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ABSTRACT. We consider the problem of hedging a European interest rate contingent claim
with a portfolio of zero-coupon bonds and show that an HJM type Markovian model driven
by an infinite number of sources of randomness does not have some of the shortcomings
found in the classical finite factor models. Indeed, under natural conditions on the model,
we find that there exists a unique hedging strategy, and that this strategy has the desirable
property that at all times it consists of bonds with maturities that are less than or equal to
the longest maturity of the bonds underlying the claim.

1. INTRODUCTION

This paper seeks to characterize portfolios that hedge contingent claims in the fixed in-
come market. The fundamental traded instruments in this market are (zero coupon) bonds,
contracts in which the issuer agrees to pay one unit of currency at a fixed future maturity
date. The idealized bonds considered here do not suffer from credit risk; that is, at maturity
the bond issuer always makes the promised payment.

There are bonds with so many maturity dates traded on the market, it is conventional to
assume at every time ¢ > 0 there exists a bond that matures at time 7' for every T' > t. We
use the notation P;(T') to denote the price at time ¢ of a bond with maturity date 7'

Assuming that there is a continuum of traded securities is an important distinction from
the classical Black-Scholes theory. Indeed, whereas in the Black-Scholes setting we work with
a finite dimensional vector (St,...S") of stock prices at time ¢, in the fixed income market
we work with the infinite dimensional vector of the bond price curve P(-). It comes as no
surprise then that the characterization of hedging porfolios in the fixed income market is a
more subtle problem.

In Section 2 we review the classical finite factor HJM models for the dynamics of the
term structure of interest rates and discuss one of their major shortcomings: they allow
for unnatural hedging strategies which would never be used by traders. In particular, for
HJM models driven by a d dimensional Wiener process, every interest rate contingent claim
can be hedged perfectly by a portfolio of bonds of d arbitrary maturities chosen a-priori
independently of the contingent claim. This result is at odds with traders’ intuition that the
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maturities of the hedging bonds should depend on the contingent claim in question, and it is
the main motivation for the present work.

In Section 3 we consider the natural generalization of HJM models driven by an infinite
dimensional Wiener process. We introduce the necessary functional analysis notation, and we
define the function spaces which we use as state spaces for our infinite dimensional dynamics.
In this setting, the appropriate notion of portfolio is not obvious. But if we agree to consider
a certain class of portfolios, we show that if a contingent claim can be hedged by a given
strategy, then this strategy is unique under an appropriate model assumption. However, we
run into two technical difficulties. First, for a given contingent claim it is not clear whether a
hedging strategy exists at all. Second, if a strategy does exist, it is not obvious if the strategy
agrees with the traders’ intuition.

We are able to resolve these two technical problems with the tools of Malliavin calculus.
Section 4 reviews briefly some useful results from this theory, including an infinite dimensional
version of the original Clark-Ocone formula. The results of Section 4 are essentially known.
We state them clearly, and we prove those we could not find in the existing literature in an
appropriate form.

In section 5 we present the main results of this article. We consider the problem of hedging
a European contingent claim for an infinite factor Markovian HJM model where the payout
functional is assumed to be Lipschitz. We explicitly compute the hedging strategy via the
Clark-Ocone formula and show that the difficulties of the finite factor HJM models can be
overcome. In particular, under natural conditions on the model, we find in Theorem 5.7 that
there exists a unique hedging strategy with the intuitively appealing property that at all
times it consists of bonds with maturities that are less than or equal to the longest maturity
of the bonds underlying the claim.

2. SHORTCOMINGS OF THE FINITE FaAcTOR HJM MODELS

An important class of models of the fixed income market, introduced by Heath, Jarrow,
and Morton [13] and henceforth called HIM models, takes the forward rate curve as the
fundamental object to model. We can define the forward rate f;(7") at time ¢ for maturity T
to be given by the formula

(1) FUT) = o log PA(T)

whenever the bond price function is differentiable. Since a dollar today is worth more than a
dollar tomorrow, we note that the bond price function P;(-) is decreasing, implying by Vitali’s
theorem that the forward rate f;(T") exists for Lebesgue almost every T € [¢,00). We assume
in fact that the forward rates exist for every T', and in particular we can define the short rate
r¢ at time ¢ by the relation

(2) Tt = ft (t)
Note that the functions P;(-) and fi(-) contain the same information because the bond prices
can be recovered from the forward rates via the equation

3) pn) =ew (- [ flsis).
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The classical HIM model is specified by fixing a measurable space (€, F) and a risk-
neutral probability measure QQ for which there exists a standard d-dimensional Wiener process
(W, = (WL, ..., W0 and the filtration {F;};>0 given by the augmentation of the filtra-
tion generated by the Wiener process, such that the dynamics of the forward rate processes

{ft(T) }1ejo,) are given by

(4) df(T) = <Tt(T), /tTTt(S)dS>Rd dt — (1e(T), dWy)ga

where {r(T) = (t}(T), ..., Ttd(T))}te[O’T] is a R? valued adapted process for each T > 0 and
the bracket (-,-)ga is the usual Euclidean scalar product. The specific form of the drift was
shown in [13] to be necessary to prohibit arbitrage. An important feature of this methodology
is that the initial condition for these models is the whole forward rate curve fo(-).

Note that for these models there are an infinite number of stochastic differential equations,
one for each value of T, driven by a finite number of sources of randomness. Besides the fact
that finite dimensional Wiener processes are mathematically easier to handle than infinite
dimensional ones, this modeling assumption is usually justified by appealing to the statistics
of the yield and forward rate curves observed on the market. (Recall that the yield y(T") at
time ¢ for maturity 7" is given by y(T) = (T —t)~! ftT ft(s)ds.) The principal component
analysis of the U.S. Treasury yield curve as reported by Litterman and Scheinkman in [18]
and of the Eurodollar forward rates by Bouchaud et al in [2] suggests that the dynamics of
the forward rate are driven by a few sources of noise. Indeed, Litterman and Scheinkman
found that over 95% of the variations of the yield curve can be attributed to the first three
factors, lending credence to HJM models driven by a low dimensional Wiener process.

However, the assumption that the driving noise is finite dimensional has an important
implication. Consider the problem of replicating the real Fr-measurable random variable &
corresponding to the payout of an interest rate contingent claim that matures at a time 7.
Our hedging instruments are naturally the set of zero-coupon bonds and the risk-free bank
account process {B;}>0 defined by

(5) B, = exp ( /O t rsds> |

To ease notation, we begin with a definition:

Definition 2.1. For every process {Xi}i>0 we define the discounted process {Xt}tzo by
X = B[lXt. For every Fp-measurable random variable & corresponding to the payout
of a contingent claim with maturity T, we use the notation £ = B;lf.

