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ABSTRACT. The connection between optimal stopping of random systems and the theory of the Snell
envelope is well understood, and its application to the pricing of American contingent claims is well
known. Motivated by the pricing of swing options (which can be viewed as American contingent
claims with multiple exercises of American type) we investigate the mathematical generalization of
these results to the case of possible multiple stopping. We prove existence of the multiple exercise
policies in a fairly general set-up. We then concentrate on the Black-Scholes model for which we give a
constructive solution for the perpetual case, and an approximation procedure for the finite horizon case.
The last two sections of the paper are devoted to numerical results. We illustrate the theoretical results
of the perpetual case, and in the finite horizon case, we introduce numerical approximation algorithms
based on ideas of the Malliavin calculus.

1. I NTRODUCTION

The motivation for the present study comes from the commodity markets, and especially the energy
markets where the lack of standardization and the complexity of many contracts has attracted our
attention. Commodity contracts can be extremely involved and many energy structured products are
truffled with embedded options which are neither identified nor priced appropriately.

In this paper we concentrate on the mathematical analysis of options with multiple exercises of
the American type. When embedded in base delivery contracts, these options are sometime called
swingoptions. In a vibrant industry sector with a multitude of tailor made contracts negotiated over
the counter, the term swing has been used for many different things, and it is important to specify
what we do have in mind when we use this terminology. The types of contracts containing the swing
options we are considering are described in detail in [1] and [12], and they are slightly different
from the gas sale agreements (GSA) discussed in [7]. For the purpose of this paper, the holder of a
swing option is given the opportunity to exercise several rights, and she has essentially total freedom
in the choice of the timing of these exercises. This outstanding feature of the embedded options
is reminiscent of American contingent claims with multiple exercises, and despite the existence of
several numerical pricing algorithms such as [19], [12], [7], or [1] to name a few, it seems that a
rigorous mathematical analysis of the valuation of this specific form of multiple optionality has not
been provided in the existing literature. The purpose of this paper is to fill this gap by offering a first
mathematical analysis of these options with multiple American exercises.

The optimal stopping problem is a ”classic” whose solution had far reaching applications in many
different fields. In its most general form, its mathematical solution is provided by the elegant theory of
the so-called Snell envelop. See for example [18] for a clear presentation in the discrete case, and [9]
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for a thorough discussion in the context of optimal control of continuous time stochastic processes.
The reader mostly interested in the application to the pricing of contingent claims with American
exercise is referred to the appendices A and D of [13] for a self contained exposé of the continuous
time theory. The mathematical analysis of swing options is not the only instance of a problem which
cannot be solved with the existing tools. Important applications requiring a generalization of the op-
timal stopping problem to possibly multiple stops are plentiful, and many natural examples can be
given to motivate the analysis of optimal multiple stopping problems. Strangely enough, we could
not find any attempt to analyze this problem at a rigorous mathematical level and the raison d’être
of this paper is to fill this gap. After a short review of the theoretical results from optimal stopping
which are used in the analysis of the case with one single American exercise, we introduce the in-
ductive hierarchy of Snell envelops needed in the multiple exercise case, and we give results on the
existence and the characterization of a set of optimal stopping/exercise times. We then concentrate
on the geometric Brownian motion framework of the Black-Scholes theory, and we identify explicitly
the solution in the case of perpetual swings generalizing the classical problem of the exercise of a
perpetual American put option. In this case the optimal exercise regions form a strictly decreasing
sequence of intervals and the exercise times are given by the hitting times of the ordered set of their
boundaries which we identify.

The final section of this paper applies the Monte Carlo approximation method suggested in Lions
and Regnier [15] and further developed by Bouchard and Touzi [4] to our context of multiple stopping.
The above papers make an extensive use of the Malliavin calculus. This is obviously an overkill in
the situation considered in this paper. Indeed, the price process is log-normal in the Black-Scholes
framework, and explicit computations are possible. We review this approach while streamlining its
dependence upon the sophisticated tools of the Malliavin calculus, and by providing a direct and
self-contained account of the various steps.

2. OPTIMAL STOPPING AND AMERICAN OPTIONS: A SHORT REVIEW

Let (Ω,F ,P) be a complete probability space, andF = {Ft}t≥0 be a filtration satisfying the usual
assumptions, i.e. an increasing right continuous family of sub-σ−algebras ofF such thatF0 contains
all the P-null sets. We also assume thatF0 is trivial, i.e. F0 contains only sets of probability zero
or one, and we denote byS the set of all theF-stopping times. LetX = {Xt}t≥0 be a non-negative
F−adapted process satisfying the following properties:

the processX is continuous a.s(1)

and

E{X̄} < ∞ whereX̄ is defined by X̄ = sup
t≥0

Xt .(2)

Each random variableXt has the interpretation of a reward or payoff if we stop the process or if
we use one exercise right at timet. We also fix a timeT ∈ (0,∞] which has the interpretation of
maturity, i.e. the time of expiration of our right to stop the process or exercise. In order to include
both the cases of finite and infinite horizon stopping problems in the same framework, we assume
that:

X· ≡ 0 on (T,∞) .(3)
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In the infinite horizon caseT = +∞, we set

F∞ = σ {∪0≤t<∞Ft} and X∞ = lim sup
t→∞

Xt .

We denote byST the collection of all theF−stopping times with values in[0, T ]. Given a stopping
timeθ ∈ ST , we denote bySθ,T the subset ofST consisting of all the stopping timesτ ≥ θ a.s.

We now review the notation and the results of the classical treatment of the optimal stopping
problem which we will need in our analysis of the optimal multiple stopping problem associated to
the valuation of swing options. The interested reader can find a more general treatment in [9] and
[13]. In particular, the presentation of [9] avoids the continuity condition (1) used here. In any case,
the classical optimal stopping problem consists in the computation of the supremum

X̂0 = sup
τ∈ST

E{Xτ} .(4)

together with the possible characterization of the stopping times at which the supremum is attained.

2.1. The Snell Envelop. The solution of the optimal stopping problem (4) is best approached by
introducing the family{X̂θ; θ ∈ ST } of random variables defined by:

X̂θ = ess supτ∈Sθ
E {Xτ |Fθ}(5)

Each random variablêXθ gives the optimal conditional expected reward for stopping at timeθ or
later. It is easily checked that the family of these random variables satisfies the dynamic programming
principle:

X̂θ = ess supτ∈Sθ,T
E

{
X̂τ |Fθ

}
,(6)

for all θ ∈ ST . Since each deterministic timet ∈ [0,∞) is also a stopping time, the above definition
provides in particular anF−adapted procesŝX = {X̂t}t≥0. By (6), it follows thatX̂ is a super-
martingale. Under conditions (1) and (2), it can also be shown thatX̂ is continuous in expectation,
i.e. E{Xτn} −→ E{Xτ} for all sequences(τn)n≥0 ⊂ S with τn → τ a.s. This allows to prove the
existence of a c̀adl̀ag modification of the procesŝX. This modification, still denoted bŷX, is called
the Snell envelop of the processX. It can be characterized as the smallest super-martingale which
dominatesX. Moreover, each random variablêXθ coincides with the evaluation of the processX̂ at
the stopping timeθ, i.e.

X̂θ(ω) = X̂θ(ω)(ω) .

2.2. Optimal Stopping Times. We next define the stopping time

θ∗0 = inf
{
t ≥ 0; X̂t = Xt

}
.

By right continuity of the sample paths we haveX̂T = XT , so:

θ∗0 ≤ T a.s.(7)

and using the properties (1)-(2) of the processX, it can be proved that :

the stopped processX̂θ∗0 = {X̂t∧θ∗0
}t≥0 is a martingale.(8)
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As a consequence we see that
X̂0 = E{X̂θ∗0

} = E{Xθ∗0
},

which shows thatθ∗0 is an optimal stopping time for the problem (4). It is possible to prove that
it is in fact the smallest of the optimal stopping times (and also to characterize the largest of these
optimal stopping times) but we shall not need these properties here. Instead, we shall need a specific
strengthened version of the above statement in our analysis of the optimal multiple stopping problem.
So more generally, for anyτ ∈ ST , the random variable

θ∗τ = inf
{
t ≥ τ ; X̂t = Xt

}
(9)

is less than or equal toT a.s. becausêXT = XT whenT <∞. So it defines a stopping time inSτ,T

and, by continuity ofX, it follows that

the stopped process{X̂t∧θ∗τ }t≥τ is a martingale.(10)

Therefore:
X̂τ = E{X̂θ∗τ |Fτ} = E{Xθ∗τ |Fτ},

and θ∗τ is an optimal stopping time for the problem (5) in the sense that the essential supremum
appearing in (5) is attained forτ = θ∗τ .

