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Abstract. We consider the problem of hedging and pricing claims for
delivery of crude oil or natural gas to a given location. We work with a
three factor model for the asset spot, the convenience yield and the loca-
tional basis. The convenience yield is taken to be unobserved and must
be filtered. We study the value function corresponding to utility pric-
ing with exponential utility. Assuming the basis is independent from the
spot, the partially observed stochastic control problem can be expressed
as a closed-form expectation. We show how to numerically compute this
expectation using a Kalman or particle filter. The basic model may be
generalized to include nonlinear dynamics and further dependencies. We
compute a set of numerical statics and we compare our results in the
partially observed case to those of the full information case.

convenience yield, filtering, partial observations, stochastic control, utility
pricing, HJB equation

1. Introduction

In this paper we analyze hedging of commodity contingent claims at a
given geographical location. We work with a partially observed convenience
yield model to capture the economic intuition regarding asset dynamics. In
addition, we introduce a basis factor relating the local price to the market
benchmark. Our approach is based on utility pricing with exponential util-
ity. We recall the linearization described by Lasry and Lions [20] to simplify
the resulting stochastic control problem. In the degenerate case when the
basis is independent from the rest of the system, it then follows that the
additional cost pertaining to partial observations is additive. In the more
realistic case where the basis is a function of the current convenience yield,
we obtain a reduced-form expression that can be numerically approximated
using Monte-Carlo simulation together with a filtering algorithm. After giv-
ing a complete implementation, we discuss the effect of our model on the
forward curve which is the fundamental object in energy markets.
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Our contribution to literature is two-fold. First, our analysis takes into
account the unobservability of the convenience yield. While models with par-
tially observed stochastic drift have been extensively studied in the context
of predictable equity returns, to our knowledge this is the first application
in energy valuation. Second, we present a new framework for pricing loca-
tional assets which combines convenience yields with direct modeling of the
basis. This allows us to obtain a full numerical solution using filtering algo-
rithms. Combined, this paper is a first step towards a more realistic model
for pricing location-specific energy contracts.

Our work is inspired by the brief note of Lasry and Lions [20] who point
out that the wealth-invariance property of exponential utility carries over
to models with partial observations. However, their report does not mention
any applications and does not consider the case where the payoff depends
on the unobserved. The closely related problem of indifference pricing with
exponential utility and unhedgeable risks is discussed by Musiela and Za-
riphopoulou [22] and Zariphopoulou [33]. In a similar vein, Henderson [16]
looked at hedging non-traded securities using a closely correlated asset.

From an applications point of view, our work continues the sequence of
convenience yield models begun by Gibson and Schwartz [13]. More recent
generalizations include Schwartz [29] and Bjork and Landen [2]. However,
all those papers assume a fully observed setting. In contrast, we insist that
the convenience yield is unobserved because it is an abstract concept with
no direct analogue in the marketplace. Many authors have applied filtering
techniques to recover unobserved factors in financial models. We mention
the series of papers by Runggaldier [28] and references therein, who describes
the general approach.

Finally, several papers have treated the problem of portfolio optimiza-
tion with partial observations. Most authors concentrated on the Gaussian
case where explicit computations are possible. Using the convex duality ap-
proach, Lakner [19] found the optimal final wealth by exhibiting a primal-
dual pair. His method relied on the fact that both the final wealth and the
Kalman filtering equations lead to certain exponential-type martingales of
similar structure. Nagai [23] extended the result to the case of non-zero
correlation between the unobserved factor and the spot. Sekine [31] further
extended to cover the situation of both observed and unobserved factors.

The rest of the paper is organized as follows. In Section 2 we describe
the financial setting of our problem and present the basic convenience yield
model of Gibson and Schwartz. Section 3 briefly reviews the complete infor-
mation case and summarizes the results of Bjork and Landen [2]. In Section
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4 we explain our pricing methodology based on indifference prices. Sec-
tion 5 recalls the filtering results we need which are then specialized to the
Gibson-Schwartz model. Section 6 contains our key results on indifference
prices with exponential utility. In Section 7 we summarize and compare the
numerical results. Finally, Section 8 concludes and outlines possible exten-
sions to consider in the future.

2. Model Setup

2.1. Financial Setting. A sample real-life scenario that serves as inspira-
tion for our analysis is the following. Consider a gas fired power plant PP in
New Jersey and assume that the plant operator is interested in purchasing
a contract for delivery of natural gas to its gate at a future time T . For
simplicity, suppose that PP would like to buy a European claim paying out
φ(SNJT ) where SNJ is the spot price of gas at the nearest interconnection
node. Unfortunately, no market exists for SNJ -contingent claims. Such con-
tracts can only be bought over-the-counter from market makers, such as
large utilities and pipeline companies.

The practical solution is to do pricing and hedging using a similar, traded
asset. While gas markets have a multitude of trading nodes 1, for trading
purposes there exists a clear benchmark, the Henry Hub of Sabine Inc. in
Louisiana. Henry Hub contracts are traded on the New York Mercantile
Exchange (NYMEX) and provide an extremely liquid and efficient mar-
ket. Market participants refer to such contracts simply as NYMEX gas. Of
course, using the NYMEX spot SHH exposes the power plant to basis risk,
i.e. the time-varying spread between prices at the New Jersey node and at
Henry Hub. The basis is a function of a multitude of parameters, includ-
ing the transportation cost through the pipelines, demand from other New
Jersey customers and operational characteristics of the specific node [10].

Going back to the modeling problem, one approach now would be to write
down a joint model for SHH and SNJ . Normally, one takes both processes to
be diffusions with high correlation c ∼ 1 − ε. However, we prefer to model
the basis directly as SNJ = spr(SHH , B), where B is a random quantity
corresponding to the basis and spr is some transformation function. For
example, we will consider SNJ = SHH + B. This is preferable for a couple
of reasons. Firstly, we can isolate the effect of the basis in our mathemat-
ical analysis. Secondly, we can impose simple conditions to guarantee, for
instance, that SNJ − SHH is bounded which is economically desirable, but

1Platt’s Gas Daily c© newsletter lists spot natural gas prices at over 60 locations, in-
cluding most major citygates.
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very difficult to achieve in the other approach. Thirdly, this allows for fu-
ture extensions with more sophisticated modeling of the basis. In any case,
we believe that the basis is a more meaningful financial object than the
correlation between different location prices. We refer to [4, 9, 21] for more
information on modeling the basis and other types of spreads in the energy
markets.

