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Abstract

In this paper� we give existence and uniqueness results for backward stochastic di�erential

equations when the generator has polynomial growth in the state variable� We deal with the

case of �xed terminal time as well as the case of random terminal time� The need for this type

of extension of the classical existence and uniqueness results comes from the desire to provide

a probabilistic representation of the solutions of semilinear partial di�erential equations in

the spirit of a nonlinear Feynman�Kac formula� Indeed in many applications of interest� the

nonlinearity is polynomial� see e�g� the Allen�Cahn equation or the standard nonlinear heat

and Schr�odinger equations�

� Introduction

It is by now well�known that there exists a unique� adapted and square integrable� solution to a
backward stochastic di�erential equation �BSDE for short� of type

Yt � � �

Z T

t

f�s� Ys� Zs�ds�
Z T

t

ZsdWs� � � t � T�

provided that the generator is Lipschitz in both the variables y and z� We refer to the original
work of E� Pardoux and S� Peng 	
�� 
� for the general theory and to N� El Karoui� S� Peng
and M��C� Quenez 	� for a survey of the applications of this theory in �nance� Since the �rst
existence and uniqueness result established by E� Pardoux and S� Peng in 
���� a lot of works�
including R� W� R� Darling� E� Pardoux 	�� S� Hamadene 	�� M� Kobylanski 	�� J��
P� Lepeltier� J� San Martin 	
�� 

� see also the references therein� have tried to weaken the
Lipschitz assumption on the generator� Most of these works deal only with real�valued BSDEs 	��
�� 
�� 

 because of their dependence on the use of the comparison theorem for BSDEs �see e�g�
N� El Karoui� S� Peng� M��C� Quenez 	�� Theorem ����� Furthermore� except in 	

� the
generator is always assumed to be at most linear in the state variable� Let us mention nevertheless
an exception� in 	

� J��P� Lepeltier and J� San Martin accomodate a growth of the generator
of the following type� C

�

 � jxj�� log jxj���� C�
 � jxj�� log �� log jxj����� � � �

On the other hand� one of the most promising �eld of application for the theory of BSDEs is
the analysis of elliptic and parabolic partial di�erential equations �PDEs for short� and we refer
to E� Pardoux 	
� for a survey of their relationships� Indeed� as it was revealed by S� Peng 	
�
and by E� Pardoux� S� Peng 	
� �see also the contributions of G� Barles� R� Buckdahn�
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E� Pardoux 	
� Ph� Briand 	�� E� Pardoux� F� Pradeilles� Z� Rao 	
�� E� Pardoux�
S� Zhang 	
� among others�� BSDEs provide a probabilistic representation of solutions �viscos�
ity solutions in the most general case� of semilinear PDEs� This provides a generalization to the
nonlinear case of the well known Feynman�Kac formula� In many examples of semilinear PDEs�
the nonlinearity is not of linear growth �as implied by a global Lipschitz condition� but instead�
it is of polynomial growth� see e�g� the nonlinear heat equation analyzed by M� Escobedo�

O� Kavian and H� Matano in 	�� or the Allen�Cahn equation �G� Barles� H� M� Soner�
P� E� Souganidis 	��� If one attempts to study these semilinear PDEs by means of the nonlinear
version of the Feynman�Kac formula� alluded to above� one has to deal with BSDEs whose genera�
tors with nonlinear �though polynomial� growth� Unfortunately� existence and uniqueness results
for the solutions of BSDE�s of this type were not available when we �rst started this investigation�
and �lling this gap in the literature was at the origin of this paper�

In order to overcome the di�culties introduced by the polynomial growth of the generator� we
assume that the generator satis�es a kind of monotonicity condition in the state variable� This
condition is very useful in the study of BSDEs with random terminal time� See the works of S�
Peng 	
�� R� W� R� Darling� E� Pardoux 	�� Ph� Briand� Y� Hu 	� for attempts in the
spirit of our investigation� Even though it looks rather technical at �rst� it is especially natural in
our context� indeed� it is plain to check that it is satis�ed in all the examples of semilinear PDEs
quoted above�

The rest of the paper is organized as follows� In the next section� we �x some notation� we stae
our main assumptions and we prove a technical proposition which will be needed in the sequel�
In section �� we deal with the case of BSDEs with �xed terminal time� we prove an existence
and uniqueness result and we establish some a priori estimates for the solutions of BSDEs in this
context� In section �� we consider the case of BSDEs with random terminal times� BSDEs with
random terminal times play a crucial role in the analysis of the solutions of elliptic semilinear
PDEs� They were �rst introduced by S� Peng 	
� and then studied in a more general framework
by R� W� R� Darling� E� Pardoux 	�� These equations are also considered in 	
��

Acknowledgments� We are grateful to Professeur Etienne Pardoux for several fruitful discus�
sions during the preparation of this manuscript� Also� the �rst named author would like to thank
the Statistics � Operations Research Program of Princeton University for its warm hospitality�

� Preliminaries

��� Notation and Assumptions

Let ���F � IP� be a probability space carrying a d�dimensional Brownian motion �Wt�t��� and�Ft

�
t��

be the �ltration generated by �Wt�t��� As usual we assume that each ���eld Ft has been

augmented with the IP�null sets to make sure that
�Ft

�
t��

is right continuous and complete� For

y � IRk� we denote by jyj its Euclidean norm and if z belongs to IRk�d� jjzjj denotes �tr�zz�������
For q � 
� we de�ne the following spaces of processes�

� Sq �

�
� progressively measurable� �t � IRk� jj�jjqSq �� IE

�
sup

��t�T
j�tjq

�
��

�
�

� Hq �

�
� progressively measurable� �t � IRk�d� jj�jjqq �� IE

�	Z T

�

jj�tjj�dt

q���

��
�
�
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and we consider the Banach space Bq � Sq �Hq endowed with the norm�

jj�Y� Z�jjqq � IE

�
sup

��t�T
jYtjq

�
� IE

�	Z T

�

jjZtjj�dt

q���

�

We now introduce the generator of our BSDEs� We assume that f is a function de�ned on
� � 	�� T  � IRk � IRk�d� with values in IRk in such a way that the process

�
f�t� y� z�

�
t����T �

is progressively measurable for each �y� z� in IRk � IRk�d� Furthermore we make the following
assumption�

�A ��� There exist constants � � �� � � IR� C � � and p � 
 such that IP� a�s�� we have�


� �t� �y� ��z� z���
��f�t� y� z�� f�t� y� z��

�� � �jjz � z�jj�
�� �t� �z� ��y� y��� �y � y�� � �f�t� y� z�� f�t� y�� z�

� � ��jy � y�j��
�� �t� �y� �z�

��f�t� y� z��� � ��f�t� �� z���� C
�

 � jyjp��

�� �t� �z� y 	�
 f�t� y� z� is continuous�

We refer to the condition �A 
��� as a monotonicity condition� Our goal is to study the BSDE

Yt � � �

Z T

t

f�s� Ys� Zs�ds�
Z T

t

ZsdWs� � � t � T� �
�

when the generator f satis�es the above assumption� In the classical case p � 
� the terminal
condition � and the process

�
f�t� �� ��

�
t����T �

are assumed to be square integrable� In the nonlinear

case p � 
� we need stronger integrability conditions on both � and
�
f�t� �� ��

�
t����T �

�We suppose

that�

�A ��� � is an FT �measurable random variable with values in IRk such that

IE
h
j�j�p

i
� IE

�	Z T

�

��f�s� �� �����ds
p� ���

Remark� We consider here only the case p � 
 since the case p � 
 is treated in the works of
R� W� R� Darling� E� Pardoux 	� and E� Pardoux 	
��

��� A First a priori Estimate

We end these preliminaries by establishing an a priori estimate for BSDEs in the case where � and
f�t� �� �� are bounded� The following proposition is a mere generalization of a result of S� Peng 	
��
Theorem ��� who proved the same result under a stronger assumption on f namely�

�t� y� z� ��f�t� y� z��� � 	� 
jyj� �jjzjj�
Our contribution is merely to remark that his proof requires only an estimate of y � f�t� y� z� and
thus that the result should still true in our context� We include a proof for the sake of completeness�

Proposition ��� Let
�
�Yt� Zt�

�
t����T �

� B� be a solution of the BSDE �
�� Let us assume moreover

that for each t� y� z�

y � f�t� y� z� � 	jyj� 
jyj� � �jyj � jjzjj� and� jj�jj� � ��

Then� for each  � �� we have� setting � � � �
 � ���

sup
��t�T

jYtj� � ��e�T �
	�

�

�
e�T � 


�
�
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Proof� Let us �x t � 	�� T � � will be chosen later in the proof� Applying It�o�s formula to
e��s�t�jYsj� between t and T � we obtain�

jYtj� �
Z T

t

e��s�t�
�
�jYsj� � jjZsjj�

�
ds � j�j�e��T�t� � �

Z T

t

e��s�t�Ys � f�s� Ys� Zs�ds�Mt�

provided we write Mt for �

Z T

t

e��s�t�Ys � ZsdWs� Using the assumption on ��� f� it follows that�

jYtj��
Z T

t

e��s�t�
�
�jYsj� � jjZsjj�

�
ds � ��e�T ��

Z T

t

e��s�t�
�
	jYsj� 
jYsj���jYsj � jjZsjj

�
ds�Mt�

Using the inequality �ab � a�

� � �b�� we obtain� for any  � ��

jYtj� �
Z T

t

e��s�t�
�
�jYsj� � jjZsjj�

�
ds � ��e�T �

Z T

t

e��s�t�
�	�


� �� �
 � ���jYsj�

�
ds

�

Z T

t

e��s�t�jjZsjj�ds� �

Z T

t

e��s�t�Ys � ZsdWs�

and choosing � � � �
 � �� yields the inequality

jYtj� � ��e�T �
	�

�

�
e�T � 


�� �

Z T

t

e��s�t�Ys � ZsdWs�

Taking the conditional expectation with respect to Ft of both sides� we get immediately that�

�t � 	�� T � jYtj� � ��e�T �
	�

�

�
e�T � 


�
�

which completes the proof� �

� BSDEs with Fixed Terminal Times

The goal of this section is to study the BSDE �
� for �xed �deterministic� terminal time T under
the assumption �A 
� and �A ��� We �rst prove uniqueness� then we prove an a priori estimate and
�nally we turn to existence�

��� Uniqueness and a priori Estimates

This subsection is devoted to the proof of uniqueness and to the study of the integrability properties
of the solutions of the BSDE �
��

Theorem ��� If �A������ hold� the BSDE �
� has at most one solution in the space B��

Proof� Suppose that we have two solutions in the space B�� say �Y �� Z�� and �Y �� Z��� Setting
�Y � Y � � Y � and �Z � Z� �Z� for notational convenience� for each real number 	 and for each
t � 	�� T � taking expectations in It�o�s formula gives�

IE
h
e�tj�Ytj� �

Z T

t

e�sjj�Zsjj�ds
i
� IE

h Z T

t

e�s
�
��Ys �

�
f�s� Y �

s � Z
�
s �� f�s� Y �

s � Z
�
s �
�� 	j�Ysj�

�
ds
i
�
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The vanishing of the expectation of the stochastic integral is easily justi�ed in view of Burkholder�s
inequality� Using the monotonicity of f and the Lipschitz assumption� we get�

IE
h
e�tj�Ytj� �

Z T

t

e�sjj�Zsjj�ds
i
� IE

h
��

Z T

t

e�sj�Ysjjj�Zsjjds� �	 � ���

Z T

t

e�sj�Ysj�ds
i
�

Hence� we see that

IE
h
e�tj�Ytj� �

Z T

t

e�sjj�Zsjj�ds
i
� ���� � ��� 	�IE

h Z T

t

e�sj�Ysj�ds
i
�




�
IE
h Z T

t

e�sjj�Zsjj�ds
i
�

We conclude the proof of uniqueness by choosing 	 � ��� � ��� 
� �

We close this section with the derivation of some a priori estimates in the space B�p� These
estimates give short proofs of existence and uniqueness in the Lipschitz context� They were intro�
duced in a � Lp framework� by N� El Karoui� S� Peng� M��C� Quenez 	� to treat the case of
Lipschitz generators�

Proposition ��� For i � 
� � we let �Y i� Zi� � B�p be a solution of the BSDE

Y i
t � �i �

Z T

t

f i�s� Y i
s � Z

i
s�ds�

Z T

t

Zi
sdWs� � � t � T�

where ��i� f i� satis�es the assumptions �A �� and �A �� with constants �i� �i and Ci� Let  such
that � �  � 
 and 	 � ����

��� ���� Then there exists a constant K�
p which depends only on p

and on  such that	

IE

�
sup

��t�T
ep�tj�Ytj�p �

	Z T

�

e�tjj�Ztjj�dt

p�

� K�
pIE

�
e�pT j��j�p �

	Z T

�

e
�
�
sj�fsjds


�p�
�

where �� � ������ �Y � Y ��Y �� �Z � Z��Z� and �f� � f���� Y �
� � Z

�
� ��f���� Y �

� � Z
�
� �� Moreover�

if 	 � ����
��� ���� we have also� setting 
 � 	� ����

��� ����

IE

�	Z T

�

e�tj�Ytj�dt

p�

� K�
p


p
IE

�
e�pT j��j�p �

	Z T

�

e
�
�
sj�fsjds


�p�
�

Proof� As usual we start with It�o�s formula to see that�

e�tj�Ytj� �
Z T

t

e�sjj�Zsjj�ds � e�T j��j� � �

Z T

t

e�s�Ys �
�
f��s� Y �

s � Z
�
s �� f��s� Y �

s � Z
�
s �
�
ds

�
Z T

t

	e�sj�Ysj�ds�Mt

where we set Mt � �

Z T

t

e�s�Ys � �ZsdWs for each t � 	�� T � In order to use the monotonicity of

f� and the Lipschitz assumption on f�� we split one term into three parts� precisely we write�

�Ys �
�
f��s� Y �

s � Z
�
s �� f��s� Y �

s � Z
�
s �
�

� �Ys �
�
f��s� Y �

s � Z
�
s �� f��s� Y �

s � Z
�
s �
�

��Ys �
�
f��s� Y �

s � Z
�
s �� f��s� Y �

s � Z
�
s �
�

��Ys �
�
f��s� Y �

s � Z
�
s �� f��s� Y �

s � Z
�
s �
�
�
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and the inequality ���jYsj � jjZsjj �
�
����

��
�jYsj� � jjZsjj� implies that�

e�tj�Ytj� � �
� �

Z T

t

e�sjj�Zsjj�ds � e�T j��j� �
Z T

t

e�s
�� 	� ��� �

����
�



�j�Ysj�ds
��

Z T

t

e�sj�Ysj � j�fsjds�Mt�

Setting 
 � 	� ��� � ����
��� the previous inequality can be rewritten in the following way

e�tj�Ytj� � �
� �

Z T

t

e�sjj�Zsjj�ds� 


Z T

t

e�sj�Ysj�ds � e�T j��j� �Mt

��

Z T

t

e�sj�Ysj � j�fsjds�
���

Taking the conditional expectation with respect to Ft of the previous inequality� we deduce since
the conditional expectation of Mt vanishes�

e�tj�Ytj� � IE

�
e�T j��j� � �

Z T

�

e�sj�Ysj � j�fsjds
���Ft

�
�

and since p � 
� Doob�s maximal inequality implies�

IE

�
sup

��t�T
ep�tj�Ytj�p

�
� KpIE

�
ep�T j��j�p �

	Z T

�

e�sj�Ysj � j�fsjds

p�

� KpIE

�
ep�T j��j�p � sup

��t�T

�
e�p����tj�Ytjp

�	Z T

�

e�����sj�fsjds

p�

�

where we use the notation Kp for a constant depending only on p and whose value could be
changing from line to line� Thanks to the inequality ab � a��� � b���� we get