2.3. Doob-Meyer Decomposition.Since the Snell envelop̂X of the processX is a c̀adl̀ag super-
martingale, it follows from the Doob-Meyer decomposition theorem together with condition (2) that
it admits the representation

X̂t = Mt −At for 0 ≤ t ≤ T ,

whereM is a uniformly integrable c̀adl̀ag martingale, andA is a non-decreasingF−adapted process
with A0 = 0, andE{AT } <∞. SinceX is continuous, we also have thatA is continuous and∫ T

0
1{X̂t>Xt}dAt = 0 ,

See Karatzas and Shreve [13], Theorem D13. A consequence of this result is that a sample path of
the Snell envelopX̂ is continuous if and only if the corresponding sample path of the martingale
partM is continuous. This remark implies that the sample paths of the Snell envelop are almost
surely continuous when the filtrationF is generated by a Brownian motion. Indeed, in this case
every martingale has continuous sample paths since it can be represented as a stochastic integral with
respect to the Brownian motion. We shall make use of this result later in the paper.

2.4. Lp−Integrability of the Maximum. We now assume that the reward processX satisfies the
integrability condition:

E{X̄p} < ∞ for some p > 1 .(11)

Observe that this condition is stronger than condition (2). Define the uniform integrable martingale
X̄ = {X̄t}0≤t≤T by X̄t = E{X̄|Ft} for 0 ≤ t ≤ T . Then, it follows from the martingale inequality
that

E

{
sup

0≤t≤T
X̂p

t

}
≤ E

{
sup

0≤t≤T
X̄p

t

}
≤

(
p

p− 1

)p

E{X̄p} < ∞ .
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Hence, the Snell envelop̂X inherits theLp-integrability of the maximum from the underlying process
X. As a consequence we see that

the process X̂ is left-continuous in expectation.(12)

Indeed, if{τn}n≥0 is an increasing sequence of stopping times withτn ↗ τ ∈ S, then,X̂τn −→ X̂τ

a.s. by continuity ofX̂. Now, observe that

E{X̂p
τn
} ≤ E

{
sup

0≤t≤T
X̂p

t

}
< ∞ ,

so that the sequence{X̂τn}n≥0 is uniformly integrable, and (12) follows.

3. OPTIMAL M ULTIPLE STOPPING AND SWING OPTIONS

In this section, we assume that the filtrationF satisfies the additional requirements:

The filtrationF is left continuous and(13)

everyF−adapted martingale has continuous sample paths.(14)

Let X be a non-negativeF−adapted process satisfying conditions (1), (2) and (11). Recall that the
finite maturity framework is captured by our convention (3). We letS̄T be the set of allF−stopping
times valued in[0, T ] ∪ {T+}, and set

XT+ ≡ 0 .(15)

Remark 1. Given a processX, it is natural to chooseF = FX , the completion of the canonical filtra-
tion generated byX. Recall thatFX is left-continuous whenever the processX has left-continuous
sample paths.

Finally, we fix an integer̀ ≥ 1 and a positive constantδ. Here,` represents the number of rights
we can exercise, whileδ is the length of the refracting time interval which needs to separate two
successive exercises. This assumption on the separation of the exercise times will prevents them
from bunching up together on top of the optimal stopping time for the classical case reviewed in
the previous section. But it is important to emphasize that we do not make this assumption for
mathematical convenience. As reported in [12] the existence of such a refracting time period is part
of the actual swing contracts traded in the energy markets. We shall denote byS̄(`)

T the collection of
all vectors of stopping times~τ = (τ1, . . . , τp) such that

τ1 ≤ T a.s. andτi − τi−1 ≥ δ on{τi−1 ≤ T} a.s. for all i = 2, . . . , ` .(16)

Motivated by the valuation of swing options with multiple American exercises, we define the optimal
multiple stopping problem by:

Z0 = sup
~τ∈S̄(`)

E {X~τ} where X~τ =
∑̀
i=1

Xτi .(17)

In the above multiple stopping problem, the holder of the option is allowed to exercise her rights to
the reward/payoff given by the processX at ` different times of her choosing. Notice that the holder
of the option can decide not to use all her exercise rights by setting the last stopping times toT+.
Such strategies could be desirable in this context because of the presence of the refracting periodδ,
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which may lead the investor to sacrifice an exercise right in order to benefit from a potential better
future exercise.

In order to characterize this multiple optimal stopping problem, we introduce the sequence of Snell
envelops :

Y (0) ≡ 0 and Y (i) = X̂(i) for i = 1, . . . , ` ,

where, for each integeri = 1, . . . , `, thei-exercise reward processX(i) is defined by:

X
(i)
t = Xt + E

{
Y

(i−1)
t+δ |Ft

}
, for 0 ≤ t ≤ T − δ ,

and, wheneverT <∞,

X
(i)
t = X̂t, for T − δ < t ≤ T .

In order to apply the results of the single optimal stopping theory in this context, we need to ensure
that the iterated reward processesX(i) inherit conditions (1), (2) and (11).

Lemma 1. Let us assume that condition(13)holds and that the processX is continuous and satisfies
condition(11). Then, for alli = 1, · · · , `, the processX(i) is continuous in expectation, and satisfies

E
{
X̄(i)p

}
< ∞ where X̄(i) = sup

0≤t≤T
X

(i)
t .

Proof. SinceX(1) = X, the statement of the lemma holds trivially fori = 1. Using the properties
of the Snell envelop recalled in Subsection 2.3, and the properties of the filtration, we see that the
processesX(i) andX̂(i) inherit the pathwise continuity fromX andX̂(i−1) for everyi ≥ 1.

We now prove thatE
{
X̄(i)p}

< ∞. We proceed by induction. Fori = 1, the result is just a re-
statement of condition (11). So we assume thatE

{
X̄(i−1)p}

< ∞, and we prove thatE
{
X̄(i)p}

<
∞. The martingale inequality implies that:

E

{
sup

0≤t≤T
Y

(i−1)p

t

}
≤ E

{
sup

0≤t≤T
E{X̄(i−1)p |Ft}

}
≤

(
p

p− 1

)
E

{
X̄(i−1)p

}
< ∞

from which we conclude that

E
{
X̄(i)p

}1/p
≤ E{X̄p}1/p + E

{
sup

0≤t≤T
Y

(i−1)p
t

}1/p

< ∞. �

Next we identify a set of optimal stopping times for the multiple stopping problem. Let us set:

τ∗1 = inf
{
t ≥ 0; Y (`)

t = X
(`)
t

}
Observe thatτ∗1 ≤ T . Next for2 ≤ i ≤ `, we define

τ∗i = inf
{
t ≥ δ + τ∗i−1; Y

(`−i+1)
t = X

(`−i+1)
t

}
1{δ+τ∗i−1<T} + (T+)1{δ+τ∗i−1≥T}.(18)

Clearly, ~τ∗ = (τ∗1 , . . . , τ
∗
p ) ∈ S(`)

T . We are now ready to prove the main result of this section.
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Theorem 1. If we assume that condition(13)holds and that the processX satisfies(1), (2) and(11),
then

Z0 = Y
(p)
0 = E{X~τ∗} .

Proof. Let ~τ = (τ1, . . . , τp) be an arbitrary element inS(`)
T . For ease of notation, we setτ̄i := τ`−i+1.

1. Let us setX(0) ≡ 0, and let us prove by induction that

(19) E {X~τ} ≤ E

X(i)
τ̄i

+ 1{i<`}
∑̀

j=i+1

Xτ̄j


for all 0 ≤ i ≤ `. For i = 0, this estimate is true by definition. So let us assume that (19) holds for
somei < `. Recalling thatX(i) ≤ Y (i), we see that:

E {X~τ} ≤ E

X(i)
τ̄i

+
∑̀

j=i+1

Xτ̄j

 ≤ E

Y (i)
τ̄i

+
∑̀

j=i+1

Xτ̄j

 .

Sinceτ̄i+1 + δ < τ̄i, it follows from the super-martingale property ofY (i) and the tower property for
conditional expectations, that

E {X~τ} ≤ E

Y (i)
δ+τ̄i+1

+Xτ̄i+1 + 1{i+1<`}
∑̀

j=i+2

Xτ̄j


= E

X(i+1)
τ̄i+1

+ 1{i+1<`}
∑̀

j=i+2

Xτ̄j


which is the desired result.
2. We now use (19), together with the classical result from optimal stopping theory, to see that:

E {X~τ} ≤ E
{
X(p)

τ1

}
≤ Y

(p)
0 = E

{
X

(p)
τ∗1

}
= E

{
Xτ∗1

+ E{Y (p−1)
δ+τ∗1

|Fτ∗1
}
}
.

Next, observe that the stopped sequence{Y (p−1)
t∧τ∗2

; t > δ + τ∗1 } is a martingale by (10). We then
deduce from the previous inequality that:

E {X~τ} ≤ Y
(p)
0 ≤ E

{
Xτ∗1

+ E{Y (p−1)
τ∗2

|Fτ∗1
}
}

= E
{
Xτ∗1

}
+ E

{
Y

(p−1)
τ∗2

}
.

