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ABSTRACT. We consider the problem of pricing a derivative contract written on the precipitation at
a specific location during a given period of time. We propose a jump Markov process model for the
stochastic dynamics of the underlying precipitation. Our model is based on pulse Poisson process
models widely used in hydrology. We develop maximum likelihood parameter estimation procedures
to fit our model to rainfall data. In order to price derivatives, we assume the existence of a traded asset
whose price dynamics are influenced by the precipitation at the location in question, and we rely on the
utility indifference approach. Two utility functions are considered: exponential and power utility. We
derive explicit solutions for the exponential and bounds for the power utility.

Finally, we apply our model fitting and pricing techniques to a sample rainfall contract in Norway.

1. I NTRODUCTION

In this paper we concentrate on a specific class of derivatives written on non-traded assets, pre-
cipitation derivatives. They are part of a larger group ofweather derivativesused for weather risk
mitigation in a wide array of businesses ranging from agriculture to the entertainment industry.

Pricing of precipitation derivatives poses a great challenge compared to the other types of weather
derivatives, let alone classical equity derivatives. From a practical view point, precipitation can be
quite a localized phenomenon. Theoretical difficulties lie in the fact that, despite the existence of
intensive hydrological research has been conducted in this area for more than 40 years, it is not
straightforward to develop a tractable mathematical model accurately representing the reality of the
precipitation at a specific location.

Moreover, once a model for the precipitation has been established, a second source of difficulty
arises: it is necessary to develop a pricing methodology which can incorporate the idiosyncracies
of the underlying precipitation process. Since precipitation cannot be traded directly, the market
model is most likely to be incomplete. Instead of searching for an appropriate risk neutral probability
measure, we follow the utility indifference pricing approach to derive buyer and seller’s prices. This
valuation method can be described in a few sentences as follows. Let us consider an economic agent
whose time-invariant risk preferences are given by a utility function. Given an initial wealth, she
purchases (resp. sells) a derivative written on a non-traded asset, and she uses her endowment after
the transaction to set up a portfolio in a bank account and shares of a traded asset and follow a self-
financing strategy, re-balancing her portfolio in continuous time. She searches for an optimal strategy
which maximizes her expected utility of wealth at maturity of the derivative. The expected utility of
terminal wealth can also be computed had she not entered the transaction. The buyer’s (resp. seller’s)
price of the derivative is set in such a way as to make the agent indifferent between the two scenarios
- hence the nameutility indifference pricinggiven to this valuation method.
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The topic of utility indifference pricing was first introduced by Hodges and Neuberger in the early
nineties, but it had to wait almost an entire decade to catch on. It was rediscovered by Davis [?]
and used by Henderson [?, ?], and Musiela and Zariphopoulou [?, ?, ?] who considered the case of
a derivative written on a non-traded asset whose price dynamics are given by a geometric Brown-
ian motion. Most of these contributions are restricted to the case of the exponential utility function,
for in the case of the power utility, one is only able to obtain bounds on the prices. More gener-
ally, Zariphopoulou considers in ([?]) the problem of utility optimization when the influence of the
non-traded asset on the traded asset comes through both the correlation between the driving Wiener
processes and the coefficients of the price process SDE. She uses power utility and obtains results for
the scenario without the derivative present. Finally, we mention that Musiela and Zariphopoulou gave
an abstract form of the indifference pricing paradigm on a tree, and that Carmona and Danilova ([?])
derived the indifference price for a claim on a non-traded quantity (temperature) whose dynamics is
driven by a diffusion process when allowed to invest in traded assets whose dynamics are given by
diffusions whose coefficients depend upon the non-traded asset, and when the agent has exponential
utility function. The interested reader is referred to the forthcoming book [?] for a detailed account
of the state of the art in indifference pricing.

The paper is naturally divided into three parts. In the first part, we develop a model for the precipi-
tation process, and we find maximum likelihood estimators for its parameters. In the second part, we
adapt utility indifference pricing to a class of security price models including the precipitation model
from part one. We consider exponential and power utility functions. For the exponential utility we
obtain an explicit formula for the price of the derivative, while for the power utility, we can only prove
lower and an upper bounds. Finally, we conclude the paper with the detailed analysis of a practical ex-
ample. Except for the highly publicized example of the three year deal offered by an amusement park
in Paris, not much public information is available on the terms and conditions of precipitation options
and their prices. The example we propose in the last section of the paper is made up. However, we
used our personal experience to set it up to make it as realistic as possible.

2. M ODELING RAINFALL DYNAMICS

2.1. Precipitation Data. Data serving as underlying for precipitation contracts come from meteoro-
logical stations around the globe. Although made in discrete time intervals, the observations come
close enough to complete continuous time observation of the rainfall intensity. A period of rainfall,
when its intensity stays constant, can be described by a pair(ξ, β) of real numbers. Hereβ > 0 is the
length of time for which the rainfall intensity stays constant and equal toξ > 0. Let us denoteM the
sequence{(ξi, βi+1)}i=1,2,3,...,n of pairs describing the consecutive periods of constant rainfall inten-
sity. The sequenceM comprises the statistical data for which we want to formulate a parsimonious
yet well-fitting probabilistic model.

Precipitation has been the subject of intensive research for years. Several types of models have
been developed [?], which can be divided into four categories:meteorological modelswhich seek
to capture the dynamics of the large scale atmospheric processes controlling precipitation [?], multi-
scale modelswhich use multifractal cascades to describe rainfall [?, ?], statistical modelswhich use
purely statistical techniques to fit the rainfall data to well known distribution types with little emphasis
on underlying physical processes [?] and laststochastic processes based modelswhich try to describe
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the rainfall behavior by a small set of physically meaningful parameters driving a stochastic process.
They were introduced by LeCam in 1961 [?] and further developed by Rodriguez-Iturbe et al. [?, ?].

2.2. Precipitation Model. A version of the Bartlett-Lewis Poisson-cluster (BLPC) process model of
Rodriguez-Iturbe, Cox and Isham [?] forms the basis of the model which we propose. In this model,
rainfall is assumed to be composed ofstormswhich are in turn composed of rainfallcells. The storms
arrive according to a Poisson process; within each storm, cells arrive according to another Poisson
process and the duration of the activity of the storm is random. Each cell has random duration and
random depth. Both storms and rain-cells can overlap. If two or more cells overlap their depths
add up. The best data-fitting version of the model uses exponential distributions for both the storm
and cell duration ([?, ?]). Although the BLPC model is physically intuitive, methods for fitting its
parameters are quite limited and predominantly not very stable. The most widely used approach is
based on ’method-of-moments’ type fitting as, for example, in Rodriguez-Iturbe et al. ([?]). In what
follows, we reformulate the Rodriguez-Iturbe model, and we explain why the new model keeps all
the important features of the old one, while allowing for maximum likelihood estimation (MLE for
short) of parameters. Only then, do we state a rigorous definition of the new model.

Main obstacles to application of MLE to BLPCs model are the ”physically appealing but mathe-
matically intractable dependencies involved between the rainfall intensities at different time points,”
[?]. Although intractable, the model is very close to being Markovian. There are two properties which
compromise the Markov property: first, the rectangular shape of the cells implies the memory of the
depths of all active cells at any time and second, the rate of cell extinction at a given time depends
on the number of active cells which is unobservable. The first issue can be dealt with in the follow-
ing way: at a cell arrival time, the rainfall process jumps up by a random amount and at the cell’s
extinction time, it jumps down by a random amount with appropriate distribution. If on average the
jumps up are as large as the jumps down, one can call such a modified model a ’randomization’ of the
rectangular cell shape. There is one technical point to be addressed - the possibility of a jump to the
negative region. The second issue is also resolvable. The rate of extinction can be made dependent
on the instantaneous intensity of the rainfall and not the number of active cells. Again this can be
thought of as ”smoothing” of the Rodriguez-Iturbe BLPC model. It is noteworthy to realize that in
the case of deterministic cell depths, this approach is identical to the BLPC model mechanics.

We propose to model rainfall intensity within a single storm by a homogeneous jump Markov
process{Yt} whose infinitesimal generatorG is given by:

(1) [Gφ](x) =
∫

R+

(φ(y)− φ(x))A(x, y)ν(dy),

where:

A(x, y) = {λ1λue
−λu(y−x)1(x,∞)(y)

λ̄2(x)λde
−λd(x−y)1(0,x)(y) + λ̄2(x)e−λdx1{0}(y)}

with

(2) λ̄2(ξ) = 1(0,∞)(ξ)(λ
(I)
2 + λ

(II)
2 κ(ξ))
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whereν is Lebesgue’s measure on[0,∞) with an added unit point mass at0, andκ(ξ) is defined on
R+ and satisfiesκ(x) = x for 0 ≤ x ≤ K (for some largeK), it is bounded, it is3-times differen-

tiable,(∂/∂x)κ(x) > 0. The model is determined by the parameter vector(λ1, λ
(I)
2 , λ

(II)
2 , λu, λd) =

(θ1, θ2, θ3, θ4, θ5) = θ ∈ Θ = R5
+.

