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Abstract

We study the large time behavior of the solutions of the Cauchy problem for the
Anderson model restricted to the upper half spaceD = Zd−1 × Z+ and/orD =
Rd−1 × R+ when the potential is a homogeneous random field concentrated on the
boundary∂D. In other words we consider the problem:

∂u(t, z)
∂t

= κ∆u(t, z) + ξ(x)u(t, z) z = (x, y), with y ≥ 0 andt ≥ 0

with an appropriate initial condition. We determine the large time asymptotics of
the moments of the solutions as well as their almost sure asymptotic behavior when
t →∞ and when the distance from the boundary, i.e.y = y(t) goes simultaneously
to infinity as a function of the timet. We identify the rates of escape ofy(t) which
correspond to specific behaviors of the solutions and different types of dependence
upon the diffusivity constantκ. We also show that the case of the lattice differs
drastically from the continuous case when it comes to the existence of the moments
and the influence ofκ. Intermittency is proved as a consequence of the large time
behavior of the solutions.
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†AMS Subject Classification: 60H25
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1 Introduction

Throughout the paper we study the solutions of the following Cauchy problem, which
is known to play a crucial role in many problems appearing in the theory of disordered
systems and especially in chemical kinetics and solid state physics (see [10] for details):

∂u(t, z)

∂t
= κ∆u(t, z) + ξ(x)u(t, z) z = (x, y), t > 0 (1)

wherex ∈ Zd−1, y ∈ Z+ in the lattice case andx ∈ Rd−1 andy ∈ R+ in the contin-
uous space. We shall add an initial condition and boundary conditions as needed. We
call this problem theBoundary Anderson Problembecause the potentialξ(x) is assumed
to be a homogeneous random field concentrated on the boundary∂D. This “boundary
randomness” is the main originality (and the main thrust) of the paper.

Equation (1) as well as the Hamiltonianκ∆ + ξ(x) which appears in the right hand
side of equation (1) have been intensively studied, especially in the lattice case. Most
of these studies concern the case of a random potentialξ(x) homogeneous in the whole
space (as opposed to a lower dimensional variety as we consider here). In this case, the
random self-adjoint operatorκ∆ + ξ(x) is known to have almost surely dense pure point
spectrum in dimensiond = 1 and for potentials with large fluctuations in all dimensions.
These facts from the theory of quantum disordered systems are known under the name
of Anderson Localization Theoryand are studied mathematically in the framework of the
spectral theory of random self-adjoint operators. The interested reader is refered to the
book [4] for details on this theory. The spectral theory of operators for which the ran-
domness is restricted to the boundary of the domain is not as advanced. See nevertheless
[2].

The unusual spectral properties of random operators have an interesting counterpart
in the solutions of the corresponding heat equations. Indeed, their localization properties
(i.e. the existence of dense pure point spectrum) translates into the asymptotic intermit-
tency of the family of random fields solving the parabolic equations. This phenomenon
was analysed in details in [7] and [10] in the lattice case and in [5] in the continuous mod-
els when the potentialξ(x) is a spatially homogeneous (Gaussian and shot-noise Poisson)
random field. The present paper is devoted to the analysis of the asymptotics of the solu-
tions of the parabolic equation (1), but when randomness is limited to the boundary of the
domain. The main thrust of the paper is twofold: 1) the presence of different asymptotic
regimes depending upon the rate at which the distance from the boundary increases, 2)
the important differences between the lattice and the continious models which are usually
assumed to be similar.
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1.1 Notations and Assumptions for the Lattice Case

We consider the equation:

∂u(t, z)

∂t
= κ∆u(t, z) + ξ(z)u(t, z) z = (x, y) ∈ D, t > 0 (2)

with the initial condition:

u0(0, z) = u0(z), z ∈ D.

We are mostly interested in the case of a deterministic functionu0(z) but we shall also
consider the case of a random initial conditionu0. Here the Laplacian operator∆ on
D = Zd

+ = Zd−1 × Z+ is defined as:

∆f(z) =
∑

|z−z′|=1,z′∈D

[f(z′)− f(z)], z ∈ D (3)

This definition insures that the operator∆ is self-adjoint with respect to the counting
measure. Also, this definition means that a motion driven by the equation (2) is a usual
random walk in the interior ofD with the following boundary behavior. When a particle is
on the boundary, it chooses one of its2d neighbors with equal probabilities, jumps to this
neighbor if the latter is insideD or stays still if jumping would take the particle outside
of the domain.

The random potentialξ(z) is assumed to be0 except on the boundary:

ξ(z) = ξ(x, y) = ξ(x, ω)δ0(y) (4)

for a homogeneous random field{ξ(x); x ∈ ∂D}. We further assume that theξ(x) are
independent and identically distributed random variables. For the distribution ofξ = ξ(0),
we only require a mild asymptotic condition on the tail:

P{ξ < x}∼ exp[
−xαL(x)

2
] asx→∞ (5)

for someα > 1 and for some slowly varying functionL(x). Note that the caseα = 2
corresponds to the standart normal distribution; caseα = 1 would correspond to the
exponential distribution. We do not consider this case on purpose because the solution of
the problem (1) does not exist (almost surely) for the exponentially distributed potential.
This fact is a simple consequence of the Feynman-Kac formula. We address the question
of existence of solutions in section 2.3.
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Let us remark that, contrary to the homogeneous case treated in [7], we do not require
any specific assumptions on the negative part of the potentialξ(x). As it will be seen from
the proof, the main contribution to the value of the solution is given by a very special set of
trajectories in Feynman-Kac representation (8). In the homogeneous case, the restrictive
assumption on the lower tail of the marginal comes from the need to avoid strong negative
centers of the potential. In the random boundary model, a particle can easily avoid the
regions where the potential is negative by stepping out of the boundary and traveling
insideD as needed.

The initial conditionu0(x, y) is assumed to be nonnegative and, when it is random, it
is assumed to be independent ofξ and homogeneous inx− variable.

1.2 Notations and Assumptions for the Continuous Case

We now consider the case of the Euclidean half spaceD = Rd−1 × R+. The boundary
Anderson problem is written in the form of the standard heat equation:

∂u(t, z)

∂t
= κ∆u(t, z), z ∈ D, t > 0 (6)

with random boundary condition:

∂u(t, x, y)

∂t

∣∣∣
y=0

+ ξ(x)u(t, x, 0) = 0, x ∈ Rd−1, t > 0. (7)

Here,{ξ(x); x ∈ ∂D = Rd−1} is a homogeneous random field. Notice that the random-
ness of the medium enters only into the boundary condition but not in the equation (6).
This mixed boundary condition (sometimes called Robin condition) is considered to be
the best way to mimic the case of the lattice presented in the previous subsection.