By repeatedly using the above argument, we see that

E {X~τ} ≤ Y
(p)
0 ≤ E

{
Xτ∗1

+ . . .+Xτ∗2

}
,

proving the optimality of the vector of stopping times(τ∗1 , . . . , τ
∗
p ) for the problemZ0, together with

the equalityZ0 = Y
(p)
0 . �

We next introduce the stopping times

ζ∗i = inf{ t ≥ δ + τ∗i−1; Yt = Xt } 1{τ∗i−1<T} + (T+)1{τ∗i−1≥T} .
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Using the definition ofθ∗τ given in (9), we see thatζ∗i = θ∗δ+τ∗i−1
on{τ∗i−1 < T}. In fact, the stopping

time ζ∗i is the first optimal stopping time for the single exercise/stopping problem (p = 1) starting
from timeδ + τ∗i+1, whereτ∗i+1 is an optimal stopping time for the exercise of the(i + 1)−th right.
Our next result confirms the intuitive belief that one should exercise earlier if one has more than one
right.

Proposition 1. For any integeri = 1, . . . , p, we have :

Y
(i)
t ≤ Y

(1)
t + E{Y (i−1)

t+δ |Ft} , t ≥ 0, and τ∗i ≤ ζ∗i .

Proof. Let us setV (i)
t = Y

(1)
t + E{Y (i−1)

t+δ |Ft}. From the supermartingale property of the processes

Y (1) andY (i−1), together with the inequalityY (1) ≥ X, we see thatV (i) is a supermartingale which
dominatesX(i). We then conclude thatY (i) ≤ V (i), whence

X
(i)
t = Xt + E{Y (i−1)

t+δ |Ft} ≤ Y
(i)
t ≤ Y

(1)
t + E{Y (i−1)

t+δ |Ft}

We getX(i)
ζ∗i

= Y
(i)
ζ∗i

as an easy consequence of this inequality, and therefore we can conclude thatτ∗i
≤ ζ∗i by definition ofτ∗i . �

We conclude this section by examining the case where the reward processX is a submartingale. It
is well-known that this implies that the maturityT is an optimal stopping time for the (single) optimal
stopping problem. This applies for instance to call options, and provides the equivalence between
European and American call options, when the underlying asset does not deliver any dividends.

Proposition 2. Assume thatX is a submartingale, and letT <∞ be a finite maturity date. Then

X̂`
t =

∑̀
i=1

E {XT−iδ} 1t≤T−iδ

Proof. It is sufficient to notice that fori = 1, . . . , ` and t ≤ T − iδ, we haveX(i)
t = Xt +

E{X̂(i−1)
t+δ |Ft} inherits the submartingale property ofX. �

4. PERPETUAL SWING OPTIONS IN THE BLACK -SCHOLES FRAMEWORK

In the previous section, we proved the existence of an optimal vector of stopping time, and we
outlined an algorithm to construct such a vector by considering a cascade of Snell envelops. There is
no hope to get a more explicit characterization in such a generality. In this section, we concentrate on
the problem of the optimal exercise of perpetual (i.e.T = +∞) swing options in the Black-Scholes
framework, and we identify the optimal exercise times as hitting times of a set of thresholds for which
we provide a constructive algorithm.

4.1. The Black-Scholes Set-up.Let W be anR-valued Brownian motion on the probability space
(Ω,F ,P), and denote byF = {Ft}t≥0 the associated completed filtration. Notice thatF satisfies
condition (13). Let us fix a reward/payoff functionφ : R+ −→ R+ and let us consider a reward/payoff
process of the formφ(Xt) where the processX = {Xt}t is now defined by:

Xt = X0 exp
[(
r − σ2

2

)
t+ σWt

]
, t ≥ 0(20)
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wherer andσ are two positive parameters standing for the short interest rate and the volatility. Notice
that we changed the notation and that the processX is no longer the reward/payoff process. It is now
the price process from which the reward/payoffφ(X) is computed. This lack of consistency in the
notation should not be a source of confusion: it is merely prompted by our desire to conform to a
widely used notation system. We shall also use the notationX0,X0

t for Xt whenever we need to
emphasize the dependence of the processX upon its initial condition. We now define the value
function of the perpetual swing option problem with` exercise rights and refraction timeδ > 0 by:

v(`)(X0) = sup
(τ1,...,τ`)∈S(`)

E

{∑̀
i=1

e−rτiφ(Xτi)

}
.(21)

where the setS(`) is defined by:

S(`) =
{
~τ = (τ1, . . . , τ`) ∈ S`; τi − τi−1 ≥ δ for all i = 2, . . . , `

}
,

andS is the subset ofS∞ of all finite stopping times with values inR+. In the following, we restrict
our attention on the reward function

φ(x) = (K − x)+ for some given parameterK > 0 ,(22)

so that our analysis of the optimal exercise of the swing option extends to the multiple exercise case,
the corresponding problem in the case of an American put option with only one exercise right.

4.2. Perpetual American Puts. When` = 1 the refracting time parameterδ is irrelevant. The fol-
lowing explicit solution of the perpetual American put option is well-known. We state it to introduce
the notation we need in the sequel.

Theorem 2. Let` = 1 andφ(x) = (K−x)+. Then the perpetual American put option value function
is given by

v(1)(x) = (K − x ∧ x∗1)
[
1 ∧

(
x∗1
x

)γ]
,

where

γ =
2r
σ2

and x∗1 =
Kγ

1 + γ
.

The above result states in particular that

v(1)(x) = K − x = φ(x) if and only if x ≤ x∗1 .

In other words, the perpetual American put option is exercised whenever the price processX is below
the levelx∗1. In view of this, the interval[0, x∗1] is calledthe exercise region, and its complement
(x∗1,∞) is called thethe continuation region.

In the subsequent paragraphs, we provide an extension of Theorem 2 to the case of perpetual
swing options. We first prove the existence of anon-empty andconnected exercise region[0, x∗` ] for
the optimal multiple stopping problem with value functionv(`). This region contains the exercise
region[0, x∗1] of the perpetual American put option. We then provide a recursive characterization of
the boundaryx∗` as the unique zero of some functional involving the value functionv(`−1). As a by-
product, this characterization produces a quasi-constructive solution of the problem of interest, and
allows us to prove that the sequence(x∗`)` is increasing.
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4.3. Single Stopping Time Formulation and PDE Characterization. We first apply the general
characterization result of Theorem 1 to reduce the multiple stopping swing option problem to a cas-
cade ofp optimal single stopping problems. So we define inductively the value functionsv(k) and the
reward/payoff functionsφ(k) by setting:

v(k)(x) = sup
τ∈S

E
{
e−rτφ(k)

(
X0,x

τ

)}
,(23)

where

φ(k)(x) = φ(x) + e−rδE
{
v(k−1)(X0,x

δ )
}
,

i.e. the process
{
e−rtv(k)(Xt)

}
is the continuous-time Snell envelop of the process

{
e−rtφ(k)(Xt)

}
.

One can then write the dynamic programming principle for the single stopping time problem value
function (23), and derive the so-called Hamilton-Jacobi-Bellman equation forv(k). Using classical
analysis arguments, one can prove that this function is the unique continuous viscosity solution of the
variational inequality

min
{
−Lv(k) , v(k) − φ(k)

}
≥ 0 ,

whereL is the linear second order differential operator

Lχ(x) =
1
2
σ2x2∂

2χ

∂x2
(x) + rx

∂χ

∂x
(x)− rχ(x) .

We shall not provide a proof of this claim because we do not use the above PDE characterization of
v(k) in what follows.

Sinceφ is bounded andX is continuous, the reward process{e−rtφ(Xt)}t≥0 satisfies the condi-
tions (1) and (11), and we can apply the results of the previous section. For later use, we provide the
following well-known result (which obviously holds for more general diffusions), which gives among
other things, the fact that the reward functionsφ(k) are continuous.

Lemma 2. Letf : [0,∞) −→ R be such thatE{|f(Xt)|2} <∞, and let us consider the function

χ(x) = E
{
f(X0,x

t )
}
, x ≥ 0.

Thenχ is continuous on[0,∞) and continuously differentiable on(0,∞).

Proof. We sketch the proof for the sake of completeness. Observe that:

χ(x) =
∫
f

(
ze(r−σ2/2)t

) 1
zσ
√

2πt
e−(ln z−ln x)2/2σ2tdz .(24)

The dominated convergence theorem allows differentiation inside the expectation and the desired
result follows. �

4.4. First Properties of Perpetual Swing Options. We first prove that the exercise region for the
optimal stopping problem (23) is not empty.

Lemma 3. Letk ≥ 1 be a given integer and letφ(x) = (K − x)+. Then

v(k)(x) = φ(k)(x) whenever 0 ≤ x ≤ x∗1 .
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Proof. We only need to prove thatv(k) ≤ φ(k) on [0, x∗1] as the reverse inequality is trivial. By
definition ofφ(k), we have

v(k)(x) = sup
τ∈S

E
{
e−rτφ(Xτ ) + e−r(τ+δ)v(k−1)(Xτ+δ)

}
≤ v(1)(x) + sup

τ∈S
E

{
e−r(τ+δ)v(k−1)(Xτ+δ)

}
.