IE

�
sup

��t�T
ep�tj�Ytj�p

�
� KpIE

�
e�pT j��j�p �

	Z T

�

e�����sj�fsjds

�p�

�



�
IE

�
sup

��t�T
ep�tj�Ytj�p

�
�

which gives

IE

�
sup

��t�T
ep�tj�Ytj�p

�
� KpIE

�
e�pT j��j�p �

	Z T

�

e�����sj�fsjds

�p�

� ���

Now coming back to the inequality ���� we have since  � 
�Z T

�

e�sjj�Zsjj�ds � 



� 

	
e�T j��j� � �

Z T

�

e�sj�Ysj � j�fsjds� �

Z T

�

e�s�Ys � �ZsdWs



�

and by Burkholder�Davis�Gundy�s inequality we obtain

IE

�	 Z T

�

e�sjj�Zsjj�ds

p�

� K�
pIE

�
e�pT j��j�p �

	Z T

�

e�sj�Ysj � j�fsjds

p�

�K�
pIE

�	Z T

�

e��sj�Ysj�jj�Zsjj�ds

p���

�
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and thus it follows easily that�

IE

�	 Z T

�

e�sjj�Zsjj�ds

p�

� K�
pIE

�
e�pT j��j�p � sup

��t�T

�
e�p����tj�Ytjp

�	Z T

�

e�����sj�fsjds

p�

�K�
pIE

�
sup

��t�T

�
e�p����tj�Ytjp

�	Z T

�

e�sjj�Zsjj�ds

p���

�

which yields the inequality� using one more time the inequality ab � a��� � b����

IE

�	 Z T

�

e�sjj�Zsjj�ds

p�

� K�
pIE

�
e�pT j��j�p � sup

��t�T
ep�tj�Ytj�p �

	Z T

�

e�����sj�fsjds

�p�

�



�
IE

�	 Z T

�

e�sjj�Zsjj�ds

p�

�

Taking into account the upper bound found for IE
h
sup��t�T e

p�tj�Ytj�p
i
given in ���� we derive

from the above inequality�

IE

�	Z T

�

e�sjj�Zsjj�ds

p�

� K�
pIE

�
e�pT j��j�p �

	Z T

�

e�����sj�fsjds

�p�

�

which concludes the �rst part of this proposition� For the second assertion we simply remark
that ��� gives




Z T

�

e�sj�Ysj�ds �
	
e�T j��j� � �

Z T

�

e�sj�Ysj � j�fsjds� �

Z T

�

e�s�Ys � �ZsdWs



�

A similar computation gives�


pIE

�	Z T

�

e�sj�Ysj�ds

p�

� K�
pIE

�
e�pT j��j�p � sup

��t�T
ep�tj�Ytj�p �

	Z T

�

e�����sj�fsjds

�p�

�



�
IE

�	Z T

�

e�sjj�Zsjj�ds

p�

�

which completes the proof using the �rst part of the proposition already shown and keeping in
mind that if 	 � ����

��� ��� then 
 � �� �

Corollary ��� Under the assumptions and with the notation of the previous proposition� there
exists a constant K� depending only on p� T � �� and �� such that	

IE

�
sup

��t�T
j�Ytj�p �

	Z T

�

jj�Ztjj�dt

p�

� KIE

�
j��j�p �

	Z T

�

j�fsjds

�p�

�

Proof� From the previous proposition� we have �taking  � 
����

IE

�
sup

��t�T
ep�tj�Ytj�p �

	Z T

�

e�tjj�Ztjj�dt

p�

� KpIE

�
e�pT j��j�p �

	Z T

�

e
�
�
sj�fsjds


�p�
�

and thus

e�pT�
�

IE

�
sup

��t�T
j�Ytj�p �

	Z T

�

jj�Ztjj�dt

p�

� Kpe
pT��IE

�
j��j�p �

	Z T

�

j�fsjds

�p�

�
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It is enough to set K � epj�jTKp to conclude the proof� �

Remark� It is plain to check that the assumptions �A
 ����� are not needed in the above proofs of
the results of Proposition ��� and its corollary�

Corollary ��� Let
�
�Yt� Zt�

�
��t�T

� B�p be a solution of the BSDE �
� and let us assume that

� � L�p and assume also that there exists a process �ft���t�T �H�p�IR
k� such that

��s� y� z� � 	�� T � IRk � IRk�d� y � f�s� y� z� � jyj � jfsj � �jyj� � �jyj � jjzjj�

Then� if � �  � 
 and 	 � ���� ��� there exists a constant K�
p which depends only on p and on

 such that	

IE

�
sup

��t�T
ep�tjYtj�p �

	Z T

�

e�tjjZtjj�dt

p�

� K�
pIE

�
e�pT j�j�p �

	Z T

�

e
�
�
sjfsjds


�p�
�

Proof� As usual we start with It�o�s formula to see that

� e�tjYtj� �
Z T

t

e�sjjZsjj�ds � e�T j�j� � �

Z T

t

e�sYs � f�s� Ys� Zs�ds�
Z T

t

	e�sjYsj�ds�Mt�

provided we set Mt � �

Z T

t

e�sYs �ZsdWs for each t � 	�� T � Using the assumption on y � f�s� y� z�
and then the inequality ��jYsj � jjZsjj �

�
���

�jYsj� � jjZsjj�� we deduce that

e�tjYtj� � �
� �

Z T

t

e�sjjZsjj�ds � e�T j�j� �
Z T

t

e�s
�� 	� ���

��



�jYsjds
��

Z T

t

e�sjYsj � jfsjds�Mt�

Since 	 � ��� ���� the previous inequality implies

e�tjYtj� � �
� �

Z T

t

e�sjjZsjj�ds � e�T j�j� � �

Z T

t

e�sjYsj � jfsjds�Mt�

This inequality is exactly the same as the inequality ���� As a consequence we can complete the
proof of this as in the proof of Proposition ���� �

��� Existence

In this subsection� we study the existence of solutions for the BSDE �
� under the assumptions
�A 
� and �A ��� We shall prove that the BSDE �
� has a solution in the space B�p� We may
assume� without lost of generality� that the constant � is equal to �� Indeed� �Yt� Zt�t����T � solves
the BSDE �
� in B�p if and only if� setting for each t � 	�� T �

Y t � e��tYt� and Zt � e��tZt�

the process
�
Y � Z

�
solves in B�p the following BSDE�

Y t � � �

Z T

t

f�s� Y s� Zs�ds�
Z T

t

ZsdWs� � � t � T�
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where � � e��T � and f�t� y� z� � e��tf�t� e�ty� e�tz� � �y� Since
�
�� f

�
satis�es the assumption

�A 
� and �A �� with � � �� � � � and C � C exp
�
T
�
�p � 
��� � ��

��
� j�j� we shall assume

that � � � in the remaining of this section�
Our proof is based on the following strategy� �rst� we solve the problem when the function f

does not depend on the variable z and then we use a �x point argument using the a priori estimate
given in subsection ��
� Proposition ��� and Corollary ���� The following proposition gives the �rst
step�

Proposition ��� Let the assumptions �A �� and �A �� hold� Given a process �Vt���t�T in the
space H�p� there exists a unique solution

�
�Yt� Zt�

�
t����T �

in the space B�p to the BSDE

Yt � � �

Z T

t

f�s� Ys� Vs�ds�
Z T

t

ZsdWs� � � t � T� ���

Proof� We shall write in the sequel h�s� y� in place of f�s� y� Vs�� Of course h satis�es the
assumption �A 
� with the same constants as f and

�
h��� ��� belongs toH�p since f is Lipschitz with

respect to z and the process V belongs toH�p� What we would like to do is to construct a sequence
of Lipschitz �globally in y uniformly with respect to ��� s�� functions hn which approximate h and
which are monotone� However� we only manage to construct a sequence for which each hn is
monotone in a given ball �the radius depends on n�� As we will see later in the proof� this � local �
monotonicity is su�cient to obtain the result� This is mainly due to Proposition ��
 whose key
idea can be traced back to a work of S� Peng 	
�� Theorem ����

We shall use an approximate identity� Let � � IRk �
 IR� be a nonnegative C� function
with the unit ball for support and such that

R
��u�du � 
 and de�ne for each integer n � 
�

�n�u� � n��nu�� We denote also� for each integer n� by �n a C� function from IRk to IR� such
that � � �n � 
� �n�u� � 
 for juj � n and �n�u� � � as soon as juj � n� 
� We set moreover

�n �

��
� if j�j � n�

n
�

j�j otherwise�
and�  hn�s� y� �

�� h�s� y� if jh�s� ��j � n�
n

jh�s� ��jh�s� y� otherwise�

Such an  hn satis�es the assumption �A 
� and moreover we have j�nj � n and j hn�s� ��j � n�

Finally we set q�n� �
h
e����n� �C�

p

 � T �

i
� 
 where 	r stands as usual for the integer part of

r and we de�ne

hn�s� �� � �n �
�
�q�n���

 hn�s� ��
�

s � 	�� T �

We �rst remark that hn�s� y� � � whenever jyj � q�n��� and that hn�s� �� is globally Lipschitz
with respect to y uniformly in ��� s�� Indeed� hn�s� �� is a smooth function with compact support
and thus we have supy�IRk

��rhn�s� y��� � supjyj�q�n���

��rhn�s� y��� and� from the growth assumption

on f �A 
���� it is not hard to check that j hn�s� y�j � n jh�s� ��j�C
�

� jyjp� which implies that

��rhn�s� y��� � 	
n
�
n� C�
 � �p��jyjp��� C�p��


Z ��r��u���du�
As an immediate consequence� the function hn is globally Lipschitz with respect to y uniformly in
��� s�� In addition j�nj � n and jhn�s� ��j � n jh�s� ��j��C and thus Theorem ��
 in 	� provides
a solution �Y n� Zn� to the BSDE

Y n
t � �n �

Z T

t

hn�s� Y
n
s �ds�

Z T

t

Zn
s dWs� � � t � T� ���




� Philippe Briand and Ren�e Carmona

which belongs actually to Bq for each q � 
� In order to apply Proposition ��
 we observe that�
for each y�

y � hn�s� y� �

Z
�n�u��q�n����y � u�y �  hn�s� y � u�du

�

Z
�n�u��q�n����y � u�y � � hn�s� y � u��  hn�s��u�

�
du

�

Z
�n�u��q�n����y � u�y �  hn�s��u�du�

Hence� we deduce that� since the function  hn�s� �� is monotone �recall that � � �� in this section�
and in view of the growth assumption on f we have�

��s� y� � �� 	�� T � y � hn�s� y� �
�
n  jh�s� ��j� �C

�jyj� ���

This estimate will turn out to be very useful in the sequel� Indeed� we can apply Proposition ��

to the BSDE ��� to show that� for each n� choosing  � 
�T �

sup
��t�T

jY n
t j � �n� �C�e���

p

 � T �� ���

On the other hand� the inequality ��� allows one to use Corollary ���� to obtain� for a constant Kp

depending only on p�

sup
n�IN

IE

�
sup

��t�T
jY n
t j�p �

	Z T

�

jjZn
t jj�dt


p�
� KpIE

�
j�j�p �

	Z T

�

�jh�s� ��j� �C
�
ds

�p�

� ���

It is worth noting that� thanks to jh�s� ��j � jf�s� �� ��j� �jjVsjj� the right hand side of the previous
inequality is �nite� We want to prove that the sequence

�
�Y n� Zn�

�
IN

converges towards the

solution of the BSDE ��� and in order to do that we �rst show that the sequence
�
�Y n� Zn�

�
IN

is

a Cauchy sequence in the space B�� This fact relies mainly on the following property� hn satis�es
the monotonicity condition in the ball of radius q�n�� Indeed� �x n � IN and let us pick y� y� such
that jyj � q�n� and jy�j � q�n�� We have�

�y � y�� � �hn�s� y�� hn�s� y
�� � �y � y�� �

Z
�n�u��q�n����y � u� hn�s� y � u�du

��y � y�� �
Z

�n�u��q�n����y
� � u� hn�s� y

� � u�du�

But� since jyj� jy�j � q�n� and since the support of �n is included in the unit ball� we get from the
fact that �q�n����x� � 
 as soon as jxj � q�n� � 
�

�y � y�� � �hn�s� y�� hn�s� y
�� �

Z
�n�u��y � y�� � � hn�s� y � u��  hn�s� y

� � u�
�
du�

Hence� by the monotonicity of  hn� we get

�y� y� � B��� q�n��� �y � y�� � �hn�s� y�� hn�s� y
�� � �� ���

We now turn to the convergence of
�
�Y n� Zn�

�
IN
� Let us �x two integersm and n such that m � n�

It�o�s formula gives� for each t � 	�� T �

j�Ytj� �
Z T

t

jj�Zsjj�ds � j��j� � �

Z T

t

�Ys �
�
hm�s� Y m

s �� hn�s� Y
n
s �
�
ds� �

Z T

t

�Ys � �ZsdWs�
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where we have set �� � �m � �n� �Y � Y m � Y n and �Z � Zm � Zn� We split one term of the
previous inequality into two parts� precisely we write�

�Ys �
�
hm�s� Y m

s �� hn�s� Y
n
s �
�
� �Ys �

�
hm�s� Y m

s �� hm�s� Y n
s �
�
� �Ys �

�
hm�s� Y n

s �� hn�s� Y
n
s �
�
�

But in view of the estimate ���� we have jY m
s j � q�m� and jY n

s j � q�n� � q�m�� Thus� using the
property ���� the �rst part of the right hand side of the previous inequality is non�positive and it
follows that

j�Ytj� �
Z T

t

jj�Zsjj�ds � j��j� � �

Z T

t

j�Ysj �
��hm�s� Y n

s �� hn�s� Y
n
s �
��ds� �

Z T

t

�Ys � �ZsdWs� �
��

In particular� we have

IE
h Z T

�

jj�Zsjj�ds
i
� �IE

h
j��j� �

Z T

�

j�Ysj �
��hm�s� Y n

s �� hn�s� Y
n
s �
��dsi�

and coming back to �
��� Burkholder�s inequality implies

IE

�
sup

��t�T
j�Ytj�

�
� KIE

�
j��j� �

Z T

�

j�Ysj �
��hm�s� Y n

s �� hn�s� Y
n
s �
��ds� 	Z T

�

j�Ysj�jj�Zsjj�ds

����

�

and then using the inequality ab � a��� � b��� we obtain the following inequality�

IE
h

sup
��t�T

j�Ytj�
i

� KIE
h
j��j� �

Z T

�

j�Ysj �
��hm�s� Y n

s �� hn�s� Y
n
s �
��dsi

�



�
IE
h

sup
��t�T

j�Ytj�
i
�
K�

�
IE
h Z T

�

jjZsjj�ds
i
�

from which we get� for another constant still denoted by K�

IE
h

sup
��t�T

j�Ytj� �
Z T

�

jj�Zsjj�ds
i
� KIE

h
j��j� �

Z T

�

j�Ysj �
��hm�s� Y n

s �� hn�s� Y
n
s �
��dsi�

Obviously� since � � L�p� �� tends to � in L� as n�m
� with m � n� So� we have only to prove
that

IE
h Z T

�

j�Ysj �
��hm�s� Y n

s �� hn�s� Y
n
s �
��dsi �
 �� as n
��

For any nonnegative number k� we write

Smn � IE
h Z T

�


jY n
s j�jY

m
s j�kj�Ysj �

��hm�s� Y n
s �� hn�s� Y

n
s �
��dsi�

Rm
n � IE

h Z T

�


jY n
s j�jY

m
s j�kj�Ysj �

��hm�s� Y n
s �� hn�s� Y

n
s �
��dsi�

and with these notations we have

IE
h Z T

�

j�Ysj �
��hm�s� Y n

s �� hn�s� Y
n
s �
��dsi � Smn �Rm

n

and hence� the following inequality�

IE
h Z T

�

j�Ysj �
��hm�s� Y n

s �� hn�s� Y
n
s �
��dsi � kIE

h Z T

�

sup
jyj�k

��hm�s� y�� hn�s� y�
��dsi�Rm

n � �

�
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First we deal with Rm
n and using H!older�s inequality we get the following upper bound�

Rm
n �

�
IE
h Z T

�


jY n
s j�jY

m
s j�kds

i� p��

�p
�
IE
h Z T

�

j�Ysj
�p

p��

��hm�s� Y n
s �� hn�s� Y

n
s �
�� �p

p�� ds
i� p��

�p

�

Setting Am
n � IE

h Z T

�

j�Ysj
�p

p��

��hm�s� Y n
s �� hn�s� Y

n
s �
�� �p

p�� ds
i
for notational convenience� we have

Rm
n �

�Z T

�

IP
�jY n

s j� jY m
s j � k

�
ds

� p��

�p

Am
n

p��

�p �

and Chebyshev�s inequality yields�

Rm
n � k��p

�Z T

�

IE
h�jY n

s j� jY m
s j��pids� p��

�p

Am
n

p��

�p

� �pT
p��

�p

�
sup
n�IN

IE
h

sup
��t�T

jY n
t j�p

i� p��

�p

k��pAm
n

p��

�p � �
��

We have already seen that supn�IN IE
h
sup��t�T jY n

t j�p
i
is �nite �cf� ���� and we shall prove that

Am
n remains bounded as n�m vary� To do this� let us recall that

Am
n � IE

h Z T

�

j�Ysj
�p

p��

��hm�s� Y n
s �� hn�s� Y

n
s �
�� �p

p�� ds
i
�

and using Young�s inequality �ab � �
ra

r� �
r� b

r� whenever �
r �

�
r� � 
� with r � p�
 and r� � p��

p �
we deduce that

Am
n � 


p� 

IE
h Z T

�

j�Ysj�pds
i
�

p

p� 

IE
h Z T

�

��hm�s� Y n
s �� hn�s� Y

n
s �
���dsi�

The �rst part of the last upper bound remains bounded as n�m vary since from ��� we know that

supn�IN IE
h
sup��t�T jY n

t j�p
i
is �nite� Moreover� we derive easily from the assumption �A 
� that��hn�s� y��� � n  ��h�s� ����� �pC
�

 � jyjp�� and then���hm�s� Y n

s �� hn�s� Y
n
s �
�� � �

��h�s� ����� �p��C
�

 � jY n

s jp
�
�

which yields the inequality� taking into account the assumption �A 
��
�

IE
h Z T

�

��hm�s� Y n
s �� hn�s� Y

n
s �
���dsi � KpIE

h Z T

�

�jf�s� �� ��j� � jjVsjj� � 
 � jY n
s j�p

�
ds
i
�

Taking into account ��� and the integrability assumption on both V and f��� �� ��� we have proved
that supn�mAm

n ���
Coming back to the inequality �
��� we get� for a constant �� Rm

n � �k��p� and since p � 
�
Rm
n can be made arbitrary small by choosing k large enough� Thus� in view of the estimate �

��

it remains only to check that� for each �xed k � ��

IE
h Z T

�

sup
jyj�k

��hm�s� y�� hn�s� y�
��dsi
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goes to � as n tends to in�nity uniformly with respect to m to get the convergence of
�
�Y n� Zn�

�
IN

in the space B�� But� since h�s� �� is continuous �IP � a�s�� �s�� hn�s� �� converges towards h�s� ��
uniformly on compact sets� Taking into account that supjyj�k

��hn�s� y��� � ��h�s� ����� �pC
�

 � kp

�
Lebesgue�s convergence theorem gives the result�

Thus� the sequence
�
�Y n� Zn�

�
IN

converges towards a progressively measurable process �Y� Z�

in the space B�� Moreover� since
�
�Y n� Zn�

�
IN

is bounded in B�p �see ����� Fatou�s lemma implies

that �Y� Z� belongs also to the space B�p�
It remains to check that �Y� Z� solves the BSDE ��� which is nothing but

Yt � � �

Z T

t

h�s� Ys�ds�
Z T

t

ZsdWs� � � t � T�

Of course� we want to pass to the limit in the BSDE ���� Let us �rst remark that �n �
 � in

L�p and that for each t � 	�� T �

Z T

t

Zn
s dWs �


Z T

t

ZsdWs since Zn converges to Z in the space

H��IR
k�d�� Actually� we only need to prove that for t � 	�� T �Z T

t

hn�s� Y
n
s �ds �


Z T

t

h�s� Ys�ds� asn
��

For this� we shall see that hn��� Y n
� � tends to h��� Y�� in the space L���� 	�� T �� Indeed�

IE
h Z T

�

��hn�s� Y n
s ��h�s� Ys�

��dsi � IE
h Z T

�

��hn�s� Y n
s ��h�s� Y n

s �
��dsi�IE

h Z T

�

��h�s� Y n
s ��h�s� Ys�

��dsi�
The �rst term of the right hand side of the previous inequality tends to � as n goes to � by the

same argument we use earlier in the proof to see that IE
� Z T

�

j�Ysj � jhm�s� Y n
s ��hn�s� Y

n
s �jds� goes

to �� For the second term� we shall �rstly prove that there exists a converging subsequence� Indeed�
since Y n converges to Y is the space S�� there exists a subsequence �Y nj � such that IP�a
s
�

�t � 	�� T � Y
nj
t �
 Yt�

Since h�t� �� is continuous �IP�a
s
� �t�� IP�a
s

��t� h�t� Y

nj
t � �
 h�t� Yt�

�
� Moreover� since

Y � S�p and �Yn�IN is bounded in S�p ������ it is not hard to check from the growth assumption
on f that

sup
j�IN

IE
h Z T

�

��h�s� Y nj
s �� h�s� Ys�

���dsi ���

and then the result follows by uniform integrability of the sequence� Actually� the convergence
hold for the whole sequence since each subsequence has a converging subsequence� Finally� we can
pass to the limit in the BSDE ��� and the proof is complete� �

With the help of this proposition� we can now construct a solution �Y� Z� to the BSDE �
�� We
claim the following result�

Theorem ��� Under the assumptions �A �� and �A��� the BSDE �
� has a unique solution �Y� Z�
in the space B�p�

Proof� The uniqueness part of this statement is already proved in Theorem ��
� The �rst step
in the proof of the existence is to show the result when T is su�ciently small� According to
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Theorem ��
 and Proposition ���� let us de�ne the following function � from B�p into itself� For
�U� V � � B�p� ��U� V � � �Y� Z� where �Y� Z� is the unique solution in B�p of the BSDE�

Yt � � �

Z T

t

f�s� Ys� Vs�ds�
Z T

t

ZsdWs� � � t � T�

Next we prove that � is a strict contraction provided that T is small enough� Indeed� if
�
U�� V �

�
and

�
U�� V �

�
are both elements of the space B�p� we have� applying Proposition ��� for

�
Y i� Zi

�
�

�
�
U i� V i

�
� i � 
� ��

IE

�
sup

��t�T
j�Ytj�p �

	Z T

�

jj�Ztjj�dt

p�

� KpIE

�	 Z T

�

jf�s� Y �
s � V

�
s �� f�s� Y �

s � V
�
s jds


�p�
�

where �Y � Y ��Y �� �Z � Z��Z� and Kp is a constant depending only on p� Using the Lipschitz
assumption on f � �A 
��
� and H!older�s inequality we get the inequality

IE

�
sup

��t�T
j�Ytj�p �

	Z T

�

jj�Ztjj�dt

p�

� Kp�
�pT pIE

�	 Z T

�

jjV �
s � V �

s jj�ds

p�

�

Hence� if T is such that Kp�
�pT p � 
� � is a strict contraction and thus � has a unique �xed

point in the space B�p which is the unique solution of the BSDE �
�� The general case is treated
by subdividing the time interval 	�� T  into a �nite number of intervals whose lengths are small
enough and using the above existence and uniqueness result in each of the subintervals� �

� The Case of Random Terminal Times

In this section� we brie"y explain how to extend the results of the previous section to the case of
a random terminal time�

��� Notation and Assumptions

Let us recall that �Wt�t�� is a d�dimensional Brownian motion� de�ned on a probability space
���F � IP� and that

�Ft

�
t��

is the complete ��algebra generated by �Wt�t���

Let � be a stopping time with respect to
�Ft

�
t��

and let us assume that � is �nite IP�a
s
 Let us

consider also a random variable � F��measurable and a function f de�ned on ��IR��IRk�IRk�d

with values in IRk and such that the process
�
f��� y� z�� is progressively measurable for each �y� z��

We study the following BSDE with the random terminal time � �

Yt � � �

Z �

t��

f�s� Ys� Zs�ds�
Z �

t��

ZsdWs� t � �� �
��

By a solution of this equation� we always mean a progressively measurable process
�
�Yt� Zt�

�
t��

with values in IRk� IRk�d such that Zt � � if t � � � Moreover� since � is �nite IP�a
s
� �
�� implies
that Yt � � if t � � �

We need to introduce further notation� Let us consider q � 
 and 	 � IR� We say that a
progressively measurable process � with values in IRn belongs to H

�
q �IR

n� if

IE

�	 Z �

�

e�tjj�tjj�dt

q���

���
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Moreover� we say that � belongs to the space S
���
q �IRn� if

IE

�
sup
t��

e�q�����t���j�tjq
�
���

We are going to prove an existence and uniqueness result for the BSDE �
�� under assumptions
which are very similar to those made in section � for the study of the case of BSDEs with �xed
terminal times� Precisely� we will suppose in the framework of random terminal times the following
two assumptions�

�A ��� There exist constants � � �� � � IR� C � �� p � 
 and � � f�� 
g such that IP� a�s�� we
have�


� �t� �y� ��z� z��� ��f�t� y� z�� f�t� y� z��
�� � �jjz � z�jj�

�� �t� �z� ��y� y��� �y � y�� � �f�t� y� z�� f�t� y�� z�
� � ��jy � y�j��

�� �t� �y� �z� ��f�t� y� z��� � ��f�t� �� z���� C��� jyjp��

�� �t� �z� y 	�
 f�t� y� z� is continuous�

�A ��� � is F� �measurable and there exists a real number � such that � � �� � �� and

IE

�
�e	� �

�
e	� � ep	�

�j�j�p � 	Z �

�

e	s
��f�s� �� �����ds
p � 	Z �

�

e�	���s
��f�s� �� ����ds
�p� ���

Remark� In the case � � �� which may occur if � is an unbounded stopping time� our integrability
conditions are ful�lled if we assume that

IE

�
e	� j�j�p �

	Z �

�

e�	���s
��f�s� �� �����ds
p� ���

For notational convenience� we will simply write� in the remaining of the paper� S
	��
q and H

	
q

instead of S
	��
q �IRk� and H

	
q�IR

k�d� respectively�

��� Existence and Uniqueness

In this section� we deal with the existence and uniqueness of the solutions of the BSDE �
��� We
claim the following proposition�

Proposition ��� Under the assumptions �A 
� and �A ��� there exists at most a solution of the
BSDE �
�� in the space S

	��
� �H	

��

Proof� Let �Y �� Z�� and �Y �� Z�� be two solutions of �
�� in the space S
	��
� �H	

�� Let us notice
�rst that Y �

t � Y �
t � � if t � � and Z�

t � Z�
t � � on the set ft � �g� Applying It�o�s formula� we

get

e	�t���j�Yt�� j� �
Z �

t��

e	sjj�Zsjj�ds � �

Z �

t��

e	s�Ys �
�
f�s� Y �

s � Z
�
s �� f�s� Y �

s � Z
�
s �
�
ds

�
Z �

t��

�e	sj�Ysj�ds� �

Z �

t��

e	s�Ys � �ZsdWs�
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where we have set �Y � Y � � Y � and �Z � Z� � Z�� It is worth noting that� since f is Lipschitz
in z and monotone in y� we have� for each  � ��

��t� y� y�� z� z��� ��y � y�� � �f�t� y� z�� f�t� y�� z��
� � ����� ����jy � y�j� � jjz � z�jj�� �
��

Moreover� by Burkholder�s inequality the continuous local martingalenZ t��

�

e	s�Ys � �ZsdWs� t � �
o

is a uniformly integrable martingale� Indeed�

IE

�DZ �	t

�

e	s�Ys � �ZsdWs

E���
�

�
� IE

�	Z �

�

e�	sj�Ysj�jj�Zsjj�ds

����

� KIE

�	
sup

��t��
e	tj�Ytj�


���	Z �

�

e	sjj�Zsjj�ds

����

�

and then�

IE

�DZ �	t

�

e	s�Ys � �ZsdWs

E���
�

�
� K

�
IE

�
sup

��t��
e	tj�Ytj� �

Z �

�

e	sjj�Zsjj�ds
�
�

which is �nite since ��Y� �Z� belongs to the space S
	��
� �H	

�� Thanks to the inequality � � ������
we can choose  such that � �  � 
 and � � ������� Using the inequality �
��� we deduce that�
the expectation of the stochastic integral vanishing in view of the above computation� for each t�

IE
h
e	�t���j�Yt�� j� � �
� �

Z �

t��

e	sjj�Zsjj�ds
i
� ��

which gives the result� �

Before proving the existence part of the result� let us introduce a sequence of processes whose
construction is due to R� W� R� Darling and E� Pardoux 	�� pp� 

���

��� Let us set

� � ���� � � and let �bY n� bZn� be the unique solution of the classical �the terminal time is
deterministic� BSDE on 	�� n

bY n
t � IE

�
e
��

��Fn

�
�

Z n��

t��

�
e
sf�s� e�
s bY n

s � e
�
s bZn

s �� �bY n
s

�
ds�

Z n

t

bZn
s dWs�

Since IE
h
e�p
� j�j�p

i
� IE

h
ep	� j�j�p

i
and since

IE

�	Z �

�

e�
s
��f�s� �� �����ds
p� � IE

�	 Z �

�

e	s
��f�s� �� �����ds
p��

the assumption �A �� and Theorem ��� ensure that �bY n� bZn� belongs to the space B�p �on the
interval 	�� n�� In view of 	
�� Proposition ��
� we have

bY n�t�� � � bY n
t � and� bZn

t � � on ft � �g�

Since e
� � belongs to L�p�F� � there exists a process ��� in H
�
� such that �t � � if t � � and

e
�� � IE
�
e
��

�
�

Z �

�

�sdWs�
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�

We introduce still new notation� For each t � n we set�bY n
t � IE

�
e
� �

��Ft

�
� �t� and� bZn

t � �t�

and for each nonnegative t�

Y n
t � e�
�t��� bY n

t � and� Zn
t � e�
�t��� bZn

t �

This process satis�es Y n
t�� � Y n

t and Zn
t � � on ft � �g and moreover �Y n� Zn� solves the BSDE

Y n
t � � �

Z �

t��

fn�s� Y
n
s � Z

n
s �ds�

Z �

t��

Zn
s dWs� t � �� �
��

where fn�t� y� z� � 
t�nf�t� y� z� � 
t�n�y �cf 	��� We start with a technical lemma�

Lemma ��� Let the assumptions �A 
� and �A �� hold� Then� we have� with the notation

K��� f� � KIE

�
ep	� j�j�p �

	Z �

�

e�	���s
��f�s� �� ����ds
�p��

sup
IN

IE

�
sup
t��

ep	�t���jY n
t j�p �

	Z �

�

e	sjY n
s j�ds


p
�
	Z �

�

e	sjjZn
s jj�ds


p�
� K��� f�� �
��

and� also� for � � �� ���

IE

�
sup
t��

ep��t���j�tj�p �
	Z �

�

e�sj�sj�ds

p

�
	Z �

�

e�sjj�sjj�ds

p�

� KIE
h
ep	� j�j�p

i
� �
��

Proof� Firstly� let us remark that Zn
t � �t � � if t � � and� since Y n

t � � if t � � � we have
supt�� e

p	�t���jY n
t j�p � sup��t�� e

p	tjY n
t j�p� Moreover� since � � �� we can �nd  such that

� �  � 
 and � � ��� � ��� Applying Proposition ��� �actually a very mere extension to deal
with bounded stopping times as terminal times�� we get

