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Abstract

We develop a new framework to calibrate stochastic volatility option pricing models to an arbitrary

prescribed set of prices of liquidly traded options. Our approach produces an arbitrage-free stochas-

tic volatility di�usion process that minimizes the distance to a prior di�usion model. We use the

notion of relative entropy (also known under the name of Kullback-Leibler distance) to quantify the

distance between the two di�usions. The problem is formulated as a stochastic control problem.

We also show that, in a very natural limiting regime, it results in a calibrating method for complete

models. Implementation issues are discussed in details for calibrating both the stochastic volatility

and the complete models.



1 Introduction

One of the most successful theoretical achievements in practical �nance is the Black-Scholes formula.

It allows one to compute the prices of European options at di�erent maturities and strikes provided

that the volatility of the underlying stock is known. Conversely, this very formula can be used to

calculate the volatility of the underlying stock from the market quote of an European option. The

volatility computed in this way is called the implied volatility. If the market had the good taste to

follow the Black-Scholes theory, the implied volatilities obtained from di�erent options with di�erent

maturities and strikes should be the same. However, real life does not support this implication of

the Black-Scholes theory. For example, it is well known that out of the money S&P 500 index

put options are traded at a higher volatility than in the money puts. In many option markets, say

currency option markets for example, implied volatilities exhibit a \smile" and a \ skew" in both

maturity and strike. To model situations where the implied volatility depends both on the time to

maturity and the strike in such a way, many researchers have proposed new types of arbitrage-free

di�usion models for the underlying asset. One such type is a complete di�usion models in which the

spot volatility is a deterministic function of time and the underlying asset price level. Another type

is a stochastic volatility model in which the spot volatility itself is subject to independent random

shocks. The object then is to estimate what the volatility structure should be from the available

observed liquid option prices so that one can systematically price other derivatives and in particular

OTC options.

Here we provide a simple quantitative approach for constructing such an arbitrage-free di�usion

with stochastic volatility. As a result of a natural limit procedure, the standard procedure used in

the framework of complete models is also recovered.

The basic idea is as follows. We use the following di�usion model to capture the variability of the

underlying asset price and its volatility:�
d St = St[�dt+

p
g(Yt)dBt]

dYt = �(t; logSt; Yt) dt+ dZt;
(1)

where St denotes the price at time t of the underlying asset, Bt and Zt are two independent Brownian

motions and where g is a nonnegative function bounded away from 0 and 1. Its role is to de�ne

a reasonable volatility from the semi-martingale Yt which could be negative at times. In most

applications we choose g to be of the form:

g(y) = a1 +
a2 � a1

�
(arctan(y) +

�

2
) (2)

for a pair of constants 0 < a1 < a2 < 1 which play the roles of rough lower and upper bounds for

the instantaneous volatility of the underlying asset.) The constant � is the rate of return on the

underlying asset in the risk-neutral world (for example it is equal to the risk-free interest rate r for

domestic assets and to the domestic risk-free rate after subtraction of the relevant foreign interest

rate for currencies.) The assumptions on the drift term � will be made explicit later in the paper.

At this stage, we should merely assume that there is existence and uniqueness for the di�usion

process f(Xt; Yt); t � 0g given by the model (1). We shall use the notation IP� for the distribution

of the di�usion given by (1) and we shall denote by IE� the corresponding expectation.

As we shall see later, the above form of the model is very rich. In particular, a speci�c approximation

procedure makes it possible to include complete models as well.
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Our approach is Bayesian in spirit in the sense that we use a prior distribution for the evolution of

the underlying asset in the risk-neutral world. That is we start with a version:�
d S0t = S0t [�dt+

p
g(Yt)dBt]

dY 0
t = �0(t; logS

0
t ; Y

0
t ) dt+ dZt:

of the model (1) in which all the coe�cients are known and we use all the available information

to derive a realistic form of the model (1) by demanding that it prices correctly all existing liquid

European options while keeping the corresponding di�usion as close to the prior as possible. The

notion of closeness is to be understood in the sense of a distance (or at least pseudo - distance)

between di�usion processes. We use the relative entropy also known as the Kullback-Leibler in-

formation distance (KL distance for short) to measure the distance between a candidate and the

prior.

