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1. Introduction.

Pricing of operational flexibility is one of the fundamental problems encountered in exotic energy
derivatives. To reduce the large liquidity risk present in these markets, trading firms are increas-
ingly seeking control of generating assets like power plants, pipelines, storage facilities, oil refineries,
etc. The ownership is transferred by signing temporary lease agreements, and it is of interest to
efficiently value such tolling contracts given the volatile commodity prices. The complexity of the
problem arises due to multiple operational constraints imposed on the manager coupled with a
multi-dimensional state process and intricate time-dependence. Features such as price spikes, oper-
ational delay, seasonality and market power must be incorporated while maintaining transparency
and tractability.

Traditionally, the operational flexibility was represented as a sequence of right-to-run options
owned by the manager. This allows to import the extensive intuition built-up from equity and
fixed income trading as well as apply extremely fast valuation techniques. However, critically the
method is unsuitable for dealing with constraints mentioned above. Switching costs associated with
changing the regime of the asset, upper limits on the number of restarts or time-dependency due
to contract expiration are all very difficult to handle in this setting. To rectify these shortcomings,
we propose to apply a continuous-time stochastic control framework that combines the intuition
of American option pricing with a more structural approach. The controls correspond to the entire
operational strategy adopted by the agent throughout the contract period. This dynamic optimal
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switching setting is the only way to fully capture the interplay between limited flexibility and
uncertainty. The origins of our method go back to Brennan and Schwartz (1985), but only recently
it has been rigorously studied.

The existing mathematical finance literature (Dixit 1989, Brekke and Øksendal 1994, Zervos
2003, Guo and Pham 2005, Pham and Ly Vath 2005) related to the optimal switching problem
has focused on obtaining closed-form solutions. To do so requires making simplifying assumptions,
in particular requiring the state process to be of a simple functional form (e.g. a one-dimensional
Geometric Brownian Motion with constant coefficients) and assuming an infinite horizon. In con-
trast, anticipating real-life applications we do not impose any parametric forms on our model. We
work with general Markov multi-dimensional stochastic price processes and consider finite horizon
problems. By concentrating on contracts with fixed expiry dates we stay closer to reality, but we
face a much more difficult problem. In particular, time decay has to explicitly enter into all the
calculations. Moreover, we allow complex operational constraints, including switching delay, gen-
eral switching costs and forced shutdowns. In addition, our method can easily incorporate price
impact which is often observed in the thinly traded energy markets.

The main contribution of our work is a robust numerical scheme for valuing operational flex-
ibility on a finite horizon. The algorithm is simulation-based and, as a result, is easily scalable
and flexible to extensions. We give a detailed numerical analysis and perform exhaustive bench-
marking to compare several possible numerical implementations. Besides a numerical scheme, we
also prove that the optimal switching decisions can be fully described with the aid of switching
boundaries. Accordingly, an optimal scheduling strategy has the usual intuitive form of “choose
the best alternative given the present expectations”.

The optimal scheduling problem has been topical for practitioners since the beginning of energy
market de-regulation in 1970s. Nowadays, nearly every large utility and energy merchant company
has a special scheduling desk, where quantitative analysts decide the asset dispatch policy on a
daily basis given market conditions. Our approach maintains the currently popular perspective
of compound optionality and provides a more flexible and mathematically rigorous formulation
of the operational constraints. Coupled with its numerical efficiency, it should have potential for
immediate applications in practice.

The organization of this paper is as follows. Section 2 introduces the financial engineering problem
we study and carefully formulates the precise mathematical framework. In Section 3 we show that
the model can be efficiently reduced to a cascade of recursive optimal stopping problems. From
there, we develop in Section 4 a new numerical algorithm based on Monte Carlo simulations and
Dynamic Programming. To provide empirical evidence we highlight in Section 5 our methodology
in a variety of numerical and qualitative examples. Finally, in Section 6 we discuss additional cases
of interest and avenues for further research.

After this work was completed, we learned from S. Tompaidis of the existence of a similar attempt
Deng and Xia (2005) to price tolling agreements. While addressing similar issues, Deng and Xia
(2005) seems to be restricted to the Tsitsiklis and van Roy form (cf. (32)) of the regression solution
of the dynamic programming equations. Moreover, it does not provide the kind of mathematical
analysis presented here (with identification of the continuation and exercise regions), and it does
not give the rigorous convergence analysis of the numerical algorithms as we do.

2. Problem Setup.

2.1. Tolling Agreements.

Despite their recent growth, energy markets remain relatively illiquid and inefficient. As a result
access to the physical ‘equipment’ has extra benefits that cannot be attained otherwise. Many
commodity contracts require physical settlement which necessitates actual ownership of an asset.
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Moreover, ability to schedule the assets can influence the trading environment and lead to pricing
power. Accordingly, financial players in the energy markets have been showing increasing interest in
owning energy assets. To circumvent the extremely capital intensive construction and maintenance
aspect of the business, the idea of a tolling agreement was invented. A tolling agreement temporarily
transfers the scheduling flexibility of the asset in return for a fixed payment. For example, a typical
tolling agreement gives control of a power plant for a period of one year. From a financial point
of view, a tolling agreement is a compound option on the spread between the input (natural gas,
crude oil, etc.) and the output (electricity, gasoline, etc.) commodity.

To be concrete, let us concentrate on the optimal behavior of a renter that has leased a gas-
fired power plant in a de-regulated market. The agent is exposed to fluctuating fuel and electricity
prices and would like to derive the maximum value from the plant. To do so, she will optimize
the dispatching policy, i.e. dynamically decide when the plant is running and when it is offline,
as time and market conditions evolve. Our aim is to price the flexibility embedded in selecting
this dispatching policy. In order to focus on the various operational constraints and the basic
structure of the problem, we do not discuss any hedging of the operations; thus the pricing is done
in the simplified manner of finding the optimal expected profit under the given pricing measure.
In practice, the operational risk involved is non-tradeable, however risk management can still be
undertaken using closely-related traded contracts; see Ludkovski (2006) for more details.