(25)

Notice thatE
{
e−r(τ+δ)v(k−1)(Xτ+δ)

}
≤ E

{
e−rδv(k−1)(Xδ)

}
by the supermartingale property of

the process{e−rtv(k−1)(Xt)}t≥0. Sincev(1) = φ(1) = φ on [0, x∗1], this provides :

v(k)(x) ≤ φ(x) + E
{
e−rδv(k−1)(Xδ)

}
= φ(k)(x) for 0 ≤ x ≤ x∗1 . �

Our next result shows that the exercise region corresponding to the stopping problem (23) is con-
nected, and defines the exercise boundariesx∗k.

Proposition 3. Let k ≥ 1 be a given integer and as above, let us restrict ourselves to the payoff
φ(x) = (K − x)+ of the American put option. Then, there existsx∗k ∈ [x∗1,K] such that

v(k)(x) = φ(k)(x) if and only if 0 ≤ x ≤ x∗k .

Proof. Let us assume to the contrary that the exercise region for the problemv(k) is not connected,
and let produce a contradiction. Let0 ≤ x1 < x2 be such that

v(k)(xi) = φ(k)(xi) while v(k) > φ(k) on (x1, x2) .(26)

Sinceφ(x) = 0 for x ≥ K, it follows thatx2 ≤ K, and therefore

φ(x) = K − x for x ∈ [x1, x2] .(27)

Setting

x̂ =
x1 + x2

2
, Sxi = inf

{
t ≥ 0; X0,x̂

t = xi

}
it follows from the classical optimal stopping theory that the stopping timeŜ = Sx1 ∧ Sx2 is optimal
for the problemv(k)(x̂). See Subsection 2.2. By (27), we then see that :

v(k)(x̂) = E
{
e−rŜφ

(
X0,x̂

Ŝ

)}
+ E

{
e−r(Ŝ+δ)v(k−1)

(
X0,x̂

Ŝ+δ

)}
= φ

(
E{e−rŜX0,x̂

Ŝ
}
)

+ E
{
e−r(Ŝ+δ)v(k−1)

(
X0,x̂

Ŝ+δ

)}
= φ(x̂) + E

{
e−r(Ŝ+δ)v(k−1)(X0,x̂

Ŝ+δ
)
}

≤ φ(x̂) + E
{
e−rδv(k−1)

(
X0,x̂

δ

)}
= φ(k)(x̂) ,(28)

where the last inequality follows from the super-martingale property of
{
e−rtv(k−1)(X0,x̂

t )
}

t≥0
. This

proves thatv(k)(x̂) = φ(k)(x̂) contradicting (26).�
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In view of this result, we conclude that the stopping time:

θ∗k = inf{t ≥ 0; Xt ≤ x∗k}
defines an optimal stopping rule for the problem (23), and that the value function of the problem is
given by:

v(k)(x) = E
{
e−rθ∗kφ(k)(Xθ∗k

)
}

= φ(k)(x ∧ x∗k) E
{
e−rθ∗k

}
(29)

by the continuity of the processX.

4.5. Characterization of the Exercise Boundaries of Perpetual Swing Options.So far, we have
proved that the multiple stopping problem given by the value functionv(`) could be reduced to a
cascade of single optimal stopping problems with value functionsv(k), k ≤ ` in such a way that the
optimal stopping/exercise rules were given by the exit times of the intervals[x∗k,∞). It is therefore
natural to introduce for each (reward) functionψ the functionw[ψ] defined by:

w[ψ](x, b) := E
{
e−rSx

b ψ(X0,x
Sx

b
)
}

where Sx
b = inf

{
t ≥ 0; X0,x

t ≤ b
}
,(30)

which we will use forψ = φ(k), and we make the following important observation:

v(k)(x) =
{
φ(k)(x) for x ≤ x∗k
w[φ(k)](x, x∗k) = maxb≤x w[φ(k)](x, b) for x ≥ x∗k .

(31)

In order to compute explicitly the functionw[φ(k)], we use the following well-known property of the
Brownian motion. For eachb ≥ 0, let us define by:

Tb = inf{t ≥ 0; µt+Wt = b}(32)

the first hitting time of the barrierb by the Brownian motion with driftµ. It is well-known that the
Laplace transform ofTb is given by

E
{
e−λTb

}
= eµb−|b|

√
µ2+2λ .(33)

Let

µ =
σ

2
(γ − 1) and β(b, x) =

1
σ

ln
(
b

x

)
.

ThenSx
b = Tβ(b,x) 1{x≥b} and it follows from (33) that for any bounded measurable functionψ: R+ −→

R, we have

w[ψ](x, b) = E
{
e−rSx

b ψ
(
X0,x

Sx
b

)}
= ψ(x) 1{x≤b} + ψ(b)E

{
e−rTβ(b,x)

}
1{x>b}

= ψ(x ∧ b)
[
1 ∧

(
b

x

)γ]
.(34)

Plugging this equality in (31) and recalling thatx∗k ≤ K, we see that

v(k)(x) =

 K − x+ e−rδE
{
v(k−1)(X0,x

δ )
}

for x ≤ x∗k

x−γ maxb≤K bγ
(
K − b+ e−rδE

{
v(k−1)(X0,b

δ )
})

for x ≥ x∗k .
(35)
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In particular, if we use Lemma 2, this shows that the functionv(k) is differentiable on(0, x∗k) ∪
(x∗k,∞). Since0 < x∗k < K, the boundaryx∗k is the solution of the equation given by the first order
condition for the above maximization problem. For the statement of this result, it is convenient to
introduce the function

u(k)(x) = (1 + γ)−1

[
γv(k)(x) + x

d

dx
v(k)(x)

]
, x > 0 .(36)

Observe thatv(k) can be recovered fromu(k) by

(37) v(k)(x) = (1 + γ)x−γ

∫ x

0
yγ−1u(k)(y)dy

andv(k)(0) = φ(0)
∑k−1

i=0 e
−irδ, as0 is an absorbing boundary for the processX.

Lemma 4. For each integerk ≥ 1, the functionu(k) is non-increasing and continuous. Moreover the
sequence{u(k)}k is characterized by the induction formula:

u(k)(x) = 1{x≤x∗k}

(
x∗1 − x+ e−rδE

{
u(k−1)(X0,x

δ )
})

and u(0) = 0 .(38)

Furthermore, the boundaryx∗k is uniquely defined by the equation:

x∗1 − x∗k + e−rδE
{
u(k−1)(X0,x∗k

δ )
}

= 0 .(39)

Proof. The first order condition (39) is obtained by direct differentiation. In order to prove (38), we
use the expression ofv(k) given in (35). First, forx ≥ x∗k, it is clear thatu(k)(x) = 0. Next, since

X0,x
δ = xX0,1

δ , we see immediately thatu(k)(x) = x∗1 − x+ e−rδE
{
u(k−1)(X0,x

δ )
}

for x < x∗k.

The functionu(k) is clearly continuous away from the pointx∗k. Recall Lemma 2. Using the first
order condition (39), we see thatu(k)(x∗k−) = u(k)(x∗k+) = 0.

We now prove by induction thatu(k) is non-increasing. This property holds trivially foru(0) ≡ 0.
Assume thatu(k−1) is non-decreasing for somek ≥ 2, then sinceX0,x

δ is increasing inx, it follows
from (38) thatu(k) is non-increasing. Finally, we observe that the uniqueness of the exercise boundary
x∗k follows from the fact that the functionu(k) is non-increasing.�

Remark 2. Formula (38) is particularly well suited for numerical computations. Indeed it is plain
to evaluate the expectation by a simple Monte Carlo method. We used this remark to produce the
numerical results reported Section 6. See Figures 1, 2 and 3 for plots of the functionsu(k).

Recall that Proposition 3 says thatx∗k ≥ x∗1. It is natural to expect that these exercise boundaries
form a monotone sequence. We establish this highly expected increasing property of the sequence
(x∗k)k≥1 in the present context.

Lemma 5. (i) The sequence(u(k))k≥0 is increasing, i.e.u(k) ≥ u(k−1) andu(k) 6= u(k−1).
(ii) The sequence(x∗k)k≥1 is strictly increasing.

Proof. Define the functions̀(x) = x − x∗1 andg(k)(x) = e−rδE
{
u(k)(X0,x

δ )
}

. We first prove that

(ii) is a direct consequence of (i). Indeed, it follows from (i) thatg(k)(x) > g(k−1)(x) for all x > 0.
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Sincex∗k is the unique intersection point of the graphs of the functions` andg(k−1), we conclude that
x∗k > x∗k−1.

We prove (i) by an induction argument. We first remark thatu(1)(x) = (x∗1 − x)+ for all x ≥ 0.
Sinceu(0) ≡ 0, this shows thatu(1) ≥ u(0) andu(1) 6= u(0). We next assume thatu(k−1) ≥ u(k−2)

and thatu(k−1) 6= u(k−2). Observe that this implies thatx∗k ≥ x∗k−1 by the first part of this proof.
Moreover
• Forx > x∗k, we haveu(k)(x) = u(k−1)(x) = 0.
• Forx < x∗k−1, we have

[u(k) − u(k−1)](x) = e−rδE
{

[u(k−1) − u(k−2)](X0,x
δ )

}
> 0 .