To formalize precisely the idea of correctly pricing the existing options, we introduce constraints on

the volatility drift � and we restrict our attention to the corresponding subclass of di�usions pro-

cesses. We assume that we are given m expiration dates T1; � � � ; Tm and m strike prices C1; � � � ; Cm

and we denote by � the space of functions �(t; logS; y) for which the di�usion process (St; Yt)

solution of (1) satis�es the constraints:

IE�fe�rTkfk(logSTk)g = Ck; k = 1; � � � ;m: (3)

In other words, the di�usion satis�es the constraints if the m liquid options are correctly priced.

For later convenience we choose to write the payo� functions fk in terms of the logarithms of the

price S instead of the prices themselves. We then look for the function � in � which gives rise to

a distribution IP� which minimizes the KL distance to the distribution corresponding to the prior

�0. In other words we try to solve the constrained minimization problem:

arg inf
�2�

H(IP�jIP�0) (4)

where we used the notation H(P jQ) for the KL pseudo-distance from P to Q. The crux of our

approach is that the distance appearing in the formulation of the minimization problem (4) can be

computed explicitly. Indeed, Girsanov's formula implies that:

H(IP�jIP�0) = IE�

(Z T

0

[�(t; logSt; Yt)� �0(t; logSt; Yt)]
2 ds

)
: (5)

This is in contrast with the case considered in [1] where the entropy distance was used only as

a suggestive rationale. Indeed, the KL distance derived from the model used in [1] is identically

in�nite. Fortunately, as it occurs very often (for example in statistical mechanics and in large

deviation theory) this entropy divergence is linear in the size of the approximation domain and the

authors of [1] used this fact to get a renormalized form of the KL distance. Unfortunately, there

is still an unpleasant arbitrariness in the renormalization procedure used in [1] and it is not clear

what really depends upon the particular renormalization procedure. This ambiguity was one of the

main motivation at the origin of the present study.

The control set � is chosen to incorporate in our model some of the features which the market

modeler demands. In the general setting described above, the resulting stochastic control problem
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could be too di�cult for the technology available today. In this paper, we develop the general theory

�rst and we consider the implementation issues (down to the gory details of the numerical computa-

tions) in two speci�c models of importance the second one including a mean reversion component.

Once the stochastic control is solved, both theoretically and numerically, we use its solution and

the corresponding stochastic system (1) to price other derivatives on the same underlying asset.

We can regard, the complete model:

d St = St[�dt+ �(t; St)dBt]

where h1 � � � h2, as a limit when �!1 of a system (1) with � = �[�(t; S)�g(y)]. For this very

reason our results also provide a solution to the calibration problem in the framework of complete

models.

Due to its important role in practical �nancial risk management, the subject has drawn great

attention both from scholars and experts from practical �nance. Since the pioneering contribution [5]

of Breenden and Litzenberger in 1978, there have been many important works concerning complete

models. See for example [10, 8, 6, 19, 17, 2, 1] and the references therein. We refer to [16, 20, 15, 18]

and to the references therein for stochastic volatility models in the spirit of the present study.

Though our work shares some same features with others, our approach is, except for [1], very

di�erent from those which we quoted. If we compare it to the approach of [1], the main di�erence is

that we use the relative entropy in the framework of stochastic volatility models in which it makes

perfectly good sense without having to rely on an ad-hoc renormalization procedure. Moreover, our

approach also lends itself to the analysis of complete models. Indeed a natural limiting procedure

shows that our framework contains at least in spirit complete models as well. This can be used to

recover some of the numerical computations of [1] in a very natural way.

The rest of this paper is organized as follows. In the next section, we set up the stochastic control

problem precisely, give some economic intuition for our choice of model and give the theoretical

foundations of the algorithmic solution. We then develop in Section 3 the solution in the speci�c

case of what we call the free model for which � = f�; � = H(t; logS; y)g. In Section 4, we present

the details for the case of a mean reversion model for which � = f�; � = �(H(t; logS; y)�g(y)); � >

0; 0 < h1 � H � h2g. In Section 5, we derive complete models as limits of our mean reversion

models of Section 4 as �!1 and we use this property to develop our algorithmic pricing procedure

in this the framework. In the last section, we provide some numerical results which we compare to

the numerical results of [1]

2 General Theory

Throughout more than twenty years of intensive e�ort following the introduction of options into

