PRICING PRECIPITATION BASED DERIVATIVES

RENE CARMONA AND PAVEL DIKO

ABSTRACT. We consider the problem of pricing a derivative contract written on the precipitation at
a specific location during a given period of time. We propose a jump Markov process model for the
stochastic dynamics of the underlying precipitation. Our model is based on pulse Poisson process
models widely used in hydrology. We develop maximum likelihood parameter estimation procedures
to fit our model to rainfall data. In order to price derivatives, we assume the existence of a traded asset
whose price dynamics are influenced by the precipitation at the location in question, and we rely on the
utility indifference approach. Two utility functions are considered: exponential and power utility. We
derive explicit solutions for the exponential and bounds for the power utility.

Finally, we apply our model fitting and pricing techniques to a sample rainfall contract in Norway.

1. INTRODUCTION

In this paper we concentrate on a specific class of derivatives written on non-traded assets, pre-
cipitation derivatives. They are part of a larger groupnafather derivativesised for weather risk
mitigation in a wide array of businesses ranging from agriculture to the entertainment industry.

Pricing of precipitation derivatives poses a great challenge compared to the other types of weather
derivatives, let alone classical equity derivatives. From a practical view point, precipitation can be
quite a localized phenomenon. Theoretical difficulties lie in the fact that, despite the existence of
intensive hydrological research has been conducted in this area for more than 40 years, it is not
straightforward to develop a tractable mathematical model accurately representing the reality of the
precipitation at a specific location.

Moreover, once a model for the precipitation has been established, a second source of difficulty
arises: it is necessary to develop a pricing methodology which can incorporate the idiosyncracies
of the underlying precipitation process. Since precipitation cannot be traded directly, the market
model is most likely to be incomplete. Instead of searching for an appropriate risk neutral probability
measure, we follow the utility indifference pricing approach to derive buyer and seller’s prices. This
valuation method can be described in a few sentences as follows. Let us consider an economic agent
whose time-invariant risk preferences are given by a utility function. Given an initial wealth, she
purchases (resp. sells) a derivative written on a non-traded asset, and she uses her endowment after
the transaction to set up a portfolio in a bank account and shares of a traded asset and follow a self-
financing strategy, re-balancing her portfolio in continuous time. She searches for an optimal strategy
which maximizes her expected utility of wealth at maturity of the derivative. The expected utility of
terminal wealth can also be computed had she not entered the transaction. The buyer’s (resp. seller’s)
price of the derivative is set in such a way as to make the agent indifferent between the two scenarios
- hence the namatility indifference pricinggiven to this valuation method.
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The topic of utility indifference pricing was first introduced by Hodges and Neuberger in the early
nineties, but it had to wait almost an entire decade to catch on. It was rediscovered by avis [
and used by Hendersof,[?], and Musiela and Zariphopoulo@,[?, ?] who considered the case of
a derivative written on a non-traded asset whose price dynamics are given by a geometric Brown-
ian motion. Most of these contributions are restricted to the case of the exponential utility function,
for in the case of the power utility, one is only able to obtain bounds on the prices. More gener-
ally, Zariphopoulou considers in7q]) the problem of utility optimization when the influence of the
non-traded asset on the traded asset comes through both the correlation between the driving Wiener
processes and the coefficients of the price process SDE. She uses power utility and obtains results for
the scenario without the derivative present. Finally, we mention that Musiela and Zariphopoulou gave
an abstract form of the indifference pricing paradigm on a tree, and that Carmona and Dafjova ([
derived the indifference price for a claim on a non-traded quantity (temperature) whose dynamics is
driven by a diffusion process when allowed to invest in traded assets whose dynamics are given by
diffusions whose coefficients depend upon the non-traded asset, and when the agent has exponential
utility function. The interested reader is referred to the forthcoming b@pfof a detailed account
of the state of the art in indifference pricing.

The paper is naturally divided into three parts. In the first part, we develop a model for the precipi-
tation process, and we find maximum likelihood estimators for its parameters. In the second part, we
adapt utility indifference pricing to a class of security price models including the precipitation model
from part one. We consider exponential and power utility functions. For the exponential utility we
obtain an explicit formula for the price of the derivative, while for the power utility, we can only prove
lower and an upper bounds. Finally, we conclude the paper with the detailed analysis of a practical ex-
ample. Except for the highly publicized example of the three year deal offered by an amusement park
in Paris, not much public information is available on the terms and conditions of precipitation options
and their prices. The example we propose in the last section of the paper is made up. However, we
used our personal experience to set it up to make it as realistic as possible.

2. MODELING RAINFALL DYNAMICS

2.1. Precipitation Data. Data serving as underlying for precipitation contracts come from meteoro-
logical stations around the globe. Although made in discrete time intervals, the observations come
close enough to complete continuous time observation of the rainfall intensity. A period of rainfall,
when its intensity stays constant, can be described by d§di) of real numbers. Herg > 0 is the

length of time for which the rainfall intensity stays constant and equgattd). Let us denotel/ the
sequence (&;, Biv1) bi=1,2,3,...,n Of pairs describing the consecutive periods of constant rainfall inten-
sity. The sequencé/ comprises the statistical data for which we want to formulate a parsimonious
yet well-fitting probabilistic model.

Precipitation has been the subject of intensive research for years. Several types of models have
been developed?], which can be divided into four categoriesmeteorological models/hich seek
to capture the dynamics of the large scale atmospheric processes controlling precipfatiautj-
scale modelsvhich use multifractal cascades to describe rainfall?], statistical modelsvhich use
purely statistical technigues to fit the rainfall data to well known distribution types with little emphasis
on underlying physical processé§ and laststochastic processes based modaeisch try to describe
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the rainfall behavior by a small set of physically meaningful parameters driving a stochastic process.
They were introduced by LeCam in 1967 pnd further developed by Rodriguez-Iturbe et &l.7.

2.2. Precipitation Model. A version of the Bartlett-Lewis Poisson-cluster (BLPC) process model of
Rodriguez-lturbe, Cox and Ishar#] [forms the basis of the model which we propose. In this model,
rainfall is assumed to be composedstirmswhich are in turn composed of rainfaklls The storms

arrive according to a Poisson process; within each storm, cells arrive according to another Poisson
process and the duration of the activity of the storm is random. Each cell has random duration and
random depth. Both storms and rain-cells can overlap. If two or more cells overlap their depths
add up. The best data-fitting version of the model uses exponential distributions for both the storm
and cell duration @, ?]). Although the BLPC model is physically intuitive, methods for fitting its
parameters are quite limited and predominantly not very stable. The most widely used approach is
based on 'method-of-moments’ type fitting as, for example, in Rodriguez-lturbe ePRl. I{f what
follows, we reformulate the Rodriguez-lturbe model, and we explain why the new model keeps all
the important features of the old one, while allowing for maximum likelihood estimation (MLE for
short) of parameters. Only then, do we state a rigorous definition of the new model.