2.2. Convenience Yield Models. The class of convenience yield models
is the most popular choice for modeling the evolution of the spot price
of energy assets such as crude oil or natural gas. The physical nature of
commodities requires modification to the risk-free rate of return. Indeed,
physical ownership of the commodity carries an associated flow of services.
On the one hand, the owner enjoys the benefit of direct access which is
important if the asset is to be consumed. On the other hand, the decision
to postpone consumption implies storage expenses. As a result, the standard
assumption is that the risk-neutral rate of return is not the short interest
rate rt, but rather rt − δt. Here δt is the convenience yield which measures
the instantaneous net benefit of holding the physical asset [3]. The accepted
approach [13, 17, 29] takes δt as a separate stochastic process.

2.3. The Gibson-Schwartz Model. Let {Ω,F ,P} be a complete proba-
bility space. We assume the classical Gibson-Schwartz [13] two-factor model
for the commodity spot St and spot convenience yield δt.

dSt = (rt − δt)St dt+ σSt dW
1
t ,(1a)

dδt = κ(θ − δt)dt+ γ dW 2
t ,(1b)

with W 1,W 2 1-dimensional Wiener processes satisfying d〈W 1,W 2〉t = c dt.
In the sequel we will often use an alternative form using S0 ≡ logSt:

dS0
t =

(
rt −

1

2
σ2 − δt

)
dt+ σdWt(2)

dδt = κ(θ − δt)dt+ cγ dWt +
√

1− c2γ dW⊥
t ,

with W⊥
t a standard Wiener process independent of Wt. The equations in

(2) emphasize the linearity of our model. We let Ft = σ
{
(Ss, δs) : 0 6 s 6 t

}
denote the natural filtration generated by the entire process.

Strong positive correlation c ∼ 0.3 − 0.7 between the spot and the con-
venience yield has been widely documented empirically. According to the
theory of storage developed in the fifties, the endogeneous economic link
is through inventory levels: when inventories are low, shortages are likely,
causing high prices as well as valuable optionality of holding the physical
asset. Mean-reversion in the convenience yield is desirable [12], based on
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economic intuition of long-term equilibrium in the energy market. Since on
a long-term timescale energy assets are consumption goods we expect to
achieve a supply-demand equilibrium which includes some sort of station-
ary premium for holding the physical asset. Unlike interest rates, depending
on market conditions, convenience yields can be either positive or negative,
and so the choice of an Ornstein-Uhlenbeck process for δt in (1b) makes
sense.

From now on we shall also assume that

Assumption 1. The short interest rate rt is deterministic.

The crucial implication of Assumption 1 is that futures and forward prices
both equal the risk neutral expected future spot price. Thus, we disentangle
the dynamics of the interest rates from the dynamics of the spot.

We denote by βt the bank account following the ordinary differential
equation

dβt = rtβtdt.

Below we will sometimes assume that rt ≡ 0, which is equivalent to working
with discounted state variables. Making the above assumption often con-
siderably simplifies the resulting equations and makes more transparent the
effect of other parameters.

3. Complete Information Setting

One usually postulates that both St and δt are observed in the mar-
ket modulo small noise disturbances (bid-ask spread, etc.) For the conve-
nience yield the standard method is to use the implied δt via δt ≈ rt −
log(F (t, T2)/F (t, T1)) where F (t, T1) and F (t, T2) are usually the two clos-
est futures contracts [13]. Unfortunately, the implied convenience yield is
highly unstable and inconsistent with the forward curve. Different forward
contracts generate wildly different estimates and the empirical data rejects
the notion of implied δt [5].

Nevertheless, assuming both factors are observed, pricing contingent claims
is straightforward since we face a 2-dimensional complete market. Further-
more, great simplifications are possible thanks to the special form of (1).
The Gibson-Schwartz model belongs to the so-called class of exponential
affine models. Using Xt = [S0

t , δt]
′ as the state variable in (2) we have

dXt =
([µ− 1

2
σ2

κθ

]
+

[
0 −1
0 −κ

]
Xt

)
dt+

[
σ 0

γc γ
√

1− c2

]
d

[
Wt

W⊥
t

]
.(3)
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The above dynamics are linear in Xt and hence the present price of the
forward with expiration date T can be expressed as

F (t, T ) = EQ[ST |Ft] := exp
(
B(T − t) ·Xt + A(T − t)

)
,

where A(T − t) and B(T − t) ≡ [BS, Bδ] solve the following equations

At(T − t)− 1

2
σ2BS + κθBδ +

1

2
B

[
σ2 cγσ
cγσ γ2

]
B′ = 0,

B′
δ − κBδ −BS = 0, B′

S = 0,

with terminal conditions A(0) = 0, BS(0) = 1, Bδ(0) = 0. These can be
solved explicitly [2] to obtain

F (t, T ) = Ste
∫ T

t rsdseB(T−t)δt+A(T−t) where

B(t) =
e−κt − 1

κ
,

A(t) =
κθ + cσγ

κ2
(1− e−κt − κt) +

γ2

4κ3
(2κt− 3 + 4e−κt − e−2κt).

(4)

Keeping t fixed and letting T → ∞, we see that B(T − t) → −1/κ and
A(T − t) is asymptotically linear in T with the sign depending on the value
of γ2/2−θκ2− cσγ κ. Thus, the forward price either exponentially explodes
or decays with time to maturity (Figure 1). Both cases are unrealistic. In
practice the longest-maturity (usually 7 or 10 years ahead) forward price is
very stable [12, 30].

4. Utility-based Valuation

We now explain in more detail our pricing methodology. Our major mo-
tivation comes from the indifference pricing approach first introduced by
Hodges and Neuberger [18] and Davis [8]. The introduction of a non-traded
location factor B means that claims of the form φ(ST , B) cannot be fully
hedged. To avoid the problems associated with super-replication we instead
rely directly on the utility function of the agent. More precisely, assuming
a subjective utility function for the buyer (seller) of the asset, we hedge en-
ergy derivatives based on the wealth-adjusted utility equivalent forgone by
the agent. From a modeling point of view this results in a partially observed
stochastic control problem.