2.3. Maximum Likelihood Parameters Estimates. The advantage of having a Markovian model
for the single storm is the convenience of being able to write the likelihood function. As stated in
Ubsection 2.1, we observeM = {(ξi, βi+1)}i=1,...,n. For the continuous time processY , βi+1 > 0
is the sojourn time in stateξi > 0. M is an observation of the so called embedded Markov chain
corresponding to the continuous time processY (see [?]). The log-likelihood function (with respect
to the measureν) of a particularM is then:

L(M, θ) = ln

[
n−1∏
i=1

F (ξi, βi+1, ξi+1, θ)

]
,

where:

F (ξ, β, η, θ) = f(ξ, η, θ)q(ξ, θ)e−q(ξ,θ)β.

Intuitively, the value ofF is the product of two probabilities:q(ξ, θ)e−q(ξ,θ)β which is the density of
the sojourn timeβ of the jump Markov processY in the current stateξ, andf which is the density of
the distribution for the new stateη resulting from the next jump. For the storm model defined by (1):

f(ξ, η, θ) = 1[ξ,∞)(η)
(

λ1

λ1 + λ̄2(ξ)
λue

−λu(η−ξ)

)
(3)

+ 1(0,ξ)(η)
(

λ̄2(ξ)
λ1 + λ̄2(ξ)

λde
−λd(ξ−η)

)
+ 1{0}(η)

(
λ̄2(ξ)

λ1 + λ̄2(ξ)
e−λdξ

)
and:

q(ξ, θ) = λ1 + λ̄2(ξ)
We derive the values of the estimators by solving the system of first order conditions, and we check
that the obtained solutions are indeed the unique maximum likelihood estimators of the model pa-
rameters. DenoteU = {i; ξi+1 − ξi > 0}, D = {i : ξi+1 − ξi < 0}, D0 = {i : ξi+1 = 0},
Ξ+ = {i : ξi > 0}. The candidate estimators are then:

λd =
|D \D0|∑

i∈D(ξi − ξi+1)
, λ1 =

|U |∑n
i=2 βi

, λu =
|U |∑

i∈U (ξi+1 − ξi)

and the solution of the system of equations:∑
i∈D

1

λ
(I)
2 + λ

(II)
2 κ(ξi)

=
n∑

i=2

βi(4)

∑
i∈D

κ(ξi)

λ
(I)
2 + λ

(II)
2 κ(ξi)

=
n−1∑
i=1

κ(ξi)βi+1(5)

The following proposition states the uniqueness of the estimates forλ
(I)
2 andλ(II)

2 .
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Proposition 2.1. For any realization ofM , if the setD is non-empty and the system of equations (4)
and (5) has a solution, then it is unique.

Proof. If we use the notationB =
∑n

i=2 βi, andC =
∑n−1

i=1 κ(ξi)βi, we get:

Φ(a, b) =
∑
i∈D

1
a+ bκ(ξi)

−B a, b > 0(6)

Ψ(a, b) =
∑
i∈D

κ(ξi)
a+ bκ(ξi)

− C a, b > 0.(7)

SinceD is non-empty, and since for everyi in D ξi > 0, the functionΦ is strictly decreasing
both in a and b. Therefore the equationΦ(a, b) = 0 defines an implicit functiona = a(b) for
b ∈

(
0, 1

B

∑
i∈D κ(ξi)

−1
)

which is smooth and:

a′(b) = −∂Φ/∂b
∂Φ/∂a

= −
∑

i∈D
κ(ξi)

(a(b)+bκ(ξi))2∑
i∈D

1
(a(b)+bκ(ξi))2

.

Now, let us defineg(b) = Ψ(a(b), b). g is only well-defined forb ∈
(
0, B−1

∑
i∈D κ(ξi)

−1
)
. The

statement of the proposition is equivalent to saying that ifg(b) = 0 has a solution, then it is unique.
It is easy to see thatg is smooth. To show the uniqueness we prove thatg′ < 0, and thusg is strictly
decreasing:

g′(b) =
∑
i∈D

−κ(ξi)
(a(b) + bκ(ξi))2

(a′(b) + κ(ξi))

=

(∑
i∈D

−κ(ξi)
(a(b) + bκ(ξi))2

)∑
i∈D

−κ(ξi)
(a(b)+bκ(ξi))2∑

i∈D
1

(a(b)+bκ(ξi))2

−
∑
i∈D

κ(ξi)2

(a(b) + bκ(ξi))2

=

(∑
i∈D

κ(ξi)
(a(b)+bκ(ξi))2

)2
−
(∑

i∈D
κ(ξi)

2

(a(b)+bκ(ξi))2

)(∑
i∈D

1
(a(b)+bκ(ξi))2

)
∑

i∈D
1

(a(b)+bκ(ξi))2

.

The sign of the derivative only depends on the numerator since the denominator is positive. So we
drop the denominator:(∑

i∈D

κ(ξi)
(a(b) + bκ(ξj))2

)2

−

(∑
i∈D

κ(ξi)2

(a(b) + bκ(ξj))2

)(∑
i∈D

1
(a(b) + bκ(ξj))2

)

=
∑
ij

κ(ξi)κ(ξj)− κ(ξi)2

(a(b) + bκ(ξi))2(a(b) + bκ(ξj))2
=
∑
i<j

2κ(ξi)κ(ξj)− κ(ξi)2 − κ(ξj)2

(a(b) + bκ(ξi))2(a(b) + bκ(ξj))2

= −
∑
i<j

(κ(ξi)− κ(ξj))2

(a(b) + bκ(ξi))2(a(b) + bκ(ξj))2

< 0. �

To establish that the above estimators are consistent maximum likelihood estimators of the true
model parameters, we need to verify certain smoothness properties of the transition density of the
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imbedded Markov chain for the processY in order to use the following theorem ([?]) of Billingsley
which we state for the sake of completeness.

Theorem 2.2(Billingsley). Suppose that the Markov process{Yt} defined by its infinitesimal gener-
ator (1),f , q defined by (3) and the parameter spaceΘ satisfy the following conditions:

(1) P (Yt+s = x|Yt = x) is a continuous function ofs for everyx and t, the sample paths ofYt

are right-continuous andq(ξ, θ) is a bounded function for anyθ ∈ Θ.
(2) For anyξ, the set ofη for whichf(ξ, η, θ) > 0 does not depend onθ.
(3) For anyξ, β andη theF (ξ, β, η, θ) (and thusG(ξ, β, η, θ) = lnF (ξ, η, θ)) has continuous

third order partial derivatives throughoutΘ.
(4) For anyθ ∈ Θ there is a neighborhoodN of θ such that for any three parametersu, v, w and

any stateξ: ∫ ∫
R+×R+

sup
θ′∈N

|Fu(ξ, β, η, θ′)|dηdβ < ∞(8) ∫ ∫
R+×R+

sup
θ′∈N

|Fuv(ξ, β, η, θ′)|dηdβ < ∞(9)

Eθ[ sup
θ′∈N

|Guvw(z1, ρ2, z2, θ
′)|] < ∞(10)

(11)

whereFu, Fuv, Fuvw denote the first, second and third order partial derivatives with respect
to parametersθu, θv, θw and z1 is a random variable with the stationary distributionπθ

of the Markov chain{ξ1, ξ2, ξ3, . . . } and the conditional distribution of(ρ2, z2) givenz1 is
determined by its densityF (z1, ρ2, z2, θ).

(5) There existsδ > 0 such that for allu, Eθ[|Gu(z1, ρ2, z2, θ)|(2+δ)] < ∞ and σuv(θ) de-
fined byσuv(θ) = Eθ[Gu(z1, ρ2, z2, θ)Gv(z1, ρ2, z2, θ)] form a non-singular matrixσ(θ) =
(σuv(θ)).