2.2. Historical Perspective.

Let us briefly summarize the methods that have been used in practice by the financial engineers
who are in charge of plant scheduling and who are also responsible for valuing potential tolling
agreements and other revenue-sharing contracts. In the early days the standard approach was based
on the classical Net Present Value (NPV) theory, also known as discounted cash-flow analysis.
The value of the asset was estimated based on projections of future prices and proper weighing
and discounting of possible cases. This essentially eliminated uncertainty, and opportunities of
dynamically responding to prices were ignored.

In late 1980s, the Markov Decision Processes (MDP) approach became popular. The MDP’s
are essentially tree-based versions of the stochastic control formulation below. The MDP lattice
uses Dynamic Programming to solve the switching problem through backward recursion up the
tree. An example of explicit solution for a simple switching problem can be found in Yushkevich
(2001). However, if one must solve numerically then the computational complexity explodes for
long horizons with many optionalities.

With the advent of financial engineering, the new widely used method for pricing tolling agree-
ments is the strip of spark-spread options approach (Eydeland and Wolyniec 2003). The payoff
from the power plant is represented as a collection of European options that pay the maximum
value to be obtained during each decision period. Each such option is of the spark-spread variety
which have been intensively studied in classical option pricing (Carmona and Durrleman 2003). As
a result, the general intuition that practitioners have built for dealing with vanilla options can be
directly transferred. Moreover, in many cases there are efficient approximations for pricing spread
options that are very fast to compute and provide good bounds not just on the price but also on
the Greek sensitivities. Nevertheless, the method suffers from two major shortcomings. First, it is
inherently unsuitable for incorporating dynamic operational constraints. For example, there is no
natural way of including switching costs. Second, the strip-of-options approach eliminates the time
decay, making the resulting strategy completely stationary in time despite the finite horizon of the
contract.

Given these difficulties and the growing need for aggressive finetuning of dispatch policies (as
the markets become increasingly competitive), we believe it is high time for a next generation of
optimal switching models that make full use of the stochastic control formulation and corresponding
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numerical methods. Moreover, the new models should be robust so as to handle a variety of
operational constraints, a large number of operational regimes, multi-dimensional state processes
and varied price dynamics. We hope this paper is a modest step in that direction.

2.3. Representative Case.

Let us consider for the sake of illustration, an operator in charge of a peaking combined cycle gas
turbine (CCGT) power plant. This is a medium size power plant characterized by short ramping
times. The typical capacity is 40− 200 megawatt-hours (MWh) and it takes 2− 4 hours to bring
the plant online. As the name suggests, a CCGT plant is made up of several gas-fired turbines
that allow for variable levels of output. If the operator wishes to run the plant, she buys natural
gas, converts it into electricity and sells the output on the market. The conversion ratio HR is
called the heat rate and is quoted in millions of British thermal units (MMBtu) of gas needed to
produce one MWh (in Europe heat rates are quoted in megawatt-hours per giga-joule MWh/GJ).
Thus, the higher the heat rate the less efficient the conversion. Typical heat rates are in the range
7− 12 MWh/MMBtu. To formulate the problem in financial terms, let (Pt) be the price process
of electricity, (Gt) be the price process of gas, K the operating costs and Cap the capacity of
the plant. We remain vague about the precise meaning of (Pt) and (Gt). They could be spot or
day-ahead prices if all the commitments are made on a 24-hour basis. Moreover, we are completely
agnostic about the actual dynamics of the (Pt)- and (Gt)-processes.

The revenue rate from running the plant is given by the spark spread, Cap ·(Pt−HR ·Gt−K) ·dt.
In other words, the spark spread pays the difference between the market price of power and the
market price of gas needed to produce this power. The remaining margin, which may be negative,
is the current economic rent of owning the plant.

We suppose that besides running the plant at full capacity, or keeping it completely off-line, there
also exist a total of M − 1 intermediate operating modes or regimes, corresponding to different
subsets of turbines running. In principle, the plant may have a continuous spectrum of operating
regimes. However, some specific output levels are likely to be more operationally stable so that our
model is an acceptable simplification. To each mode m we associate a corresponding marginal heat
rateHRm, production rate Capm and operating expensesKm. The relationship between production
rates Capm and heat rates HRm is likely to be non-linear as increasing losses from heat-dissipation
typically cause dis-economies of scale. The rate of payoff in regime m is then given by

ψm(Pt,Gt)
M=Capm ·

(
Pt−HRm ·Gt−Km

)
. (1)

In general, the operating regime m can affect the dynamics of (Pt,Gt) through price impact. For
example, if the firm is a major player on the electricity market, when it runs its turbines we expect
the electricity price Pt to decrease due to increased supply. This effect can be both deterministic
(e.g. the price decreases by 5%) or random; in the latter case we make the simplifying assumption
that it can be described as changing some parameters of the equation governing the evolution of
(Pt,Gt), cf. (8). To establish a more abstract notation, we will denote by Xt the driving Markov
process (in the present example Xt = (Pt,Gt)), and by ψm(t,Xt) the respective (time-dependent)
payoff rates.

Changing an output level is costly, requiring extra fuel and various overhead costs. We denote
by Ci,j the switching costs from state i to state j, with potential dependence on time and current
state Ci,j(t,Xt). Dependence on Xt is very important in practice, where switching typically requires
extra use of input fuel so that in our power plant example Ci,j is a function of Gt. More generally,
Ci,j may represent all sorts of operational constraints associated with a dispatch decision. For
instance, Ci,j can be used to take into account the time delay effect of having to gradually ‘ramp-
up’ and ‘ramp-down’ the turbines, an issue that we revisit more carefully in Section 4.2.2 below.
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The switching costs are discrete with Ci,j > ε > 0, for all i 6= j and some ε > 0. We take Ci,i = 0,
and assume that C satisfies the triangle inequality

Ci,j 6Ci,k +Ck,j, (2)

for any regimes i, j and k. This assumption is without loss of generality; one can always re-define
Ci,j = mink(Ci,k +Ck,j) achieving (2) and without changing the structure of the problem.

2.4. Operating Strategies.

Given a power plant described in the previous section, the renter is interested in its optimal use
on the finite time horizon [0, T ], where T is on the scale of one year. The flexibility of running the
plant comes from the ability to schedule the startup and shutdown orders. We model the latter as
a control process u= (ut) which describes the plant scheduling as a function of time. The control
u is dynamically chosen and adapted to the information filtration FX

t , σ(Xs : 0 6 s6 t). Because
the managerial decisions are discrete, we can represent the strategy u as

u=
(
(ξ1, τ1), (ξ2, τ2), . . .