A major shortcoming of the finite factor models is found in the following well-known
proposition. We give a complete proof of this result to emphasize the difficulties we have to
overcome in order to resolve the issues it raises.

Proposition 2.2. Suppose there exists d dates Ty < Ty < ... < Ty and a positive constant ¢
such that for oll T < Ty the d x d matriz

(6) o = [ﬁt(m / ) rﬂrs)ds}

ij=1,..,d
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satisfies ||oyx||ga > c||z||ga for all € R and almost all (t,w) € [0,T] x Q. Then for every
contingent claim & with maturity T < Ty such that E{¢?} < +oo there ewists a replicating
strategy consisting of bonds with maturities 11,15, ..., Ty and the bank account.

Proof. Consider a strategy such that at time ¢ the portfolio consists of ¢! units of the bond
with maturity 7; for i = 1,...,d and of v; units of the bank account. As usual, we insist
that our wealth process {V; = (¢¢, Pi)ra + ¥ B: }1>0 satisfies the self-financing condition

d‘/t == <¢t7 dPt>Rd + 1/1tdBt

where ¢y = (¢1,...,¢%) is the vector of portfolio weights and P, = (Py(T1), ..., Pi(Ty)) is the
vector of bond prices. We now show that there exist processes {¢; }1c(o,r) and {9t }4(o,r) such
that Vp = £ almost surely.

Recall that the bond price at time ¢ for maturity s is related to the forward rates by
equation (3), so by an application of It6’s rule and the stochastic Fubini’s theorem we have
that the dynamics of the bond price for each T; satisfy the equation

(7) dgt((TT;)) —rdt+ < /t Tift(u)du,th>Rd .

By equations (7) and (6), the dynamics of the vector of discounted bond prices is given by

dP, = gydW,, and consequently, the dynamics of the discounted wealth process is given by
dV; = (¢r, dP)ga = (0] br, AWy ).

On the other hand, if E{éQ} < 400, we can apply Ito’s martingale representation the-
orem to conclude that there exists a d-dimensional adapted process {ai};cjor) such that

E{fOT Hatn;ddt} < 400 and

T
E=E{E) + /0 (0, AW

Setting the initial wealth V = ]E{g} and portfolio weights ¢y = a;f_lat and ¢; = V}—(cﬁt, pt>Rd
we find our desired replicating strategy. ([l

Thus, in this d-factor HJM model every square-integrable claim can be replicated by a
strategy of holding bonds maturing at the d dates 11, ..., T, fixed a-priori and independently
of the claim. For instance, with a three factor HJM model, it is possible to perfectly hedge
a call option on a bond of maturity five years with a portfolio of bonds of maturity fifteen,
twenty, and twenty five years. Cont [6] remarks that this result is counter-intuitive and
contrary to market practice. Indeed, there seems to be a notion of “maturity specific risk”
not captured by finite factor HJM models since we expect that such a contingent claim should
be hedged with bonds of maturities less than or equal to five years. This shortcoming can be
attributed to the high degree of redundancy in the finite factor models.

In Section 3 we show that if the dynamics of the bond prices are driven by an infinite
dimensional Wiener process we can find conditions on the model such that a given hedging
strategy is unique. Unfortunately, the usual notions of hedging become more complicated in
infinite dimensions.
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3. INFINITE FaAcTOR HJM MODELS: SOME DIFFICULTIES

In this section we take a first look at the hedging problem for infinite factor HJM mod-
els, our goal being to emphasize some of the difficulties occurring because of the infinite
dimensionality of the sources of randomness.

Here and throughout the rest of the paper, the stochastic processes are assumed to be
defined on a complete probability space (2, F,Q). Also, for the ease of exposition we prefer
to break from the HJM tradition and choose the state variable for these models to be the
discounted bond price curve P;(-) instead of the forward rate curve f;(-). But noting that
the price of a bond at maturity is P;(t) = 1 we see that the bank account process can be
recovered by the formula

1
(8) By = ——
Fy(t)
and the bond price with maturity s > ¢ can be recovered via
Pi(s
9) P(s) = 24)
Pi(t)

This change of variables eases the analysis, although it is quite superficial in the sense that
there is a one-to-one correspondence between bond prices and instantaneous forward rates
given by equation (1). As motivation for this change of variables, consider a European option
that matures at time 7" and has a payout of the form

(10) §=g(Pr(Th),..., Pr(Tn))

for some dates T; > T and some measurable function g : R® — R. From the discussion
Section 2 we see that in order to replicate such a claim we must find the martingale represen-
tation of the discounted claim & = B3 g(Pr(Ty),..., Pr(T,)). By equation (5) we see that
5 depends not only on the bond prices at time T" but also on the entire history of the short
rate process. But treating the discounted bond price curve as the state variable, we have by

equations (8) and (9) that
. Pr(T, Pr(T,
E= Bp(r) o L) Lridn) )
Pr(T) Pr(T)
Defining the functional § on the space C'(Ry) of continuous functions on R4 by:

(11) §(z) = (T) g(z((%),...,z((%)>

we have that £ = G(Pr) only depends on the time T values of the discounted bond price
processes. Of course this trades one infinite dimensional problem for another; yet in this
framework, the problem can be treated as the Black-Scholes problem of pricing and hedging
a modified European contingent claim on a portfolio of “stocks” with zero interest rate.

Remark 1 (Settlement in arrears). There are many interest rate options that pay in arrears.
That is, although the payout £ = g(Pr(11),..., Pr(1y,)) is Fr-measurable, the money does
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not change hands until the future settlement date T+ AT. This is the case for claims
contingent on the LIBOR rate, such as caplets. In this situation the discounted claim is

g: B;JerT g(PT(Tl), ooy PT(Tn))

Noting that Pryar(T + AT) = Pp(T + AT) + f:,?JFAT dP,(T + AT), we have by equations
(8) and (9) that
T+AT

E=o(Pr) + /T ¢ dB,(T + AT)

where g : C(R4) — R is defined by

3(x) = (T + AT) g (x(Tﬂ ﬂf(Tn)) |

x(T) " x(T)

Thus the strategy that consists of replicating the Fr-measurable random variable Q(PT) and
then holding £ units of the bond with maturity T+ AT replicates the payout of the contingent
claim. Hence the hedging problem still maps to an infinite dimensional zero interest rate
Black-Scholes world, but with the payout function modified slightly differently.

Remark 2. For each time ¢ the domain of the discounted bond price function P (-) is the
interval [¢,00). Since we need to consider the dynamics of the discounted price curve as t
varies, it would be more convenient if the functions P;(-) had a common domain. For this
reason, we assume that for every ¢ > 0 the domain of the discounted bond price function P;(-)
is the interval [0, 00), where we extend the definition of Py(-) by Pi(s) = By for s € [0,1].
Note then that the process {P;(s)}¢>0 is constant for t > s. The corresponding bond prices
are given by P,(s) = B; !B, for s € [0,1] so that this extension conforms with the price

B
‘ ft}

12 Pi(s)=E< —
12 o) =2 { 3
for s > t and can be understood that once a bond matures the one dollar payout is immedi-
ately put into the bank to accrue interest at the short rate.