Main obstacles to application of MLE to BLPCs model are the "physically appealing but mathe-
matically intractable dependencies involved between the rainfall intensities at different time points,”
[?]. Although intractable, the model is very close to being Markovian. There are two properties which
compromise the Markov property: first, the rectangular shape of the cells implies the memory of the
depths of all active cells at any time and second, the rate of cell extinction at a given time depends
on the number of active cells which is unobservable. The first issue can be dealt with in the follow-
ing way: at a cell arrival time, the rainfall process jumps up by a random amount and at the cell’s
extinction time, it jumps down by a random amount with appropriate distribution. If on average the
jumps up are as large as the jumps down, one can call such a modified model a 'randomization’ of the
rectangular cell shape. There is one technical point to be addressed - the possibility of a jump to the
negative region. The second issue is also resolvable. The rate of extinction can be made dependent
on the instantaneous intensity of the rainfall and not the number of active cells. Again this can be
thought of as "smoothing” of the Rodriguez-Iturbe BLPC model. It is noteworthy to realize that in
the case of deterministic cell depths, this approach is identical to the BLPC model mechanics.

We propose to model rainfall intensity within a single storm by a homogeneous jump Markov
processY; } whose infinitesimal generat6# is given by:

(1) Gol(x) = /R (6(y) — &) Az, y)w(dy),

where:

A(:‘Uay) = {/\1)\u€_>\u(y_x)1(;r,oo)(y)

Ao () Age AT g o (y) + Aa(x)e 10y (y) )
with

2) 22(8) = 10,00 (€) A + A k()
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wherev is Lebesgue’s measure @ co) with an added unit point mass @tandx (&) is defined on

R, and satisfies:(z) = x for 0 < =z < K (for some largek), it is bounded, it i3-times differen-
tiable,(9/0x)k(x) > 0. The model is determined by the parameter ve(:l&@r)\gl), /\gm, Aus Ad) =

(91,92,93,94,95) == Ri

2.3. Maximum Likelihood Parameters Estimates. The advantage of having a Markovian model
for the single storm is the convenience of being able to write the likelihood function. As stated in
Ubsection 2.1, we obserni® = {(&;, Bi+1)}i=1,....n. FOr the continuous time process f;+1 > 0

is the sojourn time in statg > 0. M is an observation of the so called embedded Markov chain
corresponding to the continuous time procEsésee P]). The log-likelihood function (with respect

to the measure) of a particularM is then:

n—1
L(Mv 9) =In H F(&i?ﬁi—i-hgi-i-h 9) 3
i=1
where:

F(&B,n,0) = f(&n,0)q(&,0)e 105,

Intuitively, the value ofF" is the product of two probabilitiesy(¢, #)e 297 which is the density of
the sojourn times of the jump Markov procesE in the current stat€, andf which is the density of
the distribution for the new staigresulting from the next jump. For the storm model defined by (1):

A
(3) f(&m0) = lioo(n) (m%e—xm—s))

A2(§) “ale— A(€) e
+ ool (Al @ m) o) (M R )
and:
q(&,0) = A1 + A2(§)
We derive the values of the estimators by solving the system of first order conditions, and we check
that the obtained solutions are indeed the unique maximum likelihood estimators of the model pa-
rameters. Denot€/ = {i; {1 — & > 0}, D = {i : {11 — & < 0F, Do = {i : {1 = 0},
=4 = {i: & > 0}. The candidate estimators are then:
D\ Dy| vl W
Yiep(& —&iv1)’ Yoo B T Yieu G — &)

and the solution of the system of equations:

1 n

T
ieD Aa +)\é 1)

n—1
5 r(&i) _ "
() i%;) )\gl) + )\éll)ﬁ(gi) ;“(5 )Bi+1

The following proposition states the uniqueness of the estimatéélf)oand)\gm.
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Proposition 2.1. For any realization of}/, if the setD is non-empty and the system of equations (4)
and (5) has a solution, then it is unique.

Proof. If we use the notatiols = 7", 3;, andC = 3"~} k(&) 6, we get:

1

k(&)
7 Ua,bh) = S —D ¢ ab>0.
(7) (a,b) ieD“er“(&) a,b>0

Since D is non-empty, and since for eveiyin D & > 0, the function® is strictly decreasing
both ina andb. Therefore the equatio®(a,b) = 0 defines an implicit functiorn = a(b) for
€ (0, % Yicp k(&)™) which is smooth and:

K&
0D/0b  Yiep G E?

70 = =580~

. :
2ieD O HonE)®

Now, let us defing;(b) = ¥(a(b),b). g is only well-defined forr € (0, B>, k(&)~1). The
statement of the proposition is equivalent to saying thatéj = 0 has a solution, then it is unique.
It is easy to see thatis smooth. To show the uniqueness we prove ghat 0, and thugy is strictly
decreasing:

/ _ _H(fi) I )
g = i;(a(b) T oip @ @)+ ()

—K(&i)

_ —(&) Y ieD Tl hrEN? k()2
B @ <a<b>+bﬂ<&>>2>ziwm iezlj(a(bwbm(@))?

r(&) 2 _ K(&)? 1
(Sier aorsaterr) — (Tien aosoer) (Zieo womer)
- .
ZiGD (a(b)+br(&;))?

The sign of the derivative only depends on the numerator since the denominator is positive. So we
drop the denominator:

2
k(&) B k(&
@(a(bﬂ%(&))?) (;ubmﬁ ><Z< +bnsj>>>

k(&) — r(&)? 26 (8&)r(&5) — K(&)? — K(&)°
_Z +b/< §i))*(a(b) + br(&;))? Z(a(b)+ bri(&:))?(a(b) + br(&;))?

(&)
(
_ (/f z) (5]))

= = 2 (al®) + bu6) E(a(b) + b))

z<]

<0. O

To establish that the above estimators are consistent maximum likelihood estimators of the true
model parameters, we need to verify certain smoothness properties of the transition density of the
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imbedded Markov chain for the procegsin order to use the following theorent?) of Billingsley
which we state for the sake of completeness.

Theorem 2.2(Billingsley). Suppose that the Markov procelSs } defined by its infinitesimal gener-
ator (1), f, ¢ defined by (3) and the parameter sp&gaatisfy the following conditions:

(1) P(Yits = z|Y: = z) is a continuous function of for everyz andt, the sample paths df;
are right-continuous and(¢, 6) is a bounded function for anfy € ©.

(2) For any¢, the set of) for which f (£, 7, 0) > 0 does not depend ah

(3) For any¢, g andn the F(€,8,n,0) (and thusG (&, 3,n,6) = In F(£,n,0)) has continuous
third order partial derivatives throughou®.

(4) Foranyé € © there is a neighborhood/ of # such that for any three parametersv, w and

any statet:
®) / / sup |Fu(€, 8,m,0)|dnds < oo
R+XR+ 0'eN
©) / / sup |Fun(&, By, 0)|dndB < oo
Ry xRy 0'eEN
(10) EG[SUP |Guv’w(zl7p272279/)u < o
0'eN

(11)

whereF,, F,,, F,.. denote the first, second and third order partial derivatives with respect
to parameterd,, 4, 6, and z; is a random variable with the stationary distributior

of the Markov chain ¢y, &2, &3, ... } and the conditional distribution dfps, z2) givenz; is
determined by its density(z1, p2, 22, 0).

(5) There exist$) > 0 such that for allu, Ey[|Gy(21,p2, 20,0)|?t9] < oo and o,,(6) de-
fined byo,,(0) = Ep[Gu(z1, p2, 22, 0)Gy (21, p2, 22,0)] form a non-singular matrix (6) =
(ouv(6)).