• For x ∈ [x∗k−1, x
∗
k], we haveu(k−1)(x) = 0. Furthermore, sinceu(k) is non-increasing and

u(k)(x∗k) = 0, it follows thatu(k)(x) ≥ 0. �

5. PERPETUAL PUT SWING OPTIONS WITH I NFINITELY M ANY EXERCISE RIGHTS IN THE

BLACK -SCHOLES M ODEL

In this section we study the asymptotic regime obtained when the number of exercise rights in-
creases without bound. In order to do so, we analyze the value function:

v(∞)(X0) = sup
(τn)n≥1∈S(∞)

E

∑
n≥1

e−rτnφ (Xτn)

 ,(40)

where as beforeφ is the payoffφ(x) = (K − x)+ of an American put option and where the setS(∞)

of sequences of stopping times depends upon the refraction parameterδ > 0 in the following way:

S(∞) =
{

(τn)n≥1 ∈ SN; τn+1 − τn ≥ δ for all n ≥ 1
}
.

Observe that, sinceφ ≤ K, we have for all(τn)n≥1 ∈ S(∞) that:∑
n≥1

e−rτnφ (Xτn) ≤ K
∑
n≥1

e−rτn ≤ K
∑
n≥0

e−rnδ.

Therefore:

v(∞)(X0) ≤ K
(
1− e−rδ

)−1
.(41)

We recast the current problem in the framework of an optimal single stopping problem.

Proposition 4. The value functionv(∞) satisfies:

v(∞)(X0) = sup
τ∈S

E
{
φ(∞)(Xτ )

}
where φ(∞)(x) = φ(x) + e−rδE

{
v(∞)(X0,x

δ )
}
.(42)
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Proof. 1. Letτ ∈ S and(τ̄i)i≥1 ∈ S(∞), and let us define a new sequence{τi}i≥1 of stopping times
by τ1 = τ , τi = τ + δ + τ̄i+1. Then(τi)i≥1 ∈ S(∞). Therefore

v(∞)(X0) ≥ E

∑
i≥1

e−rτiφ(Xτi)


= E

e−rτφ(Xτ ) + e−r(τ+δ)E

∑
i≥1

e−rτ̄iφ(Xτ+δ+τ̄i
)|Fτ+δ


 .

Since the sequence{τ̄i}i≥1 ∈ S(∞) and the stopping timeτ ∈ S were arbitrary, this gives the
inequality:

v(∞)(X0) ≥ sup
τ∈S

E
{
e−rτφ(Xτ ) + e−r(τ+δ)v(∞)(Xτ+δ)

}
.

2. In order to establish the reverse inequality, we pickε > 0 and anε-optimal stopping rule{τ̂i}i≥1 ∈
S(∞), i.e.

v(∞)(X0)− ε ≤ E

∑
i≥1

e−rτ̂iφ(Xτ̂i
)


= E

e−rτ̂1φ (Xτ̂i
) + e−r(τ̂1+δ)

∑
i≥1

e−rτ̄iφ (Xτ̂1+δ+τ̄i
)

 ,(43)

where we used the stopping timesτ̄i defined by:

τ̄i = τ̂i+1 − τ̂1 − δ for i ≥ 1 .

We now observe that̄τ1 ≥ 0 and τ̄i+1 − τ̄i ≥ δ a.s. Furthermore, considering the shifted filtration

Fτ̂1+δ
{
F τ̂1+δ

t

}
t≥0

, we see that̄τi is anFτ̂1+δ−stopping time, and therefore

E

∑
i≥1

e−rτ̄iφ (Xτ̂1+δ+τ̄i
)

∣∣∣∣∣∣Fτ̂1+δ

 ≤ v(∞) (Xτ̂1+δ) ,

by definition of the value functionv(∞). Plugging this inequality in (43), we deduce that

v(∞)(X0)− ε ≤ E
{
e−rτ̂1φ (Xτ̂i

) + e−r(τ̂1+δ)v(∞)(Xτ̂1+δ)
}

≤ sup
τ∈S

E
{
e−rτφ (Xτ ) + e−r(τ+δ)v(∞) (Xτ+δ)

}
. �

Next, we proceed exactly as in the proofs of Lemma 3 and Proposition 3 to obtain the following
result.

Proposition 5. There existsx∗∞ ∈ [x∗1,K] such that

v(∞)(x) = φ(∞)(x) if and only if 0 ≤ x ≤ x∗∞ .
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Consequently, the stopping time

θ∗∞ = inf {t ≥ 0 : Xt ≤ x∗∞}(44)

defines an optimal stopping rule for the problem (40). In order to characterize further the boundary
x∗∞, we proceed as in the previous section by observing that

v(∞)(x) =
{
φ(∞)(x) for x ≤ x∗∞
w[φ(∞)](x, x∗∞) = maxb≤x w[φ(∞)](x, b) for x ≥ x∗∞ ,

which provides by the same computations:

v(∞)(x) =

 K − x+ e−rδE
{
v(∞)(X0,x

δ )
}

for x ≤ x∗∞

x−γ maxb≤K bγ
(
K − b+ e−rδE

{
v(∞)(X0,b

δ )
})

for x ≥ x∗∞ .
(45)

Recall from (41) thatv(∞) is bounded. Then the functionx 7−→ E
{
v(∞)(X0,x

δ )
}

is differentiable by

Lemma 2. Therefore, we deduce from (45) thatv(∞) is differentiable on[0, x∗∞) ∪ (x∗∞,∞). Since
0 < x∗∞ < K, the boundaryx∗∞ solves the first order condition of the above maximization problem.
As in the previous section, it is convenient to introduce the function:

u(∞)(x) = (1 + γ)−1

[
γv(∞)(x) + x

d

dx
v(∞)(x)

]
, x > 0 ,

and we observe thatv(∞) can be recovered fromu(∞) by

v(∞)(x) = v(∞)(0) + (1 + γ)x−γ

∫ x

0
yγ−1u(k)(y)dy

= K
(
1− e−rδ

)−1
+ (1 + γ)x−γ

∫ x

0
yγ−1u(∞)(y)dy(46)

We now state the first order conditions for the optimality ofx∗∞.

Lemma 6. The functionu(∞) is continuous and satisfies

u(∞)(x) = 1{x≤x∗∞}

(
x∗1 − x+ e−rδE

{
u(∞)(X0,x

δ )
})

,(47)

and the boundaryx∗∞ solves

x∗1 − x∗∞ + e−rδE
{
u(∞)(X0,x∗∞

δ )
}

= 0 .(48)

Proof. Except the continuity ofu(∞), all claims follow by the same arguments as in the proof of

Lemma 4. Now, sincev(∞) is bounded by (41), observe that the functionx 7−→ E
{
v(∞)(X0,x

δ )
}

is

continuously differentiable. By (45), this shows thatv(∞) is continuously differentiable on(0, x∗∞),
implying the continuity ofu(∞) on this set. Sinceu(∞) = 0 on (x∗∞,∞), it only remains to check the
continuity ofu(∞) at the pointx∗∞. This is a direct consequence of the first order condition (48).�

We are now in a position to characterize the boundaryx∗∞ in terms of the integer-valued random
variableNδ(b) defined as the first crossing time of the geometric Brownian motion samples separated
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by the refracting period, i.e. the integer:

Nδ(b) := min
{
n ≥ 1; X0,1

nδ > b
}
.(49)

Proposition 6. The functionu(∞) is given by:

u(∞)(x) = E


Nδ(x∗∞/x)−1∑

n=0

e−nrδ
(
x∗1 −X0,x

nδ

) ,(50)

and the the optimal exercise boundary for the problem(40) is :

x∗∞ = x∗1
E{

∑
n<Nδ(1) e

−nrδ}

E{
∑

n<Nδ(1) e
−nrδX0,1

nδ }
.(51)

Proof. Iterating (47), and observing that
∏j

i=0 1{X0,x
iδ ≤x∗1}

= 1{j<Nδ(x∗∞/x)}, we see that

u(∞)(x) = E


n∑

j=0

e−jrδ
(
x∗1 −X0,x

jδ

)
1{j<Nδ(x∗∞/x)}


+ e−(n+1)rδE

{
u(∞)(X0,x

(n+1)δ)1{n<Nδ(x∗∞/x)}

}
,

by definition ofNδ(b). Now, recall thatu(∞) = 0 outside the compact interval[0, x∗∞] and that it is
continuous by Lemma 6. Thenu(∞) is bounded and

lim
n→∞

e−(n+1)rδE
{
u(∞)

(
X0,x

(n+1)δ

)
1{n<Nδ(x∗∞/x)}

}
= 0 .