(6) For eachθ ∈ Θ, there is exactly one stationary distributionπθ(·) for the imbedded Markov
process{ξn}, andπθ(ξ, ·) � πθ(·) for eachξ ∈ R+.

and thatθ0 ∈ Θ is the true value of the parameter vector. Then there exists a solutionθ̂ of∂L/∂θ = 0
which gives a consistent estimate ofθ0. If y(t) is a random vector with components

yu = n−
1
2

n∑
k=1

Gu(ξk, ξk+1, βk+1, θ
0), u = 1, . . . , r

andl(t) is the random vector with componentslu(t) = n
1
2 (θ̂u − θ0

u), u = 1, . . . , r then asn→∞
y(t) L→ N (0, σ(θ0)), l(t) L→ N (0, σ(θ0)−1) ,2[L(θ̂)− L(θ0)] L→ χ2

r

We check that the conditions of the above theorem are satisfied in the present situation.
� Condition (1).λ̄2 is bounded, therefore condition 1 is easily checked.
� Condition (2). It is easily checked because for everyθ ∈ Θ the{η; f(ξ, η, θ) > 0} = R+.
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� Condition (3). We can rewrite the functionF (ξ, β, η, θ) as a function of only the parameter
vectorθ as follows:

(12) F (θ) =


λ̄2(ξ)e−λdξe−(λ1+λ̄2(ξ))β ; η = 0
λ̄2(ξ)λde

−λd(ξ−η)e−(λ1+λ̄2(ξ))β; 0 < η < ξ

λ1λue
−λu(η−ξ)e−(λ1+λ̄2(ξ))β ; ξ ≤ η

Now it is easy to see thatF possesses partial derivatives of order three becauseλ̄2 does.
� Condition (4). The first two integrability conditions are easy to see from the expression (12).

To obtain the required integrability we needFu (Fuv) to be bounded inη for η < ξ and integrable
in for η ≥ ξ. (We can first integrate w.r. toβ.) Boundedness is apparent because of continuity of
the derivatives. The integrability follows from the fact that forη ≥ ξ theFu (Fuv) can be written
as:Fu(η, β) = h(η, β)e−aη−bβ wherea, b > 0 andh(η, β) isO(ηnβm) for some integersn,m. To
check the finiteness of the expectation we prove more, namely thatGuvw is bounded almost surely.
G can be written as:

(13) G(ξ, β, η, θ) =

 ln λ̄2(ξ)− λdξ − (λ1 + λ̄2(ξ))β; η = 0
ln λ̄2(ξ) + lnλd − λd(ξ − η)− (λ1 + λ̄2(ξ))β; 0 < η < ξ
lnλ1 + lnλu − λu(η − ξ)− (λ1 + λ̄2(ξ))β; ξ ≤ η

It is clear that only very few of the third order derivatives are non-zero. NamelyGλ3
1

= 2
λ3
1
1{η≥ξ},

Gλ3
d

= 2
λ3

d
1{0<η<ξ}, Gλ3

u
= 2

λ3
u
1{η≥ξ} and mixed derivatives with respect toλ(I)

2 andλ(II)
2 for

0 < η < ξ. We will denoteGij = G
(λ

(I)
2 )i(λ

(II)
2 )j . ThenG21 = 2κ(ξ)

λ̄2(ξ)3
, G30 = 2

λ̄2(ξ)3
, G12 = 2κ(ξ)2

λ̄2(ξ)3
,

G03 = 2κ(ξ)3

λ̄2(ξ)3
. Since the former are constant and the latter are bounded for allξ, η, β they satisfy the

condition 3.
� Condition (5) is satisfied as long as the following conditions hold true for someδ > 0

Eθ[|ρ2|2+δ] < ∞,(14)

Eθ[|ρ2z1|2+δ] < ∞,(15)

as can be seen from the special form of the partial derivatives ofG:

Gλ1 =
{

−β η < ξ
1
λ1
− β η ≥ ξ

, Gλd
=


−ξ η = 0

1
λd
− (ξ − η) η < ξ

0 η ≥ ξ

,

G
λ
(II)
2

=

{
κ(ξ)

λ̄2(ξ)
− κ(ξ)β η < ξ

−κ(ξ)β η ≥ ξ
, Gλu =

{
0 η < ξ

1
λu
− (η − ξ) η ≥ ξ

,

G
λ
(I)
2

=

{
1

λ̄2(ξ)
− β η < ξ

−β1{ξ>0} η ≥ ξ
.
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We first prove (14):

Eθ[|ρ2|(2+δ)] =
∫

Eθ[|ρ2|(2+δ)|z1 = z]πθ(dz)

≤
∫

Eθ[|ρ2|(2+δ)|z1 = 0]πθ(dz)

= Eθ[Λ
(2+δ)
1 ] <∞

whereΛ1 is an exponential random variable with parameterλ1. To prove (15) we notice that:

Eθ[|z1ρ2|(2+δ)] =
∫

Eθ[|zρ2|(2+δ)|z1 = z]πθ(dz)

≥
∫

Eθ[|zΛM |(2+δ)|z1 = z]πθ(dz)

= Eθ[Λ
(2+δ)
M ]Eθ[z

(2+δ)
1 ]

whereΛM is an exponential random variable with parameterλ1 + M independent ofz1. Similarly
we can show:

Eθ[|z1ρ2|(2+δ)] ≤ Eθ[Λ
(2+δ)
1 ]Eθ[z

(2+δ)
1 ].

Therefore it is enough (and necessary) to prove thatEθ[|z1|(2+δ)] < ∞. That however, follows from
equation (19) of Theorem 2.7 coupled with the drift condition (16) below. Since those imply that the
stationary distributionπθ possesses all moments.

We proceed to prove the non-singularity of the matrixσ. First we notice that

σuv = E[GuGv] = −E[Guv].

In this form it is easy to see that the matrixσ has only two non-zero off diagonal elements, namely

−E[G
λ
(II)
2 λ

(I)
2

] = −E[G
λ
(I)
2 λ

(II)
2

] = E[1{ξ>0}
κ(ξ)
λ̄2

2(ξ)
].

Thereforeσ is non-singular if and only if the matrix: E[1{ξ>0}
κ(ξ)2

λ̄2
2(ξ)

] E[1{ξ>0}
κ(ξ)

λ̄2
2(ξ)

]

E[1{ξ>0}
κ(ξ)

λ̄2
2(ξ)

] E[1{ξ>0}
1

λ̄2
2(ξ)

]


is non-singular. This is true since its determinant is positive for all values ofλ

(I)
2 , λ(II)

2 .
� Condition (6). We shall prove this condition in a series of statements. The main idea will be

to show that there exists a ”small” subset of the state space towards which the Markov chainξ has a
geometric drift. Because of Theorem 2.7, this implies the existence of a unique stationary distribution
of ξ. But first we recall a couple of standard definitions for the sake of definiteness.

Definition 2.3. LetP be the transition kernel of a Markov chain on a measurable space (X,B(X)).
A setC ∈ B(X) is calledsmall if there exists anm > 0, and a non-trivial measureνm onB(X),
such that for allx ∈ C,B ∈ B(X) Pm(x,B) ≥ νm(B).

Definition 2.4. The Markov chainξ is called strongly aperiodic if there exists aν1-small setA such
that ν1(A) > 0. Moreover, the chain is said to beφ-irreducible if for all x ∈ X and anyA ∈ B(X)
such thatφ(A) > 0, L(x,A) > 0 whereL(x,A) is the probability of reachingA starting fromx.
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Proposition 2.5. Any interval[0, x0] is a small set for the chainξ.

Proof. We first we show that{0} is a small set. Letm = 1 andν = P ξ(0, dy) = f(0, y)(dy + δ0).
By definition for anyA ∈ B(R), P ξ({0}, A) = ν. For anyx ∈ [0, x0], P ξ(x, {0}) > 0 therefore by
Proposition 5.2.4 [?] the interval[0, x0] is a small set too. �

Proposition 2.6. There existsx0 ≥ 0 such that the Markov chainξ has ageometric drifttowards
[0, x0] i.e. there existsβ > 0 andb <∞ such that for anyx > 0:

(16)
∫
P ξ(x, dy)V (y) ≤ (1− β)V (x) + b1[0,x0](x)

whereV (x) = eγx, 0 < γ < λu.