)
(3)

where ξk taking values in ZM
M= {0, · · · ,M−1} are the successive modes chosen, and 0 6 τk−1 6 τk 6

T are the (FX
t -stopping) switching times. Due to the assumption made in the previous paragraph

about subadditive costs, multiple instantaneous switches with τk = τk+1 are suboptimal. From a
control-theoretic perspective, one should think of u as an FX-adapted piecewise-constant process
where ut =

∑
τk<T

ξk1[τk,τk+1) denotes the operating mode at time t.
The total reward up to fixed final time T for such control u and scenario ω ∈Ω is then

H(x, i, [0, T ];u)(ω) M=
∫ T

0

ψus(s,Xs(ω))ds−
∑
τk<T

Cuτk−,uτk
, X0 = x,u0 = i. (4)

The first term on the right hand side of (4) describes the cumulative profit corresponding to u and
the second term counts the associated switching costs at each switching time τk. The payoff rates ψi
can be interpreted as either the actual dollar revenue amounts, or alternatively as utility obtained
by the agent from consuming the revenue. The latter interpretation allows us to consider simple
time-additive risk-aversion of the form E[

∫ T
0

e−rtu(ct)dt] where u is the concave utility function
and ct = f(Xt) is the income stream from the asset. Some care is needed in this case as this income
may be negative.

2.5. Control Problem.

Let U(t) be the set of all allowed scheduling policies on the interval [t, T ]. We will define U(t)
rigorously in Section 3.1 below. The operational flexibility problem we investigate may now be
stated as finding the value function

J(t, x, i) = sup
u∈U(t)

J(t, x, i;u), (5)

where J(t, x, i;u) = E
[
H(x, i, [t, T ];u)|Xt = x,ut = i

]
. As usual in finance, E denotes expectation

with respect to a risk-neutral pricing measure P (again we are agnostic about how P is chosen). In
full,

J(t, x, i) M= sup
u∈U(t)

E

[∫ T

t

ψus(s,Xs)ds−
∑

t6τk<T

Cuτk−,uτk

∣∣∣Xt = x,ut = i

]
. (6)
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The value function J(t, x, i) represents the conditional maximum expected value from running
the plant on [t, T ] given the initial value of Xt = x and the initial regime ut = i. In economic
terms, J(t, x, i) is the net present value of all future profit flows given optimal behavior henceforth.
Our goal is to numerically compute the value function J(t, x, i), describe its qualitative properties
and most importantly characterize the optimal switching policy u∗, if it exists, that achieves the
supremum in (6). The last item is crucial for practical applications where the agent needs an easily
implementable dispatch strategy.

Knowing J(t, x, i) allows one to assign a basic price to the operational flexibility associated with
the plant by computing

J(t, x, i)−max
m

E
[∫ T

t

ψm(s,Xs)ds
∣∣Xt = x

]
, (7)

which is the difference between expected profit with the flexibility built-in and the expected profit
in the best, but fixed, operating mode m∗. More refined valuation of managerial flexibility can be
given by varying the set of allowed dispatch policies U(t) in (6) and studying the difference in the
resulting value functions.

The control problem (6) is quite non-trivial. It is a special case of stochastic impulse control, see
e.g. Øksendal and Sulem (2005). Because the control u is finite-valued it is called optimal switching.
In the general form considered here (observe that we have minimal structure imposed on {Xt}, ψi
and Ci,j) there are few tools for solving it. Nevertheless, in the next section we will exploit the
special structure of (6) and provide a robust numerical algorithm for finding J and u∗.

2.6. Relation to Existing Literature.

Our model is closely aligned with problems of partially reversible investment encountered in real
options. In this setting the agent is a firm facing several investment projects with uncertain dynamic
value {Xt} that it can start and suspend. The control is therefore composed of investment times τk
and choice/size of project to start ξk, similar to the structure of (3). A good overview and summary
of recent results is given in Guo and Pham (2005). Another related problem first appearing in
Jeanblanc and Shiryaev (1995) is optimal payout of dividends by a corporation. Given stochastic
firm value {Xt}, the objective is to find the best method of distributing the wealth to shareholders.
Thus, the controls are dividend times τk and dividend amounts ξk, again resembling (3).

Directly related to our setting is the literature on optimal switching. Foremost we should men-
tion the recent work by Hamadène and Jeanblanc (2004) whose probabilistic approach has been
the inspiration for this research. However, in their model there are only two operating regimes
and they spend little time discussing numerical implementation. The classical analytic approach
to optimal switching originated with Brekke and Øksendal (1994) who considered a geometric
Brownian motion for {Xt} and infinite horizon. A recent paper that provides explicit solutions in
this special setting is by Pham and Ly Vath (2005). Another similar work is by Yushkevich (2001)
who considers the switching problem in discrete time for a general recurrent Markov chain with
countable state space. Again, there are only two regimes and no running rewards which allows for
geometric characterization of the value function.

The original paper on using stochastic control for tolling agreements is due to Brennan and
Schwartz (1985). They introduced this methodology to price a copper mine, once more with geo-
metric Brownian motion for commodity price {Xt}. Further extensions, such as abandonment and
initial start decisions have appeared in a series of recent papers by (Zervos 2003, and references
therein). From an economic perspective, the thrust has been to show that stochasticity of the {Xt}
state process together with positive switching costs cause investment delay and the appearance of
the hysteresis band (Dixit 1989). This means that the owner will forgo possible small gains (or
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respectively suffer small losses) due to the large outlay required to make a switch. Thus, an opera-
tor may continue to run a plant at a loss if he has enough hope that the prices will soon increase.
Clearly this induces risk-aversion and reduces NPV. At the same time, because the manager is
able to time her decisions, she can minimize her losses in unfavorable conditions, as well maximize
them in good ones. As a result she derives extra benefits that are similar to the time premium for
American options and form a crucial ingredient of the project NPV.

