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★★  The ability to calculate correlations for different assets or for the

same asset over time is crucial for devising trading strategies or risk

management decisions.The questions of how natural gas storage is

correlated to temperature in a certain location or what is the

persistence of gas prices over time are both extremely important for

financial institutions. However, the calculation of correlations is

plagued by the presence of deterministic periodic components, often

called the trend or seasonal component. For example, natural gas

storage and temperature decrease in winter and increase in summer.

One should carefully remove this deterministic component before

calculating the correlation.The estimate is ruined when part of the

deterministic component is left in the noise or not properly removed.

In this article, we provide a solution for more precisely removing

these effects.The calculation of the autocorrelation function of a noisy

signal usually requires the removal of a deterministic component.We

concentrate on the case of noisy periodic signals in order to tackle the

important problem of the statistical analysis of temperature data. For

this particular application, we need to carry out the following steps.

First, we evaluate the frequencies of the embedded periodic

components.Then we fully identify the deterministic component by a

variational principle restricted to the class of functions consistent with

the results of the first step. Finally, calculating the autocorrelation

function of the residuals completes the analysis of the signal.

We discuss the theoretical underpinnings of such a method in the

special case of a signal with a single periodic component.We show

that the three-step programme is often spoiled by the subtle

consequences of the possible incommensurability of the sampling

frequency and the intrinsic frequency of the signal in question. See,

for example, Carmona (1998) for a discussion of the sampling

theory of continuous signals.This paper quantifies one form of this

undesirable effect and proposes a remedy for the ambiguity in the

determination of the intrinsic frequency of a noisy periodic signal.

Fourier spectrum
To establish notation, we start by giving the explicit formula for the

discrete Fourier transform (DFT) Xk of a given vector xj of length

N (see Cizek (1986)).

(1)

With this definition of the Fourier transform, it follows that:

(2)

because of the orthogonality property

(3)

Here and in the following sections, δnk is the Kronecker delta

(δnk=1 for n=k and vanishes otherwise). Let us consider a

monochromatic signal:

where m is a positive integer between 1 and N. For each integer

1≤k≤N, we have

(5)

and hence:
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Cutting edge: Temperature data

Abstract: Dario Villani, Raffaele Ghigliazza and René Carmona extract the
frequency content of a noisy signal using discrete Fourier transform.
After calculating the deterministic component, we show the relevance
of the method in removing spurious autocorrelations from the signal
residuals.We present results for a temperature time series.>>
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Fig 1. The spectrum |Xk | as a function of k and 
ε. |A|= 1, N = 100 and m= 50

A discrete affair
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In other words, the spectrum results in all coefficients being zero

apart from a peak for the value of k equal to m. From the spectrum,

we can calculate the frequency of the periodic signal given the

length N (that is, ω=(m–1)/N ).A difficulty arises when the

monochromatic signal is of the form

(7)

In this case, the frequency cannot be expressed as a ratio of the form

(m–1)/N , and we say we are facing an incommensurate lattice

problem. Calculating the spectrum, we get

(8)

It is now evident that an incommensurate frequency produces a

spread of the peak – that is, Xk≠ 0 for k ≠ m. Figure 1 shows this. It is

worth noting that for ε→0 and N→∞, we obtain

(9)

We recognise the zero-order term as the Fraunhofer diffraction

pattern for the single slit (Born and Wolf (1965)).This should not

be surprising, as the spread of the Fourier spectrum, Xk, is due to

the interaction of two wavelengths – one for the lattice and the

other for the signal.

The analysis outlined in equations 4 to 9 shows that the Fourier

spectrum is widened even in the case of a noise-free signal. In the

case of a noisy signal, the spectrum asymmetries introduced by the

noise complicate the detection of the frequency.

The case of temperature data
We now analyse the average temperature data for the case of Seattle-

Tacoma airport from January 1, 1960 to December 31, 1999 (14,610

entries). First, we remove the mean value of 52.20° Fahrenheit.