Proof. Let us denotep(x) = λ1

λ1+λ̄2(x)
, q(x) = λ̄2(x)

λ1+λ̄2(x)
We have:

P ξV =
∫ ∞

0
P ξ(x, dy)V (y) =

= p(x)
∫ ∞

x
λue

−λu(y−x)eγydy + q(x)
[∫ x

0
λde

−λd(x−y)eγydy + e−λdx

]
= p(x)

λu

λu − γ
eγx + q(x)

[
λd

λd + γ
+ e−x(λd+γ)

(
1− λd

λd + γ

)]
(17)

Let us denoteD(γ) = λd
λd+γ , U(γ) = λu

λu−γ . Recall that0 < γ < λu. Rearranging (17) we

obtainP ξV = eγx
{
p(x)U(γ) + q(x)

[
D(γ) + e−x(λd+γ)(1−D(γ))

]}
. DenotingA(x) = D(γ) +

e−x(λd+γ)(1−D(γ)) we get:

(18) P ξV = V (x)(p(x)U(γ) + q(x)A(x)) = V (x)[p(x)(U(γ)−A(x)) +A(x)]

Let us defineB(x) = 1−A(x)
Uγ−A(x) . B(x) is well defined for allx ≥ 0 because0 < A(x) ≤ 1 and

U(γ) > 1. Taking derivative we get:

B′(x) = A′(x)(1− U(γ)) = −(λd + γ)e−x(λd+γ(1−D(γ))(1− U(γ)) > 0.

ThusB(x) is an increasing function ofx. It is easy to see thatp(x) is a decreasing function ofx as
long asλ̄2(x) is increasing. Now:

B(γ) = limx→∞B(x) =
1−D(γ)

U(γ)−D(γ)
,

and

p(M) = limx→∞p(x) =
λ1

λ1 +M
.

For any0 < γ < λu we can chooseM large enough so that there isβ1 > 0 such thatp(M) <
B(γ)−β1. For any0 < β < β1 we can then definex0 = infH, H = {x ≥ 0 : p(x) < B(x)−β}.
H is non-empty and bounded from below by 0 so we havex0 ≥> 0. Forx > x0 we have in (18)
P ξV (x) < V (x)(1 − β), therefore the drift condition (16) holds. To show that it also holds for
0 ≤ x ≤ x0, we only need that[P ξV ](x) is bounded there, and this is easy to see from (18). �
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Theorem 2.7(Theorem 15.0.1 [?]). Suppose that the chainξ isψ-irreducible and strongly aperiodic.
Then the following conditions are equivalent:

(1) The chain is positive recurrent with invariant probability measureπ, and there exists some
ν-small setC with ψ(C) > 0, ρC < 1 andMC < ∞, andP∞(C) > 0 such that for all
x ∈ C: |Pn(x,C)− P∞(C)| ≤MCρ

n
C .

(2) There exists some small setC withψ(C) > 0 andκ > 1 such thatsupx∈C Ex [κτC ] <∞
(3) There exists a small setC, constantsb < ∞, β > 0 and a functionV ≥ 1 finite at some

x0 ∈ X satisfyingP ξV (x) ≤ (1− β)V (x) + b1C(x), x ∈ X
Any of the three conditions imply that the setSV = {x : V (x) < ∞} satisfiesP (x, SV ) = 1 for

all x ∈ SV . Hence, there exist constantsr > 1,R <∞ such that for anyx ∈ SV

(19)
∑

n

rn||Pn(x, ·)− π|| ≤ RV (x)

Since the Markov chainξ satisfies the general conditions of Theorem 2.7, and since condition (3)
is clearly satisfied, then (1) gives the existence of a unique stationary distributionπθ for eachθ ∈ Θ.

Proposition 2.8. For anyx ∈ X, πθ(x, ·) � πθ(·)

Proof. To prove the statement we only need to show that the measureµ = dy+δ0 onR+ is absolutely
continuous with respect toπθ sinceK has densityf with respect toµ.

First we show thatπθ({0}) > 0. Clearly, there is a setB ∈ B(X) such thatπθ(B) > 0. Let
xB = inf B <∞. Then

πθ({0}) ≥
∫

B
πθ(dx)πθ(x, {0}) ≥

∫
B
πθ(dx)e−λdxB ≥ e−λdxBπθ(B) > 0.

iF [a, b) is an arbitrary semi-open interval contained inR+ then

πθ([a, b)) ≥ πθ({0})
∫ b

a
λue

−λuydy > 0. �

Corollary 2.9. If the first order conditions have a unique solutionθ̂, and if the conditions of Theorem
2.2 are satisfied, then̂θ is a consistent MLE estimate of the true parameterθ0.

It is clear from the computations preceding Theorem (2.2) thatλ1, λu andλd are uniquely deter-
mined. Proposition 2.1 shows the uniqueness for the other parameters. One remaining open question
is whether the system (4) and (5) has a solution at all. It is addressed in the following proposition.

Proposition 2.10. With probability one, forn large enough, the system of equations (4) and (5) has
a solution.

Proof. To prove the statement we show thatlimn→∞g(0) > 0 almost surely. Since

g(0) =
B

|D|
∑
i∈D

κ(ξi)− C

=

(∑
i∈D

βi+1
1
|D|

∑
i∈D

κ(ξi)−
∑
i∈D

κ(ξi)βi+1

)
+

(∑
i∈U

βi+1
1
|D|

∑
i∈D

κ(ξi)−
∑
i∈U

κ(ξi)βi+1

)
,
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then the law of large numbers implies that:

lim
n→∞

1
|D|

(∑
i∈D

βi+1
1
|D|

∑
i∈D

κ(ξi)−
∑
i∈D

κ(ξi)βi+1

)
= E(ρ2|z1, z1 − z2 > 0)E(κ(z1)|z1 − z2 > 0)− E(ρ2|z1, z1 − z2 > 0)E(κ(z1)|z1 − z2 > 0) = 0

and

lim
n→∞

1
|U |

(∑
i∈U

βi+1
1
|D|

∑
i∈D

κ(ξi)−
∑
i∈U

κ(ξi)βi+1

)
= E(ρ2|z1, z1 − z2 < 0)E(κ(z1)|z1 − z2 > 0)− E(ρ2|z1, z1 − z2 < 0)E(κ(z1)|z1 − z2 < 0) > 0.

Combining the two we get:

lim
n→∞

g(0) = ∞ > 0. �

By this we have established that the MLE estimator which we derived, possesses all the properties
stated in theorem 2.2.

As mentioned above to get a complete rainfall intensity model the temporal dynamics of storms’
arrivals and durations has to be specified. The inspiration can be taken from the BLPC model which
assumes the storms arrive according to a Poisson process and last for a random (exponentially dis-
tributed) time; they can overlap. In the framework of the proposed model the random number of
storms active at each moment manifests itself in the random cell arrival rate. This can be captured
by replacing the constant cell arrival rate parameterλ1 by a stochastic process̄λ1. If the dynamics of
the rainfall process conditional on the realization of stochastic processλ̄1 is given by (1) then MLE
can be performed separately for parameters of the dynamics ofλ̄1. This gives us freedom to choose a
model forλ̄1 for which a valid estimation procedure (preferably MLE) is feasible.

A simple model whose MLE is well established is that of switching Markov process forλ̄1. The
state space consist of two states{0, λ1} with transition rates from statesqd, qp. The ML estimators
for λ1, qd, qp in this model have been presented in [?]. Assuming one observes the inter-arrival times
U = (U1, U2, . . . , Un) of a Cox processN directed by a switching Markov processM , the likelihood
function can be shown to have the following form:

L(U, λ1, qd, qp) =
n∏

i=1

f(Ui, λ1, qd, qp)

f(x, λ1, qd, qp) =
1

r2 − r1
[(qd + qp − r1)r1e−r1x − (qd + qp − r2)r2e−r2x]

r1 =
1
2
(qd + qp + λ1)−

√
1
4
(qd + qp + λ1)2 − l1qd

r2 =
1
2
(qd + qp + λ1) +

√
1
4
(qd + qp + λ1)2 − l1qd
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Once the parameters ofλ̄1 are estimated, the MLE method for estimating the remaining parameters
described above can be used, due to the separation properties of the likelihood function mentioned
above.

2.4. Comparison with Rodriguez-Iturbe’s Model. In this section we check numerically that our
Markov jump model (MJ) leads to properties quite analog to those of the widely accepted Poisson
pulse (PP) model of Rodriguez-Iturbe.

We choose three main characteristics of the precipitation to compare the two models: duration
of dry spells, duration of wet spells, and accumulated rainfall volume during a single wet spell. We
perform the comparison at the level of a single storm because that is where the models differ. We show
that the probability distributions of these quantities are very similar in both MJ and PP models. These
distributions are not explicitly known either for the PP model ([?]) or for our MJ model, therefore we
rely on Monte Carlo simulations to generate samples from the two models and compare the resulting
empirical distributions of the relevant characteristics.