IE

�
sup

��t�n��
ep	tjY n

t j�p �
	Z n��

�

e	sjY n
s j�ds


p
�
	Z n��

�

e	sjjZn
s jj�ds


p�
� KE

�
ep	�n���jY n�n���j�p �

	Z n��

�

e�	���s
��f�s� �� ����ds
�p��

We have Y n
n�� � Y n

n � e�
�n���IE
�
e
��

��Fn��

�
and then we deduce immediately that� since

���� � � � and using Jensen�s inequality�

IE
h
ep	�n���jY n�n�� �j�p

i
� IE

h��IE�e�	���
��n���e
�� ��Fn��

����pi
� IE

h
ep	� j�j�p

i
�

�
��

Hence� for each integer n�

IE

�
sup

��t�n��
ep	tjY n

t j�p �
	Z n��

�

e	sjY n
s j�ds


p
�
	Z n��

�

e	sjjZn
s jj�ds


p�
� K��� f��

It remains to prove that we can �nd the same upper bound for

IE

�
sup

n���t��
ep	tjY n

t j�p �
	Z �

n��

e	sjY n
s j�ds


p
�
	Z �

n��

e	sjjZn
s jj�ds


p�
�
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But the expectation is over the set fn � �g and coming back to the de�nition of �bYn� bZn� for t � n�
it is enough to check that

IE

�
sup
t��

ep�	��
��t���j�tj�p �
	Z �

�

e�	��
�sj�sj�ds

p

�
	Z �

�

e�	��
�sjj�sjj�ds

p�

� KIE
h
ep	� j�j�p

i
to get the inequality �
�� of the lemma and thus to complete the proof since� in view of the
de�nition of �� the previous inequality is nothing but the inequality �
��� But� for each n� ��� ��
solves the the following BSDE�

�t � IE
�
e
� �

��Fn��

�� Z n

t

�sdWs� � � t � n�

and by Proposition ���� since � � �� �� � ��

IE

�
sup

��t�n��
ep�tj�tj�p �

	Z n��

�

e�sj�sj�ds

p

�
	Z n��

�

e�sjj�sjj�ds

p�

� KIE
h
ep��n���j�n�� j�p

i
�

We have already seen �cf �
��� that IE
�
ep��n���j�n�� j�p

� � IE
�
ep	� j�j�p� and thus the proof of this

rather technical lemma is complete� �

With the help of this useful lemma we can construct a solution to the BSDE �
��� This is the
aim of the following theorem�

Theorem ��� Under the assumptions �A 
� and �A 
�� the BSDE �
�� has a unique solution �Y� Z�
in the space S

	��
� �H	

� which satis�es moreover

IE

�
sup
t��

ep	�t���jYtj�p �
	Z �

�

e	sjYsj�ds

p

�
	Z �

�

e	sjjZsjj�ds

p�

� K��� f��

Proof� The uniqueness part of this claim is already proved in Proposition ��
� We concentrate
ourselves on the existence part� We split the proof into the two following steps� �rst we show that
the sequence

�
�Y n� Zn�

�
IN

is a Cauchy sequence in the space S
	��
� �H	

� and then we shall prove
that the limiting process is indeed a solution�

Let us �rst recall that for each integer n� the process �Y n� Zn� satis�es Y n
t�� � Y n

t and Zn
t � �

on ft � �g and moreover solves the BSDE �
�� whose generator fn is de�ned in the following
way� fn�t� y� z� � 
t�nf�t� y� z� � 
t�n�y� If we �x m � n� It�o�s formula gives� since we have also
Y m
m�� � Y m

m � Y n
m�� � Y n

m � e�
�m����m� for t � m�

e	�t���j�Yt�� j� �
Z m��

t��

e	sjj�Zsjj�ds � �

Z m��

t��

e	s�Ys �
�
fm�s� Y m

s � Zm
s �� fn�s� Y

n
s � Z

n
s �
�
ds

�
Z m��

t��

�e	sj�Ysj�ds� �

Z m��

t��

e	s�Ys � �ZsdWs�

where we have set �Y � Y m � Y n� �Z � Zm � Zn� It follows from the de�nition of fn�

e	�t���j�Yt�� j� �
Z m��

t��

e	sjj�Zsjj�ds � �

Z m��

t��

e	s�Ys �
�
f�s� Y m

s � Zm
s �� f�s� Y n

s � Z
n
s �
�
ds

�
Z m��

t��

�e	sj�Ysj�ds� �

Z m��

t��

e	s�Ys � �ZsdWs

��

Z m��

t��


s�ne
	s�Ys �

�
f�s� Y n

s � Z
n
s �� �Y n

s

�
ds�
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Since � � �� � ��� we can �nd  such that � �  � 
 and 
 � � � ��� � �� � �� Using the
inequality �
�� with this � we deduce from the previous inequality�

e	�t���j�Yt�� j� � �
� �

Z m��

t��

e	sjj�Zsjj�
�
ds � �


Z m��

t��

e	sj�Ysj�ds� �

Z m��

t��

e	s�Ys � �ZsdWs

��

Z m��

�t�n���

e	sj�Ysj�
��f�s� Y n

s � Z
n
s �� �Y n

s

��ds�
Now� using the inequality �ab � �a� � b��� for the second term of the right hand side of the
previous inequality� with � � 
� we get� for each t � m� noting � � min�
� � 
 ��� � ��

e	�t���j�Yt�� j� � �

Z m��

t��

e	s
�j�Ysj� � jj�Zsjj�

�
ds � 


�

Z m��

n��

e	s
��f�s� Y n

s � Z
n
s �� �Y n

s

���ds
� �

Z m��

t��

e	s�Ys � �ZsdWs�

�
��

In particular� we have� the expectation of the stochastic integral vanishes �cf Lemma �����

IE
h Z m��

�

e	s
�j�Ysj� � jj�Zsjj�

�
ds
i
� KIE

h Z m��

n��

e	s
��f�s� Y n

s � Z
n
s �� �Y n

s

���dsi�
Coming back to the inequality �
��� Burkholder�s inequality yields

IE

�
sup

��t�m��
e	tj�Ytj�

�
� KIE

�Z m��

n��

e	s
��f�s� Y n

s � Z
n
s ���Y n

s

���ds�	Z m��

�

e�	sj�Ysj�jj�Zsjj�ds

����

�

But� by an argument already used�

KIE

�	Z m��

�

e�	sj�Ysj�jj�Zsjj�ds

����

� KIE

�	
sup

��t�m��
e	tj�Ytj�


���	Z m��

�

e	sjj�Zsjj�ds

����

� 


�
IE

�
sup

��t�m��
e	tj�Ytj�

�
�
K�

�
IE

� Z m��

�

e	sjj�Zsjj�ds
�
�

As a consequence we obtain the inequality�

IE

�
sup

��t�m��
e	tj�Ytj��

Z m��

�

e	s
�j�Ysj� � jj�Zsjj�

�
ds

�
� KIE

�Z m��

n��

e	s
��f�s� Y n

s � Z
n
s ���Y n

s

���ds��
and since Y m

t � Y n
t if t � m� Y i

t � � on ft � �g for each i� Zm
t � Zn

t � �t as soon as t � m and
�t � � on ft � �g we deduce from the previous inequality

IE

�
sup
t��

e	�t���j�Ytj� �
Z �

�

e	sj�Ysj�ds�
Z �

�

e	sjj�Zsjj�ds
�
� #n� ����

where we have set #n � IE
h Z �

n��

e	s
��f�s� Y n

s � Z
n
s � � �Y n

s

���dsi� But the growth assumption on f

�A ���� implies that� up to a constant� #n is upper bounded by

IE
h Z �

n��

e	s
���f�s� �� ����� � �� jY n

s j� � jjZn
s jj� � jY n

s j�p
�
ds
i
�
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Since� by assumption �A ��� IE
h Z �

�

e	sjf�s� �� ��j�ds
i
and IE

�
�e	�

�
are �nite� the �rst two terms of

the previous upper bound tends to � as n goes to �� Moreover� coming back to the de�nition of�bY n� bZn
�
for t � n� we have

IE
h Z �

n��

e	s
�jY n

s j� � jjZn
s jj�

�
ds
i
� IE

h Z �

n��

e�	��
�s
�j�sj� � jj�sjj�

�
ds
i
�

and by Lemma ��� �cf �
��� the quantity above tends also to � with n going to �� It remains to
check that the same is true for

IE
h Z �

n��

e	sjY n
s j�pds

i
� IE

h Z �

n��

e�	��p
�sj�sj�pds
i
�

where� let us recall it� �s means IE
�
e
��

��Fs

�
� By Jensen�s inequality� it is enough to show the

following�

IE
h Z �

n��

e�	��
p�sIE
�
ep
� j�jp

��Fs

��
ds
i
�
 �� as n
��

If � � �p�� since IE
�
e�p
� j�j�p� � IE

�
ep	� j�j�p� � � and IE

�
e	� j�j�p� � �� Lemma ��
 in 	�

gives

IE
h Z �

�

e�	��
p�sIE
�
ep
� j�jp ��Fs

��
ds
i
���

from which we get the result�
Now� we deal with the case � � �p� which implies � � �� � � � �p� � p�� Using once more

time Jensen�s inequality� we have

IE
h Z �

n��

e�	��
p�sIE
�
ep
� j�jp ��Fs

��
ds
i

� IE
h Z �

n��

IE
�
e�p
� j�j�p ��Fs

�
ds
i

� IE
h Z �

n��

IE
�
e��
�	�p�ep	� j�j�p ��Fs

�
ds
i
�

and since � � �� we have IE
�
e��
�	�p�ep	� j�j�p ��Fs

� � e��
�	�p�s���IE
�
ep	� j�j�p ��Fs

�
� Hence� it

follows�

IE
h Z �

n��

e�	��
p�sIE
�
ep
� j�jp ��Fs

��
ds
i

� IE
h Z �

n��

e��
�	�psIE
�
ep	� j�j�p ��Fs

�
ds
i

� IE
h
ep	� j�j�p

i Z �

n

e��
�	�psds�

Since �� � � � � and IE
�
ep	� j�j�p� � �� we complete the proof of the last case� Thus we have

shown that #n converges to � as n tends to � and coming back to the inequality ����� we get

IE

�
sup
t��

e	�t���j�Ytj� �
Z �

�

e	sj�Ysj�ds�
Z �

�

e	sjj�Zsjj�ds
�
�
 ��

as n tends to �� uniformly in m� In particular the sequence
�
�Y n� Zn�

�
IN

is a Cauchy sequence in

S
	��
� �H	

� and thus converges in this space to a process �Y� Z�� Moreover� taking into account the
inequality �
�� of Lemma ���� Fatou�s lemma implies

IE

�
sup
t��

ep	�t���jYtj�p �
	Z �

�

e	sjYsj�ds

p

�
	Z �

�

e	sjjZsjj�ds

p�

� K��� f�� ��
�
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It remains to check that the process �Y� Z� solves the BSDE �
��� To do this� we follow the
discussion of R� W� R� Darling� E� Pardoux 	�� pp� 

���

�
� Let us pick a real number 	
such that 	 � �  ���  p� �this implies that 	 � �� and let us �x a nonnegative real number t�
Since �Yn� Zn� solves the BSDE �
��� we have� from It�o�s formula� for n � t�

e��t���Y n
t � e�� � �

Z �

t��

e�s
�
f�s� Y n

s � Z
n
s �� 	Y n

s

�
ds�

Z �

t��

e�sZn
s dWs

�

Z �

n��

e�s
�
�Y n

s � f�s� Y n
s � Z

n
s �
�
ds�

and we want to pass to the limit in this equation knowing that

IE

�
sup
t��

e	�t���jYt � Y n
t j� �

Z �

�

e	sjYs � Y n
s j�ds�

Z �

�

e	sjjZs � Zn
s jj�ds

i
�
 ��

We have� e��t���Y n
t �
 e��t���Yt in L�� Moreover� H!older�s inequality gives

IE
h Z �

�

e�sjY n
s � Ysjds

i
�
�
IE
h Z �

�

e	sjY n
s � Ysj�ds

i�����
IE
h Z �

�

e����	�sds
i����

from which we deduce� since �	 � �� that

Z �

t��

e�sY n
s ds tends to

Z �

t��

e�sYsds in L�� We remark

also that

Z �

t��

e�sZn
s dWs converges to

Z �

t��

e�sZsdWs in L� since� thanks to �	 � ��

IE

���� Z �

t��

e�s
�
Zn
s � Zs

� � dWs

����� � IE
h Z �

�

e	sjjZn
s � Zsjj�ds

i
�

Using H!older�s inequality� we have

IE
h Z �

n��

e�s
���Y n

s � f�s� Y n
s � Z

n
s �
��dsi � 
p

�� �	

�
IE
h Z �

n��

e	s
���Y n

s � f�s� Y n
s � Z

n
s �
���dsi����

�

and we have already proved that the right hand side tends to � �see the de�nition of #n�� It

remains to study the term

Z �

t��

f�s� Y n
s � Z

n
s �ds� But� since f is Lipschitz in z� we have

IE
h Z �

t��

e�s
��f�s� Y n

s � Z
n
s �� f�s� Y n

s � Zs�
��dsi � �p

�� �	

�
IE
h Z �

n��

e	sjjZn
s � Zsjj�ds

i����

�

and thus goes to � with n� So now� it su�ces to show that

IE
h Z �

�

e�s
��f�s� Y n

s � Zs�� f�s� Ys� Zs�
��dsi �
 ��

to control the limit in the equation� We prove this by showing that each subsequence has a
subsequence for which the above convergence hold� Indeed� if we pick a subsequence �still denoted
by Y n�� since we have IE

�
supt�� e

	�t���jYt � Y n
t j�

� �
 � there exist a subsequence still denoted

in the same way such that IP�a
s

��t� Y n

t �
 Yt
�
� By the continuity of the function f � IP�a
s
��t� f�t� Y n

t � Zt� �
 f�t� Yt� Zt�
�
� If we prove that

sup
IN

IE
h Z �

�

e�s
��f�s� Y n

s � Zs�� f�s� Ys� Zs�
���dsi ���
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then the sequence jf��� Y n
� � Z�� � f��� Y�� Z��

�� will be a uniformly integrable sequence for the �nite
measure e�s
s��ds�dIP �remember that 	 � ��and thus converging in L��e�s
s��ds�dIP� which
is the desired result� But from the growth assumption on f � we have

IE
h Z �

�

e�s
��f�s� Y n

s � Zs�� f�s� Ys� Zs�
���dsi � KIE

h Z �

�

e�s
�jf�s� �� ��j� � jjZn

s jj� � jjZsjj�
�
ds
i

�KIE
h Z �

�

e�s
�
�� jY n

s j�p � jYsj�p
�
ds
i
�

Since � � 	� the inequalities �
�����
�� implies that

sup
IN

IE
h Z �

�

e�s
�jf�s� �� ��j� � �� jjZn

s jj� � jjZsjj�
�
ds
i

is �nite� Moreover�

IE
h Z �

�

e�sjY n
s j�pds � IE

h
sup

��t��
ep	tjY n

t j�p
i Z �

�

e���p	�sds�

Since p� � 	� we conclude the proof of the convergence of the last term by using the �rst part of
the inequalities �
�����
�� Passing to the limit when n goes to in�nity� we get� for each t�

e��t���Yt � e�� � �

Z �

t��

e�s
�
f�s� Ys� Zs�� 	Ys

�
ds�

Z �

t��

e�sZsdWs�

It then follows by It�o�s formula that �Y� Z� solves the BSDE �
��� �
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