�nancial markets, substantial evidence has been found that options are not redundant to the under-

lying assets and interest rate (see for example, see [4, 7, 9, 11, 13, 14].) It is now widely accepted

that the option market create its own risk mostly because of the di�erent levels of demand of the

underlying asset and especially the demands coming from portfolio insurance activity. In any case,

because of the popularity of options trading, the market is subject to a new dimension of risk (say

liquid demand noise.) Therefore it is reasonable to use stochastic volatility model to describe the

dynamics of the underlying asset and its instantaneous volatility.
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We assume the underlying asset and its volatility follow the random dynamics given by the following

system of stochastic di�erential equations:�
d St = St[tdt+

p
g(Yt)dBt]

dYt = h(�t; t; logSt; Yt) dt+ dZt;

where B = fBt; t � 0g and Z = fZt; t � 0g are two independent Brownian motions, the function

g is as de�ned in (2), h is a known deterministic function and the processes  = ft; t � 0g and

� = f�t; t � 0g are adapted to the �ltration generated by the Brownian motionsB and Z. However

for the purpose of option pricing, we only need to consider the dynamics in the risk neutral world

as given by: �
d St = St[�dt+

p
g(Yt)dBt]

dYt = h(�t; t; logSt; Yt) dt+ dZt;
(6)

where � is the rate of return on the underlying asset in the risk-neutral framework. We view the

adapted process � = f�t; t � 0g as a control. Whenever convenient we shall use the notation

Xt = logSt for the logarithm of the price of the underlying asset. The fundamental model (1) can

then be rewritten in the form:�
dXt = [�� 1

2
g(Yt)]dt+

p
g(Yt)dBt

dYt = h(�t; t;Xt; Yt) dt+ dZt:
(7)

Our strategy is based on the existence of m liquid European options available on the market with

payo� fi(STi ) at exercise time Ti. It is also based on the belief in a prior model for the di�usion

(Xt; Yt). We shall use the superscript 0 to emphasize the fact that these quantities refer to the prior

model. �
d X0

t = [�� 1
2
g(Y 0

t )]dt+
p
g(Y 0

t )dBt]

dY 0
t = h0(t;X

0
t ; Y

0
t ) dt+ dZt;

Our terminology of prior distribution strongly suggests that we are heading toward a Bayesian

analysis of the volatility structure of the underlying asset. Our objective is:

to pin down for each �xed T > 0, a stochastic control process � = f�t; 0 � t � Tg which

minimizes the relative entropy distance between the distributions of the vector di�usions,

i.e. the law IPT;� of f(Xt; Yt) : 0 � t � Tg and the law IP0T of f(X0
t ; Y

0
t ) : 0 � t � Tg,

under the constraints that it leads to a set of correct prices for all liquid options in the

market, namely such that:

IE� fexp(�rTi)fi(XTi)g = Ci i = 1; � � � ;m (8)

Using the particular form of the model (1) and the independence of the Brownian motions B and

Z, it is easy to see that the probability measures IPT;� and IP0T are absolutely continuous and that:

dIPT;�

dIP0T
= exp

"Z T

0

[(h(�t; t;Xt; Yt)� h0(t;X
0
t ; Y

0
t )]dZt �

1

2

Z T

0

[h(�t; t;Xt; Yt)� h0(t;Xt; Yt)]
2 dt;

#

and consequently:

H(IPT;�jIP
0
T ) =

1

2
IE

(Z T

0

[h(�s; s;Xs; Ys) � h0(s;Xs; Ys)]
2 ds

)
:
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Hence, �nding a control � which minimizes the relative entropy distance for the di�usions pricing

correctly the liquid options is nothing but a constrained stochastic control problem. Using Lagrange

multipliers �1, � � � , �m to include the constraints in the objective function our problem can indeed

be reformulated as a classical stochastic control problem for a di�usion in IR2. See for example [12]

for a detailed account of this theory.