Besides being exposed to the terminal payoff φ, the agent performs port-
folio optimization by dynamically rebalancing her asset holdings in the com-
modity spot and the riskless bank account. At time t, she invests πit dollars
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into the i-th asset, so that using the self-financing constraint the wealth
process wt must satisfy

dwt = π0
t ·
dβt
βt

+ π1
t ·
dSt
St
.

Consequently, setting π ≡ π1,

dwx,πt = rtw
x,π
t dt− δtπt dt+ σπt dWt, with wx,π0 = x.(5)

Let Gt = σ{Ss : 0 6 s 6 t}. We denote by AT
t the set of admissible

portfolio strategies {πs}t≤s≤T which are square integrable E{
∫ T

t
π2
sds} <∞

Gt-progressively measurable processes.
We work with the exponential utility U(x) = − exp(−qx), q > 0. Since

U is defined on the whole real line we do not need to impose any state
constraints, such as required positive wealth. Of course, we still want the
wealth process to be bounded from below in order to exclude doubling and
suicide strategies.

We now define the value function V which is the main object of interest
in our analysis. Given a European option with payoff φ(ST , B) let
(6)

V φ(t, s, w, ξ;T ) = sup
π∈AT

t

E
{∫ ∞

−∞
U(wx,πT +φ(ST , B))dPB

∣∣∣St = s, wt = w, δt ∼ ξ
}
.

Above, the initial value of δt is unknown, but we are given some initial
distribution ξ. Assumptions regarding the basis factor B will be stated
later on. Thus, the value function is the maximum expected utility to be
derived from portfolio optimization and the claim φ given the specified
initial conditions. The optimal hedging strategy is then the π∗ achieving
the supremum in (6).

Remark 1. Our setting is closely related to the concept of indifference price.
The buyer’s indifference price for claim φ, P = P (φ(ST , B), t; s, ξ) at time
t is defined implicitly via

(7) V φ(t, s, w − P, ξ) := V 0(t, s, w, ξ).

The indifference price generally depends both on the level of wealth and
the current spot price, since only the combined process is Markovian. In-
tuitively, P represents the decrease in initial wealth that balances the in-
crease in terminal utility from buying the derivative φ(ST , B). It can be
shown that this pricing mechanism assigns a no-arbitrage consistent ’fair
value’ to the contingent claim [8]. Similarly, we also define the seller’s price
by V −φ(t, s, w + Psell, ξ) := V 0(t, s, w, ξ). In this paper we concentrate on
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the buyer’s point of view in line with the financial application outlined in
Section 2.1.

Remark 2. By itself, stochasticity of the drift for the spot process is irrel-
evant for pricing St-contingent claims. Intuitively, the market defined by
the Gibson-Schwartz model is still complete even when δt is unobserved.
Indeed, through a measure change St can be made into a local martingale

under some P̃. It can be easily checked that there exists a P̃-Wiener process

W̃t whose natural filtration is equal to the filtration generated by St in (1).
After invoking the standard martingale representation theorem we conclude
that any claim strictly depending only on ST can be perfectly replicated.
In particular, by well-known results [27], the only price of such a claim

consistent with no-arbitrage must equal its replication price under P̃.

5. Filtering the Convenience Yield

To be able to consider Gt-adapted hedging strategies in (6), we need to
replace δt by its conditional expectation given Gt. This is known as the
filtering problem. We briefly summarize the main results in some generality,
following the exposition in [1].

We assume a general correlated model for the n-dimensional observation
(traded asset) process Yt and the d-dimensional unobserved factor Xt.

dYt = h(t,Xt, Yt) dt+ σ(t, Yt) dWt,(8a)

dXt = g(t,Xt, Yt) dt+ α(t,Xt, Yt) dWt + γ(t,Xt, Yt) dW
⊥
t ,(8b)

X0 ∼ ξ , Y0 = 0, W⊥ andW independent.(8c)

The Gibson-Schwartz model is a simple version of above, with Yt ≡ logSt
the observed log-price of the spot, and Xt ≡ δt the convenience yield. There,
α and γ are deterministic and h and g linear and independent of the obser-
vations. Note that the diffusion coefficient of the observation process must
not depend on Xt. Thus, this setup is inherently different from stochas-
tic volatility models [25]. On the other hand, the unobserved factor drift
and volatility may depend on the observed (i.e. the price), which seems in
general an important and useful characteristic, even though most known
models do not take advantage of it.

We continue with the general case and impose

Assumption 2. • h(t, x, y) : Rn+d+1 7→ Rn is Lipschitz and of linear
growth, |h(t, x, y)| 6 K(1 + |x|+ |y|).
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• σ(t, y) is uniformly continuous and has bounded C3(Rd)-norm. Fur-
thermore, σ is uniformly elliptic, that is σσ′(t, y) > λI for all y and
t, for some constant λ > 0.

• α(t, x, y) and γ(t, x, y) are uniformly continuous, and α is uniformly
elliptic.

• g(t, x, y) is C2-bounded and uniformly continuous in x and y.

These general results apply to model (1) even though the latter does not
have bounded drift. A standard localization argument can be used to ac-
commodate the linear growth of the drift.

For notational clarity we suppress from now on all the dependencies on
t. Let Yt = σ{Ys : 0 6 s 6 t} be the observable σ-algebra. We use the inno-
vation process to write the dynamics of Xt as a function of the observable
dynamics plus independent white noise. Let Dt = D(t, Yt) = (σσt)(t, Yt),
which is symmetric and invertible by assumption (Dt = σ2 in the Gibson-
Schwartz model), and define ζt by

dζt = −ζth′(Xt, Yt)D
−1/2
t dWt, ζ0 = 1,(9)

where h′ denotes the transpose of the column vector h. By Assumption 2
it follows that ζt is an exponential martingale with E[ζt] = 1,∀t 6 T [1,
Lemma 4.1.1], and therefore we can apply Girsanov theorem to define a

new probability measure P̃ by

dP̃
dP

∣∣∣
Ft

:= ζt.