Remark 3. Another popular way to resolve the issue of having functions defined on time
dependent domains is to switch to the so-called Musiela notation. The idea is to work with
the time to maturity 8 = T' — ¢ rather than with the time of maturity 7. In this approach,
the re-parameterized discounted bond price curve Pt() is defined by:

P,(0) = Pi(t + ).

For the finite factor HJM model this new process is a weak solution of the following stochastic
partial differential equation

N o p 0 . t+6

dP,(0) = 16) gy + Pi(0) </ Tt(s)ds,th> :
00 ‘ R

This formulation of the HJM models proved to be very fruitful. See for instance [3], [11], and

[6]. Nevertheless, for the sake of studying the hedging strategies for interest rate contingent

claims, it is more convenient to retain the time to maturity parametrization. Indeed, whereas
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the process {Pt(T)}tZO is a martingale for each T', the analogous process in Musiela notation
{P;(0)¢}+>0 is usually not a martingale for any 6.

In order to specify an infinite factor model of the evolution of the discounted bond prices,
it is natural to work in a function space setting. We first review the relevant notation of
functional analysis. For a Banach space E, the duality form is denoted (-,-)g : E* x E — R.
If F' is another Banach space, we let L(F,E) denote the Banach space of bounded linear
operators taking F' into E with norm

|Alzrpy = sup | Az||g
z€F, ||z||rp<1
If A € L(F,E) the (Banach space) adjoint A* of A is the unique element of L(E*, F*)
satisfying:
(u, Az)p = (A*p,x)p for all p € E*,xz € F.

If G is a Hilbert space, we use the notation z* € G* for the Riesz representation of the
element x € G, and we identify the double dual G** with G. If S is a subspace of GG, then
we let

St = {u € G* such that (u,z)g =0 for all z € G}

be the closed subspace of G* orthogonal to S.
If G and H are separable Hilbert spaces, the space of Hilbert-Schmidt operators taking H
into G is denoted Lus(H, G) and is itself a Hilbert space for the norm

0o 1/2
14N 2 (21.0) = <Z HAeiH?;>
i=1

where {e;}; is any orthonormal basis for H. There is a natural isometry of the space
Lus(H, G) and the Hilbert space tensor product G ® H*.

For a separable Banach space E, we denote by LP(I'; E') the Banach space of (equivalence
classes of) measurable functions from I' into F with the norm

s = ( [ 15 u(d@)””

where the measure space (I, G, 1) is the interval ([0, T, Bjo 1}, Lebjo 17), the probability space
(22, F,Q), or their product ([0, 7] x Q, By 1) @ F, Lebyg 7] x Q).

For our application, we need an infinite dimensional version of the vector valued stochastic
integrals of the form fg 0sdWys. Self-contained expositions of the theory of infinite dimensional
stochastic integration can be found in the books of DaPrato and Zabczyk [7], Kallianpur and
Xiong [14], and Carmona [4]. From now on, we fix a real separable Hilbert space H, and we
assume that {W; };> is a cylindrical H-valued Wiener process defined on the probability space
(@, F,Q), that this cylindrical process generates the o-field F, and that the filtration {F; }+>0
is given by the augmentation of the filtration it generates. The classical finite factor HJM
model correspond to the choice of a finite dimensional space H. The integrands considered
here are the adapted, measurable, and square integrable stochastic processes o = {o¢}+>0
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valued in the space Lys(H, F') of Hilbert-Schmidt operators from H into F' for which we

have It0’s isometry
t 2 t )
E ’/0 Al :E{/O ||JSHEHS(H7F)ds}.

Note if F' = R, the space Lus(H,R) of Hilbert-Schmidt operators is just H*. In this case we

write
t t
/O‘SdWS:/ (05, dWs) g
0 0

in analogy with the finite dimensional stochastic integration. However, this notation can only
be formal if H is infinite dimensional since the Wiener process {W;};>¢ visits the space H
with probability zero.

We now introduce a family of weighted Sobolev spaces to serve as the state space for the
infinite dimensional dynamics.

Definition 3.1. For every function w : Ry — Ry and for i = 1,2, we define the space F', of
functions x : Ry — R which are i — 1 times differentiable, with a (i — 1)-th derivative z(—1)
absolutely continuous and such that 2\9) (c0) = 0 for j <i—1, and I 2 (u)? w(u) du < +o0.

The space F' is a Hilbert space for the norm 2l Fs = (fo° ) (u)? w(u) du) vz
We work with the spaces F} and F2. We list three useful properties of these spaces:

Proposition 3.2. If the positive function v is such that C, = [;° v(s)"'ds < +oo then the
evaluation functionals 05 where (3s,x) g1 = x(s), are continuous on F, for all s > 0.

If the positive function w is such that Cy, = [ (1+u?)w(u)tdu < +oo then the evaluation
functionals 05 and the point-wise differentiation 0 where (03, x)p2 = —2'(s), are both linear
continuous functionals on F2 for all s > 0.

If Cow = [3° f3 v(u)/w(s) du ds < 400 then the inclusion from F2 to F, is continuous.

Proof. The evaluation functionals are uniformly bounded on F! since

Gl = e = | [ T 2 ()

Y ORVECSTDN

C 2l -

IN

IA
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Similarly, the point-wise differentiation functionals are uniformly bounded on F2 by C, 12,
The evaluation functionals are uniformly bounded on F2 since

(Gurz)pz| = |2(s)] = | / u)dul

= | [ (w9l
(e (o)

Co*lz 2

IN

Finally, if z € F! N F2 then

lallzy = / #(5)? u(s) ds

[ du 9 9
< — ds = Cyy
= /0 /S w(u) ”J;HFI}) v(s) ds HQUHFJJ

and hence the inclusion from F? to F! is continuous. O

We fix a weight w satisfying the conditions of Proposition 3.2, and from now on we assume
that the state variable P;(-) is an element of the function space F2 for every t > 0. Note that
for this choice of state space we may speak honestly about the price of a specific bond or the
value of a specific forward rate since evaluation and point-wise differentiation are continuous.
This choice also agrees with the fact that a bond that never matures is worthless and hence
P;(00) = B ' Pi(00) = 0. And since F2 is a Hilbert space, we may use the integration theory
mentioned above

We now formulate a model of the discounted price dynamics.

Assumption 3.3. The risk neutral dynamics of the discounted price curve {pt}tzo are de-
scribed by the initial condition Py € F2 and the evolution equation

(13) dpt == O'tth
where {o;}i>0 is an Lys(H, F2)-valued adapted stochastic process such that
(14) 0705 =0 for allt > s.