The results concerning the models in the whole spaceRd (see [5]) suggest that the
moment analysis, as well as the almost sure analysis, should be easiest in the case of
Gaussian and shot-noise Poisson fields. Unfortunately, the situation is quite different in
the random boundary case. Indeed, even though the solution of the parabolic equation
does exist for these standard models, we shall show below that these solutions do not
have statistical moments. In fact, we shall have to restrict ourselves to potentials having
a marginal distribution with smaller tails than the Gaussian tails. Moreover, in order to
analyze the large time behavior of the solutions we shall also have to assume that the
potential is piecewise constant. A need to impose the additional restrictions on the tails
shows that the continuous case is much different from and much more difficult to analyze
than the discrete case. This fact is usually denied by most of the workers in the field who
consider that the results should be the same in the lattice and in the continuous cases !!!
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1.3 Existence and Feynman-Kac Representations of the Solutions

The main purpose of this subsection is to derive the Feynman-Kac representations of the
solutions. They read:

u(t, x, y) = E(κ)
(x,y){u0(xt, yt) exp [

∫ t

0

ξ(xs, ys)ds]} (8)

in the lattice case and:

u(t, x, y) = E(κ)
(x,y){u0(xt, yt) exp [

∫ t

0

ξ(xs, ys)dLs]} (9)

in the continuous case. In the former case the expectation is taken over the paths of the
continuous time random walk{zt = (xt, yt); t ≥ 0} over the latticeZd generated by the
operatorκ∆ defined above (recall the special boundary behavior!). In the latter case, the
expectation is taken over the sample paths of the Brownian motion inD = Rd−1×R+ with
normal reflection when it hits the boundary∂D = Rd−1×{0} which we identify toRd−1.
This reflected Brownian motion{zt; t ≥ 0} is written in the formzt = (xt, yt) where
{xt; t ≥ 0} is a (d − 1)-dimensional Brownian motion with varianceκ and{yt; t ≥ 0}
is an independent one dimensional Brownian motion inR+ = [0,∞) with varianceκ and
reflection at0. Lt is the local time of thed-dimensional Brownian motion on the boundary
of the domain, and because of the special form ofzt it can be identified to the (usual) local
time ofyt at0.

We state the following result, which repeats the corresponding result for the homoge-
neous case (see [5] and [7]), for the sake of completeness.

Theorem 1.1 Let us assume that the initial conditionu0(z) is nonnegative and satisfies:

lim sup
|z|→∞

ln lnu0(z)

ln |z|
< 1 (10)

almost surely. Then the solutions of problems (2) and (6) exist with probability1 and are
given by the formulas (8) and (9) respectively.

1.4 Ljapunov Exponents and Intermittency

We now discuss the notion of intermittency. We adapt a discussion from [10] to the
present situation of the half-spaceD and to the fact that the source of the randomness
concentrates on the boundary of the domain. Throughout this subsection we assume that,
for eacht > 0 {Xr(x, y(t)); (x, y(t)) ∈ D} is a homogeneous (with respect to the space
translations of∂D) random field on a probability space(Ω,F , µ). We also assume that all
the moments〈|Xr(x, y(t))|p〉, p = 1, 2, . . . are finite. We use the notation〈X〉 to denote
the expectation of the random variableX with respect to the probabilityµ.
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Definition 1.2 If for some deterministic monotone increasingA(t) (called scale) the
limit:

γp = lim
t→∞

1

A(t)
ln〈Xp

t (x, y(t))〉 (11)

exists, thenγp is called thep-th moment Ljapunov exponents (with respect to the scale
functionA(t)).

This limit does not depend upon thex variable because of the homogeneity assump-
tion. In the case whenXt(x, y(t)) = u(t, x, y) andy is a constant independent oft, the
lim in (11) will not depend upony either and we still can writeγp for thep-th exponent.
We give the definition of intermittency in terms of the moment Ljapunov exponents.

Definition 1.3 The family{Xt(x, y(t)); (x, y(t)) ∈ D} of random fields is said to be
asymptotically intermittent if:

γ1 <
γ2

2
<
γ3

3
< . . . (12)

Notice that wide sense inequalities like (12) hold in full generality because of Hölder’s
inequality. Moreover these inequalities become strict inequalities as soon as one of them
is strict. In other words, intermittency is equivalent to the first enequality of the chain
being strict.

SupposeXt(x, y(t)) is ergodic in the following sense:

lim
Q↑Rd−1

1

|Q|

∫
Q

Xp
t (x, y(t))dx = 〈Xp

t (0, y(t))〉. (13)

Here|Q| denotes the volume ofQ. The above left hand side is called thep-th energy of
the the random fieldXt(x, y(t)). The following result (see [7]) illustrates the notion of
intermittency.

Proposition 1.4 If the sequence (12) holds true, then the energy of order2 ofXt(x, y(t))
concentrates on some random setEt whose measure tends to zero whent→∞. In other
words, there exists a measurable subsetEt of the probability spaceΩ such that:

lim
t→∞

µ(Et) = 0 (14)

and:

lim
t→∞

1

〈X2
t (x, y(t))〉

〈X2
t (x, y(t))IEt〉 = 1 (15)

where we use the notationIA for the indicator of the setA.
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The result of the above proposition is the mathematical counterpart of the physical
intuition behind the notion of intermittency: the overwhelming part of the energy concen-
trates on systems of ’peaks’ the relative area of which going to zero whent→∞.

Sometimes it is convenient to use a weaker notion of intermittency.

Definition 1.5 The random familyXt(x, y(t)) is said to be weakly (asymptotically) inter-
mittent ast→∞ if for anyx:

〈Xt(x, y(t))〉2 = o(〈X2
t (x, y(t))〉) as t→∞. (16)

The almost sure Ljapunov exponent is defined as follows.

Definition 1.6 If for some scale functiona(t) the limit

γ = lim
t→∞

1

a(t)
lnXt(x, y(t)) (17)

existsµ almost surely, it is called the almost sure Ljapunov exponent with respect to the
scale functiona(t).

For intermittent random fields the scale functiona(t) is usually different fromA(t). As
in the case of the moment exponents, forXt(x, y(t)) = u(t, x, y) with constanty where
u(t, x, y) is a solution of (1),γ(y) turns out to be independent ofy. We shall denote itγ.

2 Moment Asymptotics in the Lattice Case

Let 〈·〉 denotes the expectation with respect to the random media, i.e. the distribution of
ξ.

Theorem 2.1 Let z = (x, y) ∈ D = Zd
+, let us consider the family of random fields

u(t, x, y) solutions of (2) withu0(x, y) ≡ 1, and let us set:

n =
α

α− 1
, c =

α− 1

α
α

α−1 c0
1

α−1

(18)

LetL(x) ≡ c0 in (5). Then for anyp ≥ 1 there exist three regimes for〈up(t, x, y)〉 as
t→∞:

• If limt→∞
y(t)

t
= 0, then:

ln〈up(t, x, y)〉 = cpntn − p(n− 1)y ln t− κ(2d− 1)pt+ p ln
κ

cnpn−1
y + o(t). (19)
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• If limt→∞
y(t)

t
= ∞ andlimt→∞

y(t) ln t
tn

< cpn−1

n−1
then:

ln〈up(t, x, y)〉 = cpntn − p(n− 1)y ln t+ p ln
κ

cnpn−1
y − κ(2d− 1)pt+O(

y

tn−1
) +O(

y2

tn
) + o(t).