Lemma 2.1 If we set

V (t; x; y; �1; � � � ; �m) = sup
�

IE
�

t;x;y

(
�
1

2
ert
Z T

t

[h(�s; s;Xs; Yt) � h0(s;Xs; Ys)]
2 ds

+
X

t<Tj�T

�je
�r(Tj�t)fj(logSTj )

9=
; ;

where the notation IE
�

t;x;y is used for the distribution of the di�usion (??) conditioned at Xt = x

and Yt = y and if we assume that:

(a) j5t;x;yhj � C (9)

(b) jh(v; t; x; y)j � C(1 + jvj+ jxj+ jyj): (10)

for some constant C > 0, then the value function V (t; x; y; �1; � � � ; �m) is the unique solution of
following partial di�erential equation of the Hamilton Jacobi Bellman (HJB for short) type:

@V

@t
+
1

2
g(y)

@2V

@x2
+
1

2

@2V

@y2
+ [��

1

2
g(y)]

@V

@x
+

ert�(e�rt
@V

@y
; t; x; y)� rV = �

X
t<Ti�T

�ifi(x)�(t� Ti) (11)

for 0 � t � T with terminal condition:

V (T; x; y) = 0; (12)

where � is the usual �-function at zero and where � is the convex conjugate de�ned by:

�(p; t; x; y) = sup
h

fhp�
1

2
[h� h0(t; x; y)]

2
g (13)

By construction, �(p; t; x; y) is a convex function of p. The following lemma sheds some light on

the dependence of V (t; x; y; �1; � � � ; �m) upon �1; � � � ; �m.

Lemma 2.2 For each �xed t, x and y, V (t; x; y; �1; � � � ; �m) is a strictly convex function of (�1; � � � ; �m).
Moreover if for k = 1; � � � ;m we use the notation Vk for the partial derivative of V with respect to
�k then:

@Vk

@t
+
1

2
g(y)

@2Vk

@x2
+
1

2

@2Vk

@y2
+ [��

1

2
g(y)]

@Vk

@x
+

@�

@p
(e�rt

@V

@y
; t; x; y)

@Vk

@y
� rVk = fk(x)�(t � Tk); (14)

with the terminal condition Vk(T; x; y) = 0:
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The above equation is exactly the Black-Scholes equation in our context with:

h =
@�

@p

�
e�rt

@V (t; x; y)

@y
; t; x; y)

�
:

As in [1] this result can be proven with standard tools of stochastic calculus in the spirit of the

veri�cation theorems (see [12].) Since our main objective here is to present and discuss algorithm

procedures to price derivative, we postpone the proofs of the previous two lemmas to the Appendix

at the end of the paper.

In the present setting, the calibration constraints (8) imposed by the market become:

V1(0; x0; y0) =
@V

@�1
(0; x0; y0) = C1

� � � � � � � � � � � � � � � � � �

Vm(0; x0; y0) =
@V

@�m
(0; x0; y0) = Cm

2.0.1 Implementation

The theoretical facts derived above suggest the computational algorithm which we present in this

section. We follow the steps of [1] where the implementation of the same idea was given in the

context of complete models.

In the risk - neutral framework where we can price derivatives by expectations, the value at time

t = 0 of a derivative with expiration T0 and payo� function f0(logS) when S0 = ex0 and Y0 = y0 is

given by:

e�rT0IE0;x0;y0ff0(XT0 )g: (15)

But because of the choice of model (7 and the fact that the optimal control �t is such that the

drift term h(�t; t;Xt; Yt) is Markovian in the sense that it is a deterministic function ~h of t, Xt and

Yt given by (??), the function '(t; x; y) = IE0;x;yff0(Xt)g is the unique solution of the (forward)

parabolic equation:

@'

@t
=

1

2
g(y)

@2'

@2x
+
1

2

@2'

@2y
+ [��

1

2
g(y)]

@'

@x
+ ~h(t; x; y)

@'

@y
(16)

with initial condition '(0; x; y) � f0(x). Consequently the various components of a computer

implementation can be structured as follow:

� a PDE solver to compute simultaneously for each �xed (�1; � � � ; �m) the solution

fV (t; x; y);Vk(t; x; y); k = 1; � � � ;mg

of the backward parabolic equations (11) and (14) from their �nal values. We give in the

next sections the details of an explicit home grown �nite di�erence scheme where the partial

derivatives in x and y are approximated by their �nite di�erences counterparts and the time

derivative is replaced by the backward �nite di�erence.
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� a convex optimization solver to determine:

(��1; � � � ; �
�

m) = arg min
(�1;���;�m)2IR

m
V (0; x0; y0; �1; � � � ; �m) �

mX
j=1

�jCj (17)

when both the function to be minimized and its gradient can be computed (use the solvers

alluded to in the �rst item with t = 0, x = x0 and y = y0.) In fact as we saw in the proof of

Lemma ?? the Hessian matrix could also be computed if the information on the form of the

backward parabolic system (??) were to be included in the PDE solver of the �rst item

� use formula (??) to compute the optimal drift ~h(t; x; y) from the convex conjugate function �

and the the value function V (t; x; y; ��1; � � � ; �
�

m) and solve the forward linear parabolic equation

(16) to price any new derivative.

