delta m_{t}>0$ (just enough to get into B)
- If $t=\tau_{m}\left(x_{t}\right)$ i.e. $\left(t, x_{t}\right) \in \partial C$
- place market orders at a rate $d m_{t}=-\dot{\tau}_{m}\left(x_{t}\right) d t$
(just enough so not to exit B)
- If $\tau_{\ell}\left(x_{t}\right) \leq t<\tau_{m}\left(x_{t}\right)$ i.e. $\left(t, x_{t}\right) \in B \cup \partial A$
- place $L_{t}=x_{t}-\tilde{L}(t)$ limit orders
(as much as possible without getting ahead too much)
- If $t<\tau_{\ell}\left(x_{t}\right)$ i.e. $\left(t, x_{t}\right) \in A$ (never happens)
- no trade

Special Case I: Large Fill Distribution

$\nu_{t}(d y)=\delta_{1}(d y)$: the crossings, when they occur, fill all the requested limit orders.

Theorem

The value function solves

$$
-\dot{J}(t, x)=\min \left[\inf _{0 \leq y \leq x}-\dot{J}(t, x), \gamma \frac{\sigma(t)^{2}}{2}[X(t)-x]^{2}+\nu(t)[J(t, \tilde{L}(t, x))-J(t, x)]\right]
$$

with

$$
J(t, 0)=\gamma \int_{0}^{t} \frac{\sigma(u)^{2}}{2} X(u)^{2} d u, \quad \text { and } \quad J(T, x)=S x
$$

Special Case II: Arrival Price Benchmark

This specific model corresponds to the case $X(\tau)=0$ for all $\tau \in[0, T]$.

Theorem

The value function is the unique solution of
$-\dot{J}(t, x)=\min \left[\inf _{0 \leq y \leq x}-\dot{J}(t, x), \gamma \frac{\sigma(t)^{2}}{2} x^{2}+\nu(t) \int_{[0,1]}\left[J\left(t,(x-y)^{+}\right)-J(t, x)\right] \nu_{t}(d y)\right]$
with

$$
J(t, 0)=\gamma \int_{0}^{t} \frac{\sigma(u)^{2}}{2} X(u)^{2} d u, \quad \text { and } \quad J(T, x)=S x
$$

Special Case III: Stationary Approximation

When (t, x) is far enough from the corners $(0,1)$ and $(T, 0), J$ looks like a function of $x-X(t)$ (deviation from the benchmark).
Stationarity assumption

- $\nu_{1}(d t)=\lambda d t$ for some constant $\lambda>0$
- $\nu_{t}(d y)=\nu(d y)$ for all $t \in[0, T]$.
- $\sigma(t)=\sigma$ for all $t \in[0, T]$

Look for an approximation of the form

$$
J(t, x) \approx \alpha+\beta x+w(x-X(t))
$$

for some function w to be determined.
True in the Large Fill case (use the Lambert function)

The Discrete Case and Approximation Results

- The integer v denotes the quantity of shares (expressed as a number of lots) the broker has to sell by time T,
- Trades can only be in multiples of one lot.
- $t \hookrightarrow x_{t}$ looks like a staircase starting from $x_{0}=1$ and ending at $x_{T}=0$.
- In units of v lots, the measures $\nu_{t}(d y)$ are supported by the grid $\{1 / v, 2 / v, \cdots,(v-1) / v, 1\}$
- The process $\underline{x}=\left(x_{t}\right)_{0 \leq t \leq T}$. and the controls $\underline{L}=\left(L_{t}\right)_{0 \leq t \leq T}$ and $\underline{m}=\left(m_{t}\right)_{0 \leq t \leq T}$ take values in the grid $\overline{\mathcal{I}}_{v}:=\{0,1 / v, \cdots,(v-1) / v, 1\}$.
- The sets of admissible controls are defined accordingly.
- Identify functions φ on the grid \mathcal{I}_{v} with finite sequence $\left(\varphi_{i}\right)_{0 \leq i \leq v}$ where $\varphi_{i}=\varphi(i / v)$.
- Denote by $I \varphi$ the piecewise linear continuous function $[0,1] \ni x \hookrightarrow[I \varphi](x)$ which coincides with φ on the grid \mathcal{I}_{v} and which is linear on each interval $[i / v,(i+1) / v]$.
- $\left(\varphi_{i}\right)_{0 \leq i \leq v}$ is said to be convex if $I \varphi$ is convex
- For any integers v and v^{\prime}, and functions φ and φ^{\prime} on the grids \mathcal{I}_{v} and $\mathcal{I}_{v^{\prime}}$, we have:

$$
\left\|I \varphi-\left|\varphi^{\prime} \|_{\infty}=\sup _{x \in[0,1]}\right|[I \varphi](x)-\left[I \varphi^{\prime}\right](x)\left|=\sup _{x \in \mathcal{I}_{v} \cup \mathcal{I}_{v^{\prime}}}\right|[I \varphi](x)-\left[I \varphi^{\prime}\right](x) \mid .\right.
$$

Characterization of the Solution

The operators A and B become

$$
[A \varphi]_{i}(t)=S-\varphi_{i}(t)+\varphi_{i-1}(t), \quad i=1, \cdots, v
$$

and

$$
[B \varphi]_{i}(t)=\gamma \frac{\sigma(t)^{2}}{2}[X(t)-i / v]^{2}+\nu(t) \min _{0 \leq \ell \leq i} \sum_{j=1}^{v}\left[\varphi_{i-j \wedge \ell}(t)-\varphi_{i}(t)\right] \nu_{t}(j / v)
$$

so the HJB QVI remains the same:

$$
\min \left[[A \varphi]_{i}(t), \dot{\varphi}_{i}(t)+[B \varphi]_{i}(t)\right]=0, \quad i=1, \cdots, v
$$

As before we have existence and uniqueness of a C^{1} functions of $t \in[0, T]$ satisfying

$$
\varphi_{i}(t)=S i / v+\int_{t}^{T} \min _{0 \leq j \leq i}[B \varphi]_{i}(u) d u, \quad i=0,1, \cdots, v
$$

Interpreting the solution φ as a function on $[0, T] \times \mathcal{I}_{v}$ defined by $\varphi(t, i / v)=\varphi_{i}(t)$, since $\varphi_{i}(T)=S i / v$ and:

$$
\dot{\varphi}_{i}(t)=-\min _{0 \leq j \leq i}[B \varphi]_{j}(t)
$$

we get

$$
\dot{\varphi}_{i}(t)+[B \varphi]_{i}(t) \geq 0, \quad i=0,1, \cdots, v
$$

and

$$
\dot{\varphi}_{i}(t)=\max _{0 \leq j \leq i} \partial_{t} \varphi_{j}(t)
$$

so that $i \hookrightarrow \dot{\varphi}_{i}(t)$ is non-decreasing and

$$
-\dot{\varphi}_{i}(t)=\min \left[\min _{0 \leq j \leq i}-\dot{\varphi}_{j}(t),[B \varphi]_{i}(t)\right] .
$$

Characterization of the Value Function in the Discrete Case

Theorem

The value function J of the problem can be identified to the sequence $\left(J_{i}\right)_{0 \leq 1 \leq v}$ of C^{1} functions of $t \in[0, T]$ satisfying:

$$
\left\{\begin{array}{l}
J_{0}(t)=\int_{t}^{T} \frac{\gamma \sigma(u)^{2}}{2} X(u)^{2}, \quad J_{i}(T)=S i / v, \quad i=0,1, \cdots, v \\
\partial_{t} J_{i}(t)=\min \left[\partial_{t} J_{i-1}(t),\right. \\
\left.\nu(t) \sum_{j=1}^{v}\left[\varphi_{(i-j) \vee \tilde{\ell}_{i}(t)}(t)-\varphi_{i}(t)\right] \nu_{t}(j)+\frac{\gamma \sigma(t)^{2}}{2}[X(t)-i / v]^{2}\right]
\end{array}\right.
$$

where

$$
\tilde{\ell}_{i}(t)=\min \left\{\ell ; \varphi_{\ell}(t)=\min _{0 \leq j \leq i} \varphi_{j}(t)\right\}
$$

Optimal Solution in the Discrete Case

- $\tau_{i}^{m}=\inf \left\{t \in[0, T] ; J_{i}(t)-J_{i-1}(t)<S / v\right\}$
- $\tau_{i}^{\prime}=\inf \left\{t \in[0, T] ; J_{i}(t)-J_{i-1}(t)<0\right\}$
- $\tau_{i}^{m} \leq T x\left(i-\frac{1}{2}\right)<\tau_{i}^{l}$