In order to set up a reasonable comparison, we have to resolve the issue of the different parameter
sets driving the two models. This calibration can easily be done because the three parameters of
Rodriguez-Iturbe modelλ - cells arrival rate,µx - average cell intensity andη - cell extinction rate
can be naturally linked to the jump Markov model in a nearly one-to-one fashion as follows:λ1 = λ,
1/λu = 1/λd = µx, λ(II)

2 = η.
Although the choice of exact parameter values is not important for our comparison, to obtain

realistic values forλ, µx andη, we fit PP model to NY Westchester January data using a form of
the method of moments suggested in [?]. Based on that, we set:λ = 180, µx = 1500, η = 400
and generate 360 months worth of precipitation data from each model. We set the extra parameter
λ

(I)
2 = 300 so that the empirical average wet spell length in both models coincide. Samples from
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FIGURE 1. Monte Carlo samples from the Markov jump model (left) and from the
Poisson pulse model (right).

both models are shown in Figure 1 for the purpose of illustration. There is no obvious difference in
the statistics of the precipitation patterns they produce. As evidenced by the Q-Q plot in the center
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FIGURE 2. Q-Q plots of the wet (left) and dry (right) spell durations from the
Markov jump and Poisson pulse models.

pane of Figure 2, the distributions of the lengths of the dry spells seem to coincide in both models.
The Q-Q plot in the right pane shows that the distributions of the rainfall volumes also agree in the
two models, though to a lesser extend in the case of the simulations at hand. Finally, the Q-Q plot
in the left pane shows that, at least in the case of the Monte Carlo samples which we generated, the
distribution of the length of a typical wet spell could have heavier tail in the Markov jump model.
However, the bulk of the data seems to be in a region where the two distributions agree.

3. PRICING PRECIPITATION OPTIONS

3.1. Security Price as Random Evolution.We generalize the standard geometric Brownian motion
security price model by allowing the coefficientsµ andσ to depend on another processY . Formally
we assume that the dynamics of the traded assetS are given by a stochastic differential equation of
the form:

(20) dSt = St(µ(Yt)dt+ σ(Yt)dWt)

where the processY = {Yt} is a continuous time Markov process inRn independent of the Wiener
processW . Models of this form are common in financial applications: regime switching models,
stochastic volatility models. Also, this is the model used in [?] to price temperature options. The
conditions for the existence and uniqueness of the solution to (20) are discussed in [?]. The relevant
results for our purposes are stated in Theorem 3.1 and its corollary. The pair(St, Yt) forms a Markov
process which is known in the literature asrandom evolution.

Theorem 3.1. Let there exist a constantK and real functionsg(t, y), h(t, y) such that:

|µ(t, x1, y)− µ(t, x2, y)| ≤ K|x1 − x2|(21)

|σ(t, x1, y)− σ(t, x2, y)| ≤ K2|x1 − x2|
1
2
|σ(t, x, y)|2 ≤ g(t, y)2 +K2|x|2(22)

|µ(t, x, y)| ≤ h(t, y) +K2|x|
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and for allm = 1, 2, 3, . . . : E
[∫ T

0 (g(s, Ys)m + h(s, Ys)m)ds
]
< ∞ then (20) with the initial data

X0 = x has a pathwise unique solution and it isFt-progressively measurable.

Corollary 3.2. If Y is real valued and for everym > 0:

E
[∫ T

0
|Ys|mds

]
<∞

then conditions (22) are equivalent to:

|µ(t, x, y)| ≤ C(|x|+ |y|)m, and |σ(t, x, y)| ≤ C(|x|+ |y|)m.

3.2. Utility Maximization as a Stochastic Control Problem. We now formalize the problem de-
scribed in the introduction. We are given a filtered probability space(Ω,F , {Ft}0≤t≤T , P ). Ft is the
sigma fieldσ((Ss, Ys) : 0 ≤ s ≤ t) augmented by the null-sets ofF = FT . Trading is allowed in a
risky asset whose price process is a random evolution(St, Yt) defined in Subsection 3.1 and a bank
account for which we assume that the interest rate is zero, and we assume that the agent possesses
initial wealthx. We look for a self financing trading strategyφ - the amount of money invested in the
risky asset - that maximizes the utility of the terminal wealth. For any strategy, the dynamics of the
wealth process are given by:

(23) dXt = φt(µ(Yt)dt+ σ(Yt)dWt)

and the objective is to maximize:

(24) E [U(XT )]

Clearly, for any admissible strategy, the pair(X,Y ) also forms a random evolution. The problem of
maximizing (24) for the process (23) above falls in the framework of controlled Markov processes. As
such, it can be solved by dynamic programming, and the conditions for the existence of the optimal
solution are given in verification theorems [?].

3.3. HJB Equation for Random Evolutions. Candidates for the solution of problem (24) among
Markovian controls can be found by solving the corresponding HJB equation. The controlled back-
ward evolution operatorAu of the random evolution(X,Y ) reads:

(25) AuV (t, x, y) =
∂V

∂t
+ uµ(y)

∂V

∂x
+

1
2
u2σ2(y)

∂2V

∂x2
+GV (t, x, y)

whereG is the infinitesimal generator of the processY . Hence the HJB equation for the value function
V of the optimization problem (24) is:

(26) 0 = sup
u
AuV =

∂V

∂t
+GV + sup

u

{
uµ(y)

∂V

∂x
+

1
2
u2σ2(y)

∂2V

∂x2

}
.

We can perform the maximization with respect tou explicitly to get the optimal controlu∗ and an
integro-differential HJB equation:
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(27) u∗ = − µ(y)
σ2(y)

∂V/∂x

∂2V/∂x2

(28) 0 =
∂V

∂t
+GV − 1

2
µ2(y)
σ2(y)

(∂V/∂x)2

∂2V/∂x2
.

The terminal condition for the backward HJB equation (28) is provided by by the utility functionU ,
namely:V (T, x, y) = U(x). If we assume the processY is the jump Markov process storm model
developed in section (2.2) we obtain in particular:

(29) 0 =
∂V

∂t
+ λ(y)

∫
R
[V (t, x, z)− V (t, x, y)]Π(y, dz)− 1

2
µ2(y)
σ2(y)

(∂V/∂x)2

∂2V/∂x2

whereλ is the jump rate function andΠ is the jump transition kernel for the processY .
In order for a solutionV of the HJB equation to be the value function of the stochastic control

problem it needs to satisfy the conditions of the verification theorem [?]. In particular it needs to
belong toD the common domain of the backward evolution operatorsAu; u ∈ U . Before we proceed
to obtain explicit solutions to (28) we characterize the setD for the equation (29).

Proposition 3.3. The domainD of the HJB equation (29) contains all continuous functionsΨ(t, x, y)
defined on[0, T ]× R2, such that:

(1) ∂Ψ/∂t, ∂Ψ/∂x, ∂2Ψ/∂x2 are continuous.
(2) Ψ, ∂Ψ/∂t, ∂Ψ/∂x, ∂2Ψ/∂x2 have polynomial growth, i.e. for someK andm:

|Ψ(t, x, y)|+ |∂Ψ/∂t(t, x, y)|+ |∂Ψ/∂x(t, x, y)|+ |∂2Ψ/∂x2(t, x, y)| ≤ K(1 + |x|+ |y|)m

Proof. We will show that for allu ∈ U anyΨ satisfying the conditions of the proposition belongs
to the domainD(Au) of the operatorAu (along the lines of [?], Appendix B). Let us fix an arbitrary
u ∈ U . For all Ψ satisfying the conditions 1 and 2 the operatorAu is well defined. By condi-
tion 1 all Ψ, ∂Ψ/∂t andAΨ are continuous functions. Condition 2 guarantees that for anys > t:
Etx|Ψ(s,Xs, Ys)| < ∞ and

∫ s
t |AΨ(r,Xr, Yr)| < ∞. It remains to show that such functions satisfy

the Dynkin formulaEtxy[Ψ(s,Xs, Ys)]−Ψ(t, x, y) = Etxy

[∫ s
t A

uΨ(r,Xr, Yr)dr
]
; t < s ≤ T

We can decompose the operatorAu in two partsAuΨ = Au
0Ψ +HΨ where:

Au
0Ψ(t, x, y) =

∂Ψ
∂t
µ(y)

∂

∂
xf +

1
2
σ2(y)

∂2

∂x2
f

HΨ(t, x, y) =
∫

R
[Ψ(t, x, z)−Ψ(t, x, y)]Π(y, dz)

Let t1 < t2 < · · · < tN be the jump times of the processY on [t,s] and let us sett0 = t andtN+1 = s.
Then:

Ψ(s,Xs, Ys)−Ψ(t, x, y) =
N∑

i=0

[Ψ(ti+1, Xti+1 , Yti)−Ψ(ti, Xti , Yti)]

+
N∑

i=1

[Ψ(ti, Xti , Yti)−Ψ(ti, Xti , Yti−1)].
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Since onY is constant on[ti, ti+1) for i = 0, 1, . . . , N by the results known for Ito diffusions
Ψ(ti+1, Xti+1 , Yti)−Ψ(ti, Xti , Yti) =

∫ ti+1

ti
Au

0Ψ(r,Xr, Yr)dr. Hence:

Etxy

{
N∑

i=0

[Ψ(ti+1, Xti+1 , Yti)−Ψ(ti, Xti , Yti)]

}
=
∫ s

t
Au

0Ψ(r,Xr, Yr)dr.