In the following we give the details of such an implementation for two speci�c models of importance.

3 The Free Case

This model corresponds to the choice:

h(v; t; x; y) = v

for the function h. In other words, the market has the potential to create instantaneous volatility

through free choice of v based on all information up to now. Our �rst step is the identi�cation of

the conjugate function �.

�(p; t; x; y) = sup
v2R1

�
pv �

1

2
[v � h0(t; x; y)]

2

�

= h0(t; x; y)p+
1

2
p2 (18)

and since:
@�

@p
(p; t; x; y) = h0(t; x; y) + p (19)

formula (??) gives:

�t = h0(t; x; y) + e�rt
@V

@y
(t; x; y): (20)

The HJB partial di�erential equations (11) and (14) become completely explicit if we plug in the

expressions (18) and (19) and we can describe the numerical algorithm to solve them in full detail.

We use a �nite di�erence scheme to solve the system. For this, we consider the time/space grid:

f(i�N t; x0 + j1�; y0 + j2�);�Nt =
t

N
; � > 0; j1; j2 = 0;�1;�2; � � �g; (21)

where x0 = logS0, y0 is the same as in the prior and � and N are to be selected later. For the sake of

simplicity we use from now on the notation (i; j1; j2)P for the generic point (i�N t; x0+j1�; y0+j2�)

of our space - time grid.
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The numerical solution of the partial di�erential equation (11) is the �nite grid approximation

obtained by replacing:

�
@V

@x
(i; j1; j2)P by Dx;i;j1;j2V =

V (i;j1+1;j2)P�V (i;j1�1;j2)P
2�

;

�
@V
@x
(i; j1; j2)P by Dy;i;j1;j2V =

V (i;j1;j2+1)P�V (i;j1;j2�1)P
2�

;

�
@V

@t
(i; j1; j2)P by Dt;i;j1;j2V =

V (i�1;j1;j2)P�V (i;j1;j2�)P
��N t

;

�
@2V

@x2
(i; j1; j2)P by Dxx;i;j1;j2V =

V (i;j1+1;j2)P�2V (i;j1;j2)PV (i;j1�1;j2)P
�2

.

�
@2V

@x2
(i; j1; j2)P by Dyy;i;j1;j2V =

V (i;j1;j2+1)P�2V (i;j1;j2�1)PV (i;j1;j2�1)P
�2

.

For stability reasons we require that:

(3 + a2)�N t � �2: (22)

This leads to the simple iterative scheme to compute: V (0; x0; y0):

V (i � 1; j1; j2) = (1� r�N t)V (i; j1; j2)P +�N t

�
1

2
g(j2�)Dxx;i;j1;j2V +

1

2
Dyy;i;j1;j2V

+[��
1

2
g(j2�)]Dx;i;j1;j2V + h0(i; j1; j2)PDy;i;j1;j2V +

1

2
e�ri�N t(Dy;i;j1;j2V )

2
� rV

+
X

(i�1)�N t<Ti�j�N t

�jfj(x)�(t� Tj)

3
5 (23)

Using similar notation for the evaluation of the partial derivatives Vk and their partial derivatives

with respect to t, x and y on the grid, we are led to the solution of the system of (backward)

di�erence equations:

Vk(i� 1; j1; j2) = (1 � r�N t)Vk(i; j1; j2)P +�N t

�
1

2
g(j2�)Dxx;i;j1;j2Vk +

1

2
Dyy;i;j1;j2Vk

+[��
1

2
g(j2�)]Dx;i;j1;j2Vk + h0(i; j1; j2)P + e�ri�N tDy;i;j1;j2V � rV + fk(x)�(i�N t� Ti)