(20)

• If limt→∞
y(t) ln t

tn
> cpn−1

n−1
then:

〈up(t, x, y)〉 = 1 +O(e−tn) (21)

If limt→∞
y(t) ln t

tn
= cpn−1

n−1
and ifκ > cnpn−1 the regime is (20), ifκ < cnpn−1 the regime

is (21), ifκ = cnpn−1 then the regime is determined by the values of the parametersn, p,
or in other words, byα and p. Also, if 0 < limt→∞

y(t)
t
< ∞, the choice between the

regimes (19), (20) shoud be made based on the values of the parametersn, p, κ.

Role of the diffusivity κ
The above results illustrate the role of the diffusivity constantκ in the asymptotic be-

havior of the solutions. Under the regime (19) the largerκ the smaller the asymptotic
moments of the solutions. This type of behavior was typical in the analysis of the homo-
geneous random media considered in [7] and [10]. The reason can be best understood in
terms of the branching random walk. In order to contribute significantly to the value of
the solution, particles concentrate near strong potential centers (i.e. the high peaks of the
potential). Ast → ∞, these peaks become higher, though at a large distance from each
other. The diffusivityκ works in two opposite directions: the largerκ the easier a particle
reaches a strong center. But on the other hand, the largerκ the easier the particle leaves
this center. The result (19) says that this latter factor is the dominant contribution in the
regime under condideration.

Under the regime (20) the situation is just opposite. Distance from the boundary starts
playing a role. It takes much longer to reach a strong potential center.

Finally, the regime leading to the asymptotic (21) is simple to understand because the
asymptotic behavior of the moments is as if the particle never hits the boundary.

Ljapunov exponents and intermittency
Theorem 2.1 proves asymptotic intermittency of the familyu(t, x, y(t)) for the time

scale functionA(t) = tn in the first two regimes (of course, there is no intermittency in
the regime (21)!) Indeed, with this choice of the scale, the moment Ljapunov exponents
are given by:

γp = γp(x) = lim
t→∞

1

A(t)
ln〈up(t, x, y)〉 = cpn. (22)
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Since we consider only the caseα > 1, we haven > 1 and consequently:

γp

p
>
γq

q
for p > q (23)

Note that the property of intermittency is determined by the first term in the asymptotic
decomposition (19), which is not affected by changes ofκ.

Random Initial Condition and Assumptions on the Tails
The result of Theorem 2.1 can be extended in a straightforward manner to the general

case of the initial condition which is homogeneous and to the general case of slowly
varying functionL(x) in the assumption on the tails of the marginals of the potential. The
solution still has three different regimes ast → ∞, y = y(t) and the intermittency holds
for the first two of them.

Potential Distributions
Theorem 2.1 enlightens the effects of the thickness of the tails of the marginal distri-

butions of the potential. The restrictionα > 1 in (5) corresponds to the conditionn <∞
in (18). Its role is to guarantee the almost sure existence of the solution and the exis-
tence of the moments. In particular, moments of the solution do not exist if the potential
has exponential marginals that corresponds to the caseα = 1. Notice thatn → 1 when
α → ∞. In this regime, we expect thatγp/p converges toward a constant. Nevertheless
intermittency still holds, in the weak form given in Definition 1.5, as long as marginal
distributions are not compactly supported.

Gaussian Distributions
The Gaussian distributions satisfy condition (5) withα = 2. In this case we have

n = 2, c = 1/2, and:

ln〈up(t, x, y)〉 =
p2t2

2
− py ln t+ p ln

κ

p
y − κ(2d− 1)pt+O(

y2

t2
) + o(t). (24)

”Time-dependent Initial Conditions”
As an easy consequence of the theorem 2.1, we get the following result which treats

the special case of initial data depending on time. The asymptotic behavior of the solution
is very similar, but the dependence ofu0(x, y) upont affects the second order terms of
the formulas. More precisely,

Proposition 2.2 Under the assumptions of Theorem 2.1 if we setu0(x, y) = δy0(t)(y),
the moments〈up(t, x, y)〉 have the (logarithmic) asymptotics (19)-(21) withy replaced by
y + y0.
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3 The Continuous Case

We begin this section with two enlightening negative results. They show in a striking
manner that the mathematical problems of the continuous case can be very different from
the problems and the results of the lattice case. In particular, we show that the frequently
used models of random potentials given by homogeneous Gaussian fields and by shot
noise homogeneous fields constructed from a Poisson point process are not appropriate
as models for boundary potentials because the solutions of the corresponding Cauchy
problems fail to have moments!

3.1 The Case of Gaussian Potentials

Let us assume that{ξ(x); x ∈ Rd−1} is a homogeneous mean zero Gaussian field with
covariance:

γ(x) = 〈ξ(x)ξ(0)〉.

We shall assume that this covariance functionγ(x) is continuous at the origin. The Gaus-
sian fields form one of the most popular classes of models in the theory of disordered
media. See for example [5] for the analysis of the full space. They were included in
the analysis of the lattice case (the normal distribution corresponds toα = 2) which we
presented in the previous sections.

We are going to show that these fields are not as convenient a model when the ran-
domness appears in the boundary condition. Indeed, in this case, all the moments of the
solution to the parabolic problem (6) are infinite.

Theorem 3.1 If the covariance of the homogeneous Gaussian field{ξ(x); x ∈ Rd−1} is
continuous at the origin and if the initial conditionu0(x, y) is bounded away from0 on a
nonempty open set, then the first moment of the solutionu(t, x, y) of (6) is infinite as soon
ast > 1/γ(0).

Proof:
For the sake of simplicity we assume that the covarianceγ(x) is nonnegative. The

proof of the result in the general situation is more involved and not more instructive. Let
us assume for example that:

u0(x, y) ≥ øu > 0, x ∈ U (25)

for some nonempty open setU , and let us assume thatt > 0 and(x, y) ∈ D are fixed.
Using the Feynman-Kac representation (9) of the solutionu(t, x, y) and Fubini’s theorem
we get:
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〈u(t, x, y)〉 = E(x,y)u0(xt, yt)〈exp

∫ t

0

ξ(xs, ys)dLs〉

Since for each fixed Brownian pathξ(xs, ys) is a mean zero Gaussian for eachs,
∫ t

0
ξ(xs, ys)dLs

is also a mean zero Gaussian random variable. The formula for the Laplace transform
gives

〈u(t, x, y)〉 = E(x,y){u0(xt, yt) exp [
1

2
〈
(∫ t

0

ξ(xs, ys)dLs

)2

〉]}

= E(x,y){u0(xt, yt) exp [
1

2

∫ t

0

∫ t

0

γ(xs − xs′)dLsdLs′ ]}.