3. Solution Methodology.

3.1. Setup and Assumptions.

We present our results in some generality in order to emphasize the theoretical tools used. Let
(Ω,F ,F = (FX

t ),P) be a stochastic basis. For our driving process we take a d-dimensional jump-
diffusion {Xt} whose dynamics are given by

dXt = µ(Xt)dt+σ(Xt) · dWt +J(Xt) (dNt−λt(Xt)dt), (8)

where {Wt} is a standard Wiener process on (Ω,F,F,P) and {Nt} is a Poisson process with intensity
λ(Xt). The filtration F satisfies the usual conditions, with F0 being trivial. Each of µ, σ, J and λ
can be time dependent; we suppress dependence on t only for convenience. We will write {Xt,x

s }
to indicate the process conditional on Xt = x, with law Pt,x.

Throughout we assume that the stochastic differential equation (SDE) (8) is non-degenerate in
the sense that it has a unique strong solution and the (symmetric) diffusion matrix a(x) = σt(x)σ(x)
is positive-definite, x · a ·xT > ε> 0, ∀x∈Rd. We shall also use the notation

S p
T

M=
{
Z; Zt ∈Ft, E

[
sup
t∈[0,T ]

|Zt|p
]
<∞

}
, p> 1

and make the following standing assumption.

Assumption 1. For each m= 0,1, · · · ,M − 1, the reward function ψm : [0, T ]×Rd→ R is locally
Lipschitz in (t, x) and ψm(·,X·)∈S 2

T uniformly in X0 = x restricted to bounded sets.

The last condition is obviously satisfied if each component of X is sup-square integrable Xn ∈S 2
T

and all the rewards are of linear growth uniformly in time, |ψm(t, x)|<C(1 + ‖x‖), where ‖x‖=∑
i x

2
i denotes the Euclidean norm.

We denote by U (respectively U(t)) the set of all acceptable controls on [0, T ] (resp. [t, T ]).
The basic U consists of all adapted, right-continuous with left-limits (rcll), ZM -valued processes
u of a.s. finite variation on [0, T ]. This last requirement implies that the number of switches is
finite almost surely. Thus, there exists a random integer NT = NT (u) such that τNT

= T , and
P[τk < T ∀k > 0] = 0. This restriction is superfluous if the expected maximum gain is finite a.s.,
Px[

∫ T
0

maxiψi(s,Xx
s )ds= +∞] = 0 as infinite number of switches implies infinite switching costs.

Further possible constraints for U will be discussed later on.

3.1.1. Canonical Example. Our canonical example for {Xt} is a d-dimensional exponential
Ornstein-Uhlenbeck process with jumps, namely

dXn
t =Xn

t

[
κn(θn− logXn

t )dt+Σn · dWt + ξn dNt

]
, n= 1, . . . , d, (9)

or d(logXn
t ) = κn(θn− σ2

n

2κn
− logXn

t )dt+Σn · dWt + ξn dNt, Xn
0 = xn,

where {Wt} is a d-dimensional standard Wiener process, σ2
n = (Σn,1)2 + · · · + (Σn,d)2, Σ =

[Σn]n=1,··· ,d = [Σn,p]n,p=1,··· ,d ∈Rd×d is a constant non-degenerate volatility matrix and ξn ∼ exp(λn).
The last statement means that the n-th component Xn experiences jumps of mean size ξn-percent
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that occur at constant intensity λn. Notice that the dependence between the components of Xt is
only through the matrix Σ (dependence between the jump times can also be added). The model is
meant to reflected the widely-documented price spikes and mean-reversion observed in commodity
markets. The attractiveness of (9) is that without the jump component, logXt is Gaussian. Because
jumps arrive at constant intensity, this means that Xt can be easily simulated and allows for some
explicit computations and approximations. Moreover, in this case Assumption 1 is automatically
satisfied for any reward of polynomial growth.

There is still an ongoing debate about appropriate assumptions about electricity prices given
the evolving market conditions (including recent sustained price increases). We focus on a mean-
reverting {Xt} because commodity prices are expected to be long-term stationary based on a
supply-demand equilibrium. More to the point, if {Xt} is not stationary, repeated operational
switching is unlikely as the drift would eventually make one regime preferable to all the rest. Thus,
mean-reversion is desirable to keep our model ‘interesting’. Empirical studies (Duan and Pliska
2004, Eydeland and Wolyniec 2003) have suggested that the spark spread Pt−HR ·Gt is indeed
stationary. Another possible alternative (see for instance Carmona and Durrleman (2003)) is to
discard (Pt) and (Gt) and directly work with a one-dimensional {Xt} that models the spark-spread.
This simplifies much of the analysis, but we stress that a single factor is insufficient to fully capture
all the effects observed in real markets.

3.2. Iterative Optimal Stopping Formulation.

To solve (6) of Section 2.4, we first consider a restricted situation where we put a fixed upper
bound on the total number of switches allowed. We define

Uk(t) M= {u∈ U(t) : τ` = T for `> k+1}

to be the set of all admissible strategies on [t, T ] with at most k switches, and we denote by Jk the
value function where we optimize only over Uk,

Jk(t, x, i) = sup
u∈Uk(t)

E
[∫ T

t

ψus(s,Xs)ds−
∑

`≥1, t≤τl<T

Cuτ`−,uτ`

∣∣∣Xt = x,ut = i
]
. (10)

We now observe that optimization over Uk+1 and over Uk should be related. In fact, Bellman
optimality principle says that the problem with k + 1 switches is equivalent to finding the first
optimal switching time τ , which maximizes the initial payoff until τ , plus the value function at
τ corresponding to optimal switching with k switches. This formal argument suggests that we
should be able to solve our control problem through a recursive heap of simpler optimal stopping
problems.

For a given stopping time ν, let Sν
M= {τ 6 T : F− stopping time such thatν 6 τ a.s.} be the set

of all stopping times after ν. Thus, S ≡ S0 is the set of all F-stopping times bounded by T . We
define Jk(t, x, i) for k= 0,1,2, . . . , 0 6 t6 T, i∈ZM , by

J0(t, x, i) M= E
[∫ T

t

ψi(s,Xs)ds
∣∣∣Xt = x

]
,

Jk(t, x, i) M= ess sup
τ∈St

E
[∫ τ

t

ψi(s,Xs)ds+Mk,i(τ,Xτ )
∣∣∣Xt = x

]
, k≥ 1.