(6) For eachf € ©, there is exactly one stationary distributian(-) for the imbedded Markov
process(&, }, andmy(€, <) < mp(-) for eaché € R,

and that?® € © is the true value of the parameter vector. Then there exists a SOi6bAL /90 = 0
which gives a consistent estimatedbf If y(¢) is a random vector with components

n
_1
Yy =N 2 E Gu(£k7§k+laﬁk+1790)v Uzl,...,T’
k=1

1

andl( ) is the random vector with componenist) = nz (6, 90) u=1,...,rthenasn — o
y(t) 5 N(0,0(6%)), 1(t) 5 N(0,0(6°)~1) 2[L() — L(6°)] =

We check that the conditions of the above theorem are satisfied in the present situation.
< Condition (1).), is bounded, therefore condition 1 is easily checked.
© Condition (2). It is easily checked because for every O the {n; f(£,n,0) > 0} = Ry.
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< Condition (3). We can rewrite the functiafi(¢, 3,7,0) as a function of only the parameter
vectorf as follows:

(12) Ao () AgeMEMe=atAa©)8; 0 << g

5\2(§)e—>\d5€—(>\1+5\2(5))5; n=0
F(0) =
)\1)\u6_)‘“(77_5)6_()‘1+5‘2(5))ﬁ; £<n
Now it is easy to see thdt possesses partial derivatives of order three becaudees.
< Condition (4). The first two integrability conditions are easy to see from the expression (12).
To obtain the required integrability we neéd (F,) to be bounded im for n < £ and integrable
in for n > £. (We can first integrate w.r. t6.) Boundedness is apparent because of continuity of
the derivatives. The integrability follows from the fact that fpr> ¢ the F,, (F,,) can be written
as: F,(n, B) = h(n, B)e~ =% wherea,b > 0 andh(n, 3) is O(n" ™) for some integers,m. To
check the finiteness of the expectation we prove more, namelythat is bounded almost surely.
G can be written as:

In Xz (&) — Aa€ — (A1 + A2(§)) 3 B n=0
(13)  G(&,B,n,0) =4 A (&) +Inrg—A(§—n) — (A1 +A2(€))8; 0<n<¢
A +In Ay —Au(n—8&) — (M +22(6))B; £<n

It is clear that only very few of the third order derivatives are non-zero. Nalﬁg%y: %1{n>§},
3 H{n>

Gy = %31{0<n<§}, Gy = %1{,]25} and mixed derivatives with respect chl) and Agm for
_ 26(§) _ _2 _ 2x(8)?°

()\gl))i()\éll))j. ThenG21 == w, G30 == W’ G12 == W,

Gos = i’;ggz Since the former are constant and the latter are bounded fgralb they satisfy the

condition 3.

< Condition (5) is satisfied as long as the following conditions hold true for sbmé)

0 < n < & We will denoteG; = G

(14) Eo[lp2**’] < o0,
(15) Eo[|p221|*T°] < oo,

as can be seen from the special form of the partial derivativés of

_ £ n=
G)\l = {118 nigv G)\d = Tld_(é._n) 77<‘§7
S 0 n=>¢

_ 0 n<¢
Gagn = R nze M T {fu—(n—é) n>¢

{ S — k)8 n<e

1 _
2 —Blesoy n=>¢§
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We first prove (14):

Eollpa|®+9] = / Eoll2 9|21 = 2lmg(d2)

/ Eoll2] 9|21 = Olmp(dz)

— B A% < o
whereA; is an exponential random variable with parameterTo prove (15) we notice that:

Eo[|z1p2|®T)] = /Eﬂ[\zﬂz\(2+5)zl = z]mg(dz)

IN

> / Eof|2Anr| @21 = 2]mo(d2)

= B[S VB[22

where A, is an exponential random variable with parameter- M independent ot;. Similarly
we can show:

Egllz1p2] 9] < B[ ATV |Ep 27",
Therefore it is enough (and necessary) to provelipét; |>t9)] < co. That however, follows from
equation (19) of Theorem 2.7 coupled with the drift condition (16) below. Since those imply that the
stationary distributionrg possesses all moments.

We proceed to prove the non-singularity of the matrix=irst we notice that
ouw = E[GyGy] = —E[Gyy).
In this form it is easy to see that the mateihas only two non-zero off diagonal elements, namely

k(€
_E[G)é][))\g[)] = —E[G)\gl))\én)] = E[1{§>0}5\2((§>)]-
2

Therefores is non-singular if and only if the matrix:

K 2 K
Ell{e0)5575) Ellges0) 53]
E[1{£>0}%] E[l{e>0) 3]

. . .. . . . . . I (IT)
is non-singular. This is true since its determinant is positive for all valuelé bf)\z .

< Condition (6). We shall prove this condition in a series of statements. The main idea will be
to show that there exists a "small” subset of the state space towards which the Markog bagia
geometric drift. Because of Theorem 2.7, this implies the existence of a unique stationary distribution
of £&. But first we recall a couple of standard definitions for the sake of definiteness.

Definition 2.3. Let P be the transition kernel of a Markov chain on a measurable spac8(X)).
A setC € B(X) is calledsmallif there exists ann > 0, and a non-trivial measure,, on B(X),
such that for allx € C', B € B(X) P™(z, B) > vy, (B).

Definition 2.4. The Markov chairg is called strongly aperiodic if there existaa-small setA such
thatv,(A) > 0. Moreover, the chain is said to beirreducible if for all z € X and anyA € B(X)
such thatp(A) > 0, L(x, A) > 0 whereL(z, A) is the probability of reachingl starting fromz.



PRICING PRECIPITATION BASED DERIVATIVES 9

Proposition 2.5. Any interval[0, 2] is a small set for the chaié.

Proof. We first we show thaf0} is a small set. Letn = 1 andv = P%(0,dy) = £(0,y)(dy + &)-
By definition for anyA € B(R), P$({0}, A) = v. For anyx € [0, o], P*(z,{0}) > 0 therefore by
Proposition 5.2.47] the interval[0, o] is a small set too. O

Proposition 2.6. There exists, > 0 such that the Markov chaié has ageometric drifttowards
[0, zo] i.e. there exist® > 0 andb < oo such that for any: > 0:

(16) [ P V) < (1= 9V (@) + Mg
whereV (z) = 7,0 < v < \,.
Proof. Let us denote(z) = >\1+)§\12(m)’ q(x) = Af-fﬂ(fgm) We have:

PV = /OOO PE (o, dy)V (y) =

= p(x)/ )\ue—)\u(y_w)e'yydy + q(:[;) |:/ Ade—)\d(z—y)e'yydy + €_>\d$:|
r 0

A Ad _ Ad
17 _ U YT z(Aa+7) 1—
&0 pla) 3 e o) [ e At
Let us denoteD(y) = Ajj_y, U(y) = )\jj,y. Recall that0 < v < \,. Rearranging (17) we

obtainPsV = € {p(z)U(7) + q(z) [D(7) + e~**4+7)(1 — D(y))] }. DenotingA(z) = D(v) +
et (1 — D(v)) we get:

(18) PV =V (2)(p(x)U(7) + a(2)A(x)) = V(2)[p(2)(U(7) — A()) + A(x)]
Let us defineB(z) = %ﬁi). B(x) is well defined for allz > 0 becaus#) < A(z) < 1 and

U(v) > 1. Taking derivative we get:
B'(z) = A'(z)(1=U(y)) = =(\a+7)e "™ (1 = D(7))(1 = U(y)) > 0.

Thus B(x) is an increasing function aof. It is easy to see that() is a decreasing function of as
long asAz(x) is increasing. Now:

B(7) = limy—.0oB(x) = U(lv;—D(l;()v)’
and A

For any0 < v < A, we can choosé/ large enough so that there i > 0 such thatp(M) <
B(v)— 1. Foranyd < g < ; we canthen definey = infH, H ={z>0:p(z) < B(z)—p}.