By the dominated convergence theorem, this implies that :

u(∞)(x) = lim
n→∞

E


n∑

j=0

e−jrδ
(
x∗1 −X0,x

jδ

)
1{j<Nδ(x∗∞/x)}


= E


∞∑

j=0

e−jrδ
(
x∗1 −X0,x

jδ

)
1{j<Nδ(x∗∞/x)}

 ,

completing the proof of (50). We now obtain (51) by writing thatu(∞)(x∗∞) = 0:

0 = E


Nδ(1)−1∑

n=0

e−nrδ
(
x∗1 − x∗∞X

0,1
nδ

)
= x∗1 E


Nδ(1)−1∑

n=0

e−nrδ

− x∗∞ E


Nδ(1)−1∑

n=0

e−nrδX0,1
nδ

 . �(52)

We conclude this section by proving the convergence of the solution of the perpetual swing option
problem with finitely many rights to the corresponding solution when the number of exercise rights
is infinite.
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Proposition 7. We have the following convergence results:

x∗k −→ x∗∞ and
(
u(k), v(k)

)
−→

(
u(∞), v(∞)

)
uniformly on[0,∞) .(53)

Proof. 1. We first prove the convergence of{x∗k}k≥1 and the uniform convergence of{u(k)}k≥1.
By Lemma 5, the sequences{x∗k}k≥1 and{u(k)}k≥1 are increasing. Moreoverx∗k ≤ K, andu(k) ≤
K[1 − e−rδ]−1 as it can be immediately checked from (38). Then there existx̄ ≤ K and ū :
[0,∞) −→ R such that

x∗k −→ x̄ and u(k)(x) −→ ū(x) for all x ≥ 0 .

By dominated convergence, it follows from (38) and (39) that

(54) ū(x) = 1x≤x̄

{
x∗1 − x+ e−rδE

{
ū

(
X0,x

δ

)}}
and

(55) x∗1 − x̄+ e−rδE
{
ū

(
X0,x̄

δ

)}
= 0 .

Sinceū is bounded, this proves thatū is continuous. Since, for eachk ≥ 1, u(k) = 0 outside the
compact interval[0,K], it then follows from Dini’s theorem that{u(k)}k≥1 converges tōu uniformly
on [0,∞).
2. We now show that(x̄, ū) = (x∗∞, u

(∞)). To see this, notice that (54) and (55) show that(x̄, ū)
satisfy the conditions which have been established for(x∗∞, u

(∞)) in Lemma 6. Observing that the
characterization of(x∗∞, u

(∞)) in Proposition 6 is obtained by means of these equations, we conclude
that(x̄, ū) = (x∗∞, u

(∞)).
3. It remains to prove the uniform convergence of sequence

(
v(k)

)
k≥1

towardsv(∞). To see this, we
directly compute by (37) and (46) that :∣∣∣v(k)(x)− v(∞)(x)

∣∣∣ ≤
∣∣∣v(k)(0)− v(∞)(0)

∣∣∣ + (1 + γ)x−γ

∫ x

0
yγ−1

∣∣∣u(k)(y)− u(∞)(y)
∣∣∣ dy

≤
∣∣∣v(k)(0)− v(∞)(0)

∣∣∣ + (1 + γ)‖u(k) − u(∞)‖∞x−γ

∫ x

0
yγ−1dy

=
∣∣∣v(k)(0)− v(∞)(0)

∣∣∣ + γ−1(1 + γ)‖u(k) − u(∞)‖∞ ,

where we used the notation‖ · ‖∞ for the supremum norm of a function. The desired result then
follows from the uniform convergence of{u(k)}k≥1 towardsu(∞). �

6. NUMERICAL RESULTS FOR THE I NFINITE M ATURITY PROBLEM

This section contains a small sample of numerical results chosen to illustrate the theoretical results
proven in this paper. The computations reported in this section use a strike priceK = 1, a refraction
periodδ = .01, a volatilityσ = .35, and a short interest rater = .04. These give the valuesγ = .653
andx∗1 = .395.

We computed approximations of the functionuk over a grid of250 pointsx regularly spaced
between0 and1. We used the values1, 2, · · · , 250 for k. The expectation appearing in the recursive
formula (38) proven in Lemma 4 and giving the values ofuk in terms ofuk−1 was computed from
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20, 000 Monte Carlo random samples of the random variableXδ starting from the valuesX0 = x of
the grid.

FIGURE 1. Time series plots of the graphs of the functionsuk for k = 10j with
j = 1, 2, · · · , 25. Note that the numerical value ofx∗∞ would be.725.

Figure 1 shows the graphs of the first250 functionsuk computed in this way. One clearly sees the
fact that they are increasing. This growth ink near the origin could appear in contradiction with the
fact that theuk’s were uniformly bounded (i.e. the supremum norm ofuk is bounded ink) which we
proved in the text. So we plotted these supremum norms as functions ofk.

Figure 2 is very much consistent with the uniform boundedness of the functionsuk.
This is confirmed by the surface plot given in Figure 3 which gives a different perspective on the

same data. Finally, Figure 4 plots the values ofx∗k as a function ofk. After an early sharp increase,
these thresholds level off rapidly toward their limiting valuex∗∞.

Figure 5 gives a surface plot ofx∗∞ as a function of the the two free parametersrδ andσ
√
δ/2.

Notice thatx∗∞ is found to be decreasing inσ
√
δ/2 and increasing inr

√
δ, both properties being very

natural.

7. NUMERICAL RESULTS FOR THE FINITE HORIZON PROBLEM

In this section, we return to the finite horizon multiple stopping problem, and we set

T = 1

without any loss of generality. In other words we consider swing options with maturity one year. Our
objective is to present and implement a Monte Carlo numerical procedure for the computation of the
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FIGURE 2. Time series plot of the values of the sup-norm of the functionuk for k = 1, 2, · · · , 250.

value function of the multiple stopping problem

v(`)(0, X0) := sup
~τ∈S̄(`)

∑̀
i=1

E
{
e−rτiφ (Xτi)

}
,(56)

and the associated exercise region. As before,X is the Black-Scholes price process defined in (20),r
is a constant instantaneous interest rate, andφ(x) = (K − x)+ is the European put pay-off function
with strikeK > 0.

7.1. Discrete Time Approximation. In order to estimate the value functionv(`), we first need to
define a convenient discrete-time approximation. For each integern ≥ 1, we introduce the partition
Tn = {tj := j/n}0≤j≤n of the time intervalT := [0, 1], and we use the notationSn for the subset
of S1 defined by

Sn := {τ ∈ S1; τ ∈ Tn a.s.} .

We use the same notation as in Section 3. In particular,Y (i) stands for the Snell envelop of the reward
processφ(i)(t,Xt), where the reward functionφ(i) is defined inductively together with the successive
value functionsv(i) by:

φ(i)(t, x) := φ(x) + e−rδE
{
v(i−1)

(
t+ δ,X0,x

δ

)}
for t ≤ 1− δ ,(57)

and

φ(i)(t, x) := φ(x) for 1− δ < t ≤ 1 ,(58)
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FIGURE 3. Surface plot of the valuesuk(x) for x ∈ [0, 1] and fork = 1, 2, · · · , 250..

while thev(i)’s are given by:

v(i)(t, x) = sup
τ∈St,T

E
{
e−rτφ(i)

(
τ,Xt,x

τ

)}
.(59)

Recall the conventionv(0) ≡ 0. For each integern ≥ 1, we propose a natural discrete time approxi-
mation for the value function of the problem. It is given by

v(i)
n (t, x) := sup

τ∈Sn∩St,T

E
[
e−rτφ(i)

n

(
τ,Xt,x

τ

)]
,(60)

starting as before withv(0)
n ≡ 0, and where:

φ(i)
n (t, x) = φ(x) + e−rδE

{
v(i−1)
n

(
t+ δ,X0,x

δ

)}
for t ≤ 1− δ ,(61)

and

φ(i)
n (t, x) = φ(x) for 1− δ < t ≤ 1 .(62)

In the discrete-time framework, it is well-known that the Snell envelop is easily computed by the
backward induction

v(i)
n (tn, Xtn) = φ(i) (tn, Xtn)(63)
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FIGURE 4. Plot of the values ofx∗k computed fork = 1, 2, · · · , 250.

and

v(i)
n

(
tj−1, Xtj−1

)
= max

{
φ(i)

n

(
tj−1, Xtj−1

)
; e−r/nE

[
v(i)
n

(
tj , Xtj

)∣∣∣F (n)
tj−1

]}
,(64)

whereF (n)
tj

= σ (Xtk , k ≤ j) is the discrete-time filtration. Since the processX is Markov, the latter
conditional expectation reduces to the computation of a regression function :

E
{
v(i)
n

(
tj , Xtj

)∣∣∣Fn
tj−1

}
= E

{
v(i)
n

(
tj , Xtj

)∣∣∣Xtj−1

}
=: ρ(i)

n

(
tj−1, Xtj−1

)
.(65)

7.2. Computation of the Conditional Expectations. As evidenced by the above formulae, the prac-
tical implementation of this backward procedure requires the computation of many conditional expec-
tations, and the numerical implementations will vary according to the choice made for the evaluations
of theseregression functions.We briefly review the most obvious of these choices before concentrat-
ing on the method which we choose to develop.