To finish the proof we notice, that we can write:

Eti,y[f(ti + 1)] = λ(y)Eti

[∫ ti+1

ti

f(t)dt
]

for a continuous functionf(t). Then

Eti−1,y[Ψ(ti, Xti , Yti)−Ψ(ti, Xti , y)]
= Eti−1,y [Eti [Ψ(ti, Xti , Yti)−Ψ(ti, Xti , y)]]
= Eti−1,y [HΨ(ti, Xti , y)/λ(y)]

= Eti

[∫ ti

ti−1

HΨ(t,Xt, Yt)

]
Implicitly we conditioned by the Wiener processW which is however independent ofY therefore we
omitted it in the notation. Now using the strong Markov property ofY we get

Etxy

{
N∑

i=1

[Ψ(ti, Xti , Yti)−Ψ(ti, Xti , Yti−1)]

}
= Etxy

[∫ s

t
HΨ(r,Xr, Yr)dr)

]
. �

3.4. Optimal Hedging Strategies. In this subsection we solve the HJB equation (28) in the case of
the exponential utility functionU(x) = −e−αx with α > 0. We can get a explicit solution in this
case by linearizing the HJB equation by a Hopf-Cole transformation. We hypothesize the form of the
solution asV (t, x, y) = −e−αxF (t, y). Substituting in (28) we get:

(30) F (t, y)
(

1
2
µ2(y)
σ2(y)

)
=
∂F

∂t
(t, y) +GF

with the terminal conditionF (T, y) = 1. The solution of this equation is given by the so-called
Feynman-Kac formula. Indeed, its right hand side is the backward evolution operator ofY (the
justification will be given below). Such a formula already appeared in [?] where the zero order term
found in the exponential was called the traded risk premium. The solution is:

F (t, y) = Ety[e
−
R T

t
1
2

µ2(Ys)

σ2(Ys)
ds

].

Substituting out we see that the candidate for the expression of the value function solving the HJB
equation (28) with exponential utility is

V (t, x, y) = −e−αxEty[e
−
R T

t
1
2

µ2(Ys)

σ2(Ys)
ds

],
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the corresponding optimal trading strategy being given by the time varyingSharpe ratio

φt =
µ(Yt−)
ασ2(Yt−)

whereYt− = limh↘0 Yt−h is the left hand limit assuring the predictability of the trading strategy. To
check that the candidate solution is indeed the optimal solution of the optimization problem we need
to check if it satisfies the verification theorem ([?]), and hence is a bona-fide optimal solution of the
original problem. We will proceed to do this for the case whenY is the jump Markov storm model.

Proposition 3.4. If σ(y) > ε > 0 for all y then the trading strategyφ is the optimal trading strategy
in the utility maximization problem withY being the jump Markov process storm model.

Proof. We first show that the strategyφ has all moments and therefore is admissible:

E
[∫ T

0
|φt|mdt

]
= E

[∫ T

0
| µ(Yt)
σ2(Yt)α

|dt
]

≤ KE
[∫ T

0
|Yt|mdt

]
= (KT )E

[
1
T

∫ T

0
|Yt|mdt

]
< (KT )E [|Y∞|m]

where the last inequality follows from the ergodicity and existence of all moments of the processY
(see Theorem 2.7). It remains to show thatV ∈ D. We will show thatV satisfies the conditions of
the proposition 3.3. It is easy to see that all the conditions are satisfied if and only if

Ety

[
exp

(
−1

2

∫ T

t

µ2(Ys)
σ2(Ys)

ds

)]
< C|y|m

which is obvious since the left hand side is bounded. �

We can solve the HJB equation (28) along the same lines in the case of the power utility func-
tion U(x) = xα/α with α < 1. Again we search for a value function in the formV (t, x, y) =
(xα/α)F (t, y), and substituting out we get the linearized equation:

(31) F (t, y)
(

α

2(1− α)
µ2(y)
σ2(y)

)
=
∂F

∂t
(t, y) +GV

with terminal conditionF (T, y) = 1. Again, invoking the Feynman-Kac formula we get the solution:

F (t, y) = Ety[e
R T

t
α

2(1−α)
µ2(Ys)

σ2(Ys)
ds

]

and after substitution, we get the candidate for the solution of (28) with power utility to be:

V (t, x, y) =
xα

α
Ety[e

R T
t

α
2(1−α)

µ2(Ys)

σ2(Ys)
ds

]

with the corresponding candidate

φt =
µ(Yt−)

σ2(Yt−)(1− α)
Xt
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for trading strategy. Verification can be done along the same lines as with exponential utility.

3.5. Utility Maximization with a Derivative. We are ready to move onto maximizing the expected
utility with a derivative written on the underlying processY . In precipitation market practically
all derivatives have Asian structure since the instantaneous precipitation intensity has little practical
importance. Two main types of precipitation derivatives can be encountered. The payoff can depend

upon the amount of rain during a given time periodf1(Y ) =
(∫ t′′

t′ Ytdt−K
)+

, or upon the amount

of time it rains (does not rain) during a given time periodf2(Y ) =
(∫ t′′

t′ 1{Yt>ε}dt−K
)+

, where

ε is the minimal precipitation intensity that constitutes a ”rainy day”. For simplicity we first assume
K = 0, later we will show how we can extend our results to the caseK > 0. Under this simplifying
assumption both payoffs can be expressed under a common frameworkξ =

∫ t′′

t′ h(Ys)ds 0 ≤ t′ ≤
t′′ ≤ T . For type (1) derivativeh(y) = y, for type (2) in turnh(y) = 1(ε,∞)(y). The results below
also hold for any functionh ≥ 0 with polynomial growth.

When maximizing the utility two points of view have to be considered: the buyer’s and the seller’s.
The buyer’s objective function is:E [U(XT + ξ)]. The seller’s in turn is:E [U(XT − ξ)]. We will
solve only the buyer’s problem. The sellers problem can be solved along the same lines. We trans-
form the optimal portfolio problem with the derivative present to an equivalent problem of optimal
investment with random endowment - for which a rather extensive body of literature exists ([?], [?],
[?]).

Proposition 3.5. The solution(φ∗, V ∗) of buyer’s problem is the same as the solution(φ̂∗, V̂ ∗) of the
following random endowment optimal investment problem:

(32) max
φ

E
[
U(X̂T )

]
dX̂t = g(t, Yt)dt+ φ̂t(µ(Yt)dt+ σ(Yt)dWt)

whereg(t, y) = 1(t′,t′′)(t)h(y).

Proof. Let φ be an admissible strategy for the buyer’s problem. Let us denoteV (φ), X(φ), V̂ (φ),
X̂(φ) the value functions and wealth processes in the original problem and (32) respectively cor-
responding to the strategyφ. It is clear thatφ is an admissible strategy for problem (32) and
V (φ) ≤ V̂ (φ) ≤ V̂ ∗ and thereforeV ∗ ≤ V̂ ∗. Now let us consider the optimal strategyφ̂∗ for
the problem (32) and define a new strategyψ = (ψ0, ψ1); it is necessary to look at both components
of the strategy, the amount of money invested in the risky asset and the riskless bond. Letψ1 = (φ̂∗)1

andψ0
t = (φ̂∗)0t −

∫ t
0 g(s, Ys)ds. ThenX̂(ψ) satisfiesdX̂t = ψ1

t (µ(Yt)dt+σ(Yt)dWt) and therefore

XT (ψ) = X̂T (φ∗)−
∫ T
0 g(t, Yt)dt and hence

V ∗ ≥ V (ψ) = E[U(XT (ψ) +
∫ T

0
g(t, Yt)dt)] = E[U(XT (φ∗)] = V̂ ∗. �

Proposition 3.6. The solution(φ∗, V ∗) of seller’s problem is the same as the solution(φ̂∗, V̂ ∗) of the
following random endowment optimal investment problem:
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(33) max
φ

E
[
U(X̂T )

]
dX̂t = −g(t, Yt)dt+ φ̂t(µ(Yt)dt+ σ(Yt)dWt)

whereg(t, Yt) = 1(t′,t′′)(t)h(Yt).