We assume that Py and {ot}1>0 conspire in such a way that pt(s) > 0 for all s > 0 and
that

Aol 1
(15) E {/0 <}58(8)2F + <1 + 153(8)2> \|JSH%HS(H7F£)> ds} < +o0.

Remark 4. Condition (14) guarantees that the process { P;(s)}¢>0 becomes constant for t > s.
Indeed, the continuity of §; implies that for ¢ > s we have

Pi(s) — Pu(s) = / (o be W) i = 0.
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Since our starting point is the discounted bound curve P,, we need to infer the definition
of the bank account B; and of the zero coupon curve F;. The bank account, given by the
formula B; = P;(t)~!, has dynamics given formally by

P(t)

Py(t)?

(16) dB; = dt

while the prices of the zero coupon bonds, given by P, = P, / ]5,5(75), have dynamics given
formally by

Pl(t) - 1
(17) dPt = — Nt( ) Ptdt + ~70'tth.

Fi(t)? Pi(t)
Condition (15) ensure that the stochastic equations (13), (16), and (17) make perfectly good
sense. In Remark 9 we give sufficient conditions for (15) to hold for a Markovian HJM model.

Remark 5. Because the eigenvalues of a Hilbert-Schmidt operator must decay fast enough
for the sum of their squares to be finite, assuming that H is infinite dimensional does not
disagree with the principal component analysis typically used to justify the introduction of
models with finitely many factors.

Given such a model, we propose to study how to hedge a contingent claim. Equivalently,
this problem is equivalent to the search for a representation of the contingent claim as a
stochastic integral with respect to the underlying price process. As we are about to see, this
task reduces to finding an adapted process {¢:}+>0 such that:

} N T N
E=B(E)+ [ (0ndPir

Identifying this process {¢:}+>0 illustrates the difficulties of working in infinite dimensions.
In the real world a portfolio can only contain a finite number of bonds at any time. That

is, we really should only consider processes such that for almost every (¢,w) € [0,T] x © we

can find a positive integer d, positive real numbers 11, ..., Ty, and real numbers ¢y, ..., cq SO

that
d
O = Z cioT; -
i=1

However, limiting ourselves to such portfolios at this stage of the analysis would be severely
restrictive. Indeed, since we are willing to assume that there exists a continuum of traded
securities it seems reasonable to assume that we can form portfolios with bonds of an infinite
number of different maturities. Since the process {Pt}tzo takes values in F2 it would seem
natural to require that {¢;},cjo,r] takes values in the dual F2*. Remember that measures

of the form Zgzl cié, are in F2*. But the elements of the space F2 are functions that
are quite smooth, and consequently, the dual space F2* contains distributions that can be
quite rough. Indeed, point-wise differentiation is bounded on F2, and we choose to work in
this space precisely because we need to define the short rate in the drift of the bond price
process. Nevertheless, even though we would prefer to think of our hedging strategies as



INTEREST RATE HEDGING PORTFOLIOS 11

being measures, if we work with F2* valued portfolios we risk the uncomfortable possibility
that they might be much wilder distributions.

As a partial resolution to this problem, we consider strategies valued in F'* where v is a
function satisfying the conditions of Proposition 3.2. Since the inclusion map from F2 into
F! is continuous, the dual F'* can be identified with a dense subset of F2*. We fix a v once
and for all, and henceforth adopt the notation F' = F!.

We now make precise the various notions of strategy we shall use:

Definition 3.4. A strategy is an adapted F*-valued process {¢;}i>0 such that ¢y € Ty o) for
almost every (t,w), where we use the notation

(18) T4 =span{ds;s € A} C F*

for a closed interval A C Ry and where the closure is taken in the topology of F*.

Note that the restriction ¢; € T ) reflects the fact that it is unnecessary to hold expired
bonds.

Definition 3.5. A self-financing strategy is a strategy {¢¢ }+>0 such that d{pe, P)p = (pr, dP;) F.

For each strategy {¢:}+>0 the associated wealth process {V;};>0 has dynamics
dVy = (¢, dPy) p + d By

with ¢yB; = Vi — (¢, P;)p . But by equations (16) and (17) we have dB; = By(d¢, dP;) F;
that is to say, the bank account can be replicated by the self-financing strategy of holding
the bond maturing instantly. Hence, the dynamics of the wealth process can be written in
the form

dVy = (¢t + (Vi — (¢¢, Pr)F)6s, dPy) F,

and for every strategy {¢:}+>0 we can construct a self-financing strategy {y;}+>0 via the rule
o1 = ¢t + (Vi — (¢, Pr)F)ot-

Definition 3.6. A pre-hedging strategy for the contingent claim & is a strategy {¢t}te[0,T]
such that

T
E=B(+ [ (6ndPr.
0
A hedging strategy for the contingent claim & is a self-financing pre-hedging strategy.

Note that a pre-hedging strategy need not be self-financing since the pre-hedging condition
is indifferent to the amount held in the bank account.

We now show that if a contingent claims can be hedged by a F*-valued strategy, then
under an appropriate model assumption, the hedging strategy is unique. This is a first step
toward eliminating the counter-intuitive strategies found in Section 2 in the case of finite
dimensional models.

Note that under the condition (14) we necessarily have ker(o}) D 7jp4 since oy is almost
surely a bounded operator. If we insist that this inclusion is an equality, we have the following
proposition:
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Proposition 3.7. Suppose for almost all (t,w) € [0,T] x Q we have:

(19) ker(07) = Ty,

If the hedging strategies {cp%}te[o’T] and {‘P%}te[O,T] hedge the same claim &, then o = @ for
almost all (t,w) € [0,T] x 2.

Proof. Clearly the strategy {¢; = ¢} — @%}te[o,T] replicates the zero payout. Since {¢;}iepo 1]
is pre-hedging we have fOT<cpt, dP;)r = 0 almost surely and hence E {fOT \\ajwt]]%[*dt} = 0.

Thus we have that ¢y € Tjgy N T[y,0) for almost all (¢,w). Furthermore, since {¢;}yep 7] 18
self-financing we have (¢, P;)p = 0 for almost all (¢,w).

Fixing (¢,w) we now let j € F' be any function with the property that j(t) = 1. Note that
the function 1y, o) (£ — j) is in F' and that

(¢t 1[t,oo) (P —34))r=0.
Similarly, the function 1jg (P — j) is also in F' and
(¢t 1j0,9(P = j))r = 0.
Hence, we have (¢, j)r = 0 for every j € F thus ¢; = 0. O

Remark 6. The above proof of uniqueness does not go through if we had allowed F2* valued
portfolios. In particular, there exist non-zero portfolios ¢; € F2* such that

F2* F2*
o € spanf{ds; s <t} Y Nspan{ds;s >t} "

and (p¢, P;)p = 0. For example, let ¢; = r1d; — §;. This is another reason for demanding that
the portfolios be valued in the smaller space F* = F!*.