�
(24)

Once the optimal values f��1; � � � ; �
�

mg of the Lagrange multipliers are found one can use the cali-

brated model with the optimal drift:

~h(i; j1; j2)P = H0(i; j1; j2)P +Dy;i;j1;j2V: (25)

to price new derivatives with the forward parabolic partial di�erential equation (16). But the

advantage of having the optimal drift goes beyond these simple pricing procedures. Indeed this

optimal drift can be used to price more complex derivatives (barrier options are the �rst ones to

come to mind) my Monte Carlo simulation of the actual sample paths of the solution of the original

system.
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4 Mean Reversion Case

Quite often, market modelers require that the volatility of the underlying asset has some sort of

mean reversion property. This can be accomplished in the present setting by choosing the drift

function h in the following way:

h(p; t; x; y) = �[p� g(y)]; (26)

where a1 < c1 � p � c2 < a2 and � is a positive constant to be chosen later. In this section we

assume that the prior is given by:�
d S0t = S0t [�dt+

p
g(Y 0

t )dBt]

dY 0
t = �[A0(t; logS

0
t ; Y

0
t )� g(Y 0

y )] dt+ dZt;

with a1 < c1 � A0 � c2 < a2 and we suppose that the candidates for the dynamics of the underlying

asset are restricted to the solutions of the system:�
d St = St[�dt+

p
g(Yt)dBt]

dYt = �[�t � g(Yt)] dt+ dZt;

with c1 � �t � c2. We look for f�t : 0 � t � Tg minimizing:

1

2
�2
Z T

0

[�t � A0(t; logSt; Yt)]
2 dt; (27)

under constraints that it prices all the available liquid options correctly, namely

IE�
�
e�rTifi(logSTi)

	
= Ci i = 1; � � � ;m (28)

This optimization problem can be solved with a numerical algorithm very similar to the one used in

the previous section. The only di�erences arise because of the special form of the convex conjugate

function �. We compute its new value as follows.

�(p; t; x; y) = sup
c1���c2

[�(�� g(y))p �
1

2
�2(�� A0(t; x; y))

2]

= �[A0(t; x; y)� g(y)]p + sup
�(c1�A0)�v��(c2�A0)

[�vp�
1

2
v2]

= �[A0(t; x; y)� g(y)]p +	�(c1�A0);�(c2�A0)(p);

where

	d1 ;d2(p) =

8<
:

1
2
p2 if d1 � p � d2 ;

d2p�
1
2
(d2)

2 if p > d2 ;

d1p�
1
2
(d2)

1 if p < d1

Moreover the optimal � is given by:

� =

8<
:

A0 + p=� if d1 � p � d2 ;

c2 if p > d2 ;

c1 if p < d1

where d1 = �(c1 �A0) and d2 = �(c2 �A0).
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5 Complete Models as Limiting Cases

In the previous section, we argue that any complete model can be reasonably regarded as a stochastic

volatility model of the type considered in this paper. But independently of the fact that sometime

one still would like to select calibrating candidates within complete model category. In this section,

we show that any complete model appears as the limit as �!1 of a stochastic system of the form

(6). Namely our candidate is �
d St = St[�dt+

p
g(Yt)dBt]

dYt = �[�2t � g(Yt)] dt+ dZt;

and let us assume that our prior is of the form:�
d S0t = S0t [�dt+

p
g(Y 0

t )dBt]

dY 0
t = �[�20(t; logS

0
t )� g(Y 0

y )] dt+ dZt:

For each �xed �, minimizing the objective:

1

2
�2
Z T

0

[�2t � �20(t; logSt)]
2 dt

is obviously equivalent to minimizing:

1

2

Z T

0

[�2t � �20(t; logSt)]
2 dt:

So, when �!1, due to the mean reversion e�ect it is reasonable to expect that g(Yt)! �2t . This

leads to a calibration method applicable in the context of complete models:

We assume that the prior is given by the solution of the stochastic di�erential equation:

d S0t = S0t [�dt+ �0(t; S
0
t )dBt]: (29)

The calibrating candidate is:

d St = St[�dt+ �tdBt]; (30)

with c1 � �2t � c2 and we search for the control f�t : 0 � t � Tg which minimizes the functional:

1

2

Z T

0

[�2t � �20(t; St)]
2 dt (31)

under the constraints of pricing correctly all the liquid options in the market. The constraints can

be formulated in the form:

IE�
�
e�rTifi(STi)

	
= Ci i = 1; � � � ;m: (32)

Remark: The following is an interesting question: if fS�t : 0 � t � Tg, that is the solution in mean
reversion case of previous section, weakly converges to fSt : 0 � t � Tg that is the solution of the
above problem when �!1.