H is non-empty and bounded from below by 0 so we haye>> 0. Forx > zy we have in (18)
P&V (z) < V(x)(1 — B), therefore the drift condition (16) holds. To show that it also holds for
0 < x < xg, we only need tha[tPfV](x) is bounded there, and this is easy to see from (18). O
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Theorem 2.7(Theorem 15.0.17]). Suppose that the chafnis y-irreducible and strongly aperiodic.
Then the following conditions are equivalent:

(1) The chain is positive recurrent with invariant probability measuteand there exists some
v-small setC with /(C') > 0, pc < 1 and M¢ < oo, and P>°(C') > 0 such that for all
xz e C: |P"(z,C) — P>®(C)| < Mcpg.

(2) There exists some small gétwith ¢/(C') > 0 andx > 1 such thasup, . E; ["¢] < o0

(3) There exists a small sét, constant® < oo, 3 > 0 and a functionl/ > 1 finite at some
ro € X satisfyingP¢V (z) < (1 — )V (z) + ble(z), ze€ X

Any of the three conditions imply that the $gt = {z : V(z) < oo} satisfiesP(z, Sy) = 1 for
all z € Sy. Hence, there exist constants> 1, R < oo such that for any: € Sy

(19) > r|P (@, ) — 7|| < RV (x)

n

Since the Markov chaif satisfies the general conditions of Theorem 2.7, and since condition (3)
is clearly satisfied, then (1) gives the existence of a unique stationary distribytfoneachd € ©.

Proposition 2.8. For anyz € X, mp(z, ) < ()

Proof. To prove the statement we only need to show that the meastréy + 5, onR* is absolutely
continuous with respect ty since K has densityf with respect tqu.

First we show thatrg({0}) > 0. Clearly, there is a seB € B(X) such thatry(B) > 0. Let
rp = inf B < oo. Then

me({0}) > /BTrg(dx)ﬂ'g(a:,{O}) > /B7rg(da:)e_)‘dx3 > e B, (B) > 0.

iF [a, b) is an arbitrary semi-open interval containedidin then

b
mo([a, b)) > 71'9({0})/ e MYy > 0. O

a

Corollary 2.9. If the first order conditions have a unique solutiérand if the conditions of Theorem
2.2 are satisfied, thefris a consistent MLE estimate of the true paraméter

It is clear from the computations preceding Theorem (2.2) that,, and A4 are uniquely deter-
mined. Proposition 2.1 shows the uniqueness for the other parameters. One remaining open question
is whether the system (4) and (5) has a solution at all. It is addressed in the following proposition.

Proposition 2.10. With probability one, fom large enough, the system of equations (4) and (5) has
a solution.

Proof. To prove the statement we show that,...g(0) > 0 almost surely. Since

B
9(0) = WZH(&)_C

€D

= (Z 5¢+1‘;)’ PILDEDD K(fi)ﬁz‘ﬂ) + <Z ﬁz‘+111)| ILOEDS H(&)ﬂiﬂ) ;
ieD

€D €D 1eU €D 1eU
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then the law of large numbers implies that:

1 1
lim — (Y B > e() = D k(&) Bin
n—o0 | D] i€D DI i€D i€D
= E(p2|21,21 — Z9 > O)E(K(Z’lﬂzl — Z9 > 0) — E(pg’Zl,Zl — Z9 > O)E(K(Z’lﬂzl — Zo > 0) =0

and

. 1 1
lim — ()~ Biriipy D k(&) =D k(&) B
U\ Pl =
= E(p2|z1,21 — 22 < 0)E(k(21)|21 — 22 > 0) — E(p2|21, 21 — 22 < 0)E(k(21)|21 — 22 < 0) > 0.

Combining the two we get:
lim g(0) =00 >0. O

By this we have established that the MLE estimator which we derived, possesses all the properties
stated in theorem 2.2.

As mentioned above to get a complete rainfall intensity model the temporal dynamics of storms’
arrivals and durations has to be specified. The inspiration can be taken from the BLPC model which
assumes the storms arrive according to a Poisson process and last for a random (exponentially dis-
tributed) time; they can overlap. In the framework of the proposed model the random number of
storms active at each moment manifests itself in the random cell arrival rate. This can be captured
by replacing the constant cell arrival rate paramaieby a stochastic process. If the dynamics of
the rainfall process conditional on the realization of stochastic progeissgiven by (1) then MLE
can be performed separately for parameters of the dynamics dhis gives us freedom to choose a
model for\; for which a valid estimation procedure (preferably MLE) is feasible.

A simple model whose MLE is well established is that of switching Markov process;folhe
state space consist of two stafgs \; } with transition rates from stateg, ¢,. The ML estimators
for A1, g4, ¢ In this model have been presented?h [Assuming one observes the inter-arrival times
U= (U1,Us,...,U,) ofaCox proces®V directed by a switching Markov proces$, the likelihood
function can be shown to have the following form:

n

L(U7 )\laqdvqp) = Hf(Uiv)‘LQdaqp)
i=1

1 _ _
f(@, M40, 0p) = p— (g2 + gp — r1)r1e” ™" — (qa + qp — r2)r2e” "]
1 1 )
o= S(@ta+M)—/;@a+a+A)?—lg
2 4

1 1
ry = §(Qd +qp+ M)+ \/4(% +qp+M1)%2 —liga
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Once the parameters af are estimated, the MLE method for estimating the remaining parameters
described above can be used, due to the separation properties of the likelihood function mentioned
above.

2.4. Comparison with Rodriguez-lturbe’s Model. In this section we check numerically that our
Markov jump model (MJ) leads to properties quite analog to those of the widely accepted Poisson
pulse (PP) model of Rodriguez-Iturbe.

We choose three main characteristics of the precipitation to compare the two models: duration
of dry spells, duration of wet spells, and accumulated rainfall volume during a single wet spell. We
perform the comparison at the level of a single storm because that is where the models differ. We show
that the probability distributions of these quantities are very similar in both MJ and PP models. These
distributions are not explicitly known either for the PP mod&])(pr for our MJ model, therefore we
rely on Monte Carlo simulations to generate samples from the two models and compare the resulting
empirical distributions of the relevant characteristics.

In order to set up a reasonable comparison, we have to resolve the issue of the different parameter
sets driving the two models. This calibration can easily be done because the three parameters of
Rodriguez-lturbe model - cells arrival rateyu, - average cell intensity angl - cell extinction rate
can be naturally linked to the jump Markov model in a nearly one-to-one fashion as follews:\,
1/>\u = 1/>‘d = Uz, Aéll) =n.

