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ABSTRACT. We survey the theoretical and the computational problems associated with the pricing of
spread options. These options are ubiquitous in the financial markets, whether they be equity, fixed
income, foreign exchange, commodities, or energy markets. As a matter of introduction, we present a
general overview of the common features of all the spread options by discussing in detail their roles
as speculation devices and risk management tools. We describe the mathematical framework used to
model them and we review the numerical algorithms used to actually price and hedge them. There is
already an extensive literature on the pricing of spread options in the equity and fixed income markets,
and our contribution there is mostly to put together material scattered across a wide spectrum of recent
text books and journal articles. On the other hand, information about the various numerical procedures
which can be used to price and hedge spread options on physical commodities is more difficult to find.
For this reason, we make a systematic effort to choose examples from the energy markets in order to
illustrate the numeric challenges associated with these instruments. This gives us a chance to venture
in the poorly understood world of asset valuation and real options which are the object of a frenzy of
active mathematical research. In this spirit, we review the two major avenues to modeling energy prices
dynamics, and we explain how the pricing and hedging algorithms can be implemented both in the
framework of models for the spot prices dynamics as well as for the forward curves dynamics.

1. I NTRODUCTION

Whether the motivation comes from speculation, basis risk mitigation, or even asset valuation, the
use of spread options1 is widespread despite the fact that the development of pricing and hedging
techniques has not followed at the same pace. These options can be traded on an exchange, but
the bulk of the volume comes from over the counter trades. They are designed to mitigate adverse
movements of several indexes, hence their popularity. Because of their generic nature, spread options
are used in markets as different as the fixed income markets, the currency and foreign exchange
markets, the commodity futures markets and the energy markets.

One of our goals is to review the literature existing on the subject, including a self-contained
discussion of all the pricing and hedging methodologies known to us. We implemented all the pricing
algorithms whose existence we are aware of, and for the purpose of comparison, we report on their
numerical performances and we give evidence of their relative accuracy and computing times.

As evidenced by the title of the paper, we intend to concentrate on the energy markets. Standard
stock market theory relies on probabilistic models for the dynamics of stock prices, and uses arbi-
trage arguments to price derivatives. In most models, futures and forward contract prices are simply
the current (spot) price of the stock corrected for growth at the current interest rate. This simple

Date: February 22, 2003.
1The spread option is a set play in American football, and a lot of write ups have been devoted to its analysis and to its

merits. Despite its importance in the life of football fans, we shall ignore this popular type of spread option and concentrate
instead on the analysis of the spread options traded in the financial markets.
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relationship between spot and forward prices does not hold in the commodity markets, and we will
repeatedly mention seasonality and mean reversion as main culprits. In order to reconcile the physi-
cal commodity market models with its equity relatives, researchers have used several tricks to resolve
this apparent anomaly, and consistency with the no-arbitrage theory is restored most often by adding
cost of storage and convenience yields to the stochastic factors driving the models. See,e.g., [20],
[8], [41], [24] and [36]. But the main limitation of these methods is the inherent difficulties in mod-
eling these unobserved factors (storage costs and especially convenience yield for example) and the
proposal to use stochastic filtering techniques to estimates them, even though very attractive, did not
fully succeed in resolving these problems.

Beyond the synthesis of results from a scattered technical literature, our contribution to the subject
matter is the introduction of a new pricing algorithm based on closed form formulae providing lower
bounds to the exact values of the spread options when the distributions of the underlying indexes are
log-normal. We construct our approximate prices rigorously, we derive all the formulae necessary to
the numerical implementation of our algorithm, and we demonstrate its efficiency on simulations and
practical examples. All of the practical applications considered in this paper for the sake of illustration
are from the energy markets.

The energy markets have seen rapid changes in the last decade, mostly because of the introduction
of electricity trading and the restructuring of the power markets. The diversity in the statistical char-
acteristics of the underlying indexes on which the financial instruments are defined, together with the
extreme complexity of the derivatives traded, make the analysis of these markets an exciting challenge
to the mathematically inclined observer. This paper came out of our curiosity in these markets, and
our desire to better understand their idiosyncrasies. The reader is referred to [15] for a clear initiation
to the intricacies of the energy markets, and to the recent texts [26], [43] and [3] for the economic and
public policy issues specific to the electricity markets. But our emphasis will be different since we are
only concerned with the technical aspects of energy trading and risk management. Several textbooks
are devoted to the mathematical models of and risk management issues in the energy markets. The
most frequently quoted are [37] and [7], but this may change with the publication of the forthcoming
book [16]. Even though this paper concentrates on the spread options and [7] does not deal with
cross-commodity instruments, we shall use many of the models and procedures presented in [7]. We
close this introduction with a summary of the contents of the paper.

The paper starts with a review of the various forms of spread options in Section 2. We give ex-
amples of instruments traded in the equity, fixed income and commodity markets. Understanding
this diversity is paramount to understanding the great variety of mathematical models and of pricing
recipes which have appeared in the technical literature. In preparation for our discussion of the prac-
tical examples discussed in the last sections of the paper, we devote Section 3 to a detailed discussion
of the data available to the energy market participants. The special characteristics of these data should
not only justify the kind of notation and assumptions we use, but it should also serve as a yardstick to
quantify how well the pricing algorithms do.

The mathematical framework for risk-neutral pricing of spread option is introduced in Section 4.
Even though most of the spread options require only the statistics of the underlying indexes at one
single time, namely the time of maturity of the option, these statistics are usually derived from a model
of the time evolution of the values of the indexes. See nevertheless our short discussion of the calendar
spreads where the joint distribution of the same underlying index at different times is needed. We
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introduce the stochastic differential equations used to model the dynamics of the underlying indexes.
The price of a spread option is given by an expectation over the sample paths of the solution of this
system of stochastic differential equations. One usually assumes that the coefficients of the stochastic
differential equations are Markovian. In this case, the price is easily seen to be the solution of a
parabolic partial differential equation. This connection between solutions of stochastic differential
equations and solutions of partial differential equations is a cornerstone of Ito’s stochastic calculus,
and it has been exploited in many financial applications. Only in very exceptional situations do these
equations have solutions given by closed form formulae. PDE solvers, tree methods and Monte Carlo
methods are most commonly used to produce numerical values approximating the price of a spread.
Because the applied mathematics community is more familiar with PDE solvers than with the other
two, we spend more time reviewing the tree and Monte Carlo methods and the specifics of their
implementations in the pricing of spread options. Also, we address the issue of the quantification of
the dependencies of the price with respect to the various parameters of the model. We emphasize the
crucial role of these sensitivities in a risk management context by explaining their roles as hedging
tools.

As seen from the discussion of that section, the model of utmost importance is the Samuelson’s
model in which the distributions at the time of maturity of the indexes underlying the spread option
are log-normal. We shall concentrate most of our efforts in understanding the underpinnings of this
assumption on the statistics of the indexes.

The following Section 5 presents the first approximation procedure leading to a full battery of
closed form expressions for the price and the hedging portfolios of a spread option with general strike
priceK. It is based on a simple minded remark: as evidenced by a quick look at empirical samples,
the distribution of the difference between two random variables with log-normal distributions looks
pretty much like a normal distribution. This is the rationale for the first of the three approximation
methods which we review. In this approach, one refrains from modeling the distributions of the
indexes separately and instead, one models the distribution of their difference. As we just argued, it
is then reasonable to assume that the latter is normally distributed. This model is called the Bachelier
model because it is consistent with a model of the spread dynamics based on a single Brownian
motion, in the same way Bachelier originally proposed to model the dynamics of the value of a stock
by a continuous time process generalizing the notion of random walk. Little did he knew he was ahead
of Einstein introducing the process of Brownian motion. We give a complete analysis of this model.
We derive explicit formulae for the option prices in the original form of the model, and when the
model is adjusted for consistency with observed forward curves. In this section, we also examine in
detail the numerical performance of the pricing formula, by comparing its results to the exact values
when the driving dynamics are actually given by geometric Brownian motions as in the Samuelson’s
model which we study next.

In Section 6 we turn our attention to the particular case of a spread option with log-normal indexes
and strikeK = 0. Like in the case of the Bachelier’s model, it is possible to give a Black-Scholes
type formula for the price of the option. This formula was first derived by Margrabe in [33]. It cannot
be extended to the general caseK > 0, and this is the main reason for the investigations which we
review in this paper. Besides the fact that the caseK = 0 leads to a solution in closed form, it has
also a practical appeal to the market participants. Indeed, it can be viewed as an option to exchange a
product for another. Let us imagine for the sake of illustration, that we are interested in owning at a
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given timeT in the future, either one of two instruments whose prices at timet we denote byS1(t)
andS2(t), and that the choice of which one to buy has to be done now at timet = 0. If we fear that
the difference in price may be significant at timeT , choosing the second instrument and buying the
spread option with strikeK = 0 is the best way to guarantee that we will end up financially in the
same situation as we had chosen in hindsight the instrument which will end up been the cheaper at
timeT . The only cost to us will be the purchase of the spread option. Indeed, if the second instrument
ends up being the most expensive, i.e. ifS2(T ) > S1(T ), then the pay-offS2(T ) − S1(T ) of the
option will compensate us for our wrong choice.

The main mathematical thrust of the paper is contained in Section 7 where we review the recent
results of Carmona and Durrleman [5], and where we compare the numerical performance of their
method to the approximations based on the Bachelier’s approach and the Kirk’s approximate pricing
formula. The basic problem is the pricing and hedging of the simplest spread option (i.e., an Euro-
pean call option on the difference of two underlying indexes) when the risk-neutral dynamics of the
values of the underlying indexes are given by correlated geometric Brownian motions. The results
of Carmona and Durrleman are based on a systematic analysis of expectations of functions of linear
combinations of log-normal random variables. The motivation for this analysis comes from the grow-
ing interest in basket options, whose pricing involves the computation of these expectations when the
number of log-normal random variables is large. These products are extremely popular, as they are
perceived as a safe diversification tool. But a rigorous pricing methodology is still missing. The au-
thors of [5] derive lower bounds in closed form, and they propose an approximation to the exact value
of these expectations by optimizing over these lower bounds. The performance of their numerical
scheme is always as good as the results of Kirk’s formula. But the main advantage of their approach
is the fact that it also provides a set of approximations for all the sensitivities of the spread option
price, an added bonus making possible risk management at the same time. We review the properties
of these approximations, both from a theoretical and a numerical point of view by quantifying the
accuracy on numerical simulations. The reader interested in detailed proofs and extensive numerical
tests is referred to [5].

The geometric Brownian motion assumption of the Samuelson’s theory is not realistic for most
of the spread options traded in the energy markets. Indeed, most energy commodity indexes have a
strong seasonal component, and they tend to revert to a long term mean level, this mean level having
the interpretation ofcost of production.These features are not accounted for by the plain geometric
Brownian motion model of Samuelson. Section 8 deals with the extension of the results of Section 7
to the case of spread options on the difference of indexes whose risk-neutral dynamics include these
features. We also show how to include jumps in the dynamics of these indexes. This is motivated by
the pricing of spark spread options which involve electricity as one of the two underlying indexes, or
the pricing of calendar spread options on electric power.

Up until Section 9, we only work with stochastic differential equation models for the indexes
underlying the spread. In the case of the energy markets, the natural candidates for these underlying
indexes are the commodity spot prices, and these models are usually called spot price models. See
e.g., Chapters 6 and 7 of [7]. According to the prevailing terminology, they are one-factor models
for the term structure of forward prices. But it should be emphasized that our analysis extends easily,
and without major changes, to the multi-factor models, at least as long as the distributions of the
underlying indexes can be constructed from log-normal building blocks. This is the case for most of
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the models used in the literature on commodity markets. See,e.g., [20], [8], [41], [24], [36] or [37]
and [7].

Most of the energy commodities do not behave much differently than the other physical commodi-
ties. They share the mean reversion feature which we will mention quite often in this paper, but
surprisingly enough, some do not exhibit much seasonality. This is the case for crude oil for exam-
ple. But beyond natural gas whose historical data are readily available and which exhibits strong
seasonality and mean reversion, one of these commodities does stand out because of its very special
features: electric power. Indeed, its price is function of factors as diverse as 1) instant perishableness,
2) strong demand variations due to seasonality and geographic location, 3) extreme volatility and sud-
den fluctuations caused by weather changes in temperature, precipitation,. . . 4) physical constraints in
production (start-ups, ramp-ups) and transmission (capacity constraints). It is by far the most difficult
commodity index to model and predict. Derivative pricing and risk management present challenges
of a new dimension: but what appears to be a nightmare for policy makers and business executives, is
in fact a tremendous opportunity for the academic community, and the need for realistic mathematical
models and rigorous analytics is a very attractive proposition for the scientific community at large.

The last section of the paper is concerned with forward curve models. Using ideas from the HJM
theory developed for the fixed income markets, the starting point of Section 9 is a set of equations for
the stochastic dynamics of the entire forward curve. This is a departure from the approach used in the
previous sections, where the dynamics of the spot prices were modeled, and where the consistency
with the existing forward curves was only an after thought. We give a detailed account of the fitting
procedure based on Principal Components Analysis (PCA for short) and we illustrate the numerical
performance of this calibration method using real data. Restricting the coefficients of the stochastic
differential equations to be deterministic leads again to log-normal distributions and the results re-
viewed in this paper can be applied. We show how to price calendar spreads and spark spreads in this
framework.

Acknowledgements:The authors thank Bobray Bordelon for providing us with data of Datastream
International. Also we would like to thank David Doyle and Dario Villani for enlightening discussions
during the preparation of the manuscript.

2. ZOOLOGY OF THE SPREAD OPTIONS

Even though it is sometime understood as the difference between the bid and ask prices (for exam-
ple one often says that liquid markets are characterized by narrow bid/ask spreads), the term spread
is most frequently used for the difference between two indexes: the spread between the yield of a
corporate bond and the yield of a Treasury bond, the spread between two rates of returns,. . . are
typical examples. Naturally, a spread option is an option written on the difference between the values
of two indexes. But as we are about to see, its definition has been loosened to include all the forms
of options written on a linear combination of a finite set of indexes. In the currency and fixed income
markets, spread options are based on the difference between two interest or swap rates, two yields,
. . . . In the commodity markets, spread options are based on the differences between the prices of
the same commodity at two different locations (location spreads), or between the prices of the same
commodity at two different points in time (calendar spreads), or between the prices of inputs to, and
outputs from, a production process (processing spreads) as well as between the prices of different
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grades of the same commodity (quality spreads). The New York Mercantile Exchange (NYMEX
for short) offers the only exchange-traded options on energy spreads: the heating oil/crude oil and
gasoline/crude oil crack spread options.

The following review is far from exhaustive. It is merely intended to give a flavor of the diversity
of spread instruments in order to justify the variety of mathematical models and pricing algorithms
found in the technical literature on spreads. In this paper, most of the emphasis is placed on cross-
commodity spreads because of the tougher mathematical challenges they present. As we shall see,
single commodity spreads (typically calendar spreads) are usually easier to price.

2.1. Spread Options in the Currency and Fixed Income Markets.Spread options are quite com-
mon in the foreign exchange markets where spreads involve interest rates in different countries. The
French-German and the Dutch-German bond spreads are used because the economies of these coun-
tries are intimately related. A typical example is the standard cross-currency spread option which
pays at maturityT the amount(αY1(T ) − βY2(T ) −K)+ in currency1. Hereα, β andK are pos-
itive constants, and we use the notationx+ for the positive part ofx, i.e., x+ = max{x, 0}. The
underlying indexesY1 andY2 are swap rates in possibly different currencies, say2 and3. The pricing
of these spread options is usually done under some form of log-normality assumption via numeri-
cal integration of Margrabe formulae derived in Section 6 below. The more elaborate forms of this
approach are used to price quanto-swaptions as described for example in [4].

In the US fixed income market, the most liquid spread instruments are spreads between maturities,
such as the NOB spread (Notes - Bonds) and spreads between quality levels, such as the TED spread
(Treasury Bills - EuroDollars). The MOB spread measures the difference between Municipal Bonds
and Treasury Bonds. See [1] for an econometric analysis of the market efficiency of these instruments.
Spreads between Treasury Bills and Treasury Bonds have been studied in [29] and [14]. A detailed
analysis of a spread option between the three months and the six months LIBOR’s (London Inter
Bank Overnight Rate) is given in [5] where some of the mathematical tools reviewed of this paper
were introduced.