The proof of this proposition goes along the same lines as proposition (3.5).

Now we can write the HJB equation for problem (32):

(34) 0 =
∂V

∂t
+
∂V

∂x
g(t, y) +GV + sup

u

{
uµ(y)

∂V

∂x
+

1
2
u2σ2(y)

∂2V

∂x2

}
We can perform the maximization with respect tou explicitly to get the candidate optimal decision
u∗ and explicit HJB equation:

(35) u∗ = − µ(y)
σ2(y)

∂V/∂x

∂2V/∂x2

(36) 0 =
∂V

∂t
+
∂V

∂x
g(t, y) +GV − 1

2
µ2(y)
σ2(y)

(∂V/∂x)2

∂2V/∂x2

with the terminal conditionV (T, x, y) = U(x). Specifically for the jump Markov process storm
model (36) becomes:

(37) 0 =
∂V

∂t
+
∂V

∂x
g(t, y) + λ(y)

∫
R
[V (t, x, z)− V (t, x, y)]Π(y, dz)− 1

2
σ2(y)

(∂V/∂x)2

∂2V/∂x2

The domainD for this equation is the same as for the equation (28).
The exponential utility allows us to separate variables in the equation. As before we search for

an expression of the value function in the formV (t, x, y) = −e−αxF (t, y). The HJB equation then
reduces to:

(38) F (t, y)
(
αg(t, y) +

1
2
µ2(y)
σ2(y)

)
=
∂F

∂t
(t, y) +GF

with terminal conditionF (T, y) = 1, and using the Feynman-Kac representation formula we obtain:

F (t, y) = Ey

[
e
−
R T

t

�
αg(s,Ys)+

1
2

µ2(Ys)

σ2(Ys)

�
ds
]
.

Thus the candidate solution is:

V (t, x, y) = −e−αxEy

[
e
−
R T

t

�
αg(s,Ys)+

1
2

µ2(Ys)

σ2(Ys)

�
ds
]

with the corresponding trading strategyφt = µ(y)/(σ2(y)α). We have a verification result:
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Proposition 3.7. If σ(y) > ε > 0 for all y the trading strategyφ is the optimal trading strategy in
the utility maximization problem 32 withY being the jump Markov process storm model.

The proof of this verification result is analogous to the proof of Proposition 3.4.

The situation is more complicated in the case of power utility. It does not possess the convenient
separability property of the exponential utility therefore adding the derivatives causes the separation
of variables argument to fail. A lot of attention has been given to this problem. For example, existence
of the solution has been proved in a very general setting in ([?]). Henderson ([?]) derived lower and
upper bounds for the value function in the case where the derivative payoff is small compared to
the wealth of the agent. Her approach is based on convex duality (to obtain the upper bound) and
expansion of the utility around the no-derivative solution (to get the rate of convergence of the lower
and an upper bound). We will apply the approach of Henderson, to obtain bounds on the value
function in our case.
� Lower BoundA trivial lower bound is given by the value function of the problem without the
derivative since the derivative payoff is always non-negative. In the present situation, we can improve
this bound by using Proposition 3.5. We use the optimal strategy from the problem without the
derivative (24) in the transformed random endowment problem (32). An elementary calculation shows
that the value function for this strategy is:

VL(0, x, y) =
1
α
Ey

{
exp

∫ T

0

µ2(Yt)
σ2(Yt)

1
1− α

(
1− 1

2(1− α)

)
dt[

x+
∫ T

0
g(t, Yt) exp

(
−
∫ t

0

µ2(Ys)
σ2(Ys)

1
1− α

(
1− 1

2(1− α)

)
ds − 1

1− α

∫ t

0

µ(Ys)
σ(Ys)

dWs

)]}α

which by Proposition 3.5 is greater than the no-derivative value function.
� Upper boundWe get an upper bound by employing the convex duality theory. Started by Karatzas
et. al ([?]) in the Ito processes setting, it was extended by Cvitanic ([?]) to the more general semi-
martingale setting. Our upper bound is a direct consequence of the main result of [?] when we choose
a particular equivalent martingale measureQ0. A natural candidate is the one suggested by Girsanov’s
theorem. It is defined by its density with respect toP:

dQ0

dP
= exp

(
−
∫ T

0

µ(Ys)
σ(Y s)

dWs −
1
2

∫ T

0

µ2(Ys)
σ2(Ys)

ds

)
Clearly the measureQ0 makes the traded asset priceS and therefore the wealth processX, a martin-
gale¿ Moreover, it is equivalent toP. Hence, it is in∆. We can get the value of the dual objective
function for this measure:

E[Ũ(y
dQ
dP

)] =
1− α

α
y

α
α−1A where A = E[exp

(
1
2

α

(1− α)2

∫ T

0

µ2(Ys)
σ2(Ys)

ds

)
].

Therefore:D(y) = 1−α
α y

α
α−1A+y(x+E0[ξ]), and the upper bound is obtained by minimizingD(y)

overy. We get:

(39)
1− α

α
(x+ E0[ξ])αA1−α = V0(t, x, y)

(
1 +

E0[ξ]
x

)1−α
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whereV0 is the value function of the problem (24) with no derivative present. It is easy to see that
these bounds converge as the wealth level becomes large compared to the derivative payoff.

3.6. The Indifference Prices. As we mentioned in the introduction the solution to the optimization
problems without a derivative claim and with it allow us to set a price on the derivative claim by the
principle ofindifference. Let us denoteV0 the value function of (24),Vξ the value function of (32) and
p the price of the derivative claim with payoffξ. The indifference principle statesV0(0, x + p, y) =
Vξ(0, x, y). Solving this implicit equation forp will allow us to price the derivative. We will be able
to give quite an explicit formula in the exponential utility case. With the power utility we will only be
able to give bounds on the price, as expected.

Using the results of Subsection 3.4 and plugging the value functions in the indifference equation
we obtain for the exponential utility:

p =
1
α

ln
Ey

[
e
−
R T
0

1
2

µ2(Ys)

σ2(Ys)
ds
]

Ey

[
e
−
R T
0

�
αg(s,Ys)+

1
2

µ2(Ys)

σ2(Ys)

�
ds
] .

Notice that this value ofp is independent of the initial wealth. This is very specific to the particular
choice of the exponential utility function. Alsop is in practically closed form since it can be easily
evaluated by Monte Carlo simulation of the precipitation processY , whose sample paths can be
simulated without error.

In the case of power utility, we get bounds based on the bounds on the value function:

 αVL(0, x, y)

Ety

[
e
R T

t
α

2(1−α)
µ2(Ys)

σ2(Ys)
ds
]


1/α

− x ≤ p ≤ x

1−

1 +
Ey

[∫ T
0 g(t, Yt)dtdQ0

dP

]
x


α−1

α

 .
3.7. Derivatives with Non-zero Strikes. To simplify the notation, in the previous sections we only
considered derivatives with the payoffξ of the form: ξ =

∫ t′′

t′ h(Ys)ds 0 ≤ t′ ≤ t′′ ≤ T . We will

show that our results directly extend to the payoffs of the formξ =
(∫ t′′

t′ h(Ys)ds−K
)+

0 ≤ t′ ≤
t′′ ≤ T where the derivative starts paying off only after a certainstrike amountK > 0 is reached. To
deal with this case let us define a processRt =

∫ t
t′ h(Ys)ds for t ≥ t′ and 0 otherwise and a payoff

rate function̂h(Yt, Rt) = 1{Rt>K}h(Yt). It is easy to see that the payoffξ can be written in terms of

ĥ asξ =
∫ t′′

t′ ĥ(Ys, Rs)ds 0 ≤ t′ ≤ t′′ ≤ T
We were able to eliminate the strikeK at the expense of increasing the dimension of the underlying

by one. Let us denote bŷY = (Y,R) this new underlying process. The optimization problem we are
facing now is as follows:

(40) max
φ

E [U(XT )]

subject to:dXt = ĝ(t, Ŷt)dt + φt(µ(Yt)dt + σ(Yt)dWt) whereĝ(t, y, r) = 1(t′,t′′)(t)ĥ(y, r)).
Clearly Ŷ is a random evolution with infinitesimal generatorĜf(y, r) = G+ ∂f

∂r g(t, y). BecausêY
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is a random evolution and hence a Markov process, we can apply the theory developed in previous
sections to the solution of problem (40) and obtain equivalent results.