Then under P̃ there exists a standard Wiener process W̃ such that,

dYt = σ(Yt) dW̃t and(10a)

dXt =
(
g(Xt, Yt)− α(Xt, Yt)

′ · h(Xt, Yt)
′D

−1/2
t

)
dt

+ α(Xt, Yt)
′D

−1/2
t dYt + γ(Xt, Yt) dW

⊥
t .(10b)

Letting dỸt = D
−1/2
t dYt, Ỹ is another wiener process under P̃. The crucial

observation is that Ỹ and W⊥ are two independent standard P̃-Wiener

processes. At the same time, since Dt is invertible σ{Ỹs : 0 6 s 6 t} ≡ Ys.
We can write the inverse ηt = 1

ζt
as

ηt = exp(

∫ t

0

h′D−1/2
s dWs +

1

2

∫ t

0

h′D−1
s h ds)

= exp(

∫ t

0

h′D−1
s dYs −

1

2

∫ t

0

h′D−1
s h ds).
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Let pt(f) := Ẽ[f(Xt)ηt|Yt]. To compute Πt(f) := E[f(Xt)|Yt] we apply
Bayes rule to write

Πt(f) =
Ẽ[f(Xt)ηt|Yt]

Ẽ[ηt|Yt]
=
pt(f)

pt(1)
.(11)

The above is called the Kallianpur-Striebel formula and it demonstrates
that it is sufficient just to be able to compute the unnormalized version
pt(f). Suppose that pt(·) possesses a smooth density ρt(x)dx, i.e.

∀f ∈ C∞0 (Rd), Ẽ
[
f(Xt)ηt

∣∣ Yt] = pt(f) =

∫
R
ρt(x)f(x)dx.(12)

Then by applying Itô’s lemma to d(ηtf(Xt)) using (10b), taking expecta-
tions and integrating by parts we obtain that the L2-valued process ρt(x)
must satisfy the adjoint Zakai equation [1]

dρt(x) =
(1

2

∑
i,j

∂2

∂xi∂xj

{
[γγt + ααt]i,j ρt

}
−

∑
i

∂

∂xi
(giρt)

)
dt

+
(
h−

∑
i

∂

∂xi
(αiρt)

)
dỸt

=: L∗X(ρt)(x) dt+ S∗(ρt)(x) dỸt.
Above, the ∗-s denote formal adjoints, LX is the elliptic operator corre-
sponding to the diffusion Xt, and S is a first-order differential operator to
which we shall return later.

5.1. Technical Results on Spartial differential equations. The Zakai
equation is a stochastic partial differential equation and we must check that
it is well-defined. Even though at first glance we work in L2, it turns out that
for technical reasons the weighted Sobolev spaces Hk

β are more convenient
[14]. For β > 0, define the weighted Sobolev norm

‖f‖k,β =
∑
|α|6k

(∫
Rd

(
∂α[(1 + |ξ|2)β/2f(ξ)]

)2
dξ

)1/2

.

The Hilbert space Hk
β(Rd) is defined as the completion of C∞0 (Rd) with

respect to the above norm. It can be thought of as the set of all measurable
functions f : Rd 7→ R such that (1 + |ξ|2)β/2f(ξ) has square-integrable
derivatives up to order k. In particular, H0

0 = L2. We also define H−k as the
completion of L2 under the norm ‖f‖−k = 〈 (I −4)kf, f〉. As the notation
suggests, H−k

β is the dual of Hk
β . It is also a Hilbert space under the inner

product induced by the corresponding norm.
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Like SDEs, stochastic partial differential equations must always be inter-
preted in their integrated form as almost sure equality between the respec-
tive random variables. The following is a variant of existence and uniqueness
result for Spartial differential equation’s in Sobolev spaces.

Lemma 1. [14] Let L be the second order linear differential operator on H2
β

corresponding to the generator of Xt. We write L in divergence form as

L = −
∑
i,j

∂i(ai,j∂j·) +
∑
i

∂i(g − ∂jai,j·), where a ≡ (σσt + ααt).

Let S be the first order differential operator with domain H1
β defined in (13).

Suppose the coefficients satisfy Assumption 2, c < 1 (strict ellipticity) and

E‖x‖2
1,β <∞. Then there exists a unique Yt ∈ L2([0, T ]; Ω,Yt, P̃) satisfying

(strong solution of Spartial differential equation)

Y (t) +

∫ t

0

LYs ds = Y0 +

∫ t

0

SYs dW̃s.

Also, we have the energy equality

E‖Yt‖2
β = E‖Y0‖2 − 2E

∫ t

0

〈LY, Ys〉 ds+ E
∫ t

0

‖SYs‖2
β ds,

and for a constant C,

E‖Ys‖2
1,β 6 E‖x‖2

1,β(1 + Cs) with E
∫ T

0

‖Ys‖2
2,β ds 6 CE‖x‖2

1,β.

The result is proven via fixed-point theorems by showing that the corre-
sponding Picard iteration is a contraction in a convenient space. The energy
equality is key for establishing estimates of the solution.

5.2. Filtering Gibson Schwartz. We now specialize to the linearized ver-
sion of Gibson-Schwartz (2). The differential operators are

L∗δ(f)(x) =
(
κ(θ − x) f ′(x)− κf(x)

)
+

1

2
γ2f ′′(x), and

S∗(f)(x) = r − 1

2
σ2 − x− cγf ′(x).

We have dζt = −ζtκ
(r− 1

2
σ2−δt)
σ

dWt and

ηt = exp
(∫ t

0

r − 1
2
σ2 − δs

σ2
dS0

s −
1

2

∫ t

0

(r − 1
2
σ2 − δs)

2

σ2
ds

)
.(13)
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The un-normalized ρt(x) satisfies

dρt(δ) =
[1

2
γ2ρ′′t (δ)−

∂

∂δ

(
κ(θ − δ)ρt(δ)

)]
dt+

(
r − 1

2
σ2 − δ − cγρ′t(δ)

)
dS0

t

Alternatively, for f(t, x) ∈ C1,2
b (R),

d〈ρt, f(t, ·)〉 = 〈ρt,
∂f

∂t
− Lδf(t, x)〉 dt+〈
ρt, (r −

1

2
σ2 − δ)f(t, x) + cσ2γ ∂xf(t, x)

〉 1

σ2
dS0

t .