(11)

We shall see below that the essential supremum in (11) is in fact a supremum, which is moreover
attained, so it is actually a maximum. The intervention operator M reflects the recursive nature
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of (11) and specifies the best value that can be achieved by making an immediate switch from
current mode i given k switches remaining,

Mk,i(t, x) M= max
j 6=i

{
−Ci,j +Jk−1(t, x, j)

}
. (12)

If there are only two regimes like in Hamadène and Jeanblanc (2004), the maximum in (12) is not
needed as there is only one regime to switch into.

The rest of the section is devoted to proving regularity properties of Jk(t, x, i) and showing that
the construction (11) provides the means of tackling the original problem (6). Observe that (11)
defines Jk in terms of an optimal stopping problem, a much simpler setting than the stochastic
control formulation of (6).

We first check that (11) is well-posed and in particular that Jk can be chosen to be jointly
measurable. To do so we recall the theory of Snell envelopes from general optimal stopping (El-
Karoui 1981). The results we need are summarized in the following proposition.

Proposition 1. (Hamadène and Lepeltier 2000) Let Z be an R-valued rcll, not necessarily
Markov, process adapted to the filtration (Ft). We assume that Z is left-continuous in expecta-
tion and has square-integrable supremum Z ∈S 2

T . For each ν ∈ S, define the nonnegative random
variable

Y (ν) M= ess sup
τ∈Sν

E
[
Zτ

∣∣Fν]. (13)

Then,
1. The family {Y (ν)} admits a version which is a rcll (Ft)-supermartingale Y r satisfying Y (ν) =

Y r
ν , namely Y r stopped at time ν. Y r is called the Snell envelope of Z.
2. The minimal optimal stopping time τ ∗ for Y (0) exists and is explicitly given by

τ ∗ = inf
{
s> 0 : Y r

s 6Zs

}
.

Thus, Y r
0 = E[Zτ∗ ] = supτ E[Zτ ].

3. Y r is a supermartingale on [0, T ] and a martingale on the random interval [0, τ ∗). Moreover,
Y r ∈S 2

T .
4. If Z is upper semicontinuous from the left and of class [D] (that is {Zτ : τ ∈ S} is uniformly

integrable) then Y r is of class [D].

Going back to our setting, pick an initial value X0 = x and let Ψi
t =

∫ t
0
ψi(s,Xx

s )ds, Z
k,i
t =∫ t

0
ψi(s,Xx

s )ds +Mk,i(t,Xx
t ). It is easy to see that Zk,i satisfies all the regularity assumptions

of Proposition 1. Then Y k,i, the Snell envelope of Zk,i, solves Y k,i
t = ess supτ∈St

Ex[Zk,iτ |Ft] and
comparing with (11) we see that

Jk(t,Xx
t , i) = Y k,i

t −Ψi
t.

Accordingly, Jk(t,Xx
t , i) is a supermartingale, is square-integrable, and, if X satisfies item 4 of

Proposition 1, is continuous. This identification also shows that the minimal optimal stopping time
τ ∗k corresponding to the Snell envelope defined by Jk(t, x, i) is simply

τ ∗k = inf{s> t : Jk(s,Xt,x
s , i) =Mk,i(s,Xt,x

s )}∧T. (14)

Armed with these facts we next show that the recursive definition is equivalent to the original
problem.

Theorem 1. Jk is equal to the value function for the optimal switching problem with at most k
switches allowed, Jk.
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Proof: The theorem states that a ‘global’ optimization using a fixed maximum of k switches in (10)
is equivalent to a successive ‘local’ optimization using one switch at a time in (11). The proof is
based on direct use of the properties of Snell envelope and proceeds by induction on the number of
switches left. The case k = 0 is immediate. Indeed, J0 = J0, since the sum appearing in the right
hand side of definition (10) is not present for k= 0. Take k≥ 1 and assume that Jk−1 = Jk−1. Let
u= ((ξ1, τ1), (ξ2, τ2), . . . , (ξk, τk)) be any given strategy in Uk(t). Then

Jk(t, x, i) > E
[∫ τ1

t

ψi(s,Xt,x
s )ds+Mk,i(τ1,Xt,x

τ1
)
∣∣∣Xt = x

]
(15)

> E
[∫ τ1

t

ψi(s,Xt,x
s )ds−Ci, ξ1 +Jk−1(τ1,Xt,x

τ1
, ξ1)

∣∣∣Xt = x
]

> E
[∫ τ1

t

ψi(s,Xt,x
s )ds−Ci, ξ1 +Jk−1(τ1,Xt,x

τ1
, ξ1)

∣∣∣Xt = x
]

> E
[∫ τ2

t

ψus(s,X
t,x
s )ds−Ci, ξ1 −Cξ1,ξ2 +Jk−2(τ2,Xt,x

τ2
, ξ2)

∣∣∣Xt = x
]

...

> E
[∫ τk

t

ψus(s,X
t,x
s )ds−

∑
1≤`≤k

Cξ`−1, ξ` +
∫ T

τk

ψξk(s,Xt,x
s )ds

∣∣∣Xt = x
]

= Jk(t, x, i;u), (16)

with the convention ξ0 = i. To go from (15) to (16) we successively used the defining property
(11) of Jk, the definition of the intervention operator Mk,i, the fact that the induction hypothesis
implies Jk−1(τ`,Xτ` , ξ`) = Jk−1(τ`,Xτ` , ξ`), and the definition (10) of Jk. To prove that we have
equality between Jk and Jk, we notice that all the inequalities in (15) become equalities if we use
the control u∗ = ((ξ∗1 , τ ∗1 ), . . . , (ξ∗k, τ ∗k ))∈ Uk(t) defined by τ ∗0 = 0, the stopping times

τ ∗`
M= inf

{
s≥ τ ∗`−1 : J `(s,Xs, i) = max

j 6=i

(
−Ci,j +J `−1(s,Xs, j)

)}
∧ T, (17)

for `= 1, . . . , k, and the corresponding sequence of regimes ξ∗`
M= argmaxjM`,i(τ ∗`−,Xτ∗

`
−). �

Observe that as an aside, the proof of Theorem 1 furnishes the existence of an optimal switching
policy for Jk and directly demonstrates that this policy can be chosen to be of the ‘barrier’ type,
i.e. in terms of hitting times of {Xt}.