Although the choice of exact parameter values is not important for our comparison, to obtain
realistic values for\, i, andn, we fit PP model to NY Westchester January data using a form of

the method of moments suggested # [Based on that, we sett = 180, u, = 1500, n = 400
and generate 360 months worth of precipitation data from each model. We set the extra parameter

I .. . ..
Ag ) = 300 so that the empirical average wet spell length in both models coincide. Samples from
Markov Jump model simulation sample Poisson pulse model simulation sample
. z 8-
. T T T T T . T T T T T T
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.25
Time Time

FIGURE 1. Monte Carlo samples from the Markov jump model (left) and from the
Poisson pulse model (right).

both models are shown in Figure 1 for the purpose of illustration. There is no obvious difference in
the statistics of the precipitation patterns they produce. As evidenced by the Q-Q plot in the center
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Wet spell duration Dry spell duration Rainfall volume per wet spell, MJ:1049, PP:1128

0.030
I
0.030
I

PP
0.020
Il
o
©
o
°
PP
0.020
Il

0.010
I
0.010
I

0.000
0.000
I

T T T T T T T T T T T T T T T T T T
0.000 0.005 0.010 0.015 0.020 0.025 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0 20 40 60 80

MJ MJ MJ

FIGURE 2. Q-Q plots of the wet (left) and dry (right) spell durations from the
Markov jump and Poisson pulse models.

pane of Figure 2, the distributions of the lengths of the dry spells seem to coincide in both models.
The Q-Q plot in the right pane shows that the distributions of the rainfall volumes also agree in the
two models, though to a lesser extend in the case of the simulations at hand. Finally, the Q-Q plot
in the left pane shows that, at least in the case of the Monte Carlo samples which we generated, the
distribution of the length of a typical wet spell could have heavier tail in the Markov jump model.
However, the bulk of the data seems to be in a region where the two distributions agree.

3. PRICING PRECIPITATION OPTIONS

3.1. Security Price as Random Evolution. We generalize the standard geometric Brownian motion
security price model by allowing the coefficientsando to depend on another process Formally

we assume that the dynamics of the traded aSsee given by a stochastic differential equation of
the form:

(20) dSy = Sy(u(Yr)dt + o (Yr)dWy)

where the procesg = {Y;} is a continuous time Markov processlk¥ independent of the Wiener
processiV. Models of this form are common in financial applications: regime switching models,
stochastic volatility models. Also, this is the model useddhtp price temperature options. The
conditions for the existence and uniqueness of the solution to (20) are discus8dring relevant
results for our purposes are stated in Theorem 3.1 and its corollary. ThegSpaif) forms a Markov
process which is known in the literaturerandom evolution

Theorem 3.1. Let there exist a constad{ and real functiong(t, y), h(t, y) such that:

(21) \pw(t,x1,y) — p(t, ze,y)| < Klog — 9]
|0-(t7:1:17y)_0-(t7$27y)| S K2|SU1—J,‘2‘
1
(22) Slot eyl < g(ty)’ + K?|af?
lut,z,y)| < h(ty) + K|zl
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andforallm =1,2,3,...: E [fOT(g(s,Ys)m + h(s,YS)m)ds} < oo then (20) with the initial data
Xo = z has a pathwise unique solution and itA3-progressively measurable.

Corollary 3.2. If Y is real valued and for every, > 0:

T
E [/ |ys|mds} <0
0

then conditions (22) are equivalent to:
ut, z,y)| < C(lzl +[y)™,  and  |o(t,z,y)] < Cz] + |y])™.

3.2. Utility Maximization as a Stochastic Control Problem. We now formalize the problem de-

scribed in the introduction. We are given a filtered probability sgekce”, { F; }<,<1, P). F: is the

sigma fieldo((Ss, Ys) : 0 < s < t) augmented by the null-sets &f = F7. Trading is allowed in a

risky asset whose price process is a random evolutipny;) defined in Subsection 3.1 and a bank
account for which we assume that the interest rate is zero, and we assume that the agent possesses
initial wealthz. We look for a self financing trading strategy the amount of money invested in the

risky asset - that maximizes the utility of the terminal wealth. For any strategy, the dynamics of the
wealth process are given by:

(23) dXy = pr(p(Yr)dt + o (Yy)dWy)

and the objective is to maximize:

(24) E[U(X7)]

Clearly, for any admissible strategy, the p@¥, Y') also forms a random evolution. The problem of
maximizing (24) for the process (23) above falls in the framework of controlled Markov processes. As
such, it can be solved by dynamic programming, and the conditions for the existence of the optimal
solution are given in verification theoren.[

3.3. HJB Equation for Random Evolutions. Candidates for the solution of problem (24) among
Markovian controls can be found by solving the corresponding HIB equation. The controlled back-
ward evolution operatod* of the random evolutiofilX, Y') reads:

u oV ov. 1 4, 0%V
(25) A"V (t,x,y) = Erl UM(?J)% touo (y)@ + GV (t,x,y)
whereG is the infinitesimal generator of the procé&ssHence the HIB equation for the value function

V' of the optimization problem (24) is:

u ov o 1, ., 0V
(26) O:sgpA V:8t+GV+S%p{u'M(y)8x+2u o (y)w :
We can perform the maximization with respectit@xplicitly to get the optimal contrak* and an

integro-differential HIB equation:
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. uly) oV/ox
(27) u = —02(y) W
(28) 0=V L ay_ L2y (0V/0x)?

ot 20%(y) 0?V/)0x2 "
The terminal condition for the backward HIB equation (28) is provided by by the utility fun&tjon
namely:V (T, z,y) = U(x). If we assume the proce3sis the jump Markov process storm model
developed in section (2.2) we obtain in particular:

2 T 2
(29) 0= %‘t/ +A®W) /R V(t, 2, 2) — V(t, 2, y)|TI(y, dz) — 252% (;VV//%;Z

where is the jump rate function and is the jump transition kernel for the process

In order for a solutionl” of the HIB equation to be the value function of the stochastic control
problem it needs to satisfy the conditions of the verification theorgimIp particular it needs to
belong toD the common domain of the backward evolution operatiisu € U. Before we proceed
to obtain explicit solutions to (28) we characterize theBdbr the equation (29).

Proposition 3.3. The domairD of the HIB equation (29) contains all continuous functids, x, y)
defined or{0, 7] x R?, such that:

(1) 0¥ /ot, 0¥ /ox, 0>V /0x? are continuous.

(2) ¥, 0¥ /ot, 0V /ox, 0>V /0x* have polynomial growth, i.e. for sonf€ andm:

(U (t, 2, y)| +[00/0t(t, 2, y)| + [0€/0x(t, x,y)| + |07 /02®(t, 2, y)] < K (1 + |z| + [y|)™

Proof. We will show that for allu € U any ¥ satisfying the conditions of the proposition belongs
to the domairD(A") of the operatord“ (along the lines of 7], Appendix B). Let us fix an arbitrary
u € U. For all ¥ satisfying the conditions 1 and 2 the operaitt is well defined. By condi-
tion 1 all U, 0¥ /0t and AV are continuous functions. Condition 2 guarantees that forsamyt:
Eio|¥(s, X5, Y)| < oo and [[7|A¥(r, X, ;)| < co. It remains to show that such functions satisfy
the Dynkin formulaEe,, [¥ (s, Xs, Y;)] — (¢, 2, y) = By [ [7 A"V (r, X, Y, )dr]; t<s<T

We can decompose the operatbt in two partsA“¥ = A§¥ + HV where:

§ o 9 . 1, O
AgV(t,z,y) = EH(Q)5$f+§U2(y)@f

HY(t,z,y) = /R[\Il(t,x,z)—\Il(t,x,y)]ﬂ(y,dz)

Lett; <t < --- <t be the jump times of the proce¥son [t,s] and let us set = t andiy 1 = s.
Then:
N
\I](Sv XSv KS) - \Il(t7 xz, y) = Z[\Il(ti-‘rlv Xti+1 ) }ftl) - \Il(t% Xti? Y;fz)]
’ N
+ Z[qj(tiv Xti’ nz) - \Il(tiv Xtiv mi—l)]'