5.3. Kalman Filtering. The Gibson-Schwartz model is linear and hence
by classical arguments, if the initial distribution δ0 is Gaussian, we have
that δt|Gt ∼ N (δ̂t, Pt) is conditionally Gaussian for all times. The evolution

of the conditional mean δ̂t and the conditional variance Pt is obtained from
the Kalman filter [15].

We can re-write (1) as

dδt = κ(θ − δt)dt+ cγ(
dS0

t

σ
−
r − 1

2
σ2 − δt

σ
dt) + γ

√
1− c2dW⊥

t ,(14)

so that formally (rigorous justification relies on the innovation process [1])

dδ̂t = κ(θ − δ̂t)dt+
(cσγ − Pt)

σ2

[
d(S0

t )− (r − 1

2
σ2 − δ̂t)dt

]
.(15)

Above Pt is the conditional variance Pt := E[(δt − δ̂t)
2| Gt]. To derive the

equation for Pt, apply Itô’s formula again to obtain a deterministic Riccati
equation

dPt =
[
γ2 − 2κPt −

(cσγ − Pt)
2

σ2

]
dt.

Summarizing,

Proposition 1. ∀f ∈ C∞(R),

E[f(δt)| Gt] =

∫
R
f(δ̂t + P

1/2
t ξ)

e−
1
2
|ξ|2

√
2π

dξ.(16)

with δ̂t and Pt given above, and 〈ρt, f〉 = η̂t · E[f(δt)| Gt] where

η̂t = exp
(∫ t

0

r − 1
2
σ2 − δ̂s

σ2
dS0

s −
1

2

∫ t

0

(r − 1
2
σ2 − δ̂s)

2

σ2
ds

)
.(17)
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The Riccati equation for Pt has been well studied. It can be shown that Pt
is monotonic and converges to a limiting value. The speed of convergence to
this limit is on the scale of 1√

κ
which is about 6-18 months for estimated pa-

rameter values. The Radon-Nikodym density η̂t is an exponential martingale
and thus we have E[

∫
ρT (x)dx] = E[ηT ] = 1.

5.4. Expected Value of ST -Contingent Claims. Due to explicit expres-
sions in (17), we are able to compute in a reduced form (up to solution of
ordinary differential equation) any expectation of the form E[φ(ST )α]. The
latter expression can be thought of as α-th power of the price of claim ST
with respect to the original P measure (under which the drift of the spot is
rt − δt). As mentioned in Section 4.2, such claims can be perfectly hedged
even though δt is unobserved. Let ht be the replicating strategy for φ in

dollar terms, φ(ST ) =
∫ T

0
ht

dSt

St
, so that

φ(ST )α = Sα0 exp
(∫ T

0

Φt dt+ α

∫ T

0

htσ dW̃t +
α2

2

∫ T

0

h2
tσ

2 dt
)
,

where Φt = −α
2
(1 + α)h2

tσ
2 + αr + αhtδ̂t. Then using (16), we just need to

compute the following expectation

Ẽ
[
exp(

∫ T

0

Φt dt+

∫ T

0

(r − δ̂t −
1

2
σ2 + ασ2ht)

1

σ2
dS0

t

− 1

2

∫ T

0

(r − δ̂t −
1

2
σ2 + ασ2ht)

2 1

σ2
dt)

]
.

Call the expression inside the expectation Lt. We shall guess that Ẽ[Lt] is an

exponential of a linear function of the current best estimate δ̂0. Accordingly,
let us set χt = 2αgtδ̂t + αkt for some time-dependent deterministic gt and
kt. Then we compute

d eχt = eχt
{
(2αδ̂tġt + αk̇t)dt+ 2αgt dδ̂t +

1

2
(2αgtUt)

2 1

σ2
dt

}
.

Here Ut := cσγ − Pt. Using (13) it follows that

d(Lte
χt) =Lte

χt

(
Φt dt+ (r − δ̂t −

1

2
σ2 + ασ2ht)

1

σ2
dS0

t

+2αgt
{Ut
σ2
dS0

t + (κ(θ − δ̂t)− (r − δ̂t −
1

2
σ2)

Ut
σ2

) dt
}

+(2αδ̂tġt + αk̇t) dt+
1

2
(2αgtUt)

2 1

σ2
dt

+2αgt(r − δ̂t −
1

2
σ2 + ασ2ht)

Ut
σ2
dt

)
.

(18)
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Next we equate powers of δ̂t and pick gt and kt such that all the drift
terms disappear. For boundary conditions we take g(T ) = k(T ) = 0. In this

case Lte
χt is a P̃-martingale (since Pt is bounded, so is gt and kt), so that

Ẽ[LT ] = Ẽ[LT e
χT ] = eχ0 = e2αg0δ̂0+αk0 . The ordinary differential equations

satisfied by gt and kt are

dgt = −ht
2

+ κgt

dkt = r + 2αgtUtht −
1 + α

2
σ2h2

t − 2κθgt + 2αg2
t

U2
t

σ2
.

(19)

Solving,

g0 =
h0

2κ
(1− e−κT ),

k0 =

∫ T

0

−2gt(αUtht + κθ) +
1 + α

2
σ2h2

t − r − 2αg2
t

U2
t

σ2
dt.

(20)

Figure 1 shows the expected value of the spot E[ST ] compared to the full
information setting.
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Years to Maturity
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Full Information    

Figure 1. Expected spot price with respect to risk-neutral
dynamics. Parameter values are from Sch97 in Table 1. To-
day’s price is $30.

6. Optimal Wealth

We finally turn our attention towards the stochastic control problem with
partial information. The general approach we will follow for solving (6) is to
setup the dynamic programming (DP) equation. This leads to a second order
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partial differential equation in an appropriate space. This partial differential
equation belongs to the general class of Hamilton-Jacobi-Bellman equations
which have been extensively analyzed from a functional-analytic viewpoint.
Furthermore, as a general rule it can be shown that the value function is
the unique viscosity solution of the HJB equation. In practice, in most cases
one can construct a smooth solution and invoke a verification theorem [11]
rather than checking for viscosity solution properties.

The HJB equation also provides a method for finding the optimal hedging
strategy (i.e. the portfolio weights). According to the maximum principle
[32, Ch. 3], the optimal portfolio weights can be obtained by formally com-
puting the supremum in the Hamiltonian of the HJB equation.