Now we use continuity ofγ(x) at zero. Let us chooseε ∈ (0, γ(0)) and let us fixδ > 0
small enough so that|x| < δ ⇒ |γ(x)− γ(0)| < ε. Then:

〈u(t, x, y)〉 ≥ E(x,y){u0(xt, yt) exp[
1

2

∫ t

0

∫ t

0

γ(xs − xs′)dLsdLs′ ]I{W}}

≥ øuE(x,y){exp[
γ(0)− ε

2

∫ t/2

0

∫ t/2

0

dLsdLs′ ]I{W}}; (26)

where the setW = {sup0≤s≤t/2 |xs − x0| < δ, (xt, yt) ∈ U}. Since the expectation is
taken over a set of paths which depends only upon thex−component of(xs, ys) and since
the local timeL· depends only upon they−component, we get:

〈u(t, x, y)〉 ≥ øuP0{W}Ey exp
γ(0)−ε

2 L2
t/2. (27)

The probability in the right hand side above, saypδ,t, is the probability that a(d − 1)-
dimensional Brownian motion remains inside the ball of radiusδ/2 up to timet/2 and is
in U at timet. This probability can be estimated from below by:

pδ,t ≥
c(δ)

ec1(d)t
(28)

ast→∞ where the constantc = c(δ) depends also upon the distance between(x, y) and
U andc1(d) > 0. Hence:

〈u(t, x, y)〉 ≥ c(δ)

ec1(d)t
Ey exp

γ(0)−ε
2 L2

t/2 (29)
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for large timet. The remainder of the proof is based on the fact that, when the Brownian
path starts from the origin, the distribution of the local timeLt is the same as that of the
running maximumMt. We seta = γ(0)−ε

2
in order to simplify the notation. Now using

the strong Markov property at the stopping time:

τ0 = inf{s > 0, ys = 0} (30)

we get:

〈u(t, x, y)〉 ≥ eO(t)Ey{eaL2
t/2}

≥ eO(t)E0{eay2
t/2−τ0 ; τ < t/2}

∼ eO(t)

∫ t/2

0

∫ ∞

−∞
exp

ay2− x2

t−τ0 dxP0{τ0 ∈ dτ}. (31)

The right hand side of (31) is∞ because the inner integral is equal to∞ for all the values
of t satisfyingt > τ + 1/(a) and because the density of the stopping timeτ is strictly
positive near0.

3.2 The Case of Poisson Shot-noise Potentials

The class of shot noise potentials is the second most popular model of random potentials
in the theory of random continuous media. We show that, as for the Gaussian poten-
tials, they are ill suited to the problems with random boundary conditions because the
corresponding solutions do not have statistical moments.

A shot-noise potential on the boundary is defined as:

ξ(x) =
∑

i

ϕ(x− xi) x ∈ Rd−1 (32)

where the pointsxi form a realization of a homogeneous Poisson point process in∂D
which we identify withRd−1. Let us denote byλ the intensity of the point process.
We shall assume that the functionϕ(x) (sometimes called the elementary potential) is
continuous and strictly positive at zero and satisfies a mild decay property at infinity so
that the infinite series definingξ(x) via formula (32) does converge. See [5] for a detailed
discussion of the typical requirements onϕ(x) in the homogeneous case. The Feynman-
Kac representation (9) and Fubini’s theorem give:

〈u(t, x, y)〉 = Ey{〈exp [

∫ t

0

∑
i

ϕ(xs − xi)dLs]〉}

= Ey{exp [λ

∫
Rd−1

(
exp [

∫ t

0

ϕ(xs − y)dLs]− 1
)
dy]}. (33)
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Now we use the continuity ofϕ(·) at zero as we did in the Gaussian case:

〈u(t, x, y)〉 ≥ Ey{exp [λ

∫
Rd−1

exp(ϕ(0)−ε)Lt −1dy]; sup
0≤s≤t

|xs − x0| ≤
δ

2
} (34)

Again, using the fact that the local timeLt has the same distribution as the running max-
imum max[0,t] |wt| when the path starts from the origin, we prove the divergence of the
expectation in the right hand side of (34).

3.3 Some Positive Results

We saw that the standard (continuous) models of random potentials were not appropriate
for the analysis ofdisorder on the boundary. We now present a model for which the
analysis done in the discrete case can be extended to the case of half a Euclidean space.
More precisely, we consider a random fieldξ(x, ω) such that:

γ(x) = 〈ξ(x)ξ(0)〉 =

{
〈ξ2(0)〉 if |x| < δ
0, otherwise

(35)

and such that condition (5) satisfied together withL(x) ≡ 1, which we assume for sim-
plicity of formulas, for someα > 2. We introduce the parameter:

m =
α

α− 2
(36)

Theorem 3.2 If a random potentialξ(x) satisfies the above conditions, there exist two
asymptotic regimes for the solutionu(t, x, y) of (6) withu0(x, y) ≡ 1 whent→∞:
• If limt→∞ y(t)/t

m+1
2 ≤ a

b
then:

ln〈up(t, x, y)〉 = atm − byt
m−1

2 + o(yt
m−1

2 ) (37)

• If limt→∞ y(t)/t
m+1

2 > a
b

then:

〈up(t, x, y)〉 = 1 + o(1). (38)

wherea = β
2m
κmc

2m
β βmp2m, b = am√

2κam
+

√
2κam
2κ

(!), β = α
α−1

andc was defined in (18).

This result holds true for more general initial conditions, such as those used in the
theorem 3.1 and in the Proposition 2.2.
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The new role of the diffusivity κ in the continuous case.
The diffusivityκ appears in the first term of the asymptotics. The reason for this im-

portant difference can be explained by a simple argument in terms of a brownian particle.

The proofs of Theorems 2.1 and 3.2 show that the only significant contribution to the
solutionu(t, x, y) comes from the paths which are well localized in space. More precisely,
in the case of the lattice, the first term of the asymptotics is obtained by considering only
the paths staying at the same point (potential peak) after they reach this peak. In the
continuous case, the main contribution comes from the paths which stay inside a small
ball near a high point of the potential. But in the lattice case, when a particle remains
at the same point, the role of diffusivity reduces to the probability not to jump. This
affects only the lower order terms of the asymptotics. The situation is very different in
the continuous case. A particle needs not only to stay inside a small ball, but it also needs
to spend some time on the boundary to get a contribution from the local timeLt and this
new phenomenon is what brings the diffusivityκ in the first term. We do not have this
effect in the lattice!

Remark on the potential distributions.
Theorem 3.2 shows that, in the continuous case we still have different regimes for the

asymptotic behavior of the solutions. These regimes are similar to those of the lattice
case. But the class of distributions for which these asymptotics can be derived is much
smaller:α needs to be greater than2. This is clear because we havet to the power

m =
α

α− 2
instead of n =

α

α− 1
.

in the leading term of the asymptotic (37).