=1
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Since onY is constant ort;, t;+1) for i = 0,1,..., N by the results known for Ito diffusions
U(tivt, Xeyyrs Yer) — V(ti, Xy, Va,) = f;;# AU (r, X, Y,)dr. Hence:

N S
]Etﬂﬁy {Z[\P(ti+1a Xti+1?}/ti) - ‘lj(tivthYtz‘)]} = / ABL\I’(T‘, XT‘v Y?”)dr'
i=0 ¢

To finish the proof we notice, that we can write:

By, y[f(ti + 1)] = AMy)E, [ /t o f(t)dt}

for a continuous functiotf (¢). Then

Eti—l,y[\:[l(ti’ th'v Y;fz) - \I/<ti7 Xti’ y)]
Ei, 1y (B (W (i, X,y Vi) — U (i, Xey, 9)]]
Eti—l,y [H\Il(tu th'v y)/)‘(y)]

t;
= E, [/ HU(t, X,,Y))
ti—1

Implicitly we conditioned by the Wiener proceBs which is however independent bftherefore we
omitted it in the notation. Now using the strong Markov propertyofve get

N S
Etmy {Z[\I](t’Lathanz) - \Il(tlathanll)]} — Etmy |:/t H\I](T‘, XTW}/T)dr):| . |:|

i=1

3.4. Optimal Hedging Strategies. In this subsection we solve the HIB equation (28) in the case of
the exponential utility functio/(z) = —e~** with « > 0. We can get a explicit solution in this
case by linearizing the HIB equation by a Hopf-Cole transformation. We hypothesize the form of the
solution asV (¢, z,y) = —e~**F(t,y). Substituting in (28) we get:

1u2(y)) B 8F(t’y) L GF

202(y)) Ot

with the terminal condition?'(T',y) = 1. The solution of this equation is given by the so-called
Feynman-Kac formula. Indeed, its right hand side is the backward evolution operator(tok
justification will be given below). Such a formula already appeare@liwhere the zero order term
found in the exponential was called the traded risk premium. The solution is:

(30) F(t,y) (

F(t,y) = Eyle " 2700,

T 1p2(Ys)

Substituting out we see that the candidate for the expression of the value function solving the HIB
equation (28) with exponential utility is

1 uz(Ys>d

2 ‘72(Y5) 5]7

T
V(t,z,y) = —e “"Eyy e J
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the corresponding optimal trading strategy being given by the time vaSfiagpe ratio

by = p(Ye-)

ao?(Y,)
whereY;_ = limj\ o Y;—, is the left hand limit assuring the predictability of the trading strategy. To
check that the candidate solution is indeed the optimal solution of the optimization problem we need
to check if it satisfies the verification theorer?]jj and hence is a bona-fide optimal solution of the
original problem. We will proceed to do this for the case wheis the jump Markov storm model.

Proposition 3.4. If o(y) > € > 0 for all y then the trading strategy is the optimal trading strategy
in the utility maximization problem with being the jump Markov process storm model.

Proof. We first show that the strategyhas all moments and therefore is admissible:

E [/OT \¢t|mdt} =k [/OT ’05((32))@%}
KE [/OT Ytlmdt]

— (KT)E [;/{)Twmdt}
< (KT)E[|Yo|™]

where the last inequality follows from the ergodicity and existence of all moments of the pidcess
(see Theorem 2.7). It remains to show thate D. We will show thatl” satisfies the conditions of
the proposition 3.3. It is easy to see that all the conditions are satisfied if and only if

([ 8500)| <

which is obvious since the left hand side is bounded. O

IN

We can solve the HIB equation (28) along the same lines in the case of the power utility func-
tion U(x) = z*/a with a < 1. Again we search for a value function in the fol(t, z,y) =
(xz*/a)F(t,y), and substituting out we get the linearized equation:

2
a  pi(y) OF
31 F(t — = —
&Y 0 (o) = 3
with terminal conditionF' (7", y) = 1. Again, invoking the Feynman-Kac formula we get the solution:

H2<Ys)

T a
F(t,y) = Byylel 20707205
and after substitution, we get the candidate for the solution of (28) with power utility to be:

(t,y) + GV

xa T [ HQ (YQ)
V(t,2,) = S By el T 200

with the corresponding candidate

by = p(Yi)

SRV —a)
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for trading strategy. Verification can be done along the same lines as with exponential utility.

3.5. Utility Maximization with a Derivative. We are ready to move onto maximizing the expected
utility with a derivative written on the underlying proce¥s In precipitation market practically

all derivatives have Asian structure since the instantaneous precipitation intensity has little practical
importance. Two main types of precipitation derivatives can be encountered. The payoff can depend

+
upon the amount of rain during a given time perigdY’) = (ft, Yidt — ) or upon the amount

of time it rains (does not rain) during a given time perigdY’) = (ft, Livsepdt — )+, where
€ |s the minimal precipitation intensity that constitutes a "rainy day”. For simplicity we first assume
= 0, later we will show how we can extend our results to the ddse 0. Under this simplifying
assumptlon both payoffs can be expressed under a common fram@woyfg h(Ys)ds 0<t <
t" < T. For type (1) derivativéi(y) = y, for type (2) in turnh(y) = 1(c ) (y). The results below
also hold for any functiok > 0 with polynomial growth.
When maximizing the utility two points of view have to be considered: the buyer’s and the seller’s.
The buyer’s objective function isE [U (X7 + &)]. The seller’s in turn isE [U (X7 — &)]. We will
solve only the buyer’s problem. The sellers problem can be solved along the same lines. We trans-
form the optimal portfolio problem with the derivative present to an equivalent problem of optimal
investment with random endowment - for which a rather extensive body of literature eR|s{®]]

[?D.

Proposition 3.5. The solution(¢*, V*) of buyer’s problem is the same as the solutﬁéh, V*) of the
following random endowment optimal investment problem:

(32) mq?XIE {U(XT)}

dX; = g(t,Yy)dt + ¢y (u(Yr)dt + o (Y;)dWy)
whereg(t,y) = Ly (E)h(y).

Proof. Let ¢ be an admissible strategy for the buyer’s problem. Let us deriéid, X (¢), V(¢),

X(¢) the value functions and wealth processes in the original problem and (32) respectively cor-
responding to the strategy. It is clear thaty is an admissible strategy for problem (32) and
V($) < V(¢) < V* and therefored/* < V*. Now let us consider the optimal strategy for

the problem (32) and define a new strategy- (¢, 1!); it is necessary to look at both components

of the strategy the amount of money invested in the risky asset and the riskless bomH.:Lezf)*)l
andy) = fo s,Y,)ds. ThenX (v) satisfiesiX; = o} (u(Y;)dt +o(Y;)dW;) and therefore

Xr(y) = XT ¢* fo (t,Y:)dt and hence
T
V* > V() = B[U(Xr(®) + /0 g(t, Yi)dt)] = B[U(Xrp(¢") = V*. O

Proposition 3.6. The solution(¢*, V*) of seller's problem is the same as the solutigri, V*) of the
following random endowment optimal investment problem:
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(33) mdz)xxE [U(XT)}

dX; = —g(t,Yy)dt + oy (u(Y)dt + o (Y:)dWy)
whereg(t,Y:) = 1y ) (t)h(Y2).
The proof of this proposition goes along the same lines as proposition (3.5).