Nonparametric Regression. At this stage of the analysis, many nonparametric regression procedures
can be brought to bear, but we refrain from attempting to reviewing them all, and we restrict ourselves
to a selected few.
(i) The Kernel Method.This well-know technique from non-parametric statistics, see e.g. Bosq [2],
has been suggested in the context of the American put option by Carrière [5]. This method is based
on the observation that for random variables or vectorsA andB:

E{A|B = b} =
E {Aδb(B)}
E {δb(B)}

,(66)
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FIGURE 5. Surface plot of the values ofx∗∞ as function of the two free parameters
rδ andσ

√
δ/2.

whereδb is the Dirac mass at the pointb. Then, given an approximate identity, i.e. a family of
functionsκh which converges toδ0 whenh → 0 (in some sense which we will not make precise
here), it is natural to introduce the approximation

E {Aκh(B − b)}
E {κh(B − b)}

,(67)

and for a sample(A(s), B(s))1≤s≤N of N independent random vectors with the same distribution as
(A,B), the kernel estimator of the regression is given by:

Ê{A|B = b} =
1
N

∑N
s=1A

(s)κhN
(B(s) − b)

1
N

∑N
s=1A

(s)κhN
(B(s) − b)

,(68)

wherehN is a sequence of positive numbers converging to zero. Despite the freedom to choose the
rate of convergence ofhn to 0, the bias introduced by the approximation of the Dirac mass by the
kernel function is responsible for the fact that the classical

√
N rate of convergence of the central

limit theorem is lost. We refer to [2] for a detailed analysis of the rate of convergence of the kernel
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estimator. There the interested reader will find extensions to dependent samples and proofs that this
rate decreases dramatically when the dimension of the random variableB increases.

(ii) The Basis Expansion Method.Let us assume momentarily thatB is a p-dimensional random
vector, and let us denote byµB its distribution inRp. For any square integrable random variableA,
the regression functionRp 3 b ↪→ E{A|B = b} can be viewed (and characterized) as an element
of L2(Rp, µB). As such, it can be approximated by the partial sums of its decomposition on any
orthonormal basis of this Hilbert space. Since the coefficients in such an expansion are expectations
of products ofA by functions ofB, they can be estimated from a random sample(A(s), B(s))1≤s≤N .
This estimation technique is also standard in nonparametric regression. Its use in the context of
American option pricing was suggested by Longstaff and Schwartz [16], and the corresponding price
estimate has been shown to be consistent by Clément, Lamberton and Protter [6]. As in the case of
the kernel method, the

√
N−rate of convergence is lost because of the bias introduced by the finite

dimensional approximation. The choice of the orthonormal basis can drastically influence the rate of
convergence. For example, it was shown by Egloff and Min-oo [8] that the rate of convergence of this
algorithm could be exponentially slow. See for example their Theorem 6.15.

Malliavin Calculus Based Simulation Method. The technique which we now consider has been
proposed by Fournié, Lasry, Lebuchoux and Lions [10], and further developed by Bouchard, Ekeland
and Touzi [3]. The asymptotic properties of the resulting numerical algorithm for the computation
of the price of American put options (and more generally, for the expected value of functions of the
solutions of reflected backward stochastic differential equations) have been analyzed by Bouchard
and Touzi [4]. The main idea is to use the Malliavin integration by parts formula in order to get rid of
the Dirac point masses in (66). In doing so one gets:

(69) E{A|B = b} =
E{AHb(B)S}
E{Hb(B)S}

whereHb(x) =
∏p

i=1 1[bi,∞)(xi), andS is some non-negative random variable. An important con-
sequence of this formula is the fact that the associated Monte Carlo estimator:

Ê[A|B = b] =
1
N

∑N
s=1A

(s)Hb(B(s))S(s)

1
N

∑N
s=1Hb(B(s))S(s)

,(70)

constructed from an independent sample{(A(s), B(s), S(s))}s=1,··· ,N of sizeN , converges at the√
N−rate by the classical central limit theorem. The following subsection is devoted to a self-

contained derivation of these facts. We use a pedestrian approach based on the log-normality of
our Gaussian framework, without ever appealing to results of the Malliavin calculus.

7.3. Integration-by-Parts based Regression Estimation.We first concentrate on a regression func-
tion of the form:

rh(x) := E{g(Wt+h)|Wt = x} =
E{g(Wt+h)δx(Wt)}

E{δx(Wt)}
.
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Integration by Parts. Let us denote byϕ the density of the standard one dimensional normal distri-
bution, and let us assume thatg is a smooth function with a bounded derivative. By the independence
of the increments of the Brownian motion, we have:

E{g(Wt+h)δx(Wt)} =
∫∫

g(w1 + w2)δx(w1)ϕ
(
w1√
t

)
ϕ

(
w2√
h

)
dw1dw2 .

Integrating by parts with respect to thew1 variable, we get :

E{g(Wt+h)δx(Wt)} =
∫∫

g(w1 + w2)1[x,∞)(w1)
w1

t
ϕ

(
w1√
t

)
ϕ

(
w2√
h

)
dw1dw2

−
∫∫

g′(w1 + w2)1[x,∞)(w1)ϕ
(
w1√
t

)
ϕ

(
w2√
h

)
dw1dw2 .

Next, we compute the second integral by integrating by parts with respect to thew2 variable. We get:

E{g(Wt+h)δx(Wt)} =
∫∫

g(w1 + w2)1[x,∞)(w1)
w1

t
ϕ

(
w1√
t

)
ϕ

(
w2√
h

)
dw1dw2

−
∫∫

g(w1 + w2)1[x,∞)(w1)
w2

h
ϕ

(
w1√
t

)
ϕ

(
w2√
h

)
dw1dw2

= E{g(Wt+h)1[x,∞)(Wt)Sh} ,(71)

where the random variable

Sh =
Wt

t
− Wt+h −Wt

h
(72)

is independent of the functiong. Notice that formula (71) is established for a functiong ∈ C1
b .

However, since it does not involve the regularity ofg, we can conclude by a classical density argument
that it is valid wheneverg(Wt+h) ∈ L2.

Actual Simulation. Let (W (s))1≤s≤S ben independent samples of the Wiener processW . Then, the
Monte Carlo estimator suggested by the above formula is defined by

r̂N (x) :=
q̂N [g](x)
q̂N [1](x)

where q̂N [g](x) :=
1
N

N∑
s=1

g(W (s)
t+h)1[x,∞)(W

(s)
t )S(s)

h ,

whereS(s)
h is computed from the sampleW (s) using formula (72). Its asymptotic properties are di-

rectly deduced from the law of large numbers and the central limit theorem for independent identically
distributed random variables. In particular, the rate of convergence is of the order

√
N .

The price to pay in order to recover the
√
N rate of convergence is that the variance of the estimator

q̂N [g](x) explodes ash shrinks to zero since

lim
h↘0

Sh = 0

in L2. Since our objective is to send the time steph to zero, it is necessary to find a remedy to this
variance explosion problem.



26 RENÉ CARMONA AND NIZAR TOUZI

Localization. In order to do so, we introduce a localization function. Letχ be an arbitrary smooth
function withχ(0) = 1. Following the computations leading to formula (71) we get:

E{g(Wt+h)δx(Wt)} = E{g(Wt+h)δx(Wt)χ(Wt − x)}

=
∫∫

g(w1 + w2)δx(w1)χ(w1 − x)ϕ
(
w1√
t

)
ϕ

(
w2√
h

)
dw1dw2

=
∫∫

g(w1 + w2)1[x,∞)(w1)χ(w1 − x)
w1

t
ϕ

(
w1√
t

)
ϕ

(
w2√
h

)
dw1dw2

−
∫∫

g′(w1 + w2)1[x,∞)(w1)χ(w1 − x)ϕ
(
w1√
t

)
ϕ

(
w2√
h

)
dw1dw2

−
∫∫

g(w1 + w2)1[x,∞)(w1)χ′(w1 − x)ϕ
(
w1√
t

)
ϕ

(
w2√
h

)
dw1dw2

=
∫∫

g(w1 + w2)1[x,∞)(w1)χ(w1 − x)
w1

t
ϕ

(
w1√
t

)
ϕ

(
w2√
h

)
dw1dw2

−
∫∫

g(w1 + w2)1[x,∞)(w1)χ(w1 − x)
W2

h
ϕ

(
w1√
t

)
ϕ

(
w2√
h

)
dw1dw2

−
∫∫

g(w1 + w2)1[x,∞)(w1)χ′(w1 − x)ϕ
(
w1√
t

)
ϕ

(
w2√
h

)
dw1dw2

= E{g (Wt+h)1[x,∞)(Wt)Sh,χ} ,

where the random variableSh,χ is defined by:

Sh,χ = χ(Wt − x)
(
Wt

t
− Wt+h −Wt

h

)
− χ′(Wt − x)(73)

= χ(Wt − x)Sh − χ′(Wt − x)

is again independent of the functiong. For each localization functionχ, one can now define a new
Monte Carlo estimator as before. All these estimators share the nice convergence property at the√
N -rate. Therefore, the natural question is whether one can reduce the variance of the Monte Carlo

estimator by some convenient choice of localization functionχ.