Only with infinite dimensional H can we hope to satisfy the conditions of the above propo-
sition. However, unlike the finite dimensional case, it is not clear that such hedging strategies
exist in general. Parroting the calculation from Section 2, let £ be a square discounted
integrable claim and suppose that we could find a pre-hedging strategy {¢:}+>0 such that:

T
§ = E{g}—i_/ﬂ <¢s;dps>F

B T
~ E{i}+ /0 (0% ba W) 1.

But recall that the martingale representation theorem states that there exists an adapted H*
valued process {oy }1e(o.7] such that fOT |as||%+ds < +oo and

T
(20) £ =FE{} + /0 (avg, AW, 1.

See [7] or [4] for the infinite dimensional version of this result. Thus, in order to calculate a
pre-hedging portfolio at time ¢ we need only compute ¢y = o} ~lay. But by assumption the
operator oy is Hilbert-Schmidt almost surely. Since H is infinite dimensional, the inverse o} -1
is unbounded, and at this level of generality there is no guarantee that «; is in its domain

for any t. Thus restricting the portfolio to be in the space F* for all £ > 0 is insufficient
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to replicate every square-integrable contingent claim. Bjork et al [1] discuss this difficulty
in the Banach space setting where the bond price process is a jump-diffusion driven by a
finite dimensional Wiener process, and they introduce the notion of approximate market
completeness.

We could proceed by enlarging the class of allowable hedging portfolios by insisting that
¢ is in the so-called covariance space o} 'H* for almost all (t,w) € [0,T] x Q, where
o*~LH* O F* is the Hilbert space with norm ||@||,« 15+ = ||[0*®||z+. De Donno and Pratelli
[8] elaborate on this approach for models in which the price process is defined cylindrically on
a Hilbert space F. Notice the spaces o} ~LH* generally depends on t and w, but it would be
nicer if the hedging strategy be valued in a fixed space with a more explicit characterization.
Furthermore, we would need the bond price P; € (of ' H*)* = 0:H to be in a much smaller
space almost surely in order to construct the self-financing strategy.

Even if we knew that a; was in the domain of ¢} ! it would be unclear if the portfolio
¢ = o Loy agrees with the traders’ intuition, since the support of ¢; is interpreted as
the range of maturities of the bonds in the portfolio. We see that in order to construct a
reasonable hedging portfolio, we need to know some detailed information about the martingale
representation of the payout. In the classical Black-Scholes framework of a complete market
with finitely many tradable assets, the hedging portfolio of a contingent claim is expressed as
the gradient of the solution of a parabolic partial differential equation. Goldys and Musiela in
[12] extend this PDE approach to the bond market setting by finding conditions under which
the solution of the infinite dimensional PDE is differentiable. In section 5 we take a somewhat
different approach to construct the hedging portfolio by appealing to the Clark-Ocone formula
of Malliavin calculus.

Indeed, if we limit ourselves to payouts of the form & = g(Pr) we can find conditions on
the model paramaters {0 };>0 and the payout function ¢(-) under which there exists a unique
F*-valued hedging strategy. Furthermore, under assumptions often satisfied by models used
in practice, these conditions imply that the portfolio is confined to a small subspace of F™.

4. MALLIAVIN CALCULUS AND THE CLARK-OCONE FORMULA

For a Fp-measurable random variable £ € L?(£; R), the martingale representation theorem
guarantees the existence of an H*-valued integrand such that é can be written as a stochastic
integral with respect to the Wiener process. For the financial application motivating this
article, it is necessary to have an explicit formula for this integrand, expressed in terms of
¢. Fortunately, under a differentiability assumption on £ , the Clark-Ocone formula provides
such an expression. In order to state this useful result, we need to first introduce the Malliavin
derivative operator and list some of its properties. The material of this section can be found
in Nualart’s book [22] when the Hilbert spaces are finite dimensional.

The Malliavian derivative is a linear map from a space of random variables to a space
of processes. We are concerned with the case where the random variables are elements of
L?(©;G) in which case the processes are elements L?([0,T] x €; Lys(H, G)), where G is a
real separable Hilbert space.
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Being a derivative, it is not surprising that this operator is unbounded on L?(Q;G). We
take the approach of defining it first on a core and then extending the definition to the closure
of this set in the graph norm topology.

We now define the Malliavin derivative operator D on this set.

Definition 4.1. The random variables X € L?(Q; G) of the form:

(21) X:ﬁ(/0T<h§,dwt>H,...,/OT<hy,th)H>

where ht...h"™ € L*([0,T); H*) are deterministic, and where the differentiable function k :
R™ — G is such that

(22) )
=1

for some p,C > 0, and for all x = (x1,...,x,) € R™ are called smooth, and their Malliavin

derivatives are deﬁned to be
P a : 0 t t/)Hy+ -+ 0 t t/H

Note that the process { D¢ X };¢(o,7) is valued in Lys(H, G) and that it satisfies:

T
E{/O HDtXH%HS(H’G)dt} < 400

because of the growth condition (22) on the partial derivatives of x and the fact that Gaussian
random variables have moments of all orders. It turns out that the Malliavin derivative D
as defined above as a densely defined operator from L?(€; G) into L?([0,T] x Q; Lus(H, G))
is closable. We use the same notation D for its closure, and in particular, Definition 4.1 can
be extended into the more practical one:

Definition 4.2. If X is the L?(, G) limit of a sequence { X, },>1 of smooth random variables
such that {DX,}n>1 converges in L*([0,T] x Q; Lus(H, G)) we define
DX = lim DX,.

n—oo
Remark 7 (Measurability). The Malliavin derivative DX is defined to be an element of
L2([0,T] x ; Lys(H, G)). Strictly speaking, it is an equivalence class of functions of (¢,w)
which agree Lebjg 71 X Q almost surely. By Fubini’s theorem we can find a representative of
DX such that for every ¢ € [0,T] we have that D;X is measurable in w and for every w € Q
we have that DX (w) is measurable in t. We choose this representative to define DX.