4 Almost Sure Asymptotics

We first consider the lattice case.

Theorem 4.1 Let us assume that the random potential satisfies (5) and that the initial
conditionu0(x, y) satisfies (10) and (25). Then the solutionu(t, x, y) of the problem (2)
has the following almost sure logarithmic asymptotics:
• If limt→∞

y(t) ln f(ln t)
tf((d−1) ln t)

< 1 then:

lnu(t, x, y) = tf((d− 1) ln t)− κ(2d− 1)t− y ln f((d− 1) ln t) + y lnκ+ o(t) (39)

• If limt→∞
y(t) ln f(ln t)
tf((d−1) ln t)

> 1 then:

u(t, x, y) = 1 +O(e−tf(ln t)) (40)

14



wheref(t) is the inverse of the functiontαL(t) andL(t) is defined in (5).
The caselimt→∞

y(t) ln f(ln t)
tf((d−1) ln t)

= 1 belongs to either of the regimes depending upon the
value ofκ: if κ > 1 we are in the regime (39), ifκ ≤ 1 we are in the regime (40).

The corresponding result in the continuous case is as follows:

Theorem 4.2 The solutionu(t, x, y) of the problem (6) with potential satisfying (5) and
initial condition satysfying (10) and (25) has the following almost sure logarithmic asymp-
totics ast→∞:
• If limt→∞

y(t)
tf(ln t)

≤ 1
2
κ then:

lnu(t, x, y) =
1

2
κtf 2((d− 1) ln t)− yf((d− 1) ln t) + o(yf((d− 1) ln t)) (41)

• If limt→∞
y(t)

tf(ln t)
> 1

2
κ then:

u(t, x, y) = 1 + o(1) (42)

Role of the diffusivity
As in the moment analysis in the lattice case, (39) contains two different regimes.

The first one,limt→∞
y(t)

t
= 0, is such that the smaller the diffusivityκ the larger the

solution. The other regime,limt→∞
y(t)

t
= ∞, is such that the larger the diffusivity the

larger the solution. The case0 < limt→∞
y(t)

t
< ∞ belongs to one of these regimes

depending on the values ofκ andd. The situation is different in the continuous case.
Indeed, the diffusivity always appears in the first term, and an increase of the diffusivity
always implies an increase of the statistical moments of the solutions as well as of its
almost sure behavior.

Gaussian potential
In the case of Gaussian potentialξ(0) ∼ N(0, 1), f(t) = (2t)1/2 and

lnu(t, x, y) = t
√

2(d− 1) ln t− κ(2d− 1)t− 1

2
y ln ln t+ y(lnκ− ln(2(d− 1))) + o(t)(43)

for the lattice and

lnu(t, x, y) = (d− 1)κt ln t− y(t)(2(d− 1) ln t)
1
2 + o(y(ln t)

1
2 ) (44)

for the continuous cases.
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5 Proof of the Moment Asymptotics in the Lattice Case

The proof of the theorem 2.1 is divided into several propositions. First we reduce the
problem to the particular casey = 0. Then we derive the lower bound forp = 1 and
y = 0. The third step gives the upper bound for this particular case. This step requires the
spectral analysis estimates analogous to those given in [10] for the homogeneous case.
Next step of the proof comprises the extension of these estimates to higher moments. The
last step finishes the proof for the general casey = y(t) ≥ 0.

The following proposition holds for both, discrete and continuous cases.

Proposition 5.1

u(t, x, y) = P{τ0 > t}+ E(τ0)

[
u(t− τ0, x, 0); τ0 ≤ t

]
(45)

almost surely with respect to the distribution ofξ. The hitting timeτ0 was defined in (30).
E(τ0) stands for the expectation with respect to the distribution ofτ0. Also

〈u(t, x, y)〉 = P{τ0 > t}+ E(τ0)〈
[
u(t− τ0, x, 0); τ0 ≤ t

]
〉 (46)

Proof:
(45) is an immidiate implication of the strong Markov property atτ0 in Feynman-Kac

formulas (8), (9) and the fact that a particle does not face nonzero potential untilτ0. (46)
is a consequences of (45) and Fubini’s theorem.

Note that (46) can not be directly extended to the higher moments.

The next lemma is computational. It provides the logarifmic asymptotics for the den-
sity pτ0(t) of τ0 for y = y(t).

Lemma 5.2
If y(t)

t
→∞ then

ln pτ0(t)∼t→∞ − y ln y + y ln t+ y(1 + lnκ)− 2κt+ o(t). (47)

If lim y(t)
t

= c0 <∞ then

ln pτ0(t)∼t→∞(c1(c0)− 2κ)t+ o(t) (48)

wherec1 < 2κ.

Now we derive certain estimates for〈u(t, x, 0)〉 leaving the casey = y(t) > 0 to
the end of this section. To get the lower estimate for〈u(t, x, 0)〉 , we consider only the
trajectories of the random walk(xs, ys) that remain at the starting point until timet.
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Proposition 5.3

ln〈u(t, x, 0)〉 ≥ ctn − (2d− 1)κt (49)

Proof:

〈u(t, x, 0)〉 ≥ 〈E(0,0) exp
∫ t
0 ξ(xs,ys)ds;xs = x0, s ∈ [0, t]〉 = 〈exptξ(0,0)〉P{N(t) = 0} (50)

whereN(t) is the number of jumps before timet provided a particle is on the bound-
ary ∂D. N(t) has Poisson distribution with parameter(2d − 1)κ, and this proves the
proposition.

Next proposition reduces the problem (2) to the problem in a bounded domain.

Proposition 5.4

〈u(t, x, 0)〉∼t→∞〈E(x,0) exp [

∫ t

0

ξ(xs, ys)ds]; {N(t) ≤ t ln t}〉 (51)

whereN(t) is the number of jumps of the random walk(xs, ys) started from(x, 0)
before timet.

Proof:

P{N(t) ≥ t ln t} ≤ P{π(2dκt) ≥ t ln t} ∼t→∞ exp [−t ln t ln ln t] (52)

and so

〈E(x,0){exp
∫ t
0 ξ(xs,ys)ds;N(t) ≥ t ln t}〉 ≤ E(x,0){〈exptξ(x,0)〉;N(t) ≥ t ln t} ≤ expctn−t ln t ln ln t

(53)

Because of the lower bound (49) it gives (51).