Assumption 3. The basis B is independent of FT .

Clearly, Assumption 3 is very strong. Later on, we shall slightly relax and
also allow B = B(δT ). Since we only look at European claims, without any
loss of generality we further assume stationarity that is BT ∼ B for any
time T.

In line with market intuition, we restrict our attention to Gt-predictable
trading strategies. We rely on the Dynamic Programming principle which
states that for any stopping time τ : t 6 τ 6 T ,

V φ(t, s, x, ξ;T ) = sup
π∈Aτ

t

E
[
V φ(τ, Sτ , w

x,π
τ , ρτ )

∣∣Gt].(21)

Combining (12) and (6) then gives

E
[
U(wπT − φ(ST , B))

]
= Ẽ

[
U(wπT − φ(ST , B))ηT

]
= Ẽ

[∫
U(wπT − φ(ST , b))dPB

∫
R
ρT (x)dx

]
(22)

since the terminal payoff is independent of δT . As we can see the only place
the un-normalized conditional density appears is as a scaling factor. This is
a degenerate case of the separation principle [1, Ch. 7], where we have been
able to separate the problem of estimating the unobserved state from the
utility maximization problem. Note that the control only affects the wealth

process whose dynamics under P̃ are unaffected by ρt.
In equation (22) we have succeeded in reducing the partial observation

problem to an equivalent problem with full observation, but at the ex-
pense of introducing the measure-valued process ρt. The full state is now
(St, wt, ρt) ∈ R+ × R ×H0

β(Rd). We are faced with an infinite-dimensional
stochastic control problem which requires delicate handling. However, for
smooth parameters the DP intuition still holds [32], and we can use the
technique of Hamilton-Jacobi-Bellman equations.
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To be able to state results regarding the HJB equation we must require
the initial distribution to decrease sufficiently fast, ρ0 ∼ ξ ∈ H0

β. In gen-
eral, there are also restrictions on the utility function U which must be of
polynomial growth at infinity, but this is trivially satisfied by exponential
utility.

Let LS and Lδ be the elliptic operators associated with the state process.
For the Gibson-Schwartz model these are given by

Ls = −δs ∂s +
1

2
s2σ2∂ss and

Lδ = κ(θ − δ) ∂δ +
1

2
γ2∂δδ.

By analogy with the finite dimensional case we expect that V (t, s, w, ξ)
satisfies the backward parabolic partial differential equation

Vt + 〈 L∗δρt, Vρ〉+
1

2
〈Vρρ S∗ρ, S∗ρ〉+

1

2
σ2s2Vss(23)

+ sup
π∈AT

t

{
σ2πsVsw +

1

2
σ2π2Vww +

〈
S∗ρ , σsVsρ + σπVwρ

〉}
= 0,

with terminal condition V (T, s, w, ξ) = 〈
∫
U(w − φ(s, b))dPB, ξ〉.

Proposition 2. [14, Theorem 5.4] Let AT
t be the set of admissible relaxed

controls, that is

AT
t = {(Ω,F ,P,W, π), π is FW

t − adapted}.

Then the value function V ∈ C((0, T )×R2 ×H0
β) minimizing (22) over AT

t

is the unique viscosity solution of (23).

Further growth and continuity estimates on the value function can be made
using standard partial differential equation techniques.

Note that in Proposition 2 the Wiener process Wt is not given a priori
but together with the set of admissible portfolios, a notion similar to weak
solutions of SDEs.

6.1. Linearization with Exponential Utility. Assume rt ≡ 0. Lasry
and Lions [20] show that the problem (22) inherits the separability property
from the complete information setting. Specifically, guess that V (t, s, w, ρ) =
− exp(−q(w + ψ(t, s, ρ))). Formally substituting into (23) we obtain

ψt +
1

2
σ2s2[qψ2

s + ψss] + 〈 L∗δρ, ψρ〉+
1

2

〈
S∗ρ, S∗ρ

(
q(ψρ)

2 + ψρρ
)〉

+

〈S∗ρ, qσsψρ ψs〉 −
q

2

(
σsψs + 〈S∗ρ, ψρ〉

)2

= 0.
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This equation in fact linearizes to:

ψt +
1

2
σ2s2ψss + 〈 L∗δρ,Dρψ〉+

〈
S∗ρ, σsDρψs

〉
+

1

2

〈
S∗ρ,Dρρψ S

∗ρ
〉

= 0.

(24)

Here Dρ is the Fréchet derivative operator on H0
β. But the above is nothing

but the parabolic Kolmogorov Spartial differential equation [26] for the joint
diffusion (St, ρt) with terminal condition ψ(T, s, ρ) = 1

q
log

∫
e−qφ(s,b)dPB.

Writing in full,

−e−q(w−ψ(T,s,ρ)) = V (T, s, w, ρ) = −
∫
e−q(w+φ(s,b))dPB

∫
R
ρ(x)dx

⇐⇒ −q(w − ψ(T, s, ρ)) = −qw + log

∫
e−qφ(s,b)dPB + log

∫
R
ρ(x)dx

ψ(T, s, ρ) =
1

q
log

∫
e−qφ(s,b)dPB +

1

q
log

∫
R
ρ(x)dx.

and the second term is zero for any initial density ρ. Therefore,

ψ(t, s, ξ) = Ẽ
[1

q
log

∫
e−qφ(ST ,b)dPB +

1

q
log

∫
R
ρT (x)dx

∣∣∣St = s, ρt = ξ
]
.

(25)

The total value separates into the usual ”certainty equivalent” price of de-
rivative φ plus another cost due to partial observations. We can rewrite the
second term as log dP

dP̃
after which it can be easily seen that its expectation

is negative. This also demonstrates that it is square integrable and hence
the expectation is well-defined. As expected, the agent is getting a smaller
utility from buying φ because he cannot observe δt.