For the exponential utility the value function is:

V (t, x, y, r) = −e−αxEy,r

[
e
−
R T

t

�
αĝ(s,Ŷs)+

1
2

µ2(Ys)

σ2(Ys)

�
ds
]

with the corresponding trading strategy:φt = µ(y)
σ2(y)α

and the indifference price:

p =
1
α

ln
Ey

[
e
−
R T
0

1
2

µ2(Ys)

σ2(Ys)
ds
]

Ey,r

[
e
−
R T
0

�
αĝ(s,Ŷs)+

1
2

µ2(Ys)

σ2(Ys)

�
ds
]

For the power utility we again get bounds based on the bounds on the value function:

 αVL(0, x, y)

Ety

[
e
R T

t
α

2(1−α)
µ2(Ys)

σ2(Ys)
ds
]


1/α

− x ≤ p ≤ x

1−

1 +
Ey

[∫ T
0 ĝ(t, Ŷt)dtdQ0

dP

]
x


α−1

α

 .
4. A PRACTICAL APPLICATION

In this section we apply the techniques developed in this paper to price rainfall sample contracts
which we chose for the purposes of this study. We chose a location in Norway and electric power
prices because Norway produces most of its electricity from hydroelectric powerplants (hence power
can serve as traded asset in our model) and because of the success of deregulation and the availability
of wholesale electricity prices in the NordPool.

Consider a sample contract: a call option on the amount of rainfall during June and July 2004, as
recorder by Bergen weather station in Norway with a strike of K mm and tick price 1 NOK, i.e. the
seller of the contract pays to the buyer one NOK for each millimeter of cumulative rainfall above K
mm during June and July 2004 in Bergen, Norway.

We need to fit the jump Markov model to rainfall in Bergen, find a traded asset influenced by
the amount of rainfall in Bergen in June and July, fit a model of the type considered in the paper,
determine the exact nature of the functionsµ andσ in (20), and calibrate the model to empirical data.
The Norwegian Meteorological Institute kindly provided us with high-frequency rainfall intensity
data records from the ”pluviometer” equipped weather station in Bergen for calendar year 2002.
Pluviometers record times (with one minute precision) of tips of a bucket with known (small) volume,
and therefore provides practically continuous time observations of the rainfall intensity process. A
time series plot of these data is given in Figure 3. We examined the influence of the amount of rainfall
on prices of several instruments liquidly traded on the NordPool power exchange, looking for a strong
relationship between Fourth Quarter 2002 forward power contract and rainfall in Bergen during the
course of the whole year. NordPool is a name of a common electric power exchange of four Nordic
countries: Norway, Sweden, Finland and Denmark, established after the liberalization of their power
markets. Nowadays it is one of the most liquid European power exchanges offering spot and forward
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FIGURE 3. Bergen, Norway May-July 2002 rainfall intensity

electricity products. Finally we calibrated the functional form ofµ andσ to the data, and we used
Monte Carlo computations to arrive at utility indifference prices for the contracts. The details of the
exercise follow.

4.1. Bergen Rainfall Model. Rainfall data from May to July 2002 were selected to fit our rainfall
model.The period was chosen to closely follow the underlying period of the weather derivative since
the rainfall characteristics vary over the course of the year ([?]). The data are plotted in Figure 3.
The maximum likelihood parameters estimates for the multiple storm model fitted to these data are
listed in Table 1.We computed approximate confidence intervals using result 6. of the theorem 2.2.
We could not obtain confidence intervals for parameters of the processλ̄1 only for the mean of its
limiting distribution. The maximum likelihood mean estimate is11.36 with approximate 95% c.i.
(10.68, 12.05). The confidence intervals are quite tight given the short period of data used for fitting
the model. This is because of the very high time resolution of the data (the sample length was 2150).
Due to the measurement methodology of pluviometers, the rainfall intensity is always greater than0.
The cutoff level under which the rainfall intensity is considered to be0 was set to1mm / day.

TABLE 1. Parameter estimates for Bergen data

Parameter Value C.I. (95%)
λ1 78.6 day−1 see text
qd 0.85 day−1 see text
qp 5.03 day−1 see text

λ
(I)
2 0.00 day−1 (-0.081, 0.081)

λ
(II)
2 2.82 mm−1 (2.702,2.935)
λu 0.012 daymm−1 (0.0116,0.0131)
λd 0.011 daymm−1 (0.0102,0.0118)
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4.2. The Influence of Bergen’s Rainfall on Nordpool Power Prices.We examined several prod-
ucts traded on NordPool power exchange to see whether their prices were influenced by rainfall in
Bergen. Of the examined products forward Fourth Quarter Baseload 2002 (Q402) seemed to be the
electricity product most influenced by rainfall during the summer period. Fourth Quarter 2002 Base-
load forward contract is a contract for delivery of constant power capacity on Norwegian power grid
during 24 hours, every day of the period starting 1/10/2002 ending 31/12/2002. The price of this con-
tract is reported with daily granularity. The plot of precipitation intensity together with daily prices
of Q402 is given in Figure 4. It is clear from these plots taht there is an apparent upwards trend in
the prices during dry periods and downward trend during wet periods. A commonly used model for
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FIGURE 4. Q402 NordPool forward price and Bergen, Norway January-July 2002
rainfall intensity (left) and Bergen log-rainfall-intensity vs. Q402 log-returns.

electricity forward prices in the energy derivatives literature (see for example [?]) is the geometric
Brownian motion described by the stochastic differential equation (20). To complete the model we
need to express the relationship between power price and rainfall via the functional forms of the drift
and volatility coefficientsµ andσ of the stochastic differential equation (20) driving the dynamics
of the Q402 forward contract. Let us denote byFd the price of Q402 contract on a dayd, and let us
denote byRd the aggregate amount of rainfall in Bergen on that day. We estimate the drift coefficient
of µ̄d on dayd by the average of Q402 log-returns on over an11 day window centered on dayd.
Accordingly, we estimate the rainfall intensitȳRd on the same day by the average rainfall over the
same period. Special treatment is necessary for weekends. They are considered as one day and are
included in the rainfall intensity average and not in price log-returns average as there are no prices
reported on weekends. The relationship betweenR̄d and µ̄d is non-linear. Taking logarithm of̄Rd

makes the relationship linear as we can see from Figure 4. From this analysis, we obtain a functional
dependence of Q402 drift coefficient on the rainfall intensity:µ(y) = a ∗ ln(ε + y) + b whereε
represents the cutoff level for no rainfalla, b are obtained by ordinary least squares regression. The
values of the three parameters together with the estimate of the volatility are given in Table 2.(Where
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relevant, the confidence intervals are given.) Rather wide confidence intervals are a direct conse-
quence of scarcity of data. The power markets are rather young and substantial historical price track
record has not been generated yet.

TABLE 2. Parameter estimates for Q402 drift and volatility

Parameter Value C.I. (95%)
a −0.55 (−0.67,−0.43)
b 0.40 (0.20, 0.60)
ε 0.10 N/A
σ 0.20 (0.18, 0.22)

4.3. Utility Indifference Price for Bergen Rainfall Call. We use the price formula derived in Sub-
section 3.7 and we rely on Monte Carlo simulation of the rainfall process to compute the expectations
and put a price on the sample contract. Since we derived exact pricing formulae in this case, we
assume that buyer and seller have exponential utility functions. Also, our bound on the seller’s price
would be indentically infinity which is another reason to work with exponential utility. Table 5 lists
the buyer/seller prices for various strike prices and risk aversion levels. It compares them to the utility
indifference prices without trading the power contract, and shows the relative decrease in the price
due to hedging with the electricity contract. Also, we give arisk-neutral priceunder a measure which
makes price processS a martingale and preserves the historical statistics of the rainfall processY .
As expected the buyer’s price without hedging is lower than the risk-neutral price while the seller’s
is higher. The difference increases with increasing risk aversion (i.e. concavity of utility function).
Both sellers’s and buyer’s price with power hedging is lower than without it. The gap between buyer’s
and seller’s price decreases but remains positive. It is interesting to notice, however that for low risk
aversion levels, the seller price with hedging is lower than the buyer price without hedging. Hence,
if in reality a seller with knowledge and access to power markets meets a buyer without the access or
knowledge a mutually acceptable weather-derivative deal can be done if the seller hedges herself in
the power market.

A word of warning is appropriate at this point. Applying the method in practice must be done
with caution. The rainfall model parameters but mainly the rainfall influence on traded asset price
evolution cannot be estimated without error. As could be seen from the approximate confidence inter-
vals computation the uncertainty can be as much as 20%. The resulting uncertainty in price can be
comparable to the bid/ask spread.
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