On an economic level, the value functions Jk provide a fine-level granularity with respect to
the operational flexibility. In practice, some assets have stringent cycling restrictions as frequent
switches increase maintenance cost and potential tear-and-wear. Hence, before signing the tolling
agreement, the agent can use the marginal differences Jk+1− Jk to precisely value each degree of
contractual flexibility.

Our next theorem shows that as expected, letting k increase without bound, the restricted
problem (10) converges to the original unrestricted setting of (6). This idea of representing impulse
control problems as limits of sequences of optimal multiple stopping problems goes back to 1980s,
see e.g. Lepeltier and Marchal (1984), Øksendal and Sulem (2005) and more recently Hamadène
and Jeanblanc (2004). What is new, however, is its use for numerical computations as we do in
Section 4.

Theorem 2. limk→∞ J
k = J pointwise.

Proof: Recall that J(t, x, i) was defined in (6) and Jk(t, x, i) in (11). Since having more switches
is always advantageous, Jk+1 > Jk and the limit, say J∞, exists pointwise. Clearly, J∞ ≤ J since
J ≥ Jk = Jk for every integer k ≥ 1. It remains to show that J∞ ≥ J . Let ε > 0 be arbitrary,
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and let us assume that u∗ = ((ξ∗1 , τ ∗1 ), . . . ) is an ε-optimal policy for J(t, x, i) in the sense that
J(t, x, i;u∗) ≥ J(t, x, i)− ε. For any integer k ≥ 1 we then define a policy uk,∗ ∈ Uk(t) such that
uk,∗t = u∗t if t6 τ ∗k , and uk,∗t = u∗τ∗

k
otherwise. In other words, uk,∗ coincides with u∗ up to the k-th

switch, after which it remains constant. Now

J(t, x, i;u∗)−J(t, x, i;uk,∗) = E
[∫ T

τ∗
k+1

(
ψu∗s (s,Xs)−ψu∗

τ∗
k

(s,Xs)
)
ds−

∑
`>k

Cu∗
τ∗
`
−,u

∗
τ∗
`

]
6 2E[T − τ ∗k ] ·E

[
sup

06t6T
max
i
|ψi(t,Xt)|

]
(18)

and the right hand side converges to zero because by admissibility τ ∗k → T a.s.. It follows that
limk→∞ J(t, x, i;uk,∗) = J(t, x, i;u∗). However, since uk,∗ ∈ Uk(t), J∞(t, x, i)≥ J(t, x, i;uk,∗) for any
k. We conclude that

J∞(t, x, i)≥ lim
k→∞

J(t, x, i;uk,∗) = J(t, x, i;u∗)≥ J(t, x, i)− ε,

which implies J∞(t, x, i)≥ J(t, x, i) since ε was arbitrary. �
Thanks to our recursive construction, it also becomes clear that because {Xt} is Markov, the

optimal policy of Jk can be chosen to be Markovian as well (Lepeltier and Marchal 1984). Indeed,
each switch by itself is Markovian in (17). From the proof of Theorem 2 it follows that for any ε > 0
we can find an ε-optimal Markovian strategy for J(t, x, i). Of course the ability to make optimal
dispatching decisions based solely on today’s information is intuitive, but a rigorous analytic proof
is often hard to come by. Moreover, the Markovianity of optimal strategies implies that the formal
Dynamic Programming Principle holds for the value function, i.e. for any t′ > t,

J(t, x, i) = sup
u∈U(t,t′)

E
[
H(x, i, [t, t′];u)+J(t′,Xt,x

t′ , ut′)
∣∣Xt = x,ut = i

]
. (19)

As a final result we now directly show that for reasonable models the value function is continuous
in x.

Lemma 1. Suppose the flow of (Xt) is Lipschitz, namely that µ and σ in (8) are continuously
differentiable with bounded derivatives. Then the value functions J(t, x, i) are Lipschitz continuous
in x.

Proof: By a standard result, the assumptions of the lemma imply that for any p > 1, there is a
CX such that Ex[supt ‖Xt‖p] 6 CX(1 + ‖x‖p) (Protter 2004, p. 342). The rest follows by a simple
estimate and Gronwall’s inequality:

|J(t, x, i)−J(t, y, i)|2 6 sup
u∈U(t)

E
[∫ T

t

|ψus(s,X
t,x
s )−ψus(s,X

t,y
s )|2 ds

]
6Cψ E

[∫ T

t

|Xt,x
s −Xt,y

s |2 ds
]

6Cψ(T − t)E
[

sup
t6s6T

|Xt,x
s −Xt,y

s |2
]
6C‖x− y‖2.

�

3.3. Continuity of the Switching Boundary.

Lemma 2. Suppose that Assumption 1 holds and that the payoff rates ψi and the process {Xt} are
time-homogeneous. Then the value function J(t, x, i) is Lipschitz continuous in t, locally uniformly
in x.
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Proof: To emphasize the time-interval considered, let us write J(t, x, i;T ) for the value function of
(6). By time-homogeneity, J(t, x, i;T ) = J(0, x, i;T − t), i.e. we can shift the problem to calendar
time zero and maturity (T − t). Therefore for t < t′,

|J(t, x, i)−J(t′, x, i)|= |J(0, x, i;T − t)−J(0, x, i;T − t′)| (20)

6 sup
u∈U(T−t′)

Ex
[∫ T−t

T−t′
|ψus(X

x
s )|ds

]
6 (t′− t)E

[
sup

0≤s≤T
max
i
|ψi(Xx

s )|
]

and the right hand side is uniform in x restricted to a bounded set by Assumption 1. �
At this stage it is important to remark that, if it is optimal to switch at a given time τ from

mode i to mode j, then for all the modes k such that

Ci,j =Ci,k +Ck,j (21)

it is also optimal to switch, at the same time τ , to site j. Indeed, optimality of the switch at time
τ from mode i to mode j implies that

−Ci,j +J(τ,Xτ , j)>−Ci,k +J(τ,Xτ , k)

and because of the additivity (21), we obtain −Ck,j + J(τ,Xτ , j)> J(τ,Xτ , k), which shows that
switching to mode j is better than remaining in mode k at time τ .