Because the additional cost imposed by the uncertainty in the convenience
yield is independent of the given payoff, the two terms will always cancel
each other in the formula (7) for the indifference price. It follows that the
indifference price P φ is trivial,

P φ = Ẽ[
1

q
log

∫
e−qφ(ST ,b)dPB],

which is the same as what one would obtain in a Black-Scholes world given
a ”totally unhedgeable” factor B [22]. As an example, suppose φ(ST , B) =
ST +B. This is a forward contract where the basis is assumed to be additive.
Then P Fwd = St + const and we pay a fixed cost to cover the unhedgeable
risk. Thus, up to the time-dependency in B, the forward curve is flat. This
result is independent of the postulated model for the spot and the con-
venience yield, as long as the linearization in (24) occurs. The fact that
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exponential utility leads to trivial indifference prices for models with sto-
chastic drift seems to be known, but we have been unable to find a clear
reference in the existing literature.

Remark 3. The HJB equation linearizes only in the 1-dimensional case,
when the entire system is driven by a univariate Wiener process. In partic-
ular, this excludes addition of any other factors: stocks, non-traded assets
or unobservables. The optimal π is

π∗ = −sVsw + 〈S∗ρ, Vwρ〉
σVww

= ψs + 〈 1
σ
S∗ρ,Dρψ〉.(26)

It would be useful to obtain a more computationally amenable expression
for the second term which measures the sensitivity with respect to ρt.

6.2. Basis depending on the convenience yield. The convenience yield
is large when there is tight supply in the market. Often tight supply occurs
due to limited bandwidth of the pipelines so that the upstream market is
unable to quickly respond to increased demand. For instance, unusually cold
weather in the Northeast leads to highly increased electricity consumption
in the region. To produce extra electricity, peaking power plants that run
on natural gas are brought on line. Thus there is also increased demand for
gas. However, the Northeast has very limited gas storage facilities, and any
gas must be brought through pipelines from the South and the Midwest.
Clearly, limited pipeline capacity would then induce high basis between the
spot in New Jersey and at Henry Hub.

The above exercise demonstrates that it is reasonable to assume that
the basis B might depend on δT . A very simple model would be to take
B = aδT + ε where a is a scaling constant and ε is independent noise
with a prescribed distribution. Hence the basis is a linear function of the
convenience yield plus some extra noise. To keep the model realistic, we
assume that we do not observe the basis at intermediate time points. This
is somewhat reasonable, since the market for local gas spot is illiquid and
obtaining quotes requires physically contacting various market makers. The
prices obtained in such manner are often unreliable or stale and it would
make sense to discard them altogether rather than determine their accuracy.

The results from the previous section still hold because the HJB equation
remains unchanged. We are only modifying the form of the payoff φ(ST , B)
which corresponds to the terminal condition. Consequently, the lineariza-
tion goes through. However, now we do NOT have the separability in (25).
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Repeating the computation,

ψφ(t, s, ξ) = Ẽ
[1

q
log

∫
R

∫
e−qφ(ST ,aδ+ε)dPε ρT (δ) dδ

∣∣∣St = s, ρt ∼ ξ
]
.(27)

For example, for a forward and additive basis φ(ST , B) = ST + aδt + ε,
ε ∼ N (0, σ2

ε ), the indifference price would be

exp(−q(w − P Fwd + ψφ)) = exp
(
−q(w − Ẽ[

1

q
log

∫
ρT (x)dx])

)
P Fwd =

1

q
Ẽ

[
log

∫
ρT (x)dx

]
− ψφ

= Ẽ
[
ST +

σ2
ε

2
+

1

q
log

∫
ρT (δ) dδ∫

e−qaδρT (δ) dδ

]
.(28)

In Section 7 we will show how to solve for P Fwd using a Monte Carlo ap-
proach.

6.3. Nonlinear Dynamics. Looking back at (24) we see that the precise
dynamics of the spot and the convenience yield did not matter, since we
just used the corresponding differential operators. Thus, we can extend our
model to include nonlinearities. One interesting case to consider is local
volatility for the spot process. As mentioned before, stochastic volatility
does not go well with filtering. However, we can use a local volatility function
σ = σ(St). An example is the CEV model

dSt = St(r − δt) dt+ σS1+β
t dWt.

Our filtering analysis would still go through and in fact everything can still
be carried out. The advantage is that we now have the elasticity exponent
β as an extra parameter which should facilitate empirical fitting. The spot
price now enters the wealth dynamics

dwt = rwtdt− πδtdt+ πσSβt dWt,

as well as the dynamics of δt under P̃.

7. Numerical Results

To compute the various expectations obtained in Section 6, we must resort

to Monte Carlo (MC) techniques. Because under P̃ the spot prices are local
martingales these can be simulated independently of everything else. Thus,
to perform MC first simulate N paths of the spot process. The simplest
method is to use Euler discretization along a fine mesh on [0, T ]. Then
we need to run some sort of filtering algorithm to compute ρT (x) along
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each path. Putting the two together, we can empirically evaluate (28) or
(25). Note that we must numerically approximate the stochastic integral
in (17) which means that we should simulate the spot on a finer mesh
with ∆finet and then filter using a larger ∆filtert. For linear models like the
basic Gibson-Schwartz (2) we can use the Kalman filter to filter δt exactly.
However, in other situations, such as filtering δt in the Gibson-Schwartz
CEV model discussed in the previous section we need a more robust method.
Our candidate of choice is the particle filter algorithm also called sequential
Monte Carlo.

7.1. Particle Filtering for the Zakai Equation. Our account is based
on Crisan, Gaines and Lyons [6]. Let MF (Rd) be the space of finite measures
on Rd with the topology of weak convergence. At time t, the infinite dimen-
sional random measure ρt is approximated by a totally atomic AN(t), which
is an occupation measure of N(t) particles {αit}. We use the superscript N
because at time 0,

AN(0) =
1

N

N∑
i=1

δαi
0
,

where αi0 are N independent identically distributed random variables with
common distribution ξ. The weight of each particle always remains 1

N
but

their number N(t) changes.
Discretize in time by choosing Tk = k∆t, with T0 = 0, TM = T . During

an interval [Tk, Tk+1), each particle evolves independently according to the

law of δt under P̃. At time Tk+1 mutation occurs. Each particle branches
such that the mean number of offsprings is given by (11)

µik = exp
(∫ Tk+1

Tk

h′D−1
t dYt −

1

2

∫ Tk+1

Tk

h′D−1
t h dt

)
.(29)