Ok (x)
1 Po).
YD) <o)

)

G

We use the notation H!(G) to represent the subspace of L?(£2; G) where the derivative can
be defined by Definition 4.2. This subspace is a Hilbert space for the graph norm

T
11 @y = EOXI +E{ [ 1Dyt |

The following simple sufficient condition for Malliavin differentiability will be needed in
the sequel.
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Lemma 4.3. If X,, — X converge in L*(Q;G), then we have X € H'(G) whenever the
following boundedness condition is satisfied:

T
sp 2 { [ 1D 1 | < oo
n

Proof. The sequence {X,,} is bounded in H!(G), and hence, there exists a subsequence { X,,, }
that converges weakly in H!'(G). But since X,,, — X converges in L?({; G) we see that the
weak limit of {X,,, }x is X, implying that X € H}(G). O

Now we come to the Clark-Ocone formula, the crucial result that provides an explicit
martingale representation for random variables in H'(R) in terms of the Malliavin derivative.
A version of this formula for stronger differentiability assumptions is originally due to Clark
[5]. The formulation in terms of the Malliavin derivative is due to Ocone in [23].

Theorem 4.4 (Clark-Ocone formula). For every Fr measurable random variable X € H'(R)
we have the representation

T
X =E{X} +/ (E{D:X|F:}, dWi)
0

To prove this formula, we need the following integration by parts formula:

Lemma 4.5. Let {8 }1c0) be an adapted process in L*([0,T] x ; H) and let X € H'(R).

We have . .
e{ [ oot iy e {x [ ioawpa).

Proof of Lemma 4.5. First assume that X =k (fo (hi, dW)y, .. fo (R, dWi) g ) is a smooth

random variable. Note that conditional on F; the Wiener integral fo (hs,dWs)pr is a real

Gaussian random variable with mean fg (hs,dWs)g and variance ftT |hs||%.ds so that for

Fi-measurable 8 € L*(Q; H) we have
T T
E{/ (DX, B)rds ft} —E{X/ (6%, dWs) u ft}
t t

by definition of the Malliavin derivative for smooth random variables and the ordinary inte-
gration by parts formula.
Now assuming there exists F,-measurable 3; € L?(£2; H) such that 3; = Zi]io Lt b0, () Bs

we have
E{/OT<DtX,ﬁt>Hdt} - { { m (DX, 5Z>Hdt‘.7-'t}}
{

t1+1
E{ (67 ,th>Hdt‘fti}}

X/OT (B, dWy) }

E

- 19-

7

—N— <

= E
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Since the smooth random variables are dense in H'(R) and the simple integrands are dense
in L2([0,T] x Q; H*) a straightforward limiting procedure completes the proof. O

Proof of Theorem 4.4. Since X € L?(2;R), by the martingale representation theorem there
exists an adapted process {ov }yepo. 1) € L*(€ x [0, T]; H*) such that

X =E{X}+ /OT<CYt,th>H

Without any loss of generality we can assume that E{X} = 0. Now let {3} be an
adapted measurable process in L?([0,T] x €; H). By Proposition 4.5 and Ito’s isometry we

have
E {/0T<Dth 5t>Hdt} E{/OT(atathM /OT(ﬁt*adWOH}

T
_ E{ / <at,ﬂt>Hdt}
0
implying

(23) E {/OTQt,det} —0

where Ay = Dy X — ;. The process {A¢}e(o,7) is in L2([0,T] x Q; H*) by assumption, but
it is not adapted to the filtration. Since the optional projection process {E{\|F¢}}icpo.1) 18
obviously adapted to the filtration, and since {A};cjo,r) is measurable and the filtration is
right continuous, we have that {E{\|F:}};c(o,7) is adapted and measurable. Letting f; =

E{\|F:} in (23) we get:
T
e{ [ 1B Rt =0
0

implying that oy = E{D;X|F;} for almost every (¢,w) as desired. O

—e

We close this section with two results that allow us to calculate explicit formula in what
follows. The first one is a generalization of the chain rule in the spirit of Proposition 1.2.3 of
[22]:

Proposition 4.6. Given a random variable X € H'(F) and a function x : F — G such that

I6(2) = sl < Cllz —yllr

for all z,y € F and some C > 0. Then x(X) € H'(G) and there exists a random variable
V(X) satisfying the bound ||Vr(X)| z(rq) < C almost surely and such that

Dk(X) = Vk(X)DX.

Remark 8. We are not claiming that the function x is differentiable. Instead, we merely
state that the random variable Vk(X) plays the role of a derivative in the sense of the
chain rule. Of course if k is Fréchet differentiable, then Vk(X) is its Fréchet derivative
evaluated at X. In Section 5 we use this result in the cases where kK = g : F' — R and when
k=o(t,"): F— Lys(H,F).
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Proof. According to Lemma 4.3 in order to show that x(X) € H'(G) we need only find a se-
quence of functions {ky, },, such that x,(X) — x(X) strongly in L?(Q; F') and that {Dx,,(X)},
is bounded in L2([0,7] x Q; H*).

Let {¢'}2°, be a basis of F and let {r’}?_; be a basis for R". Let

n n
by, = Zei @r' € L(R™, F) and £, = Zri ®e* € L(F,R").
i=1 =1
For every n let j, : R® — R be a twice differentiable positive bounded function supported on
the unit ball in R" and such that [, jn(2)dz = 1, and for every e > 0 define the approximate
identity j§ by j5(z) = € "jn(x/€). Set € = 1/n and choose k,, to be defined by the Bochner
integral

nle) = [ illa =ty = [ Gnltatn — L)y

n

Note that s, is differentiable and that

E { ([ st - ) - n(X)HGdy)Z}

o { ([ 50068 = Xl + i }

2C2E{||(Lnl), — X%} + 202 /n* =0

by the dominated convergence theorem. By the finite dimensional chain rule we have

Dial(X) = [ slny) ® (Visly - £,X)D6X)dy

IN

E{[l5(X) = mn(X)1%:}

IN

IN

where V is the gradient in R”, so that

T T
E{ / qun<X>||%HS(H,G>dt}é(ﬂE{ / HDtXH%Hs(H,F)dt}

and we can apply Lemma 4.3.

Finally, we note that V&, (X) is bounded in L*(£2; L(F,G)) and hence by the Banach-
Alaoglu Theorem there exists a subsequence {Vky, (X)}r and a random operator Vk(X)
such that

T T
E{/ trace(A¢Dikn, (X))dt} = E{/ trace(AtVnnk(X)DtX)dt}
0 0
T
— E{/ trace(AtV/i(X)DtX)dt}
0
for every A € L*([0,T] x €; Lus(F, H)). On the other hand,

E { /0 ! trace( A Dytin, (X))dt} —E { /0 ! trace(AtDtm(X))dt}

so that Dik(X) = Vk(X)D X as claimed. O
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The second result which we state without proof is the infinite dimensional analog of (1.46)
of [22].

Proposition 4.7. If the adapted continuous square integrable process {at}te[O,T] is such that
for all t € [0,T) the random variable oy € H*(Lys(H, F)) is differentiable, then

T T
Dt/ OéSdWS = Oy +/ DtOZSdWS
0 t

Note that when o« and W are scalar, the above result is true without assuming that « is
adapted provided the stochastic integral is interpreted as a Skorohod integral instead of a It6
integral. We shall not need such a general form of this result.