The above argument implies that when the rewards are monotone in each individual component
Xn of the (Xt)-vector and the switching costs are additive then under mild regularity assumptions
on J(t, x, i) the switching regions will be connected. Indeed, suppose we can find an ordering of
the regimes such that for any i > j,

∂(ψi−ψj)
∂xn

> 0 (respectively 6 0). (22)

Then it can be shown that ∂xn(J(t, x, i) − J(t, x, j)) > 0 (resp. 6 0), since the switching times
of J(t, x, j) are also switching times of J(t, x, i) due to the cost additivity. Hence, the difference
between the two value functions with different regimes is monotone in xn and the set

Switch(i, j; t) M=
{
x∈Rd : −Ci,j +J(t, x, j)>max

j′ 6=j

{
−Ci,j′ +J(t, x, j′)

}}
(23)

of all x’s where it is optimal to immediately switch from regime i to j is connected in this case.
The switching boundaries are the boundaries of Switch(i, j; t) as a function of t for different pairs
(i, j). By Lemma 2, the value function J is continuous in t, and consequently so is the switching set
and its boundary. Condition (22) on the payoff rates is quite reasonable in practice, for instance
all three of our examples in Section 5 satisfy it.

3.4. Comparison to the Quasi-Variational Formulation.

The classical method of solving impulse control problems driven by Markov processes goes back
to the fundamental work of Bensoussan and Lions (1984). The idea is that the state space is the
union of the continuation region where {Xt} is left uncontrolled, and the exercise regions where the
operational flexibility is immediately exercised. Let LX be the infinitesimal generator of {Xt} and
let us denote by Mφ(t, x, i) = maxj 6=i{−Ci,j + φ(t, x, j)} the intervention operator. Then roughly
speaking (see Brekke and Øksendal (1994) for full details), one needs to study the quasi-variational
inequality

max
(
LXφ(t, x, i)+ψi(t, x),−φ(t, x, i)+Mφ(t, x, i)

)
= 0. (24)
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In other words, the function φ must dominate the barrier and satisfy the Kolmogorov PDE inside
the continuation region. The so-called verification theorem states that a sufficiently smooth solu-
tion φ(t, x, i) of (24) is equal to the value function J(t, x, i) of (6). More generally, it can be shown
that the value function is the unique viscosity solution of (24) (Pham 2005). However, working with
viscosity solutions is laborious; instead the ‘smooth pasting’ condition is usually invoked asserting
that J(t, x, i) is differentiable across the respective free boundaries. See for example Pham (2005)
and the references therein for a discussion of smooth pasting. In the literature this assumption is
often made by invoking heuristic arguments and even then it only leads to a system of implicit
equations with the existence-uniqueness of a solution (i.e. a ‘correct’ continuation region) still
not directly verifiable. At the risk of being unfair, we could say that the variational method is a
theoretical overkill that poses too many technical challenges in practice. In contrast our probabilis-
tic formulation sidesteps all these difficulties; in particular we do not need to make any a priori
assumptions about the smoothness of J(t, x, i).

Secondly, the analytic formulation above is poorly suited for numerical implementation. In par-
ticular, computational difficulties are encountered when Xt is multi-dimensional and/or when Xt

contains jumps, in which case LX becomes an integro-differential operator.

3.5. Reflected Backward SDEs.

The recently developed theory of reflected backward stochastic differential equations (BSDE’s)
gives another useful characterization of the solution to (6). Fix an initial condition X0 = x and let
Y k,i
t

M= Jk(t,Xx
t , i). Note that Y k,i

t is an FX
t -measurable random quantity. Then Y k,i

t solves


Y k,i
t =

∫ T

t

ψi(s,Xx
s )ds+Ak,iT −Ak,it −

∫ T

t

Zk,is · dWs,

Y k,i
t >Mk,i(t,Xx

t ), as defined in (12),∫ T

0

(Y k,i
t −Mk,i(t,Xx

t ))dA
k,i
t = 0, Ak,i0 = 0,

(25)

The auxiliary process Zk,i satisfies E
[∫ T

0
‖Zk,it ‖2 dt]<∞ and can be interpreted as a kind of condi-

tional expectation. The second auxiliary process Ak,i is a compensator (continuous, increasing and
square-integrable) that increases only when Y k,i hits the barrier Mk,i. Let us also mention that
the integrability assumption Mk,i ∈S 2

T that we checked earlier is necessary for (25) to make sense.
The elegance of (25) can be seen from the result of (El-Karoui et al. 1997, Prop. 2.3), who

assert that subject to the above integrability conditions, there is a unique triple (Y k,i,Zk,i,Ak,i)
solving (25) and necessarily satisfying Y k,i

0 = Jk(0, x, i). In fact, denoting Y k,i,t,x
s the solution of

(25) started with Xt = x, there exists a deterministic and jointly continuous function uk,i(t, x)
such that uk,i(t, x) = Y k,i,t,x

t . This uk,i is known (El-Karoui et al. 1997) to be the unique viscosity
solution of the QVI (24).

The BSDE formulation clarifies the continuity and stability properties of the value function.
Indeed, if the barrier Mk,i is continuous in t, it is clear that the solution Y k,i of (25) is also
continuous. Furthermore, analogues of stochastic flow theory imply that under regularity conditions
on the forward SDE (8) giving the dynamics of {Xt}, Y k,i will be continuously differentiable with
respect to the initial condition x, and other parameters of (8). By induction the same is true of the
recursive value functions Jk(t, x, i) of our problem, so that the Greek sensitivities (with respect to
asset prices, underlying volatilities, etc.) of the operational flexibility problem are well-defined.
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Remark 1. The original value function J(t, x, i) can be formally represented as a coupled system
of reflected BSDE’s for (Y i)i∈ZM

, Y i
t ≡ J(t,Xx

t , i):
Y i
t =

∫ T

t

ψi(s,Xs)ds+AiT −Ait−
∫ T

t

Zis · dWs,

Y i
t > max

j 6=i
{−Ci,j +Y j

t },
∫ T

0

(Y i
t −max

j 6=i
{−Ci,j +Y j

t dA
i
t = 0, .

(26)

However, the question of existence and uniqueness of solutions to such systems is difficult. In the
special case of two regimes M = 2, Hamadène and Jeanblanc (2004) explicitly proved existence of
solutions to (26) by working with the difference process Y 1−Y 2. For M > 2 the problem remains
open.