As in Section ??, the following two lemmas provide the main tools to solve problem (??).

10



Lemma 5.1 Let us set

V (t; S; �1; � � � ; �m) = sup
�

IE�t;S

(
�
1

2
ert
Z T

t

(�2t � �20(t; St))
2 ds

+
X

t<Ti�T

�ie
�r(Ti�r)fi(logSTi)

9=
; ; (33)

where IE�t;S is the law of di�usion (30) conditioned at St = S. Then V (t; S; �1; � � � ; �m) is the unique
solution of following HJB partial di�erential equation:

@V

@t
+ ert�

�
1

2
e�rtS2

@2V

@S2
(t; S)

�
+ �S

@V

@S
� rV = �

X
t<Ti�T

�ifi(S)�(t � Ti); (34)

for 0 � t � T with terminal condition:

V (T + 0; S) = 0: (35)

where � is the usual �-function at zero, and

�(v; t; S) = sup
c1�u�c2

[uv �
1

2
[u� �20(t; S)]

2] (36)

which is convex in v.

Remark: Indeed a straightforward calculation gives

�(v; t; S) =

8<
:

�20(t; S)v +
1
2
v2 if d1 � v � d2 ;

c2v +
1
2
[c2 � �20(t; S)]

2 if v > d2 ;

c1v +
1
2
[c1 � �20(t; S)]

2 if v < d1

where d1 = c1 � �20(t; S) and d1 = c2 � �20(t; S)

Lemma 5.2 V (t; S; �1; � � � ; �m) is a strictly convex function in (�1; � � � ; �m). Moreover if we set
Vi =

@V
@�i

for i = 1; � � � ;m, then

@Vi

@t
+
1

2

@�

@v
(
1

2
e�rtS2

@2V

@S2
; t; S)S2

@2Vi

@S2
+ �S

@V

@S

= �fi(S)�(t � Ti) (37)

for 0 � t � T;

As before we notice that this is exactly the Black-Scholes equation in the present context if we set:

�2t =
@�

@v

�
e�rtS2

@2V

@S2
(t; S)

�
:

11



The corresponding numerical algorithm can be described as follows:

Step 1: Picking a (�1; � � � ; �m) and �nding fV (0; S0); V1(0; S0); � � � ; Vm(0; S0)g. This is done by

discretizing time-space variables t; S and replace derivatives by �nite di�erence in PDE (34) and

PDE (37) in the same way as in section ?? (explicit �nite di�erence scheme). It results in an

iteration algorithm which is very easy to implement.

Step 2: Based on found fV (0; S0); V1(0; S0); � � � ; Vm(0; S0)g, using a subroutine of gradient opti-

mization to obtain a better f�1; � � � ; �mg for the problem of minimizing

V (0; S; �1; � � � ; �m)�

mX
i=1

C1�i:

Then repeat the step 1 and step 2 until satisfying f�1; � � � ; �mg is found.

Step 3: Once the satisfying

f�1; � � � ; �mg

is obtained, we input it into step 1 to obtain fV; Vi; i = 1; � � � ;mg at those time space points that

are necessary to compute

fV (0; S0); V1(0; S0); � � � ; Vm(0; S0)g:

Along the process using

�2t =
@�

@v
(e�rtS2

@2V

@S2
; t; S)

to obtain the optimizing �2t . In fact, the �nite di�erence algorithm used to solve the PDE (37)

together with the particular value of �2t can be viewed as a tree implementation of the calibrated

model. It is ready for pricing other non-liquid derivatives on the same underlying asset.

As we already mentioned a similar implementation is given in [1] and our results can be viewed as

the natural extension of this philosophy to stochastic volatility models. In particular we expect that

subjecting the model to the constraints of the stochastic volatility framework would result in some

form of smoothing of the implied volatility structure exhibited in [1].

6 Numerical Experiments and Comments
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