Corollary 5.5

〈u(t, x, 0)〉∼t→∞〈
∼
u (t, x, 0)〉 (54)

where
∼
u (t, x, y) is the solution of the problem

∂u(t, z)

∂t
= κ∆u(t, z) + ξ(x)u(t, z) z = (x, y), t ≥ 0, (x, y) ∈ Sd+

t (55)

u(0, x, y) ≡ 1 Sd+
t = {(x, y) : |x| < t ln t, 0 ≤ y < t ln t}

with zero boundary conditions.
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Problem (55) is a problem in a bounded domainSd+
t . The evolution operator

H = κ∆ + ξ (56)

has a discrete spectrum{Ek,t, k = 1, νt} and the orthonormal basis{ψk,t(x, y)}. The
volumeνt of Sd+

t is of orderctd lnd t, and so

〈∼u (t, x, 0)p〉 ≤ 〈exp (ptmax
k

Ek,t)〉 exp (O(ln t)) (57)

The following proposition gives an upper bound in terms of the greatest eigenvalue
h = ht(a) of the operatorHa

0 = κ∆ + aδ(0,0)(x, y), (x, y) ∈ Sd+
t , a > 0 with zero

boundary conditions.

Proposition 5.6

〈∼u (t, x, 0)p〉≤t→∞〈exp [pt(ξ(2) + ht(ξ(1) − ξ(2))]〉 exp (O(ln t)) (58)

where

ξ(1) > ξ(2) > . . . ξ(νt) > (59)

is a variational series of the set of random variables{ξ(z), z ∈ Sd+
t }

The proof follows from the fact that the upper eigenvalue ofH is bounded from above

by the upper eigenvalue of the operatorξ(2) +H
(ξ(1)−ξ(2))

0 .

Lemma 5.7 If limt→∞ a(t) = ∞ then

ht(a) =t→∞ a− (2d− 1)κ+
c(d, κ)

a
+O(

1

a2
) (60)

Proof:
Let g(x, y) be the eigenfunction ofH(a)

0 corresponding toht(a). We apply Fourier
transform to the eigenfunction equation forg(x, y) forth and back to get

g(0, 0) =
1

(n+ 1)(2n)d−1

∑
λ∈

∼
S

d+

expi(λ,z) ag(0, 0) + g(0, 0)κ(expiλ1 +1)

ht(a) + 2dκ− 2κ
∑d

i=1 cosλi

(61)

where
∼
S

d+

= Sd+

t ln t
. Then using Jensen’s enequality we get a lower bound of the form:

ht(a) ≥ a− (2d− 1)κ (62)
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Note that, contrary to the homogeneous case, we havea − (2d − 1)κ on the right hand
side of (62) instead ofa − 2dκ (ref.[10]). This is due to the fact that nonzero potentiala
is located on the boundary∂D and boundary points have only2d− 1 neighbors inD.
Now we expand the right hand side of (61) in a trigonometric series, which converges for
sufficiently biga due to the lower bound (62). The first terms in this expansion constitute
formulae (60).

Proposition 5.8

〈expt(ξ(2)+ht(ξ(1)−ξ(2))〉 ∼t→∞ expctn−(2d−1)κt (63)

Proof:
Denote bypt(x, y) the joint density ofξ(1), ξ(2) and bypξ(x) the density ofξ. Then

pt(x, y) = νt(νt − 1)[P{ξ(0) < y}]ν−2pξ(x)pξ(y) ∼t→∞ pξ(x)pξ(y)O(t ln t), (64)

Using the assumption (5) on the tails ofξ we get

〈expt(ξ(2)+ht(ξ(1)−ξ(2))〉 ≤
∫ ∫

|x−y|>δt
1

α−1

+

∫ ∫
|x−y|≤δt

1
α−1

exp[t(y+ht(x−y))−xα−yα] dxdy

(65)

Picking0 < δ < 1

α
α

α−1
we see that the second integral above is asymptotically small

(less thanexpc1tn wherec1 < c). Since the quantity we are estimating serves as an upper
bound of the solutionu(t, x, 0), and because of the lower bound (49), we conclude that
only the first integral in (65) is essential. For this integral we use lemma 5.7 to finish the
proof.

Proposition 5.8 together with (58) and (50) gives the required upper bound on〈u(t, x, 0)〉
and proves theorem 2.1 forp = 1, y = 0.

To prove the general casep ≥ 1, y = 0, we use the following representation of
〈up(t, x, 0)〉:

〈up(t, x, 0)〉 = 〈E(x,0) exp
[ p∑

i=1

∫ t

0

ξ(x(i)
s , y

(i)
s )ds

]
〉, (66)

where(x
(i)
s , y

(i)
s ) - p independent copies of a random walk(xs, ys). Consider〈up(t, x, 0)〉.

The lower estimate is immidiate due to (50). It lets us use the problem in a bounded
domainSd+ instead of the original problem inD to estimate thep−th moment of the
solution (see the proof of proposition 5.4). Now proposition 5.6 and lemma 5.7 give the
desired upper bound.
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Proposition 5.9 If limt→∞
y(t) ln t

tn
< cpn−1

n−1
then:

ln〈up(t, x, y)〉 = cpntn − p(n− 1)y ln t+ p ln
κ

cnpn−1
y − κ(2d− 1)pt+O(

y

tn−1
) +O(

y2

tn
) + o(t).

(67)

If limt→∞
y(t) ln t

tn
> cpn−1

n−1
then:

〈up(t, x, y)〉 = 1 +O(e−tnt).

Proof:
Only the first asymptotic needs a proof. Using Hölder’s inequality we may derive

from (45) a lower bound for the higher moments(p > 1) of the form

〈u(t, x, y)p〉 ≥
(
E(τ0)〈u(t− τ0, x, 0); τ0 ≤ t〉

)p

(68)

If we optimize the hitting time at the right hand side of (68) (see the end of the proof
of this proposition), we get a lower bound of the form (67) with the only difference that
the first term on the right readscptn instead ofcpntn.

To improve this rough lower bound we use representation (66) to generalize formulae
(46) for 〈u(t, x, y)〉 to the higher moments. Denote byτ i

0 the hitting time of(x(i), y(i)).
Then

〈up(t, x, y)〉 = Eτ1
0
. . .Eτp

0
〈

p∏
i=1

u(t− τ i
0, x

i
s, 0)〉 (69)

In the last expectation we consider only the indicator of the set of trajectories(x(i), y(i))

such that hitting points(x(i)

τ i
0
, y

(i)

τ i
0
) are all equal to each other. Since we have the lower

bound on〈up(t, x, y)〉, we use the finite box argument (see proposition 5.4) to show that
the asymptotic behavior of〈up(t, x, y)〉 coincides with itself provided a particle is inside
the box of radius, saymax(y, tn). The size of such a box is asimptotically small, as
well as the number of possible combinations for{xi

τ i
0
, i = 1 . . . p} provided that all of

these points belong to the box. This means that we can substitutexi
s in (69) by 0. If

we consider the set of trajectories such that the hitting times are close to each other, say
{τ i

0 ∈ B(τ 1
0 , δ), i = 1 . . . p, δ > 0} we get

〈up(t, x, y)〉 ∼
∫ t

0

〈u(t− θ, 0, 0)p〉pp
τ0

(θ)dθ (70)
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which is trivially a lower bound and is also an upper bound because the contribution
of all other trajectories is logarifmically insignificant.