2.2. Spread Options in the Agricultural Futures Markets. There are several spread options traded
in the agricultural futures markets. For the sake of definiteness, we decided to concentrate on the so-
calledcrush spreadtraded on the Chicago Board of Trade (CBOT). It is also known as thesoybean
complex spread.The underlying indexes comprise futures contracts of soybean, soybean oil and
soybean meal. The unrefined product is the soybean, and the derivative products are the meal and
the oil. This spread is known as thecrush spreadbecause soybeans are processed by crushing. The
soybean crush spread is defined as the value of meal and oil extracted from a bushel of soybeans,
minus the price of a bushel of soybeans. Notice that the computation of the spread requires three
prices as well as the yield of oil and meal per bushel. The crush spread gives market participants an
indication of the average gross processing margin. It is used by processors to hedge cash positions or
for pure speculation.

The crush spread relates the cash market price of the soybean products (meal and oil) to the cash
market price of soybeans. Since soybeans, soybean meal, and soybean oil are priced differently, con-
version factors are needed to equate them when calculating the spread. On the average, crushing one
bushel (i.e., 60 pounds) of soybeans produces48 pounds of meal and11 pounds of oil. Consequently,
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the value[CS]t at timet of the crush spread in dollars per bushel can be defined as:

(1) [CS]t = 48[SM ]t/2000 + 11[SO]t/100− [S]t

where [S]t is the futures price at timet of a soybean contract in dollars per bushel,[SO]t is the
futures price at timet of a contract of soy oil in dollars per100 pounds, and[SM ]t is the price at
time t of a soy meal contract in dollars per ton. In the terminology and the notation introduced below
for the crack spreads, the spread described above is a 10:11:9 spread,i.e., 10 Soybean futures,11
Soybean Meal futures, and9 Soybean Oil futures. So if we think of the crushing cost as a constant
K, then crushing soybeans is profitable when the spread[CS]t is greater thanK. The crush spread
was analyzed from the point of view of market efficiency in [28].

2.3. Spread Options in the Energy Markets. In the energy markets, beside thetemporal spread
traders who try to take advantage of the differences in the prices of the same commodity at two differ-
ent dates in the future, and thelocational spreadtraders who try to hedge transportation/transmission
risk exposure from futures contracts on the same commodity with physical deliveries at two different
locations, most of the spread traders deal with at least two different physical commodities. In the en-
ergy markets spreads are typically used as a way to quantify the cost of production of refined products
from the complex of raw material used to produce them. The most frequently quoted spread options
are the crack spread options and the spark options which we review in detail in this section. Crack
spreads are often called paper refineries while spark spreads are sometimes called paper plants.

Crack Spreads. A crack spreadis the simultaneous purchase or sale of crude against the sale or
purchase of refined petroleum products. These spread differentials which represent refining margins
are normally quoted in dollars per barrel by converting the product prices into dollars per barrel and
subtracting the crude price. They were introduced in October 1994 by the NYMEX with the intend
to offer a new risk management tool to oil refiners.

For the sake of illustration, we describe the detailed structure of the most popular crack spread con-
tracts. These spreads are computed on the daily futures prices of crude oil, heating oil and unleaded
gasoline.

• The3 : 2 : 1 crack spread involves three contracts of crude oil, two contracts of unleaded
gasoline, and one contract of heating oil. Using self-explanatory notation, the defining for-
mula for such a spread can be written as:

(2) [CS]t =
2
3
[UG]t +

1
3
[HO]t − [CO]t

which means that at any given timet, the value (in US $)[CS]t of the3 : 2 : 1 crack spread
underlying index is given by the right hand side of formula (2) where[UG]t, [HO]t and
[CO]t denote the prices at timet of a futures contract of unleaded gasoline, heating oil and
crude oil respectively. A modicum of care should be taken in the numerical implementation of
formula (2) with real data. Indeed, crude oil prices are usually quoted in “dollars per barrel”
while unleaded gasoline and heating oil prices are quoted in “dollars per gallon”. A simple
conversion needs to be applied to the data using the fact that there are42 gallons per barrel,
but it should not be overlooked.



8 RENÉ CARMONA AND VALDO DURRLEMAN

• The1 : 1 : 0 gasoline crack spreadinvolves one contract of crude oil and one contract of
unleaded gasoline. Its value is given by the formula:

(3) [GCS]t = [UG]t − [CO]t
• The1 : 0 : 1 heating oil crack spreadinvolves one contract of crude oil and one contract of

heating oil. It is defined as:

(4) [HOCS]t = [HO]t − [CO]t
Notice that the first example is computed from three underlying indexes while the remaining two
examples involve only two underlying indexes. Most of our analysis will concentrate on spread
options written on indexes computed from two underlying indexes.

Crack spread options are the subject of a large number of papers attempting to demonstrate the
stationarity of the spread time series by means of a statistical quantification of the co-integration
properties of underlying index time series comprising the spread. Most of these papers are also
concerned with the profitability of spread based trading strategies, subject which we would not dare
to consider here. The interested reader is referred for example to [21], and [22] and the references
therein for further information on these topics.

Spark Spreads. A spark spreadis a proxy for the cost of converting a specific fuel (most of the time,
natural gas) into electricity at a specific facility. It is the primary cross-commodity transaction in the
electricity markets. Mathematically, it can be defined as the difference between the price of electricity
sold by a generator and the price of the fuel used to generate it, provided these prices are expressed
in appropriate units. The most commonly traded standardized contracts include:

• The4 : 3 spark spread involves four electric contracts and three contracts of natural gas. Its
value is given by:

(5) [SS]4,3
t = 4[E]t − 3[NG]t

• The5 : 3 spark spreadwhich involves five electric contracts and three contracts of natural
gas. Its value is given by:

(6) [SS]5,3
t = 5[E]t − 3[NG]t.

But whether or not they are traded in this form, the most interesting spread options are European calls
on an underlying index of the form:

St = FE(t)−HeffFG(t)

whereFE(t) andFG(t) denote the prices of futures contracts on electric power and natural gas re-
spectively, and whereHeff is the heat rate, or the efficiency factor of a power plant. One of the most
intriguing use of spark spread options is in real asset valuation or capacity valuation. This encapsu-
lates the economic value of the generation asset used to produce the electricity. The spark spread can
be expressed in $/MWh (US dollar per Mega Watt hour) or any other applicable unit. It is calculated
by multiplying the price of gas, (for example in $/MMBtu), by theheat rate(in Btu/KWh), dividing
by 1, 000, and then subtracting the electricity price (in $/MWh). The heat rate is often called the
efficiency.Indeed, a natural gas fired unit can be viewed as a series of spark spread options:

• when the heat rate implied by the spot prices of power and gas is above the operating heat
rate of the plant, then the plant owner should buy gas, produce power, and sell it for profit.
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• the plant owner should shut down its operation otherwise,i.e., when the heat rate implied by
the spot prices of power and gas is below the operating heat rate of its plant.

If an investor/producer wonders how much to bid for a power plant, he can easily estimate and predict
the real estate and the hardware values of the plant with standard methods. But the operational value
of the plant is better captured by the sum of the prices of spark spread options, than with the present
value method based on the computation of discounted future cash flows (the so-called DCF method
in the jargon of the business.) Thisreal optionapproach to the plant valuation is one of the strongest
incentive to develop a better understanding of the basis risk of spark spread options.

3. M ARKET DATA

The purpose of this section is to demonstrate why some of the financial derivatives used in the
energy markets need to be treated with a modicum of care, by which we mean that applying blindly
the tools developed for the equity or fixed income markets may not be appropriate. Most of the math-
ematical models used in the equity markets are based on generalizations of the geometric Brownian
motion model first proposed by Samuelson. We shall use these models in several instances, mostly
for the sake of completeness since they are not of great use in the applications we consider. Energy
market models bare more resemblance to the models for the fixed income markets where there is a
division between the models for the dynamics of the short interest rate, and the models for the dynam-
ics of the entire yield curve. This dichotomy will appear below where we divide the energy markets
models into two classes, the first one based on the dynamics the spot market prices, and the second
class based on models for the dynamics of the entire forward curve. But in order to justify the specific
assumptions we use, it is important to get a good understanding of the kind of data analysts, risk
managers, traders,. . . are dealing with.

For most physical commodities, price discovery takes two different forms. The first one is back-
ward looking. It is based on the analysis of a time series of historical prices giving the values observed
in the past of the so-calledspot priceof the commodity. The spot market is a market where goods
are traded for immediate delivery. Figure 1 shows a couple of examples of energy spot prices. The
left panel of the figure displays the daily values of the propane gas spot price while the right panel
contains a plot of the daily values of the Palo Verde firm on peak spot price. Obviously, these series
do not look anything like stock prices or equity index values. The sudden increases in value and the
high levels of volatility set them apart. But except for that, they have more in common with plots of
instantaneous interest rates. Indeed, these series look more stationary than equity price series. This
is usually explained by appealing to themean reversionproperty of the energy prices which tend,
despite the randomness of their evolution, to return to a local or asymptotic mean level. This mean
reversion property is shared with interest rates. But the latter do not have the seasonality structure
which appears in Figure 1. Gas prices are higher during the winters because of heating needs in the
northern hemisphere, and slightly higher in the summer as well. Moreover, energy prices are much
more volatile than equity prices. But as we already noticed, the important singularity which sets these
data apart is the extreme nature of the fluctuations. This is obvious on the plot of the electricity spot
price given in Figure 1.

For the sake of simplicity, we shall only considerdaily time series in this paper, but these high
levels of volatility are also found in hourly data. Except for the special case of the electric power
markets, working with daily data is not a restrictive assumption. Indeed, most energy price quotes are
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FIGURE 1. Time series plots of two energy commodity daily spot prices: propane
(left) and Palo Verde firm on peak electric power (right).

recorded as “daily close”, and using daily time series is quite appropriate. But electricity prices are
very different. They have significant variations at scales much smaller than one day, and as a result
prices are quoted more frequently (hourly, or even every half hour), and distinctions are made between
on-peakandoff-peakperiods, weekdays and weekends,. . . . But one of the main distinctive feature
of the power markets remains its inelasticity: the fact that for all practical purposes electricity cannot
be stored in a flexible manner, hinders rapid responses to sudden changes in demand, and wild price
fluctuations can follow. The weather is one of the culprits. Indeed, changes in the temperature affect
the demand for power (load), creating sudden bursts in price volatility. The analysis of electricity
prices at higher frequencies is a challenging problem which we will not consider in this paper. We
are interested in multi-commodity instruments, and for this reason, we will restrict ourselves to daily
sampling of the prices.

But like in the fixed income markets, another type of data is to be reckoned with. These data
encapsulate the current market expectations for the future evolution of the prices. On any given day
t, we have at our disposal the prices of a wide range of forward and/or future energy contracts. These
contracts guarantee the delivery of the commodity at a given location and at a given date, or over a
given period in the future. For the sake of simplicity, we shall assume that the delivery takes place at
a given date which we denote byT and which we call the date of maturity of the contract. As in the
case of the yield curve, or the discount rate curve, or the instantaneous forward rate curve used in the
fixed income markets, the natural way to model the data is to assume the existence for each dayt, of
a functionT ↪→ F (t, T ) giving the price at timet of a forward/futures contract with maturity date
T . Unfortunately, the domain of definition of the mathematical functionT ↪→ F (t, T ) changes with
t. This is very inconvenient when it comes to statistical analysis of the characteristics of the forward
curves. Even the more mundane issue of plotting becomes an issue because of that fact. A natural fix
to that annoying problem is to parameterize the forward curves by the “time-to-maturity”τ = T − t
instead of the “time-of-maturity”T . This simple suggestion showed far reaching consequences in the
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case of the fixed income models. We discuss below the advantages and the shortcoming of this new
parametrization in the case of the energy markets.

The existence of a continuum of maturity datesT is a convenient mathematical idealization.
In practice, on any given dayt, the maturity dates of the outstanding contracts form a finite set
{T1, T2, · · · , Tn}, typically the first days of then months followingt for which forward/futures con-
tracts are traded. TheTj ’s are often regularly spaced, one contract per month, andn is in the range
12 to 18 for most commodities, even though it can be as large as7× 12 = 84 as in the case of natural
gas (even thoughn was not as large in the past.) Unfortunately, available data varies dramatically
from one commodity to the other, from one location to another, even from one source to the other.
And as one can easily imagine, historical data is often sparse, and sprinkled with erroneous entries
and missing values.

Despite the data integrity problems specific to the energy markets, the main challenge remains
the fact that the dates at which the forward curves are sampled vary from one day to the next. Let
us illustrate this simple statement with an illustration. On dayt = 11/10/1989 theT1 = Dec.89,
T2 = Jan.90, T3 = Feb.90, . . . contracts are open for trading, and quotes for their prices are
available. For the sake of simplicity we shall not worry about thebid-askspread, and we assume
that a sharp price is quoted at which we can sell and/or buy the contract. In other words, on day
t = 11/10/1989, we have observations of the values of the forward curve for the times-to-maturity
τ1 = 21 days,τ2 = 52 days,τ3 = 83 days,· · · . The following trading day ist = 11/13/1989,
and on that day, we have observations of the prices of the same contracts with dates-of-maturity
T1 = Dec.89, T2 = Jan.90, T3 = Feb.90, . . ., and we have now sample values of the forward curve
for the times-to-maturityτ1 = 18 days,τ2 = 49 days,τ3 = 80 days,· · · . Still the following trading
day ist = 11/14/1989, and on that day we have observations of the prices of the same contracts
but the values of the corresponding times-to-maturity are nowτ1 = 17 days,τ2 = 48 days,τ3 = 79
days,· · · . So the valuesτ1, τ2, · · · , τn at which the forward functionτ ↪→ F (t, τ) is sampled
change from day to day. Even though the times of maturityT1, T2, T3, · · · do not seem to vary with
t in the above discussion, this is not so in general. Indeed when the datet approaches the end of
the month of November, the December contract suddenly stops being traded and the nearest traded
contract becomes January, and an extra month is added to the list. This switch typically takes place
three to four days before the end of each month.

As we already mentioned, this state of affairs is especially inconvenient for plotting purposes and
for the statistical analysis of the forward curves. So whenever we manipulate forward curve data, it
should be understood that we pre-processed the data to get samples of these forward curves computed
on a fixed set{τ1, τ2, · · · , τn}which does not change witht. We do that by first switching to the time-
to-maturity parametrization, then bysmoothingthe original data provided by the financial services,
and finally by re-sampling the smoothed curve at the chosen sampling points. We sometimes fear that
these manipulations are not always innocent, but we cannot quantify their influence, so we shall take
their results for granted.

Figure 2 gives plots of the Henry Hub natural gas forward contract prices before and after such a
processing. The left panel gives the raw data. Despite the rather poor quality of the plot, one sees
clearly the structure of the data. Indeed, the domain of definition of the forward functionT ↪→ F (t, T )
is an interval of the form[Tb(t), Te(t)] whereTb(t) is the date of maturity of the contract nearest to
t andTe(t) is the maturity of the last contract quoted on dayt. Hence, this domain of definition
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changes from day to day. In principle, the left hand point of the curve should give the spot price of the
commodity. On any given day, the length of the forward curve depends upon the number of contracts
traded on that day. Notice that in the case of natural gas displayed in Figure 2, the length recently went
up to seven years. Also, the seasonality of the forward prices appears clearly on this plot. High ridges
parallel to the timet-axis correspond to the contracts maturing in winter months when the price of gas
is expected to be higher. The right panel of the figure also displays the natural gas forward surface, but
the parametrization changed to the time-to-maturityτ = T−t. There are nevertheless several obvious
points to make. First, the forward curves are defined on the same time interval, and in particular, they
have the same lengths which we chose to be three years in this particular instance. But the most
noticeable change comes from the different pattern of the ridges corresponding to the periods with
higher prices. Because of the parametrization by the time-to-maturityτ , the parallel ridges of high
prices move toward thet axis whent increases, instead of remaining parallel to this time axis.

FIGURE 2. Surface plots of the historical time evolution of the forward curves of the
Henry Hub natural gas contracts, in the time-of-maturityT parametrization (left) and
in the time-to-maturityx parametrization (right).

Figure 3 shows the results of a similar processing in the case of the Palo Verde forward electric
contracts. The simple linear interpolation procedure which we chose does not smooth much of the
erratic behavior of the data, hence the rough look of these surfaces.