5. HEDGING STRATEGIES FOR LIPSCHITZ CLAIMS

In this section we find explicit hedging strategies for an important class of contingent
claims, and we characterize their properties. The results presented here are new. First we
show that under natural conditions on the discounted bond price model and the payout
function of the option, the hedging strategy is bounded in the F*-norm, effectively avoiding
the difficulties mentioned in Section 3 for hedging generic claims. Furthermore, we prove
a general lemma which can be used to show that the hedging strategy is often confined to
a small subspace of F*. We apply this lemma to a model which has the essential features
of a classical HIM model, yet exhibits some notion of maturity specific risk. For this class
of models we show that the counter-intuitive strategies which are possible for finite factor
models are not allowed.

For the remainder of this article we make the following standing assumption:

Assumption 5.1. The contingent claim is European with expiration T and payout given by
& =g(Pr). The payout function g : F — R is such that that the modified function §: F — R
given by g(x) = x(T)g(xz/z(T)) satisfies the Lipschitz bound

(24) 19(z) = g(y)| < Cillz —yllr

for all x;y € F and some constant C1 > 0. Furthermore, for all 1,20 € F such that
x1(s) = x2(s) for all s > T, we have:

(25) g(x1) = g(x2).

We remark that the condition (25) implies that the payout is insensitive to the part of the
price curve corresponding to expired bonds. We also note that the Lipschitz assumption is
reasonable. For instance the payout function of a call option with expiration T and strike
K on a bond with maturity 77 > T is g(x) = (z(T}) — K)* and thus the modified payout
function is given by

T +
i) =o(r) (24 ~ ) = (a) ~ Katr)?

which is clearly Lipschitz since the point evaluations dr and d7, are bounded linear functions
on F.
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If we can prove that Pr € H'(F), condition (24) and Proposition 4.6 imply that the
Clark-Ocone formula applies. Our aim is to find an explicit representation of the Malliavin
derivative D Pr so that we can characterize the strategy that hedges &.

For the remainder of this article we work in a Markovian setting. The dynamics of the
discounted bond prices will be given by Assumption 3.3 with the added provision that oy =
o(t, P) for all £ > 0. We list here the relevant assumptions on o(-,-).

Assumption 5.2. Let o(-,-) : Ry x F — Lys(H, F2) be such that o(-,x) is continuous for
all z € F such that o(t,0) = 0 for all t > 0, and such that we have the Lipschitz bound

(26) lo(t,2) = ot )l cas.r) < Cllz = ylr

forallt > 0, z,y € F and some C > 0. We assume that for every x1,x9 € F such that
x1(s) = xa(s) for all s >t we have

(27) o(t,x1) = o(t,x2).

Remark 9. Recall we work in the space F2 of differentiable functions described in section 3
so that we can speak sensibly of interest rates, and in particular the bond price process is an
1t6 process. The conditions
lo(t, )"0 - < Kla(s)]
lo(t, ) — ot y)lleys(rz) < Kllz—yllr
are sufficient to ensure that the bond prices are positive and condition (15) of Assumption

3.3 is satisfied. We will not make use of such conditions in the remainder of this paper.

However, we are interested in hedging portfolios valued in the dual space F* = F!*, so we

will explicitly make use of condition (26). Condition (27) implies that the volatility of the
discounted prices is insensitive to the part of the curve corresponding to expired bonds.

First, we show that the Malliavin derivative of the discounted bond price exists.
Lemma 5.3. For all T >0 we have that Pr € H'(F).

Proof. By Lemma 4.3 we need only to find a sequence of Malliavin differentiable random
elements, say ]5%‘, which converge toward Pr in L?(); F), and such that Dﬁ}‘ is bounded
in L2([0,7] x Q; Lys(H, F)). A natural candidate is provided by the elements of the Picard
iteration scheme. Indeed, applying Proposition 4.7 to the n-th step of the scheme we obtain:

T
DiP} = o(PP 1) + / Dyog (P dw,
t

Now, since for all s € [0, 7] the function o(s,-) is Lipschitz, we can apply Proposition 4.6 and
conclude by induction that Pr € H!(F). Indeed we have

E{[|DeP | 2y 1,7y}

T
= E{llo(t, P Nz} +E {/t [ Dio(s, Psn_l)||%Hs(H7£HS(H,F))dS}

IN

T
CPE(| P13} + CPE { / ||DtP:—1H%HS<H,F>ds} |
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Since the Picard iterates satisfy the bound
~ ~ 2
E{IPEHEY < (1Pl Fe
for all n > 1 we have
E{I DeP} 2, (r,m) ) < C2ll PollBe™
by Gronwall’s inequality. This completes the proof. O

Since we know that P, € H'(F) for all t > 0 we can conclude by Proposition 4.6 that
for o(t, P,) € H'(Lus(H, F)), and by Proposition 4.7 we see that {D;Ps}sc 1) satisfies the
linear equation

(28) DiP, = oy + / VouDiP,dW,.
t

Note that for all ¢ > 0 the random variable Vo, takes values in L(F, Lus(H, F)), and that
for each s,t we have Dy P, € Lys(H, F), so that Vo,D; P, € Lys(H, Lus(H, F)).

We now appeal to Skorohod’s theory of strong random operators as developed in [24]. A
strong random operator from F into G is a G-valued stochastic process {Z;(x) }+>0,zcr which

is linear in = € F. If such a process is adapted (in an obvious sense) and if for example
G = Lys(H, F), then by setting:

[ / 2, dWS] (2) = / ' Zu(w)aw,

we define a strong random operator ff Zs-dWson F (i.e. from F into F.) In particular, if for
each t > 0, {Y;s(x)}s>t2er is a strong random operator on F, then {Vo,Y; o(2)} s>t zer is a
strong random operator from F' into Lys(H, F'). Then with this definition of the integrand,

the stochastic integral fab VoY s - dWs is a strong operator on F'. In this sense of equality of
strong random operators on F' we would like to interpret the stochastic differential equation:

(20) Vie=I+ [ VouXi,-dw,
t

where I € L(F, F) is the identity. We are interested in solving such an equation because the
solution process (if any) is in some sense the derivative of Pr with respect to P.. Moreover,
the Malliavin derivative of the terminal underlying price should be related to this new process
by

(30) DPr =Y, ro;.
We settle the existence of a solution for this equation in the following proposition.