(70), lemma 5.2 and the asymptotic representation of〈u(t, x, 0)p〉 (propositions 5.3-
5.8) imply

〈u(t, x, y)p〉 ∼t→∞ exp−py ln y+py(1+ln κ)−(2d−1)κpt

∫ t

o

expcpn(t−θ)n+py ln θ+κp(2d−3)θ dθ (71)

The idea is to substitute the integrand by its maximum which is attained for

θmax ∼t→∞
y

cnpn−1tn−1

(
1 +

(n− 1)y

cnpn−1tn
+O(

y2

t2n
) +O(

1

t2(n−1)
)
)
,

This means that for the whole segment, say of the sizeO( y2

t2n + 1
t2(n−1) ) we attain a maxi-

mum times, of course, some correction which can be estimated. Since the total length of
the segment of integrationt is logarifmically insignificant andO( y2

t2n + 1
t2(n−1) ) is logar-

ifmically insignificant in the first regime, the asymptotic behavior of the integral coincides
with that of the maximum of the integrand (logarifmically). Computation of the under-
lined maximum and estimation of all the corrections gives (67) and proves the final result
of the theorem 2.1.

6 Proof of the Almost Sure Asymptotics in the Lattice
Case

We are going to use the following result which is an application of Borel-Cantelli lemma.

Lemma 6.1 Letξi, i = 1, n be independent identically distributed random variables with
distribution function satisfying (5). Letξ(1,n) ≥ ξ(2,n) ≥ . . . ≥ ξ(n,n) be a variational
series of the random sequence{ξi, i = 1, n}. Then forn→∞, for any0 ≤ δ < 1 almost
surely

max
n

ξi = f(lnn) +O

(
ln lnn

(lnn)1−α

)
(72)

ξ(nδ ,n) = f((1− δ) lnn) +O

(
ln lnn

(lnn)1−α

)
(73)

Proposition 6.2 At the conditions of the theorem 4.1

lnu(t, x, 0) ≥ tf((d− 1) ln t)− κ(2d− 1)t+ o(t) (74)

almost surely ast→∞.
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Proof:
First consider the caseu0 ≡ 1. Let B(t)

(−1) be the ball with center(x0, 0) and radius

R
(t)
(−1) = t

ln2t
. We count only those paths that stay at the point(x∗, 0), which is chosen to

be a maximum of the potentialξ in the ballB(t)
(−1), after time 1.

u(t, x, y) ≥ E(0,0){exp
∫ t
0 ξ(xs,ys)ds; zs = γs, s ∈ [0, 1]; z1+s = z1, s ∈ [0, t− 1]}

whereγ(·) is the shortest path in the interior ofD from (x0, 0) to (x∗, 0), z = (x, y). Thus,
ξ(γs) ≡ 0.

Substitutingξ(xs, ys) by its maximum in the ballB(t)
(−1) we use lemma 6.1 to get an

almost sure asymptotic of this maximum. Then estimating the length|x∗ − xτ | by the
diameter ofB(t)

(−1) , using (52) forP{N(1) = |x∗ − xτ |} and strong Markov property we
finish the proof for the caseu0 ≡ 1.

To prove the general case ofu0(x, y) satisfying (25) we should consider the paths
which go fromx∗ toU whent ∈ [t− 1, t].

Proposition 6.3 At the conditions of the theorem 4.1

lnu(t, x, 0) ≤ tf((d− 1) ln t)− κ(2d− 1)t+ o(t) (75)

almost surely ast→∞.

Proof:

Using the lower bound (74) and lemma 6.1 we derive the almost sure ’finite box’
argument:

u(t, x, 0)∼t→∞
∼
u (t, x, 0) (76)

almost surely;
∼
u (t, x, 0) is the solution of the finite problem (55) inSd+

t ln t.
We are going to exploit the fact that

∼
u (t, x, y) ≤ expt maxk

∼
Ek,t+O(ln t) (77)

where
∼
Ek,t is the collection of eigenvalues of the operator

∼
H= κ∆+

∼
ξ (x), x ∈ Sd+

t ln t

where
∼
ξ (x) = max{ξ(x), (1− ε)f((d− 1) ln t)}.

Operator
∼
H has the following structure:

∼
H= (1− ε)f((d− 1) ln t) +H, H = κ∆ +

Nε,t∑
i=1

aiδxi
(x) (78)
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where

Xε,t := {xi ∈ Sd+
t ln t : ξ(xi) > (1− ε)f((d− 1) ln t)}

Nε,t = #{Xε,t}, ai = ξ(xi, 0)− (1− ε)f((d− 1) ln t)

The following lemma is computational. It contains information about the structure of
the setXε,t.

Lemma 6.4

max
i
ai ∼t→∞ εf((d− 1) ln t) →∞ (79)

Nε,t ∼t→∞ [#(Sd−1
tln2t

)]
ε ∼ tε(d−1)(ln t)2ε(d−1) (80)

min
1≤i6=j≤Nε,t′

|xi − xj| ≥t→∞ (t′ln2t′)
δ

(81)

(a.s) forδ < 1−2ε, whereSd−1
tln2t

is the boundary part ofSd+
tln2t

, {t′ →∞} is a subsequence
of {t}.

The proof of the following lemma, which uses path expansion of the resolvent, can be
found in [10].

Lemma 6.5 LetH = κ∆+
∑

i aiδxi
(x) defined onL2(S) is such thatinfi6=j |xi − xj| = B, ai ≥

0, supi ai = A Then for∀δ > 0 ∃A0, B0 such that forA > A0, B > B0 the resolvent
(H − λE)−1 is analytic in the domainλ ≥ A− (2d− 1)κ+ δ, i.e.

Sp(H) < A− (2d− 1)κ+ δ (82)

Moreover, if the parameters:|S|, A,B are all functions of t, then if

∞∑
n=0

A
−nB

4 Bn|S|
n
2 (83)

converges, the result (82) is still true.

Note that, as a consequence of lemma 5.2,2d − 1 appears at the right hand side of
(82).

Lemma 6.4 shows that the conditions of lemma 6.5 are satisfied and so

max
k

Ek,t ≤ A− (2d− 1)κ (84)
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where{Ek,t} denote the collection of eigenvalues of the operatorH. This, together with
(76) and (78), implies the upper bound onu(t, x, 0) which coincides with the lower bound
(74).

The almost sure behavior ofu(t, x, y), as stated in the theorem 4.1, follows from the
formulae (45) and optimization of the hitting timeτ0 by the same argument used in the
proof of proposition 5.9.

Let us note that the (a.s) existence of the solutions given by (8) and (9) is equivalent to
the finiteness of the functionals at the right hand side of these formulas for each(t, x, y) ∈
D ([7], [12], [14]). Thus the upper bound (75) proves the existence in the lattice case.