We would not want the reader to believe that we are proponents of a blind implementation of the
parametrization of the forward curves by the “time-to-maturity”τ = T − t instead of the “time-
of-maturity” T . Indeed, because of their physical nature, most energy commodities exhibit strong
seasonality features, and the latter are more obvious in the time-of-maturity parametrization. This
temporal nature of the physical commodities makes the time-to-maturity parametrization less helpful
than in the fixed income markets.



SPREAD OPTIONS 13

FIGURE 3. Surface plots of the historical time evolution of the forward price curves
of the Palo Verde forward electricity contracts when plotted as functions of the time-
of-maturity (left), and when plotted as functions of the time-to-maturity variable. We
had to take a subset of the original period because of holes in the data due to missing
values. In particular, the forward ridge for the long maturities in the recent days is an
artifact of our re-sampling method given these missing values.

One can for instance be electricity delivery for the month of April 2006, another one for the month
of November 2004. This fact although extremely natural is rather annoying for statistical analysis
purposes. Indeed, at different times the market does not look the same. (For example, on April 1st
and April 25th the future contract for the month of May will probably exhibit very different feature
because the time-to-maturity is very different.)

To perform a sensible statistical analysis, we need some stationarity, that is we need to think of
each day being identical to each other. We thus have at a given dayt to interpolate between the
different contract prices to get a time-to-maturity term structure. From now on, we will assume that
we are givenn such pricesF (t, τ) whereτ is the time-to-maturity (1 month,2 months,3 months, ...).

The following illustration is intended to show that despite our plea for considering seriously the
effects of seasonality in the energy forward prices, it is important to keep in mind that not all the
energy commodity prices have a strong seasonal component. The left panel of Figure 4 gives a
surface plot of the crude oil forward prices from 11/10/1989 to 8/16/2002, as parameterized by the
time-to-maturity of the contracts. Clearly, the bumps and the ridges indicative of seasonal effects are
not present in this plot. The right panel of Figure 4 gives line plots of four crude oil forward curves.
They have been chosen at random, and they are typical of what we should expect for crude oil forward
curves: they are all monotone functions of the time-to-maturity. When a forward curve is monotone
decreasing, the future prices of the commodity are expected to be lower than the current (spot) price:
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we say the forward curve is inbackwardation.When a forward curve is monotone increasing, the
prices to come are expected to be higher than the spot price: we say the forward curve is incontango.

FIGURE 4. Surface plot of the crude oil forward prices from 11/10/1989 to
8/16/2002 (left), and four typical individual forward curves giving examples of for-
ward curves in contango and in backwardation (right).

In the rest of the paper, we shall often discuss the consistency of a spot price model with the
observed forward curves. This is done by computing the theoretical values of the forward curve from
the model: indeed since we assume deterministic interest rates, and since we shall not model the
convenience yield as a stochastic factor, the values of the forward contracts on any given day should
be given by the conditional expectation of the future values of the spot prices. See for example [10]
and [36] for details. At an intuitive level, this means that, at least in a least square sense, the values
of the forward curve are nothing but the best predictors/guesses for the future values of the spot. The
energy markets are so volatile that this fact has to be taken with a grain of salt. We chose the example
of crude oil in order to illustrate this fact. We picked (essentially at random),5 regularly spaced
trading days separated by200 trading days, and we superimposed the forward curves observed these
days on the plot of the spot curve. The result is given in Figure 5. This graph demonstrates in a
dramatic fashion how poor a predictor of the spot price the forward curve can be. The situation is not
always as bad as our next illustration shows. Indeed, in stable periods of (relatively) low volatility,
the forward curves can be a reasonable predictor of the future values of the spot prices. We illustrate
this fact by plotting the forward curves of the Henry Hub natural gas contracts on the same five days
we picked for the crude oil forward curves. As we can see in Figure 6, despite their greater lengths,
there is a certain consistency between the forward curves in the tranquil periods. But still, they missed
completely the sharp price increase of the2000 crisis.
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FIGURE 5. Crude Oil spot with a small set of forward curves superimposed to illus-
trate how poor a predictor of the spot prices can the forward curves be.

FIGURE 6. Henry Hub natural gas spot price with the forward curves computed on
the same days as in the above crude oil example.

4. SPREAD OPTIONS PRICING : M ATHEMATICAL SET-UP

In this section we introduce the standard definitions and the technical notation which we will use
throughout the paper. For the sake of simplicity we restrict ourselves to the case of spread between
two underlying asset prices, leaving the discussion of the more general case of the linear combinations
used for the so-called basket options to side remarks. So we consider two indexesS1 = {S1(t)}t≥0

andS2 = {S2(t)}t≥0 evolving in time. We call them indexes instead of prices because, even though
S1(t) andS2(t) will usually be the prices of stocks or commodities at timet, they could as well be
interest rates, exchange rates, or compound indexes computed from the aggregation of other financial
instruments. The spread is naturally defined as the instrumentS = {S(t)}t≥0 whose value at timet
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is given by the difference:

S(t) = S2(t)− S1(t), t ≥ 0.

4.1. The Spread Option. Our goal is to price European options on this spread. A European call
option is defined by a dateT called to date of maturity, a positive numberK called the strike, and it
gives the right to its owner to acquire at timeT one unit of the underlying instrument at the unit price
K. Assuming that this underlying instrument can be re-sold immediately on the market for its price
S(T ) at that time, this means that the owner of the option will secure the amountS(T ) − K when
the value of the underlying instrument at timeT is greater thanK, i.e. whenS(T ) > K, and nothing
otherwise since in that case, she will act rationally and she will not exercise the option. So the owner
of the option is guaranteed to receive the pay-out:

(7) (S(T )−K)+ = (S(T )−K)1S(T )>K

at maturityT . We denote byp the price at time0 of this European call option with date of maturity
T and strikeK. More generally, we shall denote bypt its price at timet < T . The Black-Scholes
formula gives a value forp whenS(T ) is a log-normal random variable for a probability structure
called risk-neutral. The Black-Scholes pricing paradigm was extended using no-arbitrage arguments
to more general classes of random variables, and even to situations where the dynamics of the values
of the two underlying indexesS1 andS2 are given by stochastic processes, possibly with jumps. In
any case, the price of the option is given by the risk-neutral expectation of the discounted pay-out of
the option at maturity. So according to this pricing paradigm, the pricep is given by a risk-neutral
expectation:

(8) p = E{e−rT (S2(T )− S1(T )−K)+}

where the exponential factore−rT takes care of the discounting. In general, the discounting rate
r ≥ 0 is nothing but the short interest rate. But in some cases, it can contain corrections taking into
account the rate of dividend payments, or the convenience yield in the case of physical commodities.
For the sake of the present discussion, we shall assume that the discounting rate is the short interest
rate which is assumed to be deterministic and constant throughout the life of the option (i.e. before
the maturity dateT .)

Pricing by Computing a Double Integral. It is important to remark that, even though we shall most
of the time define the mathematical models by the prescriptions they give for the dynamics of the
indexesS1 andS2, the fact that we are considering options with European exercises implies that we
do not really need the full dynamics to price a spread option. Indeed, the pay-out at maturity depends
only upon the values of the indexes at timeT , i.e. of the valuesS1(T ) andS2(T ) (never mind how
they got there.) So in order to compute the expectation giving the pricep, the only thing we need
is the joint density of the coupleS1(T ), S2(T )) of random variables. So ignoring momentarily the
dynamics of the underlying indexes, we write the price of a call spread option as a double integral.
More precisely:

e−rT E{(S2(T )− S1(T )−K)+} = e−rT

∫ ∫
(s2 − s1 −K)+fT (s1, s2) ds1ds2
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if we denote byfT (s1, s2) the joint density of the random variablesS1(T ) andS2(T ). Computing
the expectation by conditioning first by the knowledge ofS1(T ) we get:

e−rT E{(S2(T )− S1(T )−K)+}
= e−rT E{E{(S2(T )− S1(T )−K)+|S1(T )}}

=
∫

E{(S2(T )− (s1 +K))+|S1(T ) = s1}f1,T (s1)ds1

=
∫ (∫

(s2 − s1 −K)+f2,T |S1(T )=s1
(s2)ds2

)
f1,T (s1)ds1

where we used the notationf1,T (s1) for the density of the first indexS1(T ) at the timeT of maturity,
and the notationf2,T |S1(T )=s1

(s2) for the conditional density of the second indexS2(T ) at maturity,
given that the first index is equal tos1 at that time. The intermediate result shows that the price of
the call spread is the integral overs1 of the prices of European calls on the second index with strikes
s1 +K.

In the log-normal models, the conditional densityf2,T |S1(T )=s1
(s2) is still lognormal, so the value

of the inner-most integral is given by the classical Black-Scholes formula for an appropriate choice of
the strike. This shows that the price of the call spread is an integral of Black-Scholes formulae with
respect to the (log-normal) density of the first index. Pricing the option on the spread by computing
these integrals numerically canalwaysbe done. But even a good approximation of the pricep is
not sufficient in practice. Indeed, and this fact is too often ignored by the newcomers to financial
mathematics, a pricing algorithm has to produce much more than a price if it is to be of any practical
use, and this the main reason why the search for closed form formulae is still such an active research
area, even in these days of fast and inexpensive computers. It is difficult to explain why without
getting into details which would sidetrack our presentation, but we nevertheless justify our claim by
a few remarks, leaving the details to asides which we will sprinkle throughout the rest of the paper as
appropriate.

A Couple of Important Remarks. The above discussion may lead the reader to believe that having a
pricing formula in closed form may not be of such a crucial importance. The following bullet points
should diffuse this misconception.

1. Let us for a moment put ourselves in the shoes of the seller of the option. From the moment of the
sale, she is exposed to the risk of having to pay (??) at the date of maturityT . This payout is random
and cannot be predicted with certainty. The whole basis of the Black-Scholes pricing paradigm is
to set up a portfolio and to devise a trading strategy which, whatever the final outcome at maturity
T , will have the same exact value as the payout at that time. The thrust of the discovery of Black
and Scholes lies in proving that such a replication of the payoff was possible, and once this stunning
statement was proved, the price of the option had to be the cost of initially setting up such a replicating
portfolio: that’s definitely worth a Nobel prize! Replication of the payout of an option is obviously
the best way to get a perfect hedge for the risk associated with the sale of this option. But what is
even more remarkable is the fact that the components of the replicating portfolio are explicitly given
by the derivatives of the price with respect to the initial value of the underlying index. Obviously, the
partial derivatives of the price of the option with respect to the parameters of the model (initial value
of the underlying instrument, interest rate, volatility or instantaneous standard deviation,. . .) give the
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sensitivities of the price with respect to these parameters, and as such, they quantify the sizes of the
price fluctuations produced by small changes in these economic parameters. These partial derivatives
are of great importance to the trader and the risk manager who both rely on their values. For this
reason they are given special namesdelta, gamma, rho, vega,. . . and they are generically called the
Greeks.Having a closed formula for the price of the option usually yields closed formulae for the
Greeks which can then be evaluated rapidly and accurately. This is of great value to the practitioners,
and this is one of the reasons alluded to earlier why people are searching so frantically for pricing
formulae in closed forms.
2. Hedging is not the only reason why a pricing formula in closed form is far superior to a numerical
algorithm. When a pricing formula can be inverted, one can infer values of the parameters (volatility,
correlations,. . .) of the pricing model from the quotes of the prices of the options with different
maturities and different strikes already traded on the market. The values inferred in this way are
called implied. They are of great significance and they are used by the market makers to price new
instruments. This is the reason for the fame of the so-calledimplied volatilitywhich we will encounter
later in the paper.

A Parity Formula. The classical parity argument gives:

(9) e−rT E{(S2(T )− S1(T )−K)+} = e−rT E{(S1(T )− S2(T ) +K)+}+ x2 − x1 −Ke−rT

if we use the notationx1 andx2 for the initial valuesS1(0) andS2(0). Recall thate−rT E{S1(T )} =
x1 ande−rT E{S2(T )} = x2 since we are using risk-neutral expectations. This call-put parity formula
(valid under no other assumption than the absence of arbitrage) allows us to restrict ourselves to the
case of European call options, ignoring altogether the pricing of put options.

4.2. Markovian Models and Partial Differential Equations. In the previous section we saw that
the pricep of the spread option is given by the risk-neutral expectation given in formula (8). In order
to compute this expectation, we need to specify the risk-neutral dynamics of the underlying indexes.
Let us assume that they satisfy a two-dimensional system of Itô stochastic differential equations of
the type:
(10){

dS1(t)
S1(t) = µ1(t,S(t))dt+ σ1(t,S(t))ρ(t,S(t))dW̃1(t) + σ1(t,S(t))

√
1− ρ(t,S(t))dW̃2(t)

dS2(t)
S2(t) = µ2(t,S(t))dt+ σ2(t,S(t))dW̃2(t)

where we use the notationS for the couple(S1, S2), and where{W̃1(t)}t and{W̃2(t)}t are inde-
pendent standard real valued Brownian motions. We also assume that the coefficientsµi’s, σi’s and
ρ are smooth enough for existence and uniqueness of a strong solution of this stochastic differential
system. It is well known that a Lipschitz assumption with linear growth will do, but rather than giving
technical conditions under which these assumptions are satisfied, we go on to explain how one can
compute the expectation giving the price. This can be done by solving a partial differential equation.
This link is known under the name of Feynman-Kac representation. Even though we shall not need
this level of generality in the sequel, we state it in the general case of a time dependent stochastic
short interest rater = r(t,S(t)) given by a deterministic function of(t,S(t)).
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Proposition 1. Letu be aC1,2,2-function in(t, x1, x2) with bounded partial derivatives int, x1 and
in x2 satisfying the terminal condition:

∀x1, x2 ∈ R u(T, x1, x2) = f(x1, x2)

for some nonnegative functionf and the partial differential equation:
(11)(

∂

∂t
+

1
2
σ2

1x
2
1

∂2

∂x2
1

+ ρσ1σ2x1x2
∂2

∂x1∂x2
+

1
2
σ2

2x
2
2

∂2

∂x2
2

+ µ1x1
∂

∂x1
+ µ2x2

∂

∂x2
− r

)
u = 0

on [0, T ]× R× R. Then for all(t, x1, x2) ∈ [0, T ]× R× R one has the representation:

(12) u(t, x1, x2) = E
{
e−

∫ T
t r(s,S(s))dsf(S(T ))|S(0) = (x1, x2)

}
Proof. This result is a classical example of the representation of solutions of parabolic PDE’s as
expectations over diffusion processes. Even though pure semi-group proofs can be provided, the
most general ones rely on the Ito’s calculus and the Feynman-Kac formula. We refer the reader
interested in a detailed proof in the context of financial applications to [30].

In the case of interest to us (recall formula (8) giving the price of the spread option) we shall
assume that the interest rate is constantr(t, (x1, x2)) ≡ r, and we shall use the functionf(x1, x2) =
(x2 − x1 −K)+ for terminal condition.

4.3. Samuelson’s Model and the Black-Scholes Framework.The system (10) is a reasonably gen-
eral set-up for the pricing of the spread options. Indeed, most of the abstract theory (see for example
[30]) can be applied. Unfortunately, this set-up is too general for explicit computations, and espe-
cially the derivation of pricing formulae in closed forms. so we shall often restrict ourselves to more
tractable specific cases. The most natural one is presumably the model obtained by assuming that
the coefficientsµi, σi andρ are constants independent of time and the underlying indexesS1 andS2.
SettingW1(t) = ρW̃1(t) +

√
1− ρ2W̃2(t) andW2(t) = W̃2(t), we have that:

(13)
dSi(t)
Si(t)

= µidt+ σidWi(t), i = 1, 2

where{W1(t)}t and {W2(t)}t are two Wiener processes (Brownian motions) with correlationρ.
The two equations can be solved separately. Indeed, they are coupled only through the statistical
correlation of the two driving Wiener processes. The solutions are given by:

(14) Si(t) = Si(0)e(µi−σ2
i /2)t+σiWi(t), i = 1, 2

Defined in this way each index process{Si(t)}t is a geometric Brownian motion. The unexpected
−(σ2

i /2)t appearing in the deterministic part of the exponent is due to the idiosyncracies of the Ito’s
stochastic calculus. It is called the Ito’s correction. If the initial conditionsSi(0) = xi are assumed
to be deterministic, then the distribution of the valuesSi(t) of the indexes are log-normal, and we
can explicitly compute their densities. This log-normality of the distribution was first advocated by
Samuelson, but it is often known under the names of Black and Scholes because it is in this framework
that these last two authors have derived their famous pricing formula for European call and put options
on a single stock. Dynamics given by the stochastic differential equations of the form (13) are at the
core of the analyses reviewed in this paper.
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4.4. Numerics. This subsection is devoted to the discussion of the most commonly used numerical
methods which are used to price and hedge financial instruments in the absence of explicit formulae
in closed forms. We restrict ourselves to the Markovian models described above, and we review meth-
ods which are prevalent in the industry by illustrating their implementations on the spread valuation
problem. Proposition 1 states that at least in the Markovian case, the price of the spread option is
the solution of a partial differential equation. Consequently, valuing a spread option can be done by
solving a PDE, and the first two of the four subsections below describe possible implementations of
this general idea.