Now we can write the HIB equation for problem (32):

(34) 0= W L aQV}

av. oV

- - t ] - — -

o+ ot + GV sw {unt) 5.+ et

We can perform the maximization with respectt@xplicitly to get the candidate optimal decision
u* and explicit HIB equation:

.y oV/ox

(35) U= T () 52V 0
ov oV 12 (y) (0V/0x)?
(36) 0= T a1V TEV =5 a0 v oa?

with the terminal condition/ (T, z,y) = U(x). Specn‘lcally for the jump Markov process storm
model (36) becomes:

ov. oV 1

@7 0=+ 5 g(t7y)+A(y)/R[V(t,w=Z)—V(t,%y)] (y,dz) —

The domairD for this equation is the same as for the equation (28).
The exponential utility allows us to separate variables in the equation. As before we search for

oV /ox
27 ) (a?v//agg)2

an expression of the value function in the fokntt, x,y) = —e™**F(t,y). The HIB equation then
reduces to:

1 p? OF
(38) Ft) (oot + 5500 ) = Gt + GF

with terminal conditionF' (7', y) = 1, and using the Feynman-Kac representation formula we obtain:

F(t,y) =Ey o (O‘g »¥s) +5M2E§S§)ds] .

Thus the candidate solution is:

_rT 1 2(Ys)
V(t,z,y) = —e “E, |e i (ag(S’YS)Jr?Z?(Ye))ds]

with the corresponding trading strategy= u(y)/(c?(y)a). We have a verification result:
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Proposition 3.7. If o(y) > € > 0 for all y the trading strategyp is the optimal trading strategy in
the utility maximization problem 32 withi being the jump Markov process storm model.

The proof of this verification result is analogous to the proof of Proposition 3.4.

The situation is more complicated in the case of power utility. It does not possess the convenient
separability property of the exponential utility therefore adding the derivatives causes the separation
of variables argument to fail. A lot of attention has been given to this problem. For example, existence
of the solution has been proved in a very general setting?ii (Henderson (P]) derived lower and
upper bounds for the value function in the case where the derivative payoff is small compared to
the wealth of the agent. Her approach is based on convex duality (to obtain the upper bound) and
expansion of the utility around the no-derivative solution (to get the rate of convergence of the lower
and an upper bound). We will apply the approach of Henderson, to obtain bounds on the value
function in our case.

o Lower BoundA trivial lower bound is given by the value function of the problem without the
derivative since the derivative payoff is always non-negative. In the present situation, we can improve
this bound by using Proposition 3.5. We use the optimal strategy from the problem without the
derivative (24) in the transformed random endowment problem (32). An elementary calculation shows
that the value function for this strategy is:

1 T2y 1 1
V(0 =—F 1-— dt
1(0,2,9) o y{exp/o o2(Vy) 1 -« < 2(1—a)>

o= e (= [ () e f )|}

which by Proposition 3.5 is greater than the no-derivative value function.

o Upper boundWe get an upper bound by employing the convex duality theory. Started by Karatzas
et. al ([?]) in the Ito processes setting, it was extended by Cvitarfl) {p the more general semi-
martingale setting. Our upper bound is a direct consequence of the main re8jilvbEh we choose

a particular equivalent martingale meas@fe A natural candidate is the one suggested by Girsanov’s
theorem. It is defined by its density with respecPto

dQ° T p(vy) 17 @2(Ys)
— = — dWs — = d
ap P ( /0 o(Ys) 2 /0 o2(Y,) "
Clearly the measur®° makes the traded asset prig@nd therefore the wealth proceXs a martin-
gale¢, Moreover, it is equivalent T Hence, it is inA. We can get the value of the dual objective
function for this measure:
- dQ l—a _a 1 «a T p2(vy)

E —)] = a-TA wh A=E = ds |].
052 = L% where [exp<2(1_a)2/0 )
Therefore:D(y) = 1;’J‘yﬁA+y(x +E%[¢]), and the upper bound is obtained by minimizibgy)

overy. We get:

l1—a
«

11—«
(39) (z + E[E) A = Vo (¢, 2,y) <1 i E‘ﬁ)
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whereVj is the value function of the problem (24) with no derivative present. It is easy to see that
these bounds converge as the wealth level becomes large compared to the derivative payoff.

3.6. The Indifference Prices. As we mentioned in the introduction the solution to the optimization
problems without a derivative claim and with it allow us to set a price on the derivative claim by the
principle ofindifference Let us denoté} the value function of (24)\¢ the value function of (32) and
p the price of the derivative claim with paydff The indifference principle staté$ (0, z + p,y) =
Ve(0,z,y). Solving this implicit equation fop will allow us to price the derivative. We will be able
to give quite an explicit formula in the exponential utility case. With the power utility we will only be
able to give bounds on the price, as expected.

Using the results of Subsection 3.4 and plugging the value functions in the indifference equation
we obtain for the exponential utility:

TlM (Ys)d

1 Ey |:€ 0 2a2(Ys) :|
p=—In

Ys :
Y SRR

Notice that this value of is independent of the initial wealth. This is very specific to the particular
choice of the exponential utility function. Algeis in practically closed form since it can be easily
evaluated by Monte Carlo simulation of the precipitation procéssvhose sample paths can be
simulated without error.

In the case of power utility, we get bounds based on the bounds on the value function:

1/a a=1
V(0 [f (t,Yi)d i
aL(,ﬂs,g) —z<p<z|l—-[1+ .
fT a © (Y5>d8 T
]Ety e t 2(1—w) 02(Ys)
3.7. Derivatives with Non-zero Strikes. To simplify the notation in the previous sections we only
considered derivatives with the paygfbf the form: ¢ = ft, Yods 0 <t <t"<T.Wewill
+

show that our results directly extend to the payoffs of the f@rm (ft, Ys)ds — K) 0<t<
t" < T where the derivative starts paying off onIy after a certdiike amoumK > 0 is reached. To
deal with this case let us define a procégs= ft Y;)ds for t > ¢ and O otherwise and a payoff

rate functlonh(Yt, Rt) = 1{g,>kyh(Y1). Itis easy to see that the paygftan be written in terms of

h as¢ = ft, (Ys,Rs)ds 0<t¢ <t"<T

We were able to eliminate the strikké at the expense of increasing the dimension of the underlying
by one. Let us denote by = (Y, R) this new underlying process. The optimization problem we are
facing now is as follows:

(40) mgux E[U(Xr)]

subject to:dX; = §(t, Y;)dt + ¢ (u(Yr)dt + o(Y:)dWy) whereg(t,y,r) = L mn()h(y,r)).
ClearlyY is a random evolution with infinitesimal genera@y (y, ) = G + 9L g(t, ). Becaus&”
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is a random evolution and hence a Markov process, we can apply the theory developed in previous
sections to the solution of problem (40) and obtain equivalent results.

For the exponential utility the value function is:

ag( sY +1 B (YS)>ds
V(t, vy, 7") — _e—axEy,T ! fz ( 2 52(Ys)

with the corresponding trading strategy: = U’;((y)) and the indifference price:

Tl# (Ys)d

1 ]Ey|:e 0 202(Ys) :|
p=—In

2 Ys
[0} Eyr |: fo (ag sYs +3 aQEYS;)dS:|

For the power utility we again get bounds based on the bounds on the value function:

1/

a—1
T 0y < @] Ta
aV(0,z,y) Cw<p<el|io (14 By Uo 9(t,Yy)dt 55

T a n=(Ys)
Eyy [eft 2(1-a) o Q(Ys>d5] r

4. A PRACTICAL APPLICATION

In this section we apply the techniques developed in this paper to price rainfall sample contracts
which we chose for the purposes of this study. We chose a location in Norway and electric power
prices because Norway produces most of its electricity from hydroelectric powerplants (hence power
can serve as traded asset in our model) and because of the success of deregulation and the availability
of wholesale electricity prices in the NordPool.