7 Proofs for the Continuous Case

7.1 Moment Asymptotics

Proposition 7.1

ln〈up(t, x, y)〉 ≤ expa(t−θ)m

pτ0(θ)dθ (85)

asymptotically whent→∞, wherem, a, β were introduced in the theorem 3.2.

Proof:
The special form of the potential (35) lets us consider the set of pointsC = {xn, n =

1, 2, . . . } which are the centers of the boxes where potentialξ(x) is constant. Using
Feynman-Kac formulae (9) and Hölder’s enequality we get

〈up(t, x, y)〉 ≤ 〈E(x,y) expp
∑

xn∈C ξ(xn,0)L
(xn)
t 〉 ∼ E(x,y)

∏
xn∈C

expc(pL
(xn)
t )

β

≤ E(x,y) expc(pLt)
β

,

(86)

whereL(xn)
t is the local time a particle spends in the set{|x − xn| < δ

2
, y ≤ ε}. The last

inequality in the chain (86) is due to the fact thatβ > 1.

Since the distribution ofLt coincides with that ofM (κ)
t−τ0 , maximum of a one-dimensional

Brownian motion with diffusivityκ started from zero, we get

〈up(t, x, y)〉 ≤ E(κ)
y E exppM

(κ)
t−τ0 ∼ E(κ)

y

∫ ∞

0

exp
c(px)β− x2

2(t−τ0)κ dx (87)

=

∫ t

0

∫ ∞

0

expc(px)β− x2

2(t−θ)κ dxpτ0(θ)dθ ∼
∫ t

0

expc(pxmax)β− x2
max

2(t−θ)κ pτ0(θ)dθ
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where

xmax =
(
cβκpβ(t− θ)

) 1
2−β

(88)

which implies (85).

Proposition 7.2

ln〈up(t, x, y)〉 ≥ expa(t−θ)m

pτ0(θ)dθ +O(t) (89)

asymptotically whent→∞.

Proof:
For the lower bound we need to considerp independent brownian motions, and a

representation

〈up(t, x, y)〉 = 〈E(x,y) exp
[ p∑

i=1

∫ t

0

ξ(x(i)
s , y

(i)
s )dL(i)

s

]
〉, (90)

whereL(i)
s is the local time at zero of thei−th brownian motion(x(i), y(i)). Using the

argument of proposition 5.9 we get

〈up(t, x, y)〉 ≥ E(κ)
y {E(0,0)〈exppL

(κ)
t−τ0

ξ(xτ0 )〉; |xs − xτ0| < δ/2, s ∈ [τ0, t]} (91)

Using the fact that they−component of the brownian motion is independent of the
x−components and the estimate (28) we finish the proof of the proposition as in (87).

Propositions 7.1, 7.2 and a well known formulae for the densitypτ0(θ) of the hitting
time of the brownian motionτ0 imply

〈up(t, x, y)〉 ∼
∫ t

0

expa(t−θ)m− y2(t)
2θκ dθ ∼ expa(t−θmax)m− y2(t)

2θmaxκ

where

θmax =
y

√
2κamt

m−1
2

(
1 +

(m− 1)y

2
√

2κamt
m+1

2

+O(
y2

tm+1
)
)

This proves theorem 3.2.
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7.2 Almost Sure Asymptotic

Proposition 7.3 At the conditions of the theorem 4.2

lnu(t, x, 0) ≤ 1

2
κtf 2((d− 1) ln t) (92)

almost surely whent→∞.

Proof:

u(t, x, 0) ≤ E(0,0)

∞∑
n=0

max
B

(t)
n+1

u0(x, y) exp
Lt max

B
(t)
n+1

ξ

P{max
s∈[0,t]

xs ≥ Rn} (93)

whereB(t)
n , n = 0, 1, . . . is a system of balls inRd−1 with centers at(x, 0) and radiuses

R0 = 0 , R1(t) = tlnt, . . . , Rn(t) = tlnnt, . . . .

Using the estimate (72) formax
B

(t)
n+1

ξ and the following estimate for the maximum of

the(d− 1)-dimensional brownian motion

P{max
s∈[0,t]

xs ≥ Rn} ∼t→∞ exp−t lnn t (94)

we conclude that only the first term in decomposition (93) matters and

u(t, x, 0) ≤ E(0,0) expLtf((d−1) ln t), (95)

asymptotically whent→∞. Distribution ofLt is the same as that ofM (κ)
t and so

u(t, x, 0) ≤
∫ ∞

0

expxf((d−1) ln t)− x2

2tκ dx (96)

logarifmically. Optimization inx in the integrand gives (92).

Note that formulae (92) proves the existence of the solution in the Feynman-Kac form
(9).

Proposition 7.4 At the conditions of theorem 4.2

lnu(t, x, 1) ≥ 1

2
κtf 2((d− 1) ln t) +O(t) (97)

almost surely whent→∞.
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Proof:
The case of compactly supported initial conditionu0(x, y) is reduced to the case

u0(x, y) ≡ 1 as in the proposition 6.2. Foru0(x, y) ≡ 1, consider a ballB(t)
(−1) around

point (x, 1) of radiusR(t)
(−1) = t1−ε.

Let us consider the set of pathsΓ = {γs : |γs − γ0
s | < δ

2
, s ∈ [0, 1]}, whereγ0 is

the path in the interior ofD such that the distance|γ0
s − ∂D| ≥ δ

2
, s ∈ [ε, 1] for smallε,

and shortest among those, connectingx and theδ−neighbourhood ofx∗, the center of the
plato of maxima of the potentialξ in the ballB(t)

(−1). We count only those paths that hit
the boundary in theδ−neighbourhood ofx∗ in ∂D and stay in this neighbourhood since
then.

u(t, x, y) ≥ EyE0{exp
∫ t
1 ξ(xs,ys)dL′s ; zs ∈ Γ, s ∈ [0, 1]; zs ∈ Oδ(x

∗), s ∈ [1, t]} (98)

where we usedL′s instead ofLs because the starting point is 1. However, asymptotically,
the distributions ofL′s andLs are indistinguishable. Using the independence of the com-
ponents of(xs, ys), formulae (72) for the maximum of the potentialmax

B
(t)
−1
ξ, estimate

(28) forP{{zs ∈ Oδ(x
∗), s ∈ [1, t]} and the similar estimate forP{zs ∈ Γ, s ∈ [0, 1]} we

finish the proof of the proposition.

For the casey = y(t) > 0 we use representation (45) of the solutionu(t, x, y) and the
fact that the distributions ofτ0 andτ1 are asymptotically the same to get the logarifmic
asymptotic

u(t, x, y) ∼
∫ t

0

exp
1
2
κ(t−θ)f2((d−1) ln(t−θ))− y2(t)

2θκ dθ (99)

and then we optimize the integrand inθ to get (41). Theorem 4.2 is proved.
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