Using PDE Solvers. As explained earlier, the Feynman-Kac representation given in Proposition 1,
suggests the use of a PDE solver to get a numerical value for the price of a spread option. Because of
the special form of the stochastic dynamics of the underlying indexes, the coefficients in the second
order terms of the PDE (11) can vanish and it appears as if the PDE is degenerate. For this reason,
the change of variables(x1, x2) = (log u1, log u2) is often used to reduce (11) to a non-degenerate
parabolic equation. This PDE is three dimensional, one time dimension and two space dimensions.
There is an extensive literature on the stability properties of the various numerical algorithms capable
of solving these PDE’s, and we shall refrain from going into these technicalities. We shall only
concentrate on one very special tree based numerical scheme. This explicit finite difference method
was made popular by Hull in his book [25] in the case of a single underlying index. We present the
details of the generalization necessary for the implementation in the case of cross-commodity spreads.

Trinomial Trees. We refer the reader interested in the use of a classical trinomial tree for the pricing
of an option on a single underlying to Hull’s book [25]. We only give the details of the generalization
of this classical one dimensional approach to the present two dimensional setting. (This part is directly
inspired by [11].) Since we have two underlying processes, we need a tree spanning in two directions.
More precisely, even though we keep the terminology of trinomial tree, each node leads to nine
new nodes at the next time step. Since the computations are local, we can assume without any loss
of generality that all the coefficients of the diffusion equations are constant. So solving the above
stochastic differential equations we get:

Si(t) = Si(0) exp
[
µit−

1
2
σ2

i t+ σiW̃i(t)
]

where the two new Brownian motions̃W1 andW̃2 satisfyE
{
W̃1(t)W̃2(t)

}
= ρt. The basic idea

behind the tree’s construction is to discretize the mean zero Gaussian vector(σ1W̃1(t), σ2W̃2(t)) with
covariance matrixΣt where

Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
.

We first diagonalize this covariance matrix and write it as

Σ =
(

cos θ − sin θ
sin θ cos θ

)(
λ1 0
0 λ2

)(
cos θ − sin θ
sin θ cos θ

)T
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where
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)
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)
.

We can now write our Gaussian vector as follows:(
σ1W1(t)
σ2W2(t)

)
=
(

cos θ
√
λ1B1(t)− sin θ

√
λ2B2(t)

sin θ
√
λ1B1(t) + cos θ

√
λ2B2(t)

)
where(B1, B2) is a two-dimensional standard Brownian motion. The discretization of our diffusion
is then equivalent to the discretization of two independent standard Brownian motions. LetX1 andX2

be two independent and identically distributed random variables taking three values(−h, 0, h) with
probabilities(p, 1 − 2p, p) respectively. The idea is to use(X1, X2) to approximate the increments
(B1(t+dt)−B1(t), B2(t+dt)−B(t)). We takep = 1/6 andh =

√
3dt so thatXi andBi(t+dt)−

Bi(t) have the same first four moments. Thanks to the independence ofX1 andX2 the probabilities
for getting to each one of the nine new nodes follow. We organize them in the matrix: 1/36 1/9 1/36

1/9 4/9 1/9
1/36 1/9 1/36


From this point on, the approximation of the price is done is exactly the same fashion as in the one-
dimensional tree. We simulate the diffusion up to the terminal date and we compute the price of the
option at this time (which is just the payoff of the option in the different states of the world). By
backward induction we compute the price at the root of the tree.

Monte Carlo Computations. Most often, a good way to compute an expectation is to use tradi-
tional Monte-Carlo methods. The idea is to generate a large number of sample paths of the process
S = (S1, S2) over the interval[0, T ], for each of these sample paths to compute the value of the
function of the path whose expectation we evaluate, and then to average these values over the sample
paths. The principle of the method is simple, the computation of the sample average is usually quite
straightforward, the only difficulty is to quantify and control the error. Various methods of random
sampling have been proposed (stratification being one of them) and variance reduction (for example
importance sampling, use of antithetic variables,. . .) are used to improve the reliability of the re-
sults. Notice that, even when the function to integrate is only a function of the terminal valueS(T )
of the processS, one generally has to generate samples from the entire pathS(t) for 0 ≤ t ≤ T ,
just because one does not know the distribution ofS(T ), simulation is often the only way to get at it.
Random simulation requires the choice of a time discretization step∆t and the generation of discrete
time samplesS(t0 + j∆t) for j = 0, 1, · · · , N with t0 = 0 andt0 +n∆t = T , and these steps should
be taken with great care to make sure that the (stochastic) numerical scheme used to generate these
discrete samples produce reasonable approximations.
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The situation is much simpler when we assume that all the coefficients are deterministic. Indeed,
in such a case the joint distribution of the underlying indexes at the terminal time can be computed
explicitly, and there is no need to simulate entire sample paths: one can simulate samples from the
terminal distribution directly. This distribution is well-known. As explained earlier, it is a joint log-
normal distribution. The simulation of samples from the underlying index values at maturity is very
easy. Indeed, if the coefficients are constant, the couple(S1(t), S2(t)) of indexes at maturity can be
written in the form:

S1(T ) = S1(0) exp
[(
µ1 − σ2

1/2
)
T + σ1ρ

√
TU + σ2

√
1− ρ2

√
TV
]

S2(T ) = S2(0) exp
[(
µ2 − σ2

2/2
)
T + σ2

√
TU
]

whereU andV are two independent standard Gaussian random variables. The simulation of samples
of (U, V ) is quite easy.

Note that the same conclusion holds true when the coefficients are still deterministic but are pos-
sibly varying with time. Indeed, one can still derive the terminal joint distribution of two underlying
indexes, the parameters being now functions (typically time averages) of the time dependent coeffi-
cients. We shall present the details of these computations several times in the sequel, so we refrain
from dwelling on them at this stage.

Approximation via Fourier Transform. Fourier transform has become quite a popular tool in op-
tion pricing when the coefficients of the dynamical equations are deterministic and constant. This
is partially due to the contributions of Heston [23], Carr and Madan [6] and to many others ones
who followed in their footsteps. In [12], Dempster and Hong use the Fast-Fourier-Transform to ap-
proximate numerically the two-dimensional integral introduced earlier in our discussion of the spread
valuation by multiple integrals. We refer the reader interested in Fourier methods to this paper and to
the references therein.

Concluding Remarks. We conclude this section about numerical methods by pointing out some of
their (well-known) flaws and in so doing we advocate the cause of analytical approximations. Al-
though Monte-Carlo methods can give good approximations for the prices but unfortunately, they not
say anything about the different sensitivities of the prices with respect to the different parameters, the
Greeks as we defined them earlier. Among these sensitivities, those partial derivatives with respect to
the current values of the underlying index values are of crucial importance since they give the weights
used to build self-financing replicating portfolios to hedge the risk associated with the options. To
compute numerically these partial derivatives, one should in principle re-compute the price of the
option with a slightly different value for the underlying index, and this should be done many time
which makes the use of Monte Carlo methods unreasonable. To be more specific on the reasons of
this claim, the first derivative is typically approximated by computing the limit asε↘ 0 of expression
of the form:

∆1(ε) ≈
1
ε
(p(x1 + ε)− p(x1)).

So we need to compute∆1(ε) for eachε in a sequence going to zero, and in order to compute each
single∆1(ε) we need to redo the Monte Carlo simulation twice: once with Monte Carlo samples
starting fromx1 and a second time with Monte Carlo samples starting fromx1 + ε. This is extremely
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costly from the point of view of computing time. Moreover, even when the convergence of the numer-
ical algorithm is good for the price, it may be poor for the approximations of the partial derivatives,
and becoming poorer and poorer as the order of the derivative increases. This is also the source of
undesirable instabilities. Most of the computational algorithms based on closed form formulae do not
have these problems since it is in general not too difficult to also derive closed form formulae for the
Greeks as well.

It is fair to say that a possible solution to this problem has been recently proposed in a set of two
very elegant papers based on the formula of integration by parts of the Malliavin caluclus. See [17]
and [18]. Even though the prescriptions seems very attractive, and despite the fact that the gain over
the brute force Monte Carlo approach described above seem to be significant, we believe that they are
still extremely involved and less efficient than the methods reviews later in this survey.

It is fair to notice that contrarily to the Monte Carlo method, the trinomial tree method allows to
compute the partial derivatives along with the price. But its main shortcoming remains its slow rate
of convergence: so precision in the approximation is traded for reasonable computing times. The
other major problem with the trinomial tree method is the fact that itblows upexponentially with the
dimension. It is still feasible with two assets as we are considering here, but it is very unlikely to
succeed in any higher dimension.

Finally, none of these methods allow to efficiently compute implied volatilities or implied correla-
tions from a set of market prices. An implied parameter (whether it is a volatility, a correlation,. . .
) is the value of the parameter which reproduce best the prices actually quoted on the market. So in
order to compute these implied parameters, one needs to be able to invert the pricing algorithm and
recover an input, say the value of the volatility parameter for example, from a value of the output,
i.e. the market quote. None of the numerical methods described above can do that, while most of
the numerical methods based on the evaluation of closed form formulae can provide values for the
implied parameters. The latter have a great appeal to the traders and other market makers, and being
able to produce them is a very desirable property of a computational method.

5. THE BACHELIER ’ S M ODEL

In most applications to the equity markets, the underlying indexes are modeled by means of log-
normal distributions as prescribed by the Samuelson’s model. As we already mentioned, this model
is motivated in part by the desire to reproduce the inherent positivity of the indexes. But the positivity
restriction does not apply to the spreads themselves, since the latter can be negative as differences of
positive quantities. Indeed, computing histograms of historical spread values shows that the marginal
distribution of a spread at a given time extends on both tails, and surprisingly enough, that the normal
distribution can give a reasonable fit. This simple remark is the starting point of a series of papers
proposing to use arithmetic Brownian motion (as opposed to the geometric Brownian motion leading
to the log-normal distribution of the indexes) for the dynamics of spreads. In so doing, prices of
options can be derived by computing Gaussian integrals leading to simple closed form formulae.
This approach bears to the approach taken later in this paper, the same relationship that Bachelier’s
original model bears to the Samuelson model for the dynamics of the price of a single stock price.
It was originally advocated by Shimko in the early nineties. See [38] for a detailed exposé of this
method. For the sake of completeness we devote this section to a review of this approach, and we



24 RENÉ CARMONA AND VALDO DURRLEMAN

quantify numerically the departures of the results from the results provided by the log-normal model
studied later in the paper.

In this section, we assume that the risk-neutral dynamics of the spreadS(t) is given by a stochastic
differential equation of the form:

(15) dS(t) = µS(t)dt+ σdW (t)

for some standard Brownian motion{W (t)}t≥0 and some positive constantσ. Here and in the fol-
lowing,µ stands for the short interest rater, or r− δ whereδ denotes the continuous rate of dividend
payments, or the cost of carry, or the convenience yield. In any case,µ is assumed to be a determin-
istic constant. Equation (15) is appropriate when the spread is defined asS(t) = α2S2(t)− α1S1(t)
for some coefficientsα1 andα2, and when the dynamics of the individual component indexesS1(t)
andS2(t) are given by stochastic differential equations of the form:

dS1(t) = µS1(t)dt+ σ1dW1(t)
dS2(t) = µS2(t)dt+ σ2dW2(t)

with positive constantsσ1 andσ2 and two Brownian motionsW1 andW2 with correlationρ. As usual,
the initial values of the indexes will be denoted byS1(0) = x1 andS2(0) = x2. Indeed, choosing:

(16) σ =
√
α2

1σ
2
1 + α2

2σ
2
2 − 2ρα1α2σ1σ2

and:
W (t) =

α2σ2

σ
W2(t)−

α1σ1

σ
W1(t)

gives the dynamics (15) forS. The main interest of the arithmetic Brownian motion model is that it
leads to a closed form formula akin the Black-Scholes formula for the price of the call spread option.

5.1. Pricing Formulae. However, this point of view is not directly adopted by practitioners because
the dynamics forS1 andS2 is totally unrealistic since their marginal distributions are Gaussian and
can therefore be negative with positive probability. Instead, they assume that the dynamics forS1 and
S2 are given by given by geometric Brownian motions and that the dynamics of the spread can be ap-
proximated by an arithmetic Brownian motion. (these two assumptions are of course unreconcilable.)
Let us postulate

dS1(t) = µS1(t)dt+ σ1S1(t)dW1(t)(17)

dS2(t) = µS2(t)dt+ σ2S2(t)dW2(t).(18)

Proposition 2. If the value of the spread at maturity is assumed to have the Gaussian distribution,
the pricep of the call spread option with maturityT and strikeK is given by:

(19) p =
(
m(T )−Ke−rT

)
Φ
(
m(T )−Ke−rT

s(T )

)
+ s(T )ϕ

(
m(T )−Ke−rT

s(T )

)
where we used the notation:

m(T ) = (x2 − x1)e(µ−r)T

s2(T ) = e2(µ−r)T
(
x2

1

(
eσ

2
1T − 1

)
− 2x1x2

(
eρσ1σ2T − 1

)
+ x2

2

(
eσ

2
2T − 1

))
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Notice that here and throughout the paper, we use the notationϕ(x) andΦ(x) for the density and
the cumulative distribution function of the standard normalN(0, 1) distribution,i.e.,

ϕ(x) =
1√
2π
e−x2/2 and Φ(x) =

1√
2π

∫ x

−∞
e−u2/2du.

Proof. The dynamics (17-18) can be explicitly solved.

Si(T ) = Si(0) exp
[
µT − 1

2
σ2

i T + σiWi(T )
]

If we approximate the distribution ofS(T ) = S2(T )− S1(T ) by the Gaussian distribution, the least
we can ask is that they match their first two moments. Therefore:

S(T ) ∼ Gsn(E{S2(T )− S1(T )}, var{S2(T )− S1(T )})
and classical computations giveE{S2(T ) − S1(T )} = (x2 − x1)eµT and var{S2(T ) − S1(T )} =
s2(T )e2rT . Consequently, the pricep at timeT of the option is given by:

p = e−rT E{(S(T )−K)+}
= E{(m(T )−Ke−rT + s(T )ξ)+}

for someN(0, 1) random variableξ. Consequently:

p =
1√
2π

∫ ∞

m/s
(m+ su)e−u2/2du

from which we easily get the desired result.

Equation (15) can be solved explicitly, and the solution is given by:

S(t) = eµtS(0) + σ

∫ t

0
eµ(t−u)dWu

from which we see thatS(t) is a Gaussian (normal) random variable with meaneµtS(0) and variance:

σ2

∫ t

0
e2µudu = σ2 e

2µt − 1
2µ

.

We see that the practitioners’ approximation is still compatible with dynamics like in (15) in case we
allow for a time dependent volatilityσt. In that case

(20) dS(t) = µS(t)dt+ σtdW (t)

and

(21) S(t) = eµtS(0) +
∫ t

0
σue

µ(t−u)dWu

and the variance is ∫ t

0
σ2

ue
2µ(t−u)du.

In order for this last quantity to be equal to the quantitys2(t) given in Proposition 2, we must take

σt =

√
e2µt

d

dt
(e−2µts2(t)).
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5.2. Numerical Performance of the Arithmetic Brownian Motion Model for Spreads. Despite
the suspicious naïveté of the model, and the extreme simplicity of the derivations, the pricing formulae
obtained in this section can be surprisingly accurate for specific ranges of the parameters, even when
the dynamics of the underlying indexes are not given byarithmetic Brownian motions. We illustrate
this prettyanti-climatic fact by comparing the results obtained by this approach to thetrue values
when the underlying indexes evolve like geometric Brownian motions.