Next, we determine the frequency of the embedded periodic signal

by use of the Fourier paradigm. For any subset of the data, the

Fourier spectrum gives a peak over a noisy background. However,

each peak gives different estimates of the period, all inconsistent

with the idea that the more points there are, the better is the

estimate of the period. Figure 2 shows the value of the estimated

period Λ as afunction of N.We calculated the Λ values according to

the following prescriptions. For each N≤14,610, we selected the first

N points of the data set and calculated the period as 

(10)

where kmax is the index for which the absolute value of the spectrum

is maximum.We always chose the integer kmax to be in the range

below the Nyquist frequency (see Priestley (1981)).The uncertainty is

substantial. Even with as many as 7,920 to 8,140 points (more than 20

times the number there would be in the ‘true’ period corresponding

to the tropical year), the period takes values in the range 360–370

days. In experimental cases, where the value is not foreseeable from

the very start, such uncertainty would be disastrous for estimating

statistical properties such as variance and autocorrelation function.

Let us suppose we are given only the first N1= 7,920 data points.

We would find a peak at kmax= 23, which corresponds to Λ1= 360. If

we had the first N2= 8,140 data, we would find a period of Λ2=370,

even with the same kmax= 23.To fully identify the deterministic

component dj, we use the functional form:

(11)

where Q is the number of harmonics we use in the estimation. In

each case, we minimise the least-squares distance between the signal

diminished by its mean and the expression in equation 11. For

Q =3, we obtain the following:

a1 b1 a2 b2 a3 b3

ΛΛ1=360 –2.02 –10.58 –0.69 –0.51 –0.02 –0.27

ΛΛ2=370 –9.54 5.22 1.18 –0.18 0.07 0.17

The variances of the residuals are σ2
1= 49.17 and σ2

2= 47.33 for Λ1

and Λ2. By using the tropical year estimate (Λtr=365.2422), we get

σ2
tr=26.65 for N =7,920, and σ2

tr=26.51 for N =8,140. It is evident

that using a wrong value for the period leads us to overestimate the

variance of the residuals. Figure 3 shows how strong the effect on

the autocorrelation function is when a wrong period value is used.

Not only does the variance of the residuals increase, but the residuals

also show a false persistence. In the case of temperature time series, a

strong persistence would imply the possibility of forecasting the

weather beyond any reasonable range.

As already discussed, we must determine the ‘true’ frequency to

make an effective analysis of the statistical properties of a signal. Here

we provide a solution to this problem by analysing the functional

dependence of the peaks appearing in figure 2.As well as providing

a solution, we want to stress that any time the DFT is performed on

a finite sample data set, a figure like figure 2 should be generated.

One should not seek the largest possible data set, but rather study
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Fig 2. The period Λ as a function of the number 
of points, N
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the estimated period as a function of the number of points. Our

ansatz is that both the maximum and the minimum ‘peaks’ of each

segment in figure 2 lie on a curve of the type:

(12)

By using least-squares minimisation, we find:

A B

ΛΛmin 365.70 194.26

ΛΛmax 366.19 –165.67

In both cases, the R2 is 1 apart from round-off errors.This means

the function in equation 12 is not just a good guess, but in fact the

‘true’ decay of the estimated period to its large N limit – that is, A.

The results above for Λmin and Λmax show that the estimates are fairly

close to the ‘true’ period. Furthermore, the variance and the

autocorrelation function are very close to those calculated for the

tropical year value, 365.2422. More specifically, the variance for

N=8,140 is 26.79 and 27.54 for Λmin and Λmax, respectively. In both

cases, we cannot distinguish the autocorrelation function from the

one obtained after using Λtr.

Conclusion
We have shown how to calculate the autocorrelation function of

noisy periodic signals in the case of a single-frequency mode. Our

scheme aims to improve on a naive application of the DFT.The main

point is that more is not necessarily better when it comes to the DFT.

The dependence on the number of points for the estimated frequency

is more important than the position of the peak for a specific N. Our

solution stems from building envelopes of minima and maxima of

piecewise linear functions. Other researchers could certainly develop

an improved version of this method.Yet there is no question that we

must find another solution by looking at the results in figure 2. ER
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