Proposition 5.4. Under the Lipschitz assumption (26), the linear equation
S
Y;f,s =1 +/ Vo’uY;’u - dWy
t

has a strong L(F, F')-valued martingale solution {Yy s} seje ) Furthermore we have the bound

(31) E{|[Yyra|7lFe} < e T
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Proof. We prove that a Picard iteration scheme converges. Let Yt?s = [ for s € [t,T] and let
S
YZ?_I = I+/ VUUYZZ - dW,
t

Using the Lipschitz assumption and the martingale inequality we have for every x € F

B{ sup ||V — ¥/ )al FIF)
7}

s€,T)

T
AE { | IVo 0= Vi el ds
t

IA

T
< 4c? /t E{[|(Y7, — Y, )37 b

So by induction, we have

c2(p — )"
E{ sup (V75— Vi)al3 A} < a3 Sl ="
s€t,T) n.

proving by a Borel-Cantelli lemma that the sequence of processes {Y;"}, converges almost
surely toward a process which is continuous in the strong topology of L(F, F'). Furthermore

we have:
ft}

which implies the desired bound by Gronwall’s inequality. O

E{||V: sz|| %] F:}

S
||:c|%+E{ / V0wVl oy

IN

S
|3 + C? / E{||Ysuz |31} du

We assume that g is Lipschitz, so we have the chain rule
Dg(Pr) = V§(Pr)DPr

where DPr € Lys(H, F) and V§(Pr) € L(F,R) = F*.
We now use the Clark-Ocone formula, the chain rule, and equation (30) to identify a
candidate pre-hedging strategy from the following formal calculation :

T
§(Pr) = E{G(Pr)}+ /O (E{V3(Pr)|F}, VigowdWe) p

T
— E@(P) + | EYVIPIFY P
0
Proposition 5.5. The process {¢t}te[0,T] given by the weak integral

¢ = B{Y; "7V §(Pr)|F:}

is a pre-hedging strategy for the claim g(Pr).
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Remark 10. By the formal calculation above, we only need to show that ¢; € 7}, ) for almost
all (t,w) € [0,T] x Q. First, we note that ¢ is bounded in F* uniformly in ¢ € [0, T] almost
surely. Indeed, we have

¢elre = sup E{(V3(Pr),Yiraz)r|Fi}

[zl r<1

sup CLE{||Yira|3| 7}/
lellp<1

< 0 CHT-0/2

by the Lipschitz bound (24) and the exponential growth bound (31). In fact we have ¢; €
Tjt,00) for almost all (t,w) € [0,T] x  thanks to the following lemma:

IN

Lemma 5.6. Let {S;}1>0 be a decreasing family of closed subspaces of F* such that for s <t
we have 8 C Ss and such that 0, € Sy for all t € [0,T].
Suppose

e the payout function g(-) : F — R is such that for all x € F and all y € S% we have

(32) g9(z +y) = g(z).
o the volatility function o(-,-) : Ry X F' — Lus(H, F) is such that for each t > 0 and
alz € F, y € S*, and p € S; we have

(33) olt,x+y)'p=o0o(t ) pn.

Then for almost all (t,w) € [0,T] x  the random variable ¢y = IE{Ytj‘Tvg(PT)\Ft} is valued
m St.

Proof of Lemma 5.6. First we prove that
(34) (V§(X),y)r =0 for any X € HY(F) and y € St

where Vg(X) is the bounded F* valued random variable such that Dg(X) = Vg(X)DX.
Following the proof of Proposition 4.6 we let g, (z) be given by

i) = [ i )il

and recall that we have that §,(X) converges strongly to g(X), and that there exists a
subsequence such that Vg, (X) converges to Vg(X) in the weak-* topology of L*°(Q, F*).
Let y € S%‘ and notice

(Va0w)el = | [ (Tt o). )l

< [ g2 ) =0
- Rn h—0

h
Cil|(I — 6, tn)yllF — 0.

Jr(u — px)du

n

g(lyu+ htylny) — §(Lu + hy)
h

Jr(u— lpx)du

n

IN
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Similarly, we note that equation (33) implies that for all y € Si* and u € S; we have
(Vo(t, X)y)*u = 0 and hence Vo(t, X) € L(Si+, Lus(H, S;H)).

The identity I € L(F,F) obviously takes Sj- into Sj* and hence equation (29) has the
strong operator solution {Y; s},e 7] valued in £(Si,Si). Thus for every y € S we have

(b,9)r = E{(V3(Pr),Yiry)r|Fi} =0
by equation (34), implying ¢; € Si+ = S; as desired. O

Proof of Proposition 5.5. Apply Lemma 5.6 with the decreasing family of subspaces given by
St = Tjt,)- Note that the hypothesis are fulfilled since equation (27) implies

o(t,z+y)=o(t,z) for all y € T[éoo)

and by assumption (25) we have §(x +y) = () for all y € T+ O

[T,00)

Revisiting the motivating example of Section 3, for any contingent claim maturing at
time T, we denote by T" > T the longest maturity of the bonds underlying the claim. The
following theorem shows that under the appropriate assumptions in the case of infinite factor
HJM models the bonds in the hedging strategy for this claim have maturities less than or
equal to T”. This intuitively appealing result is inspired by classical HJM models of the type

dP,(s) = P,(s) </s fi(ft(U))dU,th>Rd

t

for a deterministic function x : R — RY Note for these models the volatility o}d, of the
A
B (u)

discounted bond price depends only on the forward rates fi(u) = for u € [t, s].

Theorem 5.7. Suppose that for every s >t we have
o(t,z1)"0s = o(t,z2)%0s

whenever x1(u) = xo(u) for all u € [t,s]. If the payout function g has the property that there
exists a T > T such that g(x1) = g(x2) for all x1,x2 € F such that x1(s) = xa(s) for all
s € [T,T'], then there exists a hedging strategy {@i}icpo,r that replicates the payout g(Pr)
and it is such that ¢ € Ty ) for almost all (t,w) € [0,T] x Q.

Furthermore, if for all x € F and t > 0 we have

ker(o(t,2)") = Toy

then the hedging strategy is unique.

Proof. Apply Lemma 5.6 with S; = 7, 1) to the pre-hedging strategy given by
¢ = B{Y; 7V §(Pr)|F:}.

Since ¢ € 7j; 1) we have the self-financing hedging strategy ¢ = ¢y + (Vi — (¢4, Pr) r)0y is
also valued in 7, 7. Uniqueness follows from Proposition 3.7.
O
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This theorem implies that hedging strategies for this class of contingent claims have the
property that the support of the portfolio at almost all times is confined to an interval.
Moreover, the right end point of this interval is given by the longest maturity of the bonds
underlying the claim, confirming our intuition about maturity specific risk.

Acknowledgements: The authors would like to thank the referee for a careful reading of the
manuscript and for several suggestions which improved the presentation of the final version of
the paper. Also we would like to mention that, after the completion of this work, we received
a copy of the preprint [10] in which a related optimal bond portfolio problem is solved for a
volatility (in our notation) of the form 070, = P;(s)y;(s), where ~,(s) € H* is deterministic
for each s,t € Ry and H is infinite dimensional.
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