The Parameters of the Experiment. For the purpose of this numerical experiment, we consider the
case of a spark spread option with efficiency parameterHeff = 7.5, andx1 = 2.7 andx2 = 28 for
the current values of the gas and electricity contracts. We assume that their (annualized) volatilities
areσ1 = 30% andσ2 = 50% respectively, andµ = 0 since we are dealing with futures whose
dividend rate is the short rate of interest. We make several runs to compare the effects of the remaining
parameters. For fixed time-to-maturityT , we compare the exact price when the dynamics of the
underlying indexes are given by geometric Brownian motions, and the approximation given by the
Bachelier’s model. We compute these two prices on a21 × 41 grid of values of the couple(K, ρ).
The strikeK varies fromK = −5 toK = +5 by increments of.5, while the correlation coefficient
ρ varies fromρ = −1 to ρ = +1 by increments of.05.

The first comparison uses an option maturing in60 days,i.e., τ = T − t = 60/252 yr. The results
are given graphically in the left panel of Figure 7. The next comparison is done for options maturing
in τ = T − t = 1.5 yr. The results are given graphically in the right panel of this same figure.

The final comparison still uses options maturing inτ = T − t = 1.5 yr, but we increase the
volatility of the electricity price toσ2 = 80%. The results are shown in Figure 8.

Experimental Results. One can see from the left panel of Figure 7 that the agreement is remarkably
good when the time-to-maturity is small, independently of the correlation of the underlying indexes
as long as the strike is very negative. From all the experiments we made, it seems that the normal
approximation underestimate the value of the option, and that the error increases with the strike, and
decreases with the correlation. Comparing the two surface plots of Figure 7, one sees that increasing
the time-to-maturity increased dramatically the error when the option is out of the money for large
strikes. Notice the difference in scales on the vertical axes of the two plots. Both plots of Figure 8
seem to confirm this fact, with a significant deterioration of the performance of the normal approxi-
mation for more volatile log-normal indexes. We shall come back later to this model and compare it
with other models in terms of hedging rather than in terms of pricing.

5.3. Consistency with the Forward Curve. This section is concerned with a practice intended to
correct We present these ideas in the case of the model (20) and its solution (21) but we shall use them
over and over. They have been made popular in the fixed income markets where the most tractable
short interest models fail to be compatible with the observed yield curves. We adapt the present
framework.

We now suppose that, on the dayt when we value the spread option, we have information on other
instruments derived from the underlying assetsS1 andS2. Let us assume for example that we have
a finite set of future datesT1, T2, · · · , Tn, and that we have the prices at timet, sayf1, f2, · · · , fn,
of instruments maturing at these dates. In such a situation, it is very likely that if we use the model
at hand to price these instruments, then we would find prices different fromf1, f2, · · · , fn. This fact
alone is enough for us to loose confidence in the model, and we may not want to price the spread
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FIGURE 7. Surface plots of the ratio of the exact price divided by the Bachelier’s
approximation. In both cases, the parameters of the log-normal model werex1 = 2.7,
x2 = 28, Heff = 7.5, σ1 = 30%, σ2 = 50%, and the time-to-maturityτ = T − t
was chosen to beτ = 60/252 year for the computations leading to the surface on the
left andτ = 1.5 for the surface on the right. Ratios are given in basis points (1bp =
10−4.)

using this model. In order to reconciliate our model with these observed price data, one usually add
parameters to the model, and use these extra degrees of freedom to calibrate to the data: in other
words, one chooses the extra parameters in order to replicate the prices quoted on the market.

As we already pointed out, this practice is used in the fixed income markets where the pricesfi

are the prices of bonds, swaps, swaptions,. . . and other liquid options whose prices are available
through various financial services and brokerage houses. These prices are used to infer a curveT ↪→
f(T ) giving the term structure of interest rates, whether it is given by all the future values of the
instantaneous yield, or of the instantaneous forward rates, or even by the mere future discount curve.
This initial term structure curve is then use to calibrate the model.

Because of the crucial importance of the spread options in the commodity markets, we illustrate
this calibration philosophy in the case of these markets. On dayt, we usually have access to the
pricesf1(t, T1), f1(t, T2), · · · , f1(t, Tn) of forward contracts on the first commodity, and the prices
f1(t, T1), f1(t, T2), · · · , f1(t, Tn) of forward contracts on the second commodity. Notice that it is
quite possible that the maturity datesT1, T2, · · · , Tn may not be the same for both commodities.
This is typically the case for the spark spread on power and gas. Indeed, as we already pointed out,
the structure of the maturity dates of these contract differ wildly. In this case, massaging the data
appropriately may easily get us where we want to be: One can indeed interpolate or smooth the
values of the available forward contract prices to obtain a continuous curve which is then easy to
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FIGURE 8. Surface plots of the ratio of the exact price divided by the Bachelier’s
approximation (left) and of the difference of the exact price minus the Bachelier’s
approximation (right). The parameters of the log-normal model werex1 = 2.7,
x2 = 28,Heff = 7.5, σ1 = 30%, σ2 = 80%, r = 8%, andT = 1.5.

sample at the desired pointsT1, T2, · · · , Tn in time. From this point on, it is easy to see that, one
can get a set of prices for the differences (or the appropriate linear combinations in the case of more
general commodity spreads.) See Figure 9 for an example of a spark spread forward curve. In this
case, the first thing we need to do is to check that the pricing model used above is consistent with the
forward curve at hand. In order to understand the consistency issue, we need first to identify the kind
of forward curves implied by the assumptions of the model.

We now come back to our mathematical model, and we try to find out what kind of forward
curves are supported by the model. Notice that, because of the independence of the increments of
the Brownian motion, the stochastic integral

∫ T
t σse

µ(T−s)dWs is independent of the values of the
Brownian motion before timet, and hence of the values ofS before timet. Consequently, recall
formula (21) and the fact that we have taken the interest rate to be constant, the priceF (t, T ) of the
forward contract with date-of-maturityT is given by:

F (t, T ) = Et{S(T )} = Et

{
eµ(T−t)S(t) +

∫ T

t
σse

µ(T−s)dWs

}
= eµ(T−t)S(t)

where we used the notationEt{ · } for the risk-neutral conditional expectation given the past up to
timet. This shows that the forward curve ought to be an exponential starting from the current value of
the spread. This is highly unrealistic as one can see from Figure 9. The fact that we did not consider
stochastic interest rates does not change anything to this conclusion.
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FIGURE 9. Forward curve for the spark spread on February 13, 2002. We used the
California Oregon Border forward price curve for the electricity and the Henry Hub
natural gas forward curve on the same day, and we used an efficiency factor of2.5
for the sake of definiteness.

Since the class of forward curves implied by the model (20) is too small, we attempt to extend
the model in order to allow for forward curves which can be observed in real life. So, for the rest of
this subsection, we assume that we are given a forward curveT ↪→ F0(T ). One can think ofF0 as
the result of the smoothing of a set of observed sample forward values of the spread as they appear
in Figure 9 for example. We look for a stochastic differential equation similar to (15) which would
imply a forward curveT ↪→ F (0, T ) = E0{S(T )} equal toF0. We shall assume that the equation
is of the same form as (15), we merely assume that the rate of growthµ is now time dependent,i.e.,
µ = µt while still remaining deterministic. In this case, the solution formula (21) becomes:

(22) S(t) = e
∫ t
0 µsdsS(0) +

∫ t

0
σse

∫ t
s µududWs

The same argument as above gives that (recall that the interest rates are deterministic):

F (0, T ) = E{S(T )} = S(0)e
∫ T
0 µudu

which shows that, if we want the model to be consistent with the forward curve observed today at
time t = 0 we should choose:

µT =
d

dT
logF0(T )

In other words, by choosing the time dependent drift coefficient as the logarithmic derivative of the
observed forward curve, the model becomes consistent in the sense that the current forward curve
computed out of this model is exactly the current market curve.

This implies new expressions for the mean and variance ofS2(T )− S1(T ):

m(T ) = (x2 − x1)e
∫ T
0 (µu−r)du

s2(T ) = e2
∫ T
0 (µu−r)du

(
x2

1

(
eσ

2
1T − 1

)
− 2x1x2

(
eρσ1σ2T − 1

)
+ x2

2

(
eσ

2
2T − 1

))
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To be also consistent with our pricing formula (19) we therefore need take

σt =

√
e2

∫ t
0 µudu d

dt

(
e−2

∫ t
0 µudus2(t)

)
as we have already derived.

The pricep of the spread option will still be given by formula (19) as long as we use the above
expressions for the constantsm(T ) ands(T ).

6. THE CASE K = 0, OR THE OPTION TO EXCHANGE

The textbook treatment of spread options is usually restricted to the special caseK = 0 because
when the distributions of the underlying indexesS1 andS2 are log-normal, this is the only case for
which one has a solution in a closed formà la Black-Scholes for the price of the spread option with
zero strike. This formula was first derived by Margrabe in [33] as early as in1978, and it bears his
name. We present this derivation in full for the sake of completeness, and because of its importance,
we elaborate on some of its consequences.

6.1. Exchange of one Asset for Another.The caseK = 0 corresponds to anexchangesince the
pay-off (S2(T ) − S1(T ))+ provides the holder of the option with the differenceS2(T ) − S1(T ) at
timeT wheneverS2(T ) > S1(T ).

In order to illustrate this fact, let us assume that our business requires the purchase of one of the
two products at timeT , that from a business point of view it does not make any difference which one,
but that we have to decide at timet = 0 which one we will buy at timet = T . So let us choose the
product whose price is given by the process{S2(t)}t and let us purchase the spread option at time
t = 0. If the product we chose ends up being cheaper at timeT , we buy it at that time and we do not
exercise the option, wasting the premium (i.e. the price we had to pay for the spread option.) On the
other hand, if the product we chose ends up being more expensive at timeT , we buy it but we get the
price difference by exercising the option. So the spread option guarantees that pricewise, we will do
as well as if we had chosen the cheapest one of the two at timeT . So having to cover the premium at
time t = 0, may just be worth it.

6.2. Margrabe Formula. In this subsection we assume that the risk neutral dynamics of the two
underlying indexes are given by geometric Brownian motions, i.e. by stochastic differential equations
of the following form:

(23)
dSi(t)
Si(t)

= rdt+ σidWi(t) for i = 1, 2.

where the discount rater and the volatilitiesσi’s are constant. We assume that the two indexes are cor-
related through the driving Brownian motions. To be more specific we assume thatE{dW1(t)dW2(t)} =
ρdt. In other words,ρ is the parameter controlling the correlation between the two indexes.

Proposition 3. The pricep of a spread option with strikeK = 0 and maturityT , is given by:

(24) p = x2Φ(d1)− x1Φ(d0)
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where:

(25) d1 =
ln(x2/x1)
σ
√
T

+
1
2
σ
√
T d0 =

ln(x2/x1)
σ
√
T

− 1
2
σ
√
T

and:

(26) x1 = S1(0), x2 = S2(0), σ2 = σ2
1 + σ2

2 − 2ρσ1σ2

Proof. In order to prove formula (24), we define two new independent Brownian motions{Ŵ1(t)}t

and{Ŵ2(t)}t by

dW2(t) = ρdŴ1(t) + ρ′dŴ2(t)

dW1(t) = dŴ1(t)

whereρ′2 + ρ2 = 1. dW1(t) anddW2(t) are well-defined as soon as|ρ| < 1. The risk-neutral
valuation rule gives us the price of a zero-exercise price spread option as follows

p = e−rT EQ{max(S2(T )− S1(T ), 0)}(27)

= e−rT EQ

{
max

(
S2(T )
S1(T )

− 1, 0
)
S1(T )

}
(28)

The price ofS2 expressed in the nuḿeraireS1 (i.e. in units ofS1) remains a geometric Brownian
motion since:

d(S2(t)/S1(t))
S2(t)/S1(t)

=
dS2(t)
S2(t)

− dS1(t)
S1(t)

− cov

(
dS2(t)
S2(t)

− dS1(t)
S1(t)

;
dS1(t)
S1(t)

)
= (ρσ2 − σ1)dŴ1(t) + ρ′σ2dŴ2(t) + σ1(σ1 − ρσ2)dt

Using Girsanov’s theorem, we define a new probability measureP which Radon-Nikodym derivative
with respect toQ given on theσ-algebraFT by:

(29)
dP
dQ

∣∣∣∣
FT

= exp
(
−1

2
σ2

1T + σ1Ŵ1(T )
)

UnderP, Ŵ1(t)− σ1t andŴ2(t) are Brownian motions. So:

p = e−rTS1(0)EP

{
max

(
S2(T )
S1(T )

− 1, 0
)

exp
(

1
2
σ2

1T − σ1Ŵ1(T ) +
(
r − 1

2
σ2

1

)
T + σ1Ŵ1(T )

)}
= S1(0)EP

{
max

(
S2(T )
S1(T )

− 1, 0
)}

whereS2/S1 is geometric Brownian motion underP with volatility

(30) σ2 = σ2
1 + σ2

2 − 2ρσ1σ2

Using this fact, the last expression can be viewed as the price of a vanilla call option with no interest
rate, strike 1 and volatilityσ2. The value is thus given by the classical Black-Scholes formula.

Remarks
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1. The above result easily extends to allow for dividend payments at a constant rate. Suppose that
instead of (23), we have

(31)
dSi(t)
Si(t)

= (r − qi)dt+ σidWi(t) for i = 1, 2.

The method remains the same as long as we useS1(t)eq1t andS2(t)eq2t in lieu ofS1(t) andS2(t). In
that case, the price of a zero strike spread option is given by

p = x2e
−q2T Φ(d1)− S1(0)e−q1T Φ(d0)(32)

d1 =
ln(x2/x1)− (q2 − q1)T

σ
√
T

+
1
2
σ
√
T(33)

d0 =
ln(x2/x1)− (q2 − q1)T

σ
√
T

− 1
2
σ
√
T(34)

2. As [25] points out, it is interesting to note that these formulae are independent of the risk-free
rater. This is because after risk adjustment (some would sayin a risk-neutral world), both underlying
indexes increase at the same discount rate, offsetting each other in the computation of the difference
appearing in the definition of the spread.

3. The above closed form formulae are very nice, but unfortunately, the case whereK 6= 0 cannot
be treated with the same success. Reviewing the approach outlined in Section 4 where we discussed
the use of multiple integrals, we can first condition byW1(T ) in (27). This gives:

(35) p = e−rT EQ
{
EQ{(S2(T )− S1(T )−K)+|W1(T )}

}
The inner expectation can again be evaluated using the Black-Scholes formula with strikeS1(T )+K
and a slightly modified spot. But the outer expectation (the integration of the Black-Scholes formula)
cannot be done explicitly.

7. PRICING OPTIONS ON THE SPREAD OF GEOMETRIC BROWNIAN M OTIONS

We continue our analysis of the valuation of spread options with non-zero strike prices. The results
of the previous section apply when the dynamics of the underlying indexes (or the prices of the
forward contracts on these indexes) are given by arithmetic Brownian motions. Now we consider the
case of the Samuelson’s model according to which these dynamics are given by geometric Brownian
motions. Since we are only considering options with European exercises in this paper, we need only
to consider the distribution of the underlying indexes at a fixed time, and according to this model,
the distribution of the spread is the distribution of the difference of two log-normal distributions.
Unfortunately, except in the case of the exchange option (i.e., the spread option with strikeK = 0)
considered in Section 6, the price of the spread option cannot be given by a formula in closed form,
and as we already explained, this was the motivation for the introduction of the arithmetic Brownian
motion model. We now tackle the problem of the geometric Brownian motion.

Throughout this section we assume that, besides a riskless bank account with constant interest rate
r, our arbitrage-free market consists of two assets whose risk-neutral price dynamics are given by the
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following stochastic differential equations:

dS1(t) = S1(t)[(r − q1)dt+ σ1dW1(t)]
dS2(t) = S2(t)[(r − q2)dt+ σ2dW2(t)]

whereq1 andq2 are the instantaneous dividend yields, the volatilitiesσ1 andσ2 are positive constants
andW1 andW2 are two Brownian motions with correlationρ. The initial conditions will be denoted
by S1(0) = x1 andS2(0) = x2. The discussion of this section focuses on the pricing of spread
options on twostocks.The case of spread options on two futures contracts follows immediately by
takingq1 = q2 = r.