4. Variance Reduction by Localization.SetG := g(Wt+h)2, and let us consider the integrated mean
square error

J(χ) :=
∫

R
E

{
G1Wt>xS

2
h,χ

}
dx .

We are interested in the integrated mean square error minimization :

V := min {J(χ) : χ smooth, bounded andχ(0) = 1} .(74)
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Using Fubini’s theorem and a path by path substitution, we get:

J(χ) = E
{
G

∫ Wt

−∞

∣∣χ(Wt − x)Sh − χ′(Wt − x)
∣∣2 dx}

= E
{
G

∫ +∞

0

∣∣χ(y)Sh − χ′(y)
∣∣2 dy} .

Observing thatE{GSh} = 0, this provides

J(χ) =
∫ +∞

0

[
E{GS2

h}|χ(y)|2 + E{G}|χ′(y)|2
]
dy .

Hence the integrated mean square error minimization is reduced to a classical problem of calculus of
variations, which can be solved explicitly. The optimal localization function is then given by

χh(x) := e−ηhx where ηh :=
(

E{GS2
h}

E{G}

)1/2

.(75)

In particular, this shows that

ηh = O
(
h−1/2

)
.

7.4. Monte Carlo Estimation for the Finite Maturity Problem. We now return to the problem
of the optimal multiple stopping problem, and more precisely to the pricing of swing options in the
framework of the discrete time approximation set up in Subsection 7.1. LetNn be some integer
depending on the time step parametern, and let{W (s), 1 ≤ s ≤ Nn} beNn independent samples of
the Wiener process. For each integers, we denote byX(s) the processX associated to the Brownian
motionW (s) via formula (20). Also, we set:

R
(s)
h (tj , x) := S

(s)
h,χh

(tj)1[x,∞)(W
(s)
tj

)

= χh(W (s)
t − x)

[
ηh + h−1

(
2W (s)

tj
−W

(s)
tj−h −W

(s)
tj+h

)]
1[x,∞)(W

(s)
tj

) ,

whereSh andχh are defined respectively in (73) and (75). Following the discussion of the previous
paragraph, we define the estimators :

ρ̃(i)
n

(
tj , Xtj

)
:=

1
Nn

∑S
s=1 v̂

(i)
n

(
tj+1, X

(s)
tj+1

)
R

(s)
1/n

(
tj , Xtj

)
1

Nn

∑S
s=1R

(s)
1/n

(
tj ,Wtj

) ,

φ̃(i)
n

(
tj , Xtj

)
:= φ

(
Xtj

)
+e−rδ

1
Nn

∑S
s=1 v̂

(i−1)
n

(
tj + δ,X

(s)
tj+δ

)
R

(s)
δ

(
tj , Xtj

)
1

Nn

∑S
s=1R

(s)
δ

(
tj ,Wtj

) 1tj≤1−δ

of ρ(i)
n

(
tj , Xtj

)
andφ(i)

n

(
tj , Xtj

)
respectively. These estimators are defined inductively, given the es-

timatorsv̂(i−1)(., .) and the previous estimatorv̂(i)
n

(
tj+1, X

(s)
tj+1

)
in the backward procedure. Finally,
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we observe thatρ(i)
n ≤ iK andφ(i)

n ≤ iK. Hence, in order to ovoid an explosion of the algorithm, we
define the truncated estimators (see [4]) :

ρ̂(i)
n

(
tj , Xtj

)
:= (iK) ∧ ρ̃(i)

n

(
tj , Xtj

)+
,

φ̂(i)
n

(
tj , Xtj

)
:= (iK) ∧ φ̃(i)

n

(
tj , Xtj

)+
,

and

v̂(i)
n

(
tj , Xtj

)
:= max

{
ρ̂(i)

n

(
tj , Xtj

)
, φ̂(i)

n

(
tj , Xtj

)}
.(76)

According to the error estimate of [4], in order for the approximation error to be of the order ofn−1/2,
one has to choose a numberNn of simulated trajectories such that

Nn = O
(
n7/2

)
.

The Value Functions. The above algorithm was implemented and tested for the swing put option
with the following characteristics: maturityT = 1 year, refraction periodδ = 0.1, r = .05, σ = .30,
maximal number of exercise rights` = 5, n = 50.

FIGURE 6. Graphs of the functionsv(1)(t, · ) for t = .59, .58, · · · , .02, .01 (left) and
of the functionsv(3)(t, · ) for t = .49, .47, · · · , .02, .01 (right).

The left pane of Figure 6 gives the plots of the graphs of the functionsx ↪→ v(1)(t, x) for t =
.59, .58, · · · , .02, .01. Two remarks are in order. First, these graphs are not computed over the same
range of values ofx. Essentially, we computed the values ofv(k)(t, x) for the values ofx which can
be reached by the sample paths of the diffusion processXt, and we determined this range of values of
x from the results of our simulations. The second remark concerns the noise in the numerical results.
Obviously, we should expect zero in the right hand side of the plots, and we see quite significant
departures from this expectation. The right pane of the figure gives the plots of the graphs of the
functionsx ↪→ v(3)(t, x) for t = .59, .58, · · · , .02, .01. for t = .49, .47, · · · , .02, .01.
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FIGURE 7. Surface plot of the graph of the functionv(1) when regarded as function
of botht andx. The variable TAU represents100 ∗ (T − t).

Figure 7 gives the same plot as the left pane of Figure 6, but instead of super-imposing the one-
dimensional graphs on the same plot, we use both thet and thex variables to produce surface plots,
or to be more specific the scaled time to maturityτ = 100(T − t) andx. The fact that the range
of x varies witht is obvious from this surface plot, and as expected, it is limited by some form of
parabola. Plotting the graphs of the other value functionsv(k) would produce very similar results and
we refrain from producing them.

Number of Monte Carlo Scenarios. We present some partial numerical results to illustrate the effect
of the number of trajectoriesNn. According to the result of [4] which we re-derived above, the
numberNn should be of the order ofn7/2. The results collected in the following Table 1 show that a
very high precision can be achieved even with a significantly smaller number of simulated trajectories.

Table 1.Swing put option values for various numbers of simulations
T = 1 year,δ = 0.1 year,S0 = K = 100, r = .05, σ = .30, n = 50
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N = 8, 192 N = 16, 384
v(1) [stand. dev.] 9.84 [.22%] 9.85 [.12%]
v(2) [stand. dev.] 19.21 [.56%] 19.26 [.30%]
v(3) [stand. dev.] 28.69 [.68%] 28.80 [.30%]
v(4) [stand. dev.] 38.34 [.57%] 38.48 [.27%]
v(5) [stand. dev.] 48.17 [.50%] 48.32 [.30%]

Exercise Regions. Next we identify an estimate of the exercise region for each of the value func-
tionsv(i) considered as a single stopping problem associated to the reward functionφ(i)(t, x). The
corresponding exercise boundaries are given by the graphs of the functionst ↪→ x̂∗i (t). Estimates
of these boundaries computed with the Monte Carlo method described in this section are plotted in
Figure 8. The computations were performed with the following parameters: maturityT = 10 months,
refraction periodδ = 2 months,r = .05, σ = .30, maximal number of exercise rights` = 5, n = 50,
N = 8192. As expected these exercise boundaries are increasing functions of the time-to-maturity
variable. We also verify that̂x∗i (t) ≥ x̂∗i−1(t). This property is consistent with the intuition. We
proved rigorously this result in the case of the perpetual put options in Lemma 5, but a proof of this
fact in the finite maturity case is still lacking: this monotonicity remains an interesting open problem.

FIGURE 8. Estimates of the boundaries of the exercise regions of swing options with
` = 5 exercise rights, as given by the graphs of the functionst ↪→ x∗i (t) computed
via the Monte Carlo procedure described in the text.
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[5] J. F. Carrìere (1996): Valuation of the Early-Exercise Price for Options using Simulations and Nonparametric Regres-

sion,Insurance : mathematics and Economics, 19, 19-30.
[6] E. Clément, D. Lamberton, and P. Protter (2002). An analysis of a least squares regression method for American

option pricing,Finance and Stochastics, 6, 449-472.
[7] L. Clewlow, C. Strickland and V. Kaminski (2002): Risk analysis of swing contracts.EPRM,??, ??-??.
[8] D. Egloff and M. Min-Oo (2002). Conergence of Monte Carlo algorithms for pricing American options, preprint.
[9] N. El Karoui (1981): Les aspects probabilistes du controle stochastique,Lect. Notes in Math# 876, 73-238. Springer

Verlag, New York N.Y.
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