Consider a sample contract: a call option on the amount of rainfall during June and July 2004, as
recorder by Bergen weather station in Norway with a strike of K mm and tick price 1 NOK, i.e. the
seller of the contract pays to the buyer one NOK for each millimeter of cumulative rainfall above K
mm during June and July 2004 in Bergen, Norway.

We need to fit the jump Markov model to rainfall in Bergen, find a traded asset influenced by
the amount of rainfall in Bergen in June and July, fit a model of the type considered in the paper,
determine the exact nature of the functipnando in (20), and calibrate the model to empirical data.
The Norwegian Meteorological Institute kindly provided us with high-frequency rainfall intensity
data records from the "pluviometer” equipped weather station in Bergen for calendar year 2002.
Pluviometers record times (with one minute precision) of tips of a bucket with known (small) volume,
and therefore provides practically continuous time observations of the rainfall intensity process. A
time series plot of these data is given in Figure 3. We examined the influence of the amount of rainfall
on prices of several instruments liquidly traded on the NordPool power exchange, looking for a strong
relationship between Fourth Quarter 2002 forward power contract and rainfall in Bergen during the
course of the whole year. NordPool is a name of a common electric power exchange of four Nordic
countries: Norway, Sweden, Finland and Denmark, established after the liberalization of their power
markets. Nowadays it is one of the most liquid European power exchanges offering spot and forward
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FIGURE 3. Bergen, Norway May-July 2002 rainfall intensity

electricity products. Finally we calibrated the functional formuodndo to the data, and we used
Monte Carlo computations to arrive at utility indifference prices for the contracts. The details of the
exercise follow.

4.1. Bergen Rainfall Model. Rainfall data from May to July 2002 were selected to fit our rainfall
model. The period was chosen to closely follow the underlying period of the weather derivative since
the rainfall characteristics vary over the course of the yg&}) The data are plotted in Figure 3.

The maximum likelihood parameters estimates for the multiple storm model fitted to these data are
listed in Table 1.We computed approximate confidence intervals using result 6. of the theorem 2.2.
We could not obtain confidence intervals for parameters of the processly for the mean of its
limiting distribution. The maximum likelihood mean estimaté 36 with approximate 95% c.i.
(10.68,12.05). The confidence intervals are quite tight given the short period of data used for fitting
the model. This is because of the very high time resolution of the data (the sample length was 2150).
Due to the measurement methodology of pluviometers, the rainfall intensity is always greater than
The cutoff level under which the rainfall intensity is considered t@ be&as set toomm / day.

TABLE 1. Parameter estimates for Bergen data

Parameter Value C.1. (95%)

A 78.6 day ! see text

qa 0.85 day! see text

@ 5.03 day! see text

ALY 0.00 day! (-0.081, 0.081)
A 2.82 mm1 (2.702,2.935)
A 0.012 daymm1 | (0.0116,0.0131
A 0.011 daymnr1 | (0.0102,0.0118
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4.2. The Influence of Bergen's Rainfall on Nordpool Power Prices.We examined several prod-

ucts traded on NordPool power exchange to see whether their prices were influenced by rainfall in
Bergen. Of the examined products forward Fourth Quarter Baseload 2002 (Q402) seemed to be the
electricity product most influenced by rainfall during the summer period. Fourth Quarter 2002 Base-
load forward contract is a contract for delivery of constant power capacity on Norwegian power grid
during 24 hours, every day of the period starting 1/10/2002 ending 31/12/2002. The price of this con-
tract is reported with daily granularity. The plot of precipitation intensity together with daily prices

of Q402 is given in Figure 4. It is clear from these plots taht there is an apparent upwards trend in
the prices during dry periods and downward trend during wet periods. A commonly used model for
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FIGURE 4. Q402 NordPool forward price and Bergen, Norway January-July 2002
rainfall intensity (left) and Bergen log-rainfall-intensity vs. Q402 log-returns.

electricity forward prices in the energy derivatives literature (see for exafiplés[the geometric
Brownian motion described by the stochastic differential equation (20). To complete the model we
need to express the relationship between power price and rainfall via the functional forms of the drift
and volatility coefficientg: ando of the stochastic differential equation (20) driving the dynamics

of the Q402 forward contract. Let us denote Bythe price of Q402 contract on a ddyand let us
denote byR, the aggregate amount of rainfall in Bergen on that day. We estimate the drift coefficient
of g on dayd by the average of Q402 log-returns on overlanday window centered on day.
Accordingly, we estimate the rainfall intensify;; on the same day by the average rainfall over the
same period. Special treatment is necessary for weekends. They are considered as one day and are
included in the rainfall intensity average and not in price log-returns average as there are no prices
reported on weekends. The relationship betwBgrand i, is non-linear. Taking logarithm aR,

makes the relationship linear as we can see from Figure 4. From this analysis, we obtain a functional
dependence of Q402 drift coefficient on the rainfall intensjtyy) = a * in(e + y) + b wheree
represents the cutoff level for no rainfall b are obtained by ordinary least squares regression. The
values of the three parameters together with the estimate of the volatility are given in TAbMeeze
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relevant, the confidence intervals are given.) Rather wide confidence intervals are a direct conse-
guence of scarcity of data. The power markets are rather young and substantial historical price track
record has not been generated yet.

TABLE 2. Parameter estimates for Q402 drift and volatility

Parameter Value | C.I. (95%)

a —0.55 | (—=0.67,—0.43)
b 0.40 | (0.20,0.60)

€ 0.10 | N/A

o 0.20 | (0.18,0.22)

4.3. Utility Indifference Price for Bergen Rainfall Call. We use the price formula derived in Sub-
section 3.7 and we rely on Monte Carlo simulation of the rainfall process to compute the expectations
and put a price on the sample contract. Since we derived exact pricing formulae in this case, we
assume that buyer and seller have exponential utility functions. Also, our bound on the seller’s price
would be indentically infinity which is another reason to work with exponential utility. Table 5 lists
the buyer/seller prices for various strike prices and risk aversion levels. It compares them to the utility
indifference prices without trading the power contract, and shows the relative decrease in the price
due to hedging with the electricity contract. Also, we givisii-neutral priceunder a measure which
makes price procesS a martingale and preserves the historical statistics of the rainfall pratess

As expected the buyer’s price without hedging is lower than the risk-neutral price while the seller’s
is higher. The difference increases with increasing risk aversion (i.e. concavity of utility function).
Both sellers’s and buyer’s price with power hedging is lower than without it. The gap between buyer’s
and seller’s price decreases but remains positive. It is interesting to notice, however that for low risk
aversion levels, the seller price with hedging is lower than the buyer price without hedging. Hence,
if in reality a seller with knowledge and access to power markets meets a buyer without the access or
knowledge a mutually acceptable weather-derivative deal can be done if the seller hedges herself in
the power market.

A word of warning is appropriate at this point. Applying the method in practice must be done
with caution. The rainfall model parameters but mainly the rainfall influence on traded asset price
evolution cannot be estimated without error. As could be seen from the approximate confidence inter-
vals computation the uncertainty can be as much as 20%. The resulting uncertainty in price can be
comparable to the bid/ask spread.
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