The pricep of formula (8) can be rewritten in the form:

p = e−rT E
{(

x2e
(r−q2−σ2

2/2)T+σ2W2(T ) − x1e
(r−q1−σ2

1/2)T+σ1W1(T ) −K
)+
}

which shows that the pricep is given by the integral of a function of two variables with respect to a
bivariate Gaussian distribution, namely the joint distribution ofW1(T ) andW2(T ). This expectation
is of the form:

(36) Π = Π(α, β, γ, δ, κ, ρ) = E
{(

αeβX1−β2/2 − γeδX2−δ2/2 − κ
)+
}

whereα, β, γ, δ andκ are real constants andX1 andX2 are jointly GaussianN(0, 1) random
variables with correlationρ. These expectations were studied in [5]. We can therefore apply the
results of [5] to approximate the price of a spread option provided we set

α = x2e
−q2T β = σ2

√
T γ = x1e

−q1T δ = σ1

√
T and κ = Ke−rT .

7.1. A Pricing Formula. The analysis of [5] is based on simple properties of the bivariate normal
distribution and elementary convexity inequalities. Combining the two, the authors derived a family
of upper and lower bounds for the pricep. Among other things, they show that the supremump̂ of
their lower bounds provides a very precise approximation to the exact pricep. Before we can state
the main result of [5], we introduce the notationθ∗ for the solution of the equation:

1
δ cos θ

ln
(
− βκ sin(θ + φ)
γ[β sin(θ + φ)− δ sin θ]

)
− δ cos θ

2
(37)

=
1

β cos(θ + φ)
ln
(
− δκ sin θ
α[β sin(θ + φ)− δ sin θ]

)
− β cos(θ + φ)

2

where the angleφ is defined by settingρ = cosφ. The following proposition gives the closed form
formula derived in [5] for the approximate pricêp.

Proposition 4. Let us set:

d∗ =
1

σ cos(θ∗ − ψ)
√
T

ln
(
x2e

−q2Tσ2 sin(θ∗ + φ)
x1e−q1Tσ1 sin θ∗

)
− 1

2
(σ2 cos(θ∗ + φ) + σ1 cos θ∗)

√
T

where the anglesφ andψ are chosen so that:

cosφ = ρ and cosψ =
σ1 − ρσ2

σ
.
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Then

(38) p̂ = x2e
−q2T Φ

(
d∗ + σ2 cos(θ∗ + φ)

√
T
)
−x1e

−q1T Φ
(
d∗ + σ1 sin θ∗

√
T
)
−Ke−rT Φ(d∗)

Note that this formula is as close to the Black-Scholes’ formula as we could hope for. Moreover,
as documented in [5] it provided with extremely precise an approximation of the exact price of the
spread option. One of the possible reasons for its accuracy is the fact that it gives exactly all known
particular cases. Indeed, it has the following properties.

Proposition 5. The approximation̂p is equal to the true pricep whenK = 0, or x1 = 0, or x2 = 0,
or ρ = −1. In particular, p̂ is given by Margrabe’s formula whenK = 0, and by the classical
Black-Scholes’ formula whenx1x2 = 0.

Proof. We refer to [5] for a complete proof. For the sake of completeness, we show how we recover
Margrabe’s formula in the caseK = 0. First we notice thatθ∗ is given by:

θ∗ = π + ψ = π + arccos
(
σ1 − ρσ2

σ

)
.

with:

σ =
√
σ2

1 − 2ρσ1σ2 + σ2
2

which implies that

σ2 sin(θ∗ + φ) = σ1 sin θ∗

and

d∗ =
1

σ
√
T

ln
(
x2e

−q2T

x1e−q1T

)
− 1

2
(σ2 cos(θ∗ + φ) + σ1 cos θ∗)

√
T .

Consequently:

σ2 cos(θ∗ + φ)− σ1 cos θ∗ = σ

and:

d∗ + σ2 cos(θ∗ + φ)
√
T =

1
σ
√
T

ln
(
x2e

−q2T

x1e−q1T

)
+
σ
√
T

2

d∗ + σ1 cos θ∗
√
T =

1
σ
√
T

ln
(
x2e

−q2T

x1e−q1T

)
− σ

√
T

2
.

hold true. Finally, we have:

p̂ = x2e
−q2T Φ

(
1

σ
√
T

ln
(
x2e

−q2T

x1e−q1T

)
+
σ
√
T

2

)
− x1e

−q1T Φ

(
1

σ
√
T

ln
(
x2e

−q2T

x1e−q1T

)
− σ

√
T

2

)
which is exactly Margrabe’s formula.
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7.2. Hedging and the Computation of the Greeks.In Subsection 4.4 we discussed some of the
shortcomings of the existing numerical approximations to the price of a spread option. There we
emphasized the importance of hedging, and we explained that most of the pricing algorithms did not
address this issue, failing to provide efficient methods to evaluate the so-called Greeks. Following
[5], we show that hedging strategies can be computed and implemented in a very efficient way using
formula (38) givingp̂.

We first consider the replication issue. The derivation of formula (38) cannot provide an exact
replication of the pay-off of the spread option. Because it is based on lower bounds, it gives a sub-
hedge for the option.

Proposition 6. [5]The portfolio comprising at each timet ≤ T

∆1 = −e−q1T Φ
(
d∗ + σ1 cos θ∗

√
T
)

and

∆2 = e−q2T Φ
(
d∗ + σ2 cos(θ∗ + φ)

√
T
)

units of the underlying assets is a sub-hedge for the option in the sense that its value at the maturity
of the option is almost surely a lower bound for the pay-off.

But as we mentioned earlier, beyond the first partial derivatives with respect to the initial values
of the underlying assets which give the portfolio of the previous proposition, all the sensitivities of
the price with respect to the various parameters are of crucial importance. The closed form formula
derived forp̂ can be used to compute explicitly the other partial derivatives of the price. These are the
so-called Greeks of the financial literature. We give some of them in the following proposition.

Proposition 7. [5] Letϑ1 andϑ2 denote the sensitivities of the price functional (38) with respect to
the volatilities of each asset,χ be the sensitivity with respect to their correlation parameterρ, κ be
the sensitivity with respect to the strike priceK andΘ be that with respect to the maturity timeT .

ϑ1 = x1e
−q1Tϕ

(
d∗ + σ1 cos θ∗

√
T
)

cos θ∗
√
T

ϑ2 = −x2e
−q2Tϕ

(
d∗ + σ2 cos(θ∗ + φ)

√
T
)

cos(θ∗ + φ)
√
T

χ = −x1e
−q1Tϕ

(
d∗ + σ1 cos θ∗

√
T
)
σ1

sin θ∗

sinφ

√
T

κ = −Φ (d∗) e−rT

Θ =
σ1ϑ1 + σ2ϑ2

2T
− q1x1∆1 − q2x2∆2 − rKκ

These formulae are of great practical value. The price of an option is determining factor for a buyer
and a seller to get into a contract. But by indicating in which direction the price should change when
some of the parameters change, the partial derivatives are monitored by the investors, the traders and
the risk managers throughout the life of the option, i.e. up until maturity. The second order partial
derivatives can also be approximated in the same way. We refrain from reproducing the results here
and we refer the interested reader to [5].
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7.3. Comparison of the Three Approximations. We conclude this section with a short comparative
analysis of the three approximation methods which we recommend for the actual pricing and hedging
of spread options.
• Let us first compare the results of the Bachelier’s model with the results obtained with the approxi-
mationp̂ given by formula (8). Numerical experiments show that Bachelier’s price isalwayssmaller
thanp̂, and this strongly supports the use ofp̂. Given the simplicity of the formulae provided by the
Bachelier’s approximation, the overhead caused by the used of formula (8) needs to be justified. This
is quite easy since the latter only requires the numerical computation of the zero of a given function.
This is done very efficiently by a Newton-Raphson method. The computation time is very small.
• Let us now compare the approximation given byp̂ with the results obtained using Kirk’s approx-
imation. As we have already pointed out, the case in favor of the use ofp̂ is mostly based on the
easy computations of the Greeks which in turn give sensible hedging portfolios. Since Kirk’s formula
also leads to twodelta hedges,one can wonder how the performances of the two hedging strategies
compare along a given scenario.

To illustrate this point we reproduce a simulation study done in [5]. For a given scenario repre-
senting a possible sample realization of the time evolution of the underlying assetsS1(t) andS2(t),
we compare the payoff of the spread option at maturity with the terminal value of the portfolio ob-
tained byn hedging operations throughout the life of the option. So for each scenario, we obtain
three tracking errors computed at maturity by trying to replicate the payoff of the option by the value
of portfolios obtained by re-balancing the portfolion times using thedelta hedgeprescriptions given
by the Bachelier’s method, Kirk’s formula and Proposition 6. To avoid an artificial dependence with
respect to a particular scenario, we repeat this operation for a large number of scenarios and we ac-
tually compare the standard deviations of the tracking errors. The plots of Figure 10 where obtained
by varyingn from 1 to 1000 and with two different sets of parameters, but the results are pretty
generic. Indeed, we found that in most cases, the hedges provided by Proposition 6 and Kirk’s model
are equally very good, with in some cases a significant advantage for the former which seems to per-
form much better in many cases. In any cases, these two models clearly out-perform the Bachelier’s
model. The reasons for this poor hedging performance of the Bachelier’s model are twofold. Firstly,
the Bachelier’s model is based on a distribution assumption which stands the test of the pricing for-
mula, but which cannot survive differentiation. Secondly, it is intrinsically a one-factor model trying
to directly model the distribution of the differenceS2(T )− S1(T ), and as such, it cannot capture the
subtle structure of the true nature of the two-factor model log-normal model we are dealing with.

7.4. Extension to Jump-Diffusion Models. The inclusion of a jump term in the stochastic differ-
ential equations giving the dynamics of the underlying assets was proposed by Merton [35] and Cox
and Ross [9] almost thirty years ago. Nevertheless these jump diffusion models remain at the level
of a scientific curiosity, mostly because of the difficulties associated with their statistical calibration.
A renewal of interest in these models was prompted by the consequences of several severe market
crashes and the extremely volatile behavior of the prices of new instruments such as electric power
for example.

The approximation formula for the price of a spread option which we presented in this section can
easily be adjusted to apply to underlying asset price dynamics with jumps. At the risk of been swept
by the tidal wave of jump-diffusion processes introduced in the last ten years, we venture outside
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FIGURE 10. Behavior of the tracking error as the number of re-hedging times in-
creases. The model data arex1 = 100, x2 = 110, σ1 = 10%, σ2 = 15% andT = 1.
ρ = 0.9,K = 30 (left) andρ = 0.6,K = 20 (right).

the class of continuous diffusion processes to prove our claim. The class of jump processes we are
considering is often referred to as the Merton’s jump model in the financial literature. So, we allow
for jumps in the risk-neutral dynamics of the underlying assetsS1 andS2 by assuming that they are
given by stochastic equations of the form:

(39)
dSi(t)
Si(t−)

= (r − qi − λiµi)dt+ σidWi(t) + (eJi(t) − 1)dNi(t)

whereN1 andN2 are two independent Poisson processes of intensityλ1 andλ2. They are also
assumed to be independent ofW2 andW1. Finally, (J1(t))t≥0 and (J1(t))t≥0 are assumed to be
independent sequences of independent Gaussian random variablesN(mi, s

2
i ). In the same way the

stochastic differential equation 13) giving the Samuelson’s dynamics could be solved to give the
explicit expressions (14) for the underlying assets, equation (39) can also be solved by a simple use
of the extension of It̂o’s formula for processes with jumps. We get the integrated price dynamics

Si(T ) = xi exp

(r − qi − σ2
i /2− λiµi)T + σiWi(T ) +

Ni(T )∑
k=1

Ji(k)


The expectation giving the pricep of a spread option can be computed by first conditioning with
respect to the Poisson processes, and in so doing, we reduce the problem to pricing spread options
for underlying assets with log-normal distributions. Indeed, givenN1(T ) andN2(T ), the random
variablesS1(T ) andS2(T ) still have a log-normal distribution and the lower bound can be used. This
leads to the following result.

Proposition 8. [5] If we setµi = emi+s2
i /2 − 1 for i = 1, 2 and if we denote bŷp(x1, x2, σ1, σ2, ρ)

the price approximation given by (8), then the price of the spread option in the Merton’s model can
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be approximated by the quantity:

(40) p̂jumps =
∞∑
i=0

∞∑
j=0

e−(λ1+λ2)T (λ1T )i(λ2T )j

i!j!
p̂ (x̃1, x̃2, σ̃1, σ̃2, ρ̃)

with

x̃1 = x1e
−λ1µ1T+i(m1+s2

1/2)

x̃2 = x2e
−λ2µ2T+j(m2+s2

2/2)

σ̃1 =
√
σ2

1 + is21/T

σ̃2 =
√
σ2

2 + js22/T

ρ̃ =
ρσ1σ2√

σ2
1 + is21/T

√
σ2

2 + js22/T

The above formula involves the summation of an infinite series. Its rate of convergence can be es-
timated from a simple upper bound on̂p, and given any tolerance level, one easily determines how
many terms we need in (40) to satisfy the prescribe error bound.

8. EXTENSIONS AND GENERALIZATIONS TO ENERGY SPOT PRICES M ODELS

As in the case of the fixed income markets, commodity markets mathematical models come in two
varieties: either in the form of (finite) factor models, or models for the dynamics of the entire forward
curve, as those we shall review in Section 9. This section is devoted to a short review of the simplest
factor models used in the industry, together with a discussion of the consequences of the assumptions
of these models on the price of spread options.

The simplest finite factor models are the one-factor models where the factor is chosen to be the
commodity spot price. So for the purpose of the present section, we can assume thatS1(t) andS2(t)
are the spot prices at timet of two commodities. It is difficult to say whether or not the models used
in the previous sections are good for these indexesS1(t) andS2(t). Indeed, the stochastic differential
equations we used for the dynamics of the underlying indexes under a risk neutral measure. Indeed,
these risk adjusted dynamics cannot be observed directly, and the best one can do is to calibrate the
coefficients of the models to the observed prices, which we did consistently when making sure that
our models could reproduce the observed forward curves.

In order to justify, or at least to motivate, the assumptions of the subsequent models, we take a short
excursion in the real world of historical prices and of stochastic models for the historical dynamics
of spot prices. It is important to keep in mind that in most cases, Girsanov’s theory implies that the
stochastic differential equations giving the historical dynamics differ from the risk adjusted models
only through the drift part.

The geometric Brownian motion models proposed by Samuelson for the time evolution of equity
prices are appropriate for the dynamics of many assets, but they fail to capture one of the main
characteristic feature of interest rates and physical commodity prices,mean reversion.This feature
is included in the historical models by assuming that the dynamics of the underlying indexesSi(t)



SPREAD OPTIONS 39

are given by geometric Ornstein-Uhlenbeck processes instead of geometric Brownian motions. These
processes can be defined as the solutions of stochastic differential equations of the form:

(41) dSi(t) = Si(t)[−λi(logSi(t)− αi)dt+ σidWi(t)]

where the constantsλi are positive. These constants are called themean reversioncoefficients. They
can easily estimated from historical data. A simple linear regression can be used to do just that.
See for example [7] for details and examples. Notice that the other parametersσi andαi can also
be estimated very easily from historical data. Obviouslyσi is the volatility, and it can be estimated
empirically from the variance of the increments of the logarithms, whileαi is a simple function
of the of the asymptotic mean reversion level. Historical models are useful for risk management,
and nowadays for an increasing number of pricing algorithms based on replication arguments and
expected utility maximization.

But the major issue is not the statistical estimation of the parameters of the historical model, this
is relatively easy. What we need in order to use the results of the theory presented in the first part of
this paper, is a risk adjusted model. If we do not have any a-priori information on the risk premium,
the drift of the risk adjusted dynamics can be absolutely anything. Indeed, it is easy to cook up a risk
premium process so that Girsanov’s theorem will turn the historical driftSi(t)[−λi(logSi(t)−αi)dt
into any prescribed drift. For this reason, it is common practice to specify the risk neutral dynamics
directly without trying to derive them from a Girsanov transformation on a model of the historical
dynamics appropriately fitted from empirical data. Then, it can be argued that since we want to be
working under the risk-neutral measure, the drift has to be equal to the risk free rate and changing it
is pure non-sense. However, the risk-neutral drift determines the discounting factor used to determine
present values of future cash flows, and as such it can be different from the short interest rate. For
example, we included earlier the dividend rate in the risk neutral drift of dividend paying stocks. So in
the case of physical commodities, especially those commodities which cannot be stored like electric
power, the risk adjusted drift should not only encompass the dividend yield besides the risk free rate
but also some form of stochastic convenience yield (i.e., a stochastic dividend yield). Several recent
studies have given strong empirical evidence of the presence of a term structure of convenience yield
for physical commodities. In particular, a form ofspot convenience yieldis often used as a factor
joining the commodity spot price in the list of factors driving the dynamics of the forward prices. See
for example [36].