The branching of each particle is independent of all the others, and only
depends on the behavior of Yt on [Tk, Tk+1). The new particles inherit the
location of their parent. To control the variance of AN(t), Crisan et al. [6]
suggest using minimal variance, so that the number of offspring is either
bµikc or dµike. Since E[µik] = 1, the expected mean number of particles always
remains at N the initial number. It can also be shown that for any f con-
tinuous and bounded in Rd, 〈AN(t), f〉 is square integrable. Furthermore,

if N → ∞ and ∆t → 0 such that N
√

∆t → ∞ (the number of particles
grows quadratically in step size) then AN(t) weakly converges to a measure
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p(t) ∈MF (Rd) [6, 7] satisfying

〈 p(t), f〉 = 〈π0, f〉+

∫ t

0

〈 p(s),Lδf〉 ds+

∫ t

0

〈 p(s),Sf〉 dYs a.s.(30)

By the characterization theorem of Kurtz and Ocone [24], we then have
p(t) = ρt in MF (Rd).

The Zakai particle filter offers an advantage for our problem by directly
computing ρT . In contrast, if we use the Kalman filter we must first compute
the true conditional density of δt and then take a second step of approxi-
mating the Radon-Nikodym density ηT .

Remark 4. Note that in (25) the 〈ρT , 1〉 term is just the total mass of the

filter, i.e. N(T )
N

.

7.2. Parameter Values. Table 1 summarizes the parameter values from
our three references which we call respectively GS90, Sch97 and CL03. Gib-
son and Schwartz [13] fitted the Jan84- Nov88 time series for crude oil for-
wards of less than 9 month maturity. Schwartz [29] fitted the Jan90-Feb95
time series for forwards of less than 1 year maturity. In our own recent
study [5] we fitted the Jan94-Aug02 time series for the 3-, 6- and 12-month
forwards. As we can see the parameters, especially the mean-reversion rate
κ are unstable in time and difficult to estimate. The parameter λ refers to
the risk premium adjustments for the convenience yield.

Parameters GS90 Sch97 CL03
κ 16.1 1.488 0.4
θ 0.309 −0.015 −0.15
γ 1.12 0.426 0.5
ρ 0.353 0.922 0.45
σ 0.320 0.358 0.6
λ −1.796 0.291 0.03

Table 1. Empirical Parameter values for the Gibson-
Schwartz model

7.3. Comparative Statics. We implemented both the Kalman filtering
method using (17) and the particle filter using (29) and applied it to (25).
The first numerical experiment that we perform is understanding the term-

structure of the quantity Ẽ[log
∫

RρT (x)dx]. This is precisely the utility-
based cost of being unable to observe δt. As Figure 2 illustrates, the price
adjustment is almost linear with a slight convexity in the beginning.
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We next try to understand the implications of formula (28) for uncertainty
cost with basis depending on the convenience yield. This is the time-varying

part of the forward curve, since ST is a P̃-local martingale. In Figure 3
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we see that this cost stabilizes and approaches a limit as T → ∞. This
is in strong contrast to the situation with complete information. We can
think of the result as being a ”middle ground” between the flat forward
curve from (25) and the exponential curve from (4). This is consistent with
the stylized empirical fact of ”sticky” long end of the forward curve. As
Table 2 demonstrates, the results are robust with respect to the model
parameters. The general term structure of exponential decay to the long-
term limit appears in all cases. The basic shape is monotonically decreasing
due to the increasing cost of being unable to observe δt. A hump in the
middle may occur depending on model parameters. Remember that we are
assuming rt = 0. Thus for positive interest rates, the forward curve may be
upward sloping if r is sufficiently large.

8. Conclusion & Extensions

This paper demonstrates the feasibility of full treatment of a partially ob-
served convenience yield model. Use of a latent factor model is preferable to
relying on implied quantities when it comes to resolving model inconsisten-
cies. While the general approach presents significant technical challenges, in
the special case of exponential utility, everything boils down to a computa-
tion of a single reduced-form expectation. The latter may be computed by
MC methods using filtering techniques.

As opposed to pricing by computing the expected value under a given
equivalent martingale measure, utility-based prices have a limiting value as
time to maturity increases. Intuitively the cost of unobserved stochastic drift
stabilizes as the horizon increases. This is empirically desirable and stands in
sharp contrast to full-information models that predict exponential behavior
of the forward curve. Our approach essentially corresponds to pricing under
the minimal martingale measure when St is a local martingale. Because the
agent does portfolio optimization in addition to buying the derivative, the
return on the spot is irrelevant and the term structure is determined by the
risk coming from δt.

To obtain a fully satisfactory model for empirical data, further extensions
would be necessary. For example, time-dependent parameters would surely
be needed as gas prices exhibit high degrees of seasonality. Also, stochastic
interest rates must be considered. On a more fundamental level, our model
can be extended by presenting a more sophisticated approach for the ba-
sis factor. Here we have two choices. Either we model the local spot SNJ

as a process in its own right, which then becomes an observed but non-
traded factor. Or we model the basis itself as a process, for example another
Ornstein-Uhlenbeck. In the first situation our payoff depends just on SNJ ,
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Table 2. Comparative Statics for (28). Parameter values are
from Schwartz [29]. We use the Kalman filter in (16), (15)
except for the CEV model. a = 5, q = 1

2
.

but the second situation is likely to lead to simpler computations. One could
consider a full three-factor correlated model for [St, δt, Bt]. Unfortunately,
as noted before it is not clear how to simplify the HJB equation in the
presence of more factors.

A related problem that is very important for practical applications is
the case of non-traded spot. In oil and gas markets, the spot market is
illiquid and often features unreliable price quotes. More importantly, the
inter-temporal transfer is complicated since the commodity must be physi-
cally stored. Hence, for practical purposes the concept of holding the spot
is undesirable. Thus, an energy trader is likely to hedge derivatives on the
spot using liquid instruments, first and foremost the forwards. In particular,
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the near forwards are highly correlated with the spot and hence can provide
a reasonable hedge. One could write down a 3-factor model for the spot, the
forward and the convenience yield. Structurally, it would be very similar to
the 2-locations model in the previous paragraph. However, the important
difference is that a forward is a financial asset that must yield a risk-free
rate of return, so the convenience yield would not affect its dynamics.
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