For the rest of this section we shall assume that the risk-neutral dynamics are specified by a mean
reverting equation of the form (41). This practice can only be justified by assuming that the risk
premium is conspiring to preserve the mean reverting characteristic of the historical drift. Short of
mathematical convenience, we do not see on which ground to justify this assumption. Despite this
obvious lack of rationale, this assumption is nevertheless now widely accepted as reasonable in the
mathematical analysis of the dynamics of the commodity spot prices. See for example [7].

8.1. Adding Mean Reversion to the Models.We now assume that the risk neutral dynamics of the
underlying indexes are given by stochastic differential equations of the form

(42) dSi(t) = Si(t)[−λi(logSi(t)− µi)dt+ σidWi(t), i = 1, 2
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where as before the volatilitiesσ1 andσ2 are positive constants, whereW1 andW2 are two Brownian
motions with correlationρ, whereλ1 > 0, λ2 > 0, and whereµ1 andµ2 are real constants. The pos-
itive constantsλi give the rates of mean reversion. Indeed, as we are about to see, indexes satisfying
these dynamical equations tend to revert toward the levelseµ

∞
i if we setµ∞i = µi − σ2

i /2λi. Various
forms of equations (42) have been used as models for asset dynamics. For example, Schwartz [41]
introduced them to derive closed form formulae for commodity contract prices.

Equations (42) can be best understood after a simple transformation leading to the dynamics of the
logarithms of the underlying indexes. SettingXi(t) = logSi(t), a simple application of It̂o’s formula
gives:

(43) dXi(t) = −λ[Xi(t)− µ∞i ]dt+ σidWi(t)], i = 1, 2

which shows that the logarithms of the indexes are nothing but classical Ornstein-Uhlenbeck pro-
cesses whose mean reverting properties are well-known.

Even though equations (42) are more involved than the equations giving the dynamics of the geo-
metric Brownian motions used in the previous sections, we can still derive explicit formulae for the
indexesSi(T ) in terms of exponentials of correlated Gaussian variables. Indeed,Si(T ) = eXi(T )

with:

(44) Xi(T ) = µ∞i + e−λi(T−t)[Xi(t)− µ∞i ] + σi

∫ T

t
e−λi(T−s)dWi(s)

Hence:

(45) Si(T ) = eµ
∞
i +e−λiT (xi−µ∞i )+σi,T ξi

where

σi,T = σi

√
1− e−2λiT

2λi
, i = 1, 2

andξ1 andξ2 areN(0, 1) random variables with correlation coefficientρ̃ given by:

ρ̃ =
1

σ1,Tσ2,T
E{ξ1ξ2}

=
1

σ1,Tσ2,T
E
{
σ1

∫ T

0
e−λ1(T−s)dW1(s)σ2

∫ T

0
e−λ2(T−s)dW2(s)

}
=

ρσ1σ2

σ1,Tσ2,T

1− e−(λ1+λ2)T

λ1 + λ2

= ρ

√
λ1λ2

(λ1 + λ2)/2
1− e−(λ1+λ2)T

√
1− e−2λ1T

√
1− e−2λ2T

Consequently, the pricep of a spread with strikeK and maturityT on the difference between the
underlying indexesS1 andS2 whose dynamics are given by (42) is given by the formula:

p = e−rT E{(S2(T )− S1(T )−K)+} = Π(α, β, γ, δ, κ, ρ̃)

with

α = e−rT+µ∞2 +e−λ2T (x2−µ∞2 )−σ2
2,T /2 and β = σ2,T = σ2

√
1− e−2λ2T

2λ2
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γ = e−rT+µ∞1 +e−λ1T (x1−µ∞1 )−σ2
1,T /2 and δ = σ1,T = σ1

√
1− e−2λ1T

2λ1

with ρ̃ defined as above, andκ = Ke−rT .
In particular, we can use our formula to find an excellent approximation to this price and an excel-

lent hedging portfolio.

Calibration and Consistency with the Forward Curves. As in the case of the Bachelier model, we
can try to generalize the above mean reverting models in order to make it consistent with observed
forward curves. At least in principle, this should be done in exactly the same way. But as we are about
to see, technical difficulties arise and the computations are more involved. Indeed, if we replace the
dynamics of the spot prices by the same mean reverting equations with time dependent coefficients,
we get the following stochastic differential equations (we drop the subscripti = 1, 2 since it is
irrelevant in the present discussion)

dS(t) = S(t)[−λ(logS(t)− µt)dt+ σtdWt]

and the logarithmX(t) = logS(t) of the underlying index satisfies the equation:

dX(t) = −λ[X(t)− (µt −
σ2

t

2λ
)]dt+ σtdWt

which can be explicitly solved, giving:

Xt = µt −
σ2

t

2λ
+ e−λt[X0 − µ0 +

σ2
0

2λ
]−
∫ t

0
e−λ(t−s)[µs −

σ2
s

2λ
]ds+

∫ t

0
e−λ(t−s)σsdWs

and consequently, since as before:

F (0, T ) = E0{S(T )} = E0{eX(T )}
we get the formula:

F (0, T ) = exp
[
µT −

σ2
T

2λ
+ e−λT

(
X0 − µ0 +

σ2
0

2λ

)
−
∫ T

0
e−λ(T−s)

(
µs −

σ2
s

2λ

)
ds

+
1
2

∫ T

0
e−2λ(T−s)σ2

sds

]
The problem is now to find, for each given forward curveT ↪→ F (0, T ), a functiont ↪→ µt and/or a
functiont ↪→ σt satisfying the above equality.

8.2. Introducing Jumps. If the models of the previous subsection can easily be argued to be appro-
priate for most commodity spot prices, it will still fall short of adequate for electricity spot prices.
Indeed the latter exhibit extreme volatility and introducing jumps in the model may appear as the best
way to include sudden and extreme departures from the mean reverting level. See nevertheless [2] for
an alternative way to achieve the same thing with a continuous diffusion without jumps. At the risk
of promoting the confusion with the historical and the risk adjusted dynamics, we refer the reader to
the right panel of Figure 1 where one can see that the sudden and extreme departures from the mean
do appear in the historical data. This figure illustrate that fact in the case of the Palo Verde electric
power spot prices. In order to accommodate the case of spread options involving electric power (spark
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spreads are the typical examples), we allow for jumps in the risk-neutral dynamics ofS2. We assume
that:

dS2(t) = S2(t−)[(r − λµ)dt+ σ2dW2(t) + (eJt − 1)dN(t)

whereN is a Poisson process of intensityλ independent ofW2 andW1. (Jt)t≥0 is a sequence of
independent Gaussian random variables(m, s2) andµ is function ofm ands2. This case is even
simpler than the one studied before. Pricing formula have therefore already been obtained.

8.3. Consistency with the Observed Forward Curves.As before in the case of the simpler geo-
metric Brownian motion model, we first compute the analytic form of the forward curves, and we
find ways to adjust the coefficients of the model to match the theoretical curves carried by the model
to the empirical curves.

9. M ODELING THE DYNAMICS OF THE FORWARD CURVES

The spot price models considered in the previous sections are extremely popular because of their
intuitive appeal and because of their mathematical tractability. Indeed, modelling the dynamics of
the spot prices seems like a reasonable thing to do, and the log-normal distribution is amenable to
closed form formulae for many of the simplest single commodity derivatives. Unfortunately, these
models are not always satisfactory. Indeed, given the spot price process{St}t≥0 of a commodity,
the no-arbitrage priceF (t, T ) at timet of a forward contract with expiryT should be given by the
formula:

(46) F (t, T ) = Et{ST }

where as before, we use the notationEt{ · } for the conditional expectation with respect to all the
information available up to timet. The log-normal models and their generalizations of the previous
sections are simple enough to allow for explicit formulae for the conditional expectations appearing in
the right hand side of (46), but unfortunately, the forward curvesT ↪→ F (t, T ) produced in this way
are very rarely consistent with the actual forward curves observed in practice, and the various fixes
which we proposed in the previous sections are not satisfactory since they force us to re-calibrate the
model every day! This major shortcoming is at the core of the search for more sophisticated models
which could account for the observable features of the forward curves. Some of these models are
considered in this section. The main departure from the previous approach is to model the dynamics
of the entire forward curve instead of modeling only the dynamics of its leftmost point. So we state a
stochastic differential equation (in fact a system of a continuum of such equations) for the dynamics
of the entire forward curve. In analogy with the HJM models of the fixed income markets we assume
that for each maturity dateT , the dynamics of the forward curves are given by:

(47)
dF (t, T )
F (t, T )

= µ(t, T )dt+
n∑

k=1

σk(t, T )dWk(t) t ≤ T

whereW = (W1, . . . ,Wn) is an-dimensional standard Brownian motion, and where then volatili-
tiesσk are deterministic functions of the current datet and the time-of-maturityT . Such a model is
called ann-factor forward curve model. It has been described as desirable in the technical literature
(see,e.g., Chapter 8 of the book [7]) though implementations in the commercial software packages
available for energy risk management are still at a rather primitive stage.
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Whenever we work on pricing, hedging, or asset valuation (power plant, gas storage,. . . ), we need
to assume that the dynamics have been adjusted for risk,i.e., we need to use risk-neutral probabilities.
In that case we will need to setµ(t, T ) ≡ r, since it guarantees thatt ↪→ F (t, T ) is a martingale for
each fixedT when discounted. But when we work on risk management, the driftµ(t, T ) will need to
be calibrated to historical data.

An Explicit Solution. The coefficientsµ andσk being assumed deterministic, the dynamical equation
(47) can be solved explicitly and we get:

(48) F (t, T ) = F (0, T ) exp

[∫ t

0

[
µ(s, T )− 1

2

n∑
k=1

σk(s, T )2
]
ds+

n∑
k=1

∫ t

0
σk(s, T )dWk(s)

]
which shows that the forward prices have a log-normal distribution. More precisely, we have:

(49) F (t, T ) = αeβX−β2/2

for X ∼ N(0, 1) and

(50) α = F (0, T ) exp
[∫ t

0
µ(s, T )ds

]
, and β =

√√√√ n∑
k=1

σk(s, T )2

Dynamics of the Spot Price. Since the spot price is the left hand point of the forward curve (i.e.,
S(t) = F (t, t)) we can derive an explicit expression for the spot price from equation (48) above.

(51) S(t) = F (0, t) exp

[∫ t

0
[µ(s, t)− 1

2

n∑
k=1

σk(s, t)2]ds+
n∑

k=1

∫ t

0
σk(s, t)dWk(s)

]
and differentiating both sides we get:

dS(t) = S(t)
[(

1
F (0, t)

∂F (0, t)
∂t

+ µ(t, t) +
∫ t

0

∂µ(s, t)
∂t

ds− 1
2
σS(t)2

−
n∑

k=1

∫ t

0
σk(s, t)

∂σk(s, t)
∂t

ds+
n∑

k=1

∫ t

0

∂σk(s, t)
∂t

dWk(s)

)
dt+

n∑
k=1

σk(t, t)dWk(t)

]
where we set:

(52) σS(t)2 =
n∑

k=1

σk(t, t)2.

One deduce from equation (53) the fact that the instantaneous volatility of the spot price is given by
σS(t). Consequently we have:

(53)
dS(t)
S(t)

=
[
∂ logF (0, t)

∂t
+D(t)

]
dt+

n∑
k=1

σk(t, t)dWk(t)

where the drift termD(t) is given by:

D(t) = µ(t, t)− 1
2
σS(t)2+

∫ t

0

∂µ(s, t)
∂t

ds−
n∑

k=1

∫ t

0
σk(s, t)

∂σk(s, t)
∂t

ds+
n∑

k=1

∫ t

0

∂σk(s, t)
∂t

dWk(s)
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Remarks:
1. In a risk-neutral setting, the drift appearing in formula (53) has a nice interpretation. The first term,
i.e., the logarithmic derivative of the forward, can be interpreted as a discount rate (i.e., the running
interest rate) while the termD(t) can be interpreted as a convenience yield which many researchers
in the field tried to model directly in order to find no-arbitrage models consistent with the data.
2. As emphasized in [7], this drift is most of the time not Markovian because of the presence of
the stochastic integral which typically depends upon the entire past of the forward curve evolution.
An exception is provided by the risk-neutral (i.e., µ(t, T ) ≡ r) one factor model (i.e., n = 1) with
volatility σ1(t, T ) = σe−λ(T−t). Indeed, in this special case, the dynamics of the spot prices are given
by (53) with drift:

D(t) = λ[logF (0, t)− logS(t)] +
σ2

4
(1− e−2λt)

which shows that the spot price dynamics are those of an Ornstein-Uhlenbeck process with time
dependent mean reverting level defined by:

(54)
dS(t)
S(t)

= [µ(t)− λ logS(t)]dt+ σdW (t)

which is exactly the generalization considered in Subsection 8.1 to accommodate mean reversion.
The point of this remark is to stress the fact that mean reversion of the spot price is closely related to
the exponential decay of the forward volatility for large times to maturity.

Changing Variables. During our discussion of the format of the data available to analysts, we made a
case for the switch to the time-to-maturity variableτ as an alternative to the time-of-maturityT . This
change of variable could deceivingly appear as a mere change of notation without much effect on the
analytic expression giving the dynamics of the forward curves. This is not the case, for computing
derivatives with respect tot of the functiont ↪→ F (t, t + τ) for τ fixed, involves partial derivatives
of F with respect to both of its variables sincet appears in both places. This is in contrast with
computing the derivative with respect tot of t ↪→ F (t, T ) for T fixed which obviously only involves
the first partial derivative ofF . To be more specific, if we set:

(55) F̃ (t, τ) = F (t, t+ τ), µ̃(t, τ) = µ(t, t+ τ), and σ̃k(t, τ) = σk(t, t+ τ),

then the dynamics (47) of the forward curve rewrites:

(56) dF̃ (t, τ) = F̃ (t, τ)

[(
µ̃(t, τ) +

∂

∂τ
log F̃ (t, τ)

)
dt+

n∑
k=1

σ̃k(t, τ)dWk(t)

]
, τ ≥ 0.

9.1. Calibration by Principal Component Analysis. We now present an application of a standard
data analysis technique to the calibration of forward energy curve models. Our goal is twofold: we
try to justify the assumptions behind the model (47) chosen for the dynamics of the forward curves,
and at the same time we show how to identify and estimate theσk from actual historical market data.

Fundamental Assumption. The main assumption of this subsection concerns the actual form of the
volatility functionsσk. We shall assume that the latter are of the form:

(57) σk(t, T ) = σ(t)σk(T − t) = σ(t)σk(τ)
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where the functionσ(t) of the single variablet will be determined shortly. Revisiting formula (52)
giving the instantaneous volatility of the spot price in light of this new assumption we get:

(58) σS(t) = σ̃(0)σ(t)

provided we set:

σ̃(τ) =

√√√√ n∑
k=1

σk(τ)2.

This shows that our assumption (57) implies that the functiont ↪→ σ(t) is up to a constant multiplica-
tive factor, necessarily equal to the instantaneous volatility of the spot price. We shall use this remark
to estimateσ(t) from the data, for example by computing the standard deviation of the spot price in a
sliding window of30 days. The plot of the instantaneous standard deviation of the Henry Hub natural
gas spot price computed in this way is given in Figure 11.

FIGURE 11. Henry Hub natural gas instantaneous standard deviation computed in a
sliding window of length30 days.

The Rationale for the Use of PCA. For the purpose of the present discussion we fix times to maturity
τ1, τ2, · · · , τN and we assume that on each given dayt, we have quoted forward prices for each of the
times to maturityT1 = t + τ1, T2 = t + τ2, · · · , Tn = t + τN . This assumption may require a little
massaging of the data which we explain in detail below. In any case, it is a reasonable starting point
for the present discussion. According to the stochastic dynamics derived in (56), we have:

dF (t, τi)
F (t, τi)

=
(
µ̃(t, τi) +

∂

∂τ
log F̃ (t, τi)

)
dt+ σ(t)

n∑
k=1

σk(τi)dWk(t) i = 1, . . . , N
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We now define theN × n deterministic matrixF by F = [σk(τi)]i=1,··· ,N, k=1,··· ,n. We can assume
without any loss of generality that then column vectorsσk( · ) for k = 1, . . . , n are orthonormal
vectors ofRN . The goal of this subsection is to explain how we estimate these vectors from historical
data. First, we derive the dynamics of the logarithm of the forward prices applying Itô’s formula:
(59)

d log F̃ (t, τi) =
(
µ̃(t, τi) +

∂

∂τi
log F̃ (t, τi)−

1
2
σ(t)2σ̃(τi)2

)
dt+σ(t)

n∑
k=1

σk(τi)dWk(t), τ ≥ 0.

Next we compute the instantaneous variance/covariance matrix{M(t); t ≥ 0} defined by:

d[log(F ( · , τi)), log(F ( · , τj))]t = Mi,j(t)dt

From (59) we see that:

M(t) = σ(t)2
(

n∑
k=1

σk(τi)σk(τj)

)
or equivalently that

M(t) = σ(t)2FF T .

Our interest in the above computation is the fact that it gives a clear strategy to extract the components
of the matrixF from historical data. Indeed, after estimating the instantaneous spot volatilityσ(t) in
a rolling window as we explained earlier, we can estimate the matrixFF T from historical data as the
empirical autocovariance ofln(F (t, ·)−ln(F (t−1, ·)) after normalization byσ(t). Diagonalizing this
empirical variance/covariance matrix, identifying the principal components among the orthonormal
basis of eigenvectors to get the columns ofF is the purpose of classical principal component analysis.

So the gist of this derivation is that under the assumption (57), if one is willing tonormalizethe
log returns of the forward contract prices by the instantaneous volatility of the spot price, then the
instantaneous autocovariance structure of the entire forward curve becomes time independent and
hence, it can be estimated from the data. Moreover, diagonalizing this autocovariance matrix will
provide the functionσk(τ), and from their relative sizes, we will be able to decide how many do
contribute significantly to the dynamics, effectively choosing the ordern of the model. This singular
value decomposition of the covariance matrix and its interpretation are known as Principal Component
Analysis (PCA for short) and its relevance to the historical modeling of the dynamics of the forward
curves has been recognized in the fixed income markets first, before being adopted in the analysis of
the energy markets. See for example [32] and [7].

Remark: PCA is based on the estimation of a covariance matrix, and as long as statistical estimation
goes, some form of stationarity is needed to be able to base the estimates on time averages. In the
approach described above, the reduction to stationarity was done the transformation of the data pro-
vided by the division byσ(t). Introducing the instantaneous spot volatility as a normalizing factor to
capture the seasonality of the data is not the only way to use the PCA as a calibration tool. Another
approach has been advocated by the scientists of Financial Engineering Associates (an energy soft-
ware and consulting provider). They propose to bin the forward curves into12 groups according to
the month of the datet, and then to perform the PCA in each of these bins. Thisseasonal principal
component analysisas they call it more likely to capture the seasonality of the forward curves when
present. But at the same time, it reduces drastically the size of the data sets from which the covariance
matrices are estimated. Not only does it restrict the length of the forward curves modeled in this way
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(typically to 12 months) but it also creates serious difficulties in the assessment of the confidence in
the results. Indeed, the PCA involves the inversion and the diagonalization of the covariance matrix
estimate, and these operations are notoriously erratic and non-robust, especially when the matrix is
poorly conditioned, which is the expected situation.

9.2. Pricing Calendar Spreads in this Framework. As we already explained, a calendar spread
is the simplest forms of spread option because it involves only one underlying commodity, the two
underlying indexes being the prices of two forward contracts with different maturities, sayT1 andT2.
So using the same notation as before we have:

S1(t) = F (t, T1) and S2(t) = F (t, T2)

and since we consider only deterministic factors, these forward prices are log-normally distributed
and we can use our pricing formula with the coefficientsα, β, γ, δ andρ given by

α = F (0, T1), β =

√√√√ n∑
k=1

σk(s, T1)2 γ = F (0, T2), and δ =

√√√√ n∑
k=1

σk(s, T2)2

according to (50). Recall thatµ ≡ 0 since we are using the risk-neutral dynamics of the forward
curves for pricing purposes. On the other hand the correlation coefficient is given by:

ρ =
1
T

n∑
k=1

∫ T

0
σk(s, T1)σk(s, T2) ds

9.3. Pricing Spark Spreads in this Framework. The methodology of this subsection can be used
for all the cross-commodity spreads discussed earlier in the text. For the purpose of illustration,
we discuss the specific case of the spark spread options, for they provide a challenging example of
cross-commodity instrument. Their pricing is of great importance both for risk management and asset
valuation purposes. We proceed to price them in the framework introduced in this section. Because
we are now dealing with two commodities, we need to adjust the notation: we choose to use the
subscripte for the forward prices, times to maturity, volatility functions,. . . pertaining to the electric
power, and the subscriptg for the quantities pertaining to natural gas.

Description of a Spark Spread Option. LetFe(t, Te) andFg(t, Tg) be the prices at timet of a forward
electricity contract with time-of-maturityTe and a forward natural gas contract with time-of-maturity
Tg. For the purpose of this subsection, a crack spread option with maturity dateT is a contingent
claim maturing at timeT which pays the amount

(Fe(T, τe)−HFg(T, τg)−K)+ .

where the efficiencyH is a fixed conversion factor andK is the strike. Obviously we assume that
T < min{T1, T2}. The buyer of such an option may be the owner of a power plant that transforms
gas into electricity and may want to protect himself against too low electricity prices and too high gas
prices.
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Joint Dynamics of the Commodities. In complete analogy with (47) we assume that the joint dynam-
ics of the forward prices of the two commodities are given by equations of the form:

(60)

{
dFe(t, T ) = Fe(t, T )[µe(t, T )dt+

∑n
k=1 σe,k(t, T )dWk(t)

dFg(t, T ) = Fg(t, T )[µg(t, T )dt+
∑n

k=1 σg,k(t, T )dWk(t)

Notice that each commodity has its own volatility factors, and that the correlation between the two
dynamics is built into the fact that they share the same driving Brownian motion.

Fitting the Join Cross-Commodity Model. Without going into all the gory details of the implemen-
tation, we give the general components of the fitting procedure.

We assume that on any given dayt we have electricity forward contract prices forN (e) times to
maturityτ (e)

1 < τ
(e)
2 , · · · < τ

(e)

N(e) , and respectively that we have natural gas forward contract prices for

N (g) times to maturityτ (g)
1 < τ

(g)
2 , · · · < τ

(g)

N(g) . As explained in our discussion of the empirical data

issues, typically we haveN (e) = 12 andN (g) = 36 and evenN (g) = 84 more recently. Assuming
(57) for both the electricity and the natural gas forward volatilities and estimating the instantaneous
volatilities σ(e)(t) andσ(g)(t) of the electricity and gas spot prices in a rolling window of30 days,
we can consider, for each dayt, theN = N (e) +N (g) dimensional random vectorX(t) defined by:

X(t) =


(

log Fe(t+1,τ
(e)
j )−log Fe(t,τ

(e)
j )

σ(e)(t)

)
j=1,··· ,N(e)(

log Fg(t+1,τ
(g)
j )−log Fg(t,τ

(g)
j )

σ(g)(t)

)
j=1,··· ,N(g)


Running the PCA algorithm on the historical samples of this random vectorX(t) will provide a small
numbern of significant factors, and fork = 1, · · · , n, the firstN (e) coordinates of these factors will
give the electricity volatilitiesτ ↪→ σ

(e)
k (τ) for k = 1, · · · , n, while the remainingN (g) coordinates

will give the gas volatilitiesτ ↪→ σ
(g)
k (τ).

Pricing a Spark Spread Option. Risk neutral pricing arguments imply that the price of the spark-
spread option at timet is given by:

(61) pt = e−r(T−t)Et

{
(Fe(T, Te)−HFg(T, Tg)−K)+

}
This pricing formula is handled with the pricing algorithms developed in this paper because the distri-
butions ofFe(T, τe) andFg(T, τg) will be log-normal under the pricing measure. Indeed, the prices
at timeT are given by our PCA-based model. So under a risk-neutral measure the prices become

Fe(T, Te) = Fe(0, Te) exp

[
−1

2

n∑
k=1

∫ T

0
σe,k(s, Te)2ds+

n∑
k=1

∫ T

0
σe,k(s, Te)dWk(s)

]
and:

Fg(T, Tg) = Fg(0, Tg) exp

[
−1

2

n∑
k=1

∫ T

0
σg,k(s, Tg)2ds+

n∑
k=1

∫ T

0
σg,k(s, Tg)dWk(s)

]
As explained above, the correlation between the two markets in built into the random driving factors
because we use the same Brownian motions to drive the stochastic differential equations (60) both
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for electricity and gas. Consequently we can use our pricing algorithm withS1(t) = HFg(t, Tg) and
S2(t) = Fe(t, Te) so that we need only to choose:

α = Fe(t, Te), and β =

√√√√ 1
T

n∑
k=1

∫ T

0
σe,k(s, T )2 ds

for the first log-normal distribution,

γ = HFg(t, Te), and δ =

√√√√ 1
T

n∑
k=1

∫ T

0
σe,k(s, T )2 ds

for the second one and

ρ =
1
T

∫ T

0

n∑
k=1

σe,k(s, Te)σg,k(s, Tg)ds

for their correlation.

10. CONCLUSION

This review concentrates on the mathematics of the pricing and hedging of spread options. This
choice was motivated by the utmost importance of these financial instruments, and the rich variety of
mathematical tools which have already been used in their analysis. We reviewed the results published
on this subject in the economics, financial, business and mathematical literature, and we tried to shed
some light on the major issue of hedging and computing accuracy in approximation schemes. Our
goal is to make the applied mathematical community aware of the slue of problems remaining to be
solved.

In so doing, we devoted a good part of our efforts to the discussion of a new pricing paradigm
introduced recently by the authors. While giving an exhaustive review of the existing literature, we
compared the performance both from a numerical and an analytical points of view, of our algorithm
against all the existing methods known to us.

We chose to illustrate the concepts and the numerical methods reviewed in this paper with examples
from the energy markets. In doing so, we ended up providing a rather thorough review of the main
technical challenges of these markets. Indeed, we reviewed extensively a) the important features of
the data available to the traders and analysts, b) the statistical models used to describe them and to
build risk management systems, and c) the pricing models used to value the complex instruments of
the energy markets. The latter are a fertile ground for mathematical investigations and we believed
that applied mathematicians will be well advised to pay more attention to their analysis.

The paper tried to prepare the reader for some of the challenges facing that part of the applied
mathematics community interested in the practical applications of financial mathematics. Natural
extensions of some of the results reviewed in this paper could lead to useful developments. For
example, some of the numerical approximations presented here can clearly be generalized to the case
of an option on linear combinations of assets (basket options, rainbow options,. . .) or any linear
combination of prices of a single asset at different times (discrete-time average Asian option for
example.) Such extensions would provide efficient algorithms to compute prices and hedges for
these options; they are sorely needed. On another front, it is clear that some of the explicit formulae
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reviewed in the text can be inverted. This allows for efficient computations of implied quantities such
as volatilities and correlations. From these implied volatilities and correlations, one should be able
to build more complex models (stochastic volatility and/or stochastic correlation, jumps,. . .) which
should better fit the market reality. This would be a welcome development for it is still unclear what
these implied quantities should be in the framework of spread options.
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[18] E. Fourníe, J.M. Lasry, J. Lebuchoux, P.L. Lions and N. Touzi (1999): Applications of Malliavin calculus to Monte

Carlo methods in finance.Finance and Stochastics3, 391-412.
[19] M. Garman (1992): Spread the Load, Risk, London.
[20] R. Gibson and E. S. Schwartz (1990): Stochastic Convenience Yield and the Pricing of Oil Contingent Claims.Journal

of Finance,45, no.3959-976.
[21] P. B. Girma and A. S. Paulson (1998): Seasonality in Petroleum Futures Spreads.The Journal of Futures Markets,18,

581-598.
[22] P. B. Girma and A. S. Paulson (1999): Risk Arbitrage Opportunities in Petroleum Futures Spreads.The Journal of

Futures Markets,19, 931-955.
[23] S. Heston (1993): A closed-form solution for options with stochastic volatility, with applications to bond and currency

options.Revue of Financial Studies.
[24] J. E. Hilliard and J. Reiss (1998): Valuation of Commodity Futures and Options under Convenience Yields, Interest

Rates, and Jump Diffusion in the Spot.Journal of Financial and Quantitative Analysis,33 no.161-86.
[25] J. Hull (2000): Futures, Options and Financial Derivatives. 6th ed.



SPREAD OPTIONS 51

[26] Intenational Energy Agency (2001): Competition in Electricity Markets. OECO-IEA.
[27] R. Jarrow and A. Rudd (1982): Approximate option valuation for arbitrary stochastic processes.J. Financial Econom-

ics,10, 347-369.
[28] R. L. Johnson, C. R. Zulauf, S.H. Irwin and M.E. Gerlow (1991): The Soy-bean Complex Spread: An Examination

of Market Efficiency from the Viewpoint of a Production Process.The Journal of Futures Markets,11, 25-37.
[29] F. J. Jones (1991): Spreads: Tails, Turtles and All That.The Journal of Futures Markets,11, 565-596.
[30] I. Karatzas and S. Shreve (2000): Mathematical Finance. Springer Verlag, New York, NY.
[31] E. Kirk (1995): Correlation in the Energy Markets, in Managing Energy Price Risk. London: Risk Publications and

Enron.
[32] R. Litterman and J. Scheinkman: Common factors affecting bond returns.J. of Fixed Income,1, 49-53.
[33] W. Margrabe (1978): The value of an option to exchange one asset for another.The Journal of Finance, 33, 177-186.
[34] A. Mbafeno (1997): Co-movement term structure and the valuation of energy spread options, in: M. Dempster and S.

Pliska (eds), Mathematics of Derivative Securities, Cambridge University Press.
[35] R. Merton (1976): Option Pricing when Underlying Stock Returns are Discontinuous.Journal of Financial Econom-

ics,4, 125-144.
[36] K.R. Miltersen and E.S. Schwartz (2000): Pricing of Options on Commidity Futures with Stochastic Term Structure

of Convenience Yields and Interest Rates.J. of Financial and Quantitative Analysis,,.
[37] D. Pilipovic: Energy Risk: Valuing and Managing Energy Derivatives. Mc Graw Hill.
[38] G. Poitras (1998): Spread Options, Exchange Options, and Arithmetic Brownian Motion.The Journal of Futures

Markets,18, 487-517.
[39] R. Rebonato (2001): Volatility and Correlation in the pricing of Equity, FX and Interest-Rate Options. John Wiley &

Sons.
[40] L. C. G. Rogers and Z. Shi (1995): The value of an Asian option.Journal of Applied Probability, 32, 1077-1088.
[41] E. S. Schwartz (1997): The Stochastic Behavior of Commoditiy Prices: Implications for Pricing and Hedging.The

Journal of Finance,52(3), 923-973.
[42] F. J. Sturm (1997): Trading Natural Gas: cash futures, options and swaps. PennWell Publ. Co. Tulsa, OA
[43] S. Stoff (2002): Power System Economics: Designing Markets for Electricity. IEEE Press, John Wiley & Sons Inc.

Philadelphia, PA.
[44] M. Wahab, R. Cohn and M. Lashgar (1994): The Gold-Silver Spread: Integration, Cointegration, Predictability and

Ex-Ante Arbitrage.The Journal of Futures Markets,14, 709-756.

DEPARTMENT OFOPERATIONSRESEARCH AND FINANCIAL ENGINGEERING, PRINCETON UNIVERSITY, PRINCE-
TON, NJ 08544, ALSO WITH THE BENDHEIM CENTER FOR FINANCE AND THE APPLIED AND COMPUTATIONAL

MATHEMATICS PROGRAM.
E-mail address: rcarmona@princeton.edu

DEPARTMENT OFOPERATIONSRESEARCH AND FINANCIAL ENGINGEERING, PRINCETON UNIVERSITY, PRINCE-
TON, NJ 08544.

E-mail address: vdurrlem@princeton.edu