4. Numerical Solution.

Having reduced the optimal scheduling problem to a cascade of recursive optimal stopping problems
appearing in (11), we now show that this transformation also leads to numerical methods that give
an efficient and robust way of computing J(t, x, i).

4.1. Dynamic Programming in Discrete Time.

In order to do numerical computation, we first pass from the continuous time to discrete time. Let
S∆ = {m∆t, m= 0,1, . . . ,M ]} be a discrete time grid with ∆t= T/M ]. Switches are now allowed
only at grid points, i.e. τk ∈ S∆ and the new restricted set of admissible strategies is labelled U∆.
This limiting of managerial flexibility is similar to looking at Bermudan options as approximations
to American exercise rights.

Let t1 =m∆t, t2 = (m+1)∆t be two consecutive time steps. In discrete time, the Snell envelope
is easily computed through the backward dynamic programming (DP) method of Bellman. More
precisely, the Snell envelope property of Jk(t1, x, i) reduces to deciding between immediate switch
at t1 to some other regime j versus no switching and therefore waiting until t2. Thus, (11) becomes

Jk(t1,Xt1 , i) = max
{

E
[∫ t2

t1

ψi(s,Xs)ds+Jk(t2,Xt2 , i)|Ft1
]
,Mk,i(t1,Xt1)

}
'

(
ψi(t1,Xt1)∆t+ E

[
Jk(t2,Xt2 , i)|Ft1

])
∨

(
max
j 6=i

{
−Ci,j +Jk−1(t1,Xt1 , j)

})
. (27)

We see that to solve the problem it suffices to have a computationally efficient algorithm for
evaluating the conditional expectations appearing in (27).

Recall that the conditional expectation E[f(Xt2)|Ft1 ] is defined to be the Ft1-measurable random
variable F which minimizes E[|f(Xt2) − F |2]. On the other hand, if {Xt} is Markov, any such
Ft1-measurable F may be written as F = F (Xt1). Therefore the conditional expectation can be
viewed as simply a mapping x 7→Et1(x)

M= E[f(Xt2)|Xt1 = x] and our strategy is to approximate this
map. This is a well-known statistical problem; here we choose to concentrate on an approach first
described by Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy (2001). Many alternatives
are available and we review and compare them in Section 5.2.

4.2. Regression Monte-Carlo Method.

The idea of the regression Monte Carlo approach is to project Et onto a truncation of a basis of
the Hilbert space L2(P):

Et(x)' Êt(x) =
NB∑
j=1

αjBj(x), (28)
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where Bj(x) are the NB bases and αj the R-valued coefficients. The projection can now be
approximated with an empirical regression. The algorithm generates a large Monte Carlo sam-
ple (xnt1 , x

n
t2

)Np
n=1 from the joint distribution of Xt1 and Xt2 . The empirical values f(xnt2) are then

regressed against {Bj(xnt1)} to obtain the (sample) coefficients αj after which we can use (28) to
compute the conditional expectations.

Our contribution is to extend this approach to simultaneously compute all the Jk’s. Note that
this is not a trivial task since we face a heap of inter-dependent and recursive optimal stopping
problems. Begin by generating Np sample paths xn of the discretized {Xt} process with a fixed
initial condition X0 = x= xn0 . We will approximate Jk(0, x, i) by 1

Np

∑
n J

k(0, xn0 , i). The pathwise
values Jk(t, xnt , i) are computed recursively in a backward fashion, starting with Jk(T,xnT , i) = 0.
To implement (27), for a given step t1 =m∆t and regime i we regress the known future values
Jk((m+1)∆t, xn(m+1)∆t, i) onto the current underlying values {Bj(xnm∆t)}. As a result of regression
we obtain a prediction Êm∆t

[
Jk(m∆t, ·, i)

]
(xnm∆t) for the continuation value along the n-th path.

Comparing this with the current value Jk−1(m∆t, xnm∆t, j) from a lower ‘layer’ k − 1 for each
switching choice j we can find the optimal decision at t1. The computations are done bottom-up
in k, so that Jk−1(m∆t, ·, ·) is known when computing Jk(m∆t, ·, ·). The efficiency is maintained
because we use the same set of paths to compute all the conditional expectations. At a given layer
k, the computations of Jk for different regimes i are independent of each other, and hence the
errors only accumulate with respect to number of switches.

It turns out that for numerical efficiency rather than directly computing the value function, it
is much better to instead keep track of the optimal stopping times. This was the beautiful insight
of Longstaff and Schwartz (2001). Let τk(m∆t,Xm∆t, i) ·∆t correspond to the smallest optimal
switching time for Jk(m∆t,Xm∆t, i). In other words, the optimal future rewards are given by

Jk(m∆t, x, i) = E
[ τk∑
j=m

ψi(j∆t,Xj∆t)∆t+Mk,i(τk∆t,Xτk∆t)
∣∣Xm∆t = x

]
.

Then we have the analogue of (27) for τk:

τk(m∆t, xnm∆t, i) =
{
τk((m+1)∆t, xn(m+1)∆t, i), no switch;
m, switch,

(29)

and the set of paths on which we switch is given by {n : ̂n(m∆t; i) 6= i} with

̂n(t1; i) = argmax
j

(
−Ci,j +Jk−1(t1, xnt1 , j), ψi(t1, x

n
t1

)∆t+ Êt1
[
Jk(t2, ·, i)

]
(xnt1)

)
. (30)

The full recursive pathwise construction for Jk is

Jk(m∆t, xnm∆t, i) =
{
ψi(m∆t, xnm∆t)∆t +Jk((m+1)∆t, xn(m+1)∆t, i), no switch;
−Ci,j +Jk−1(m∆t, xnm∆t, j), switch to j.

(31)

Observe that in this version the regression is used solely to update the optimal stopping times τk

and the regressed values are never stored directly. This helps to eliminate potential biases from
the regression step. In particular, as long as correct switching decisions are made, the regression
approximation error never enters Jk(t,Xt, i).

The above description of the algorithm made direct use of the restricted value functions Jk. This
is necessary if there is an upper operational bound on the number of total switches. If there is not,
we can simplify by computing J(t, x, i) directly. Namely, we simply replace all Jk’s in (27)-(31)
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with just J . Hence, we regress J((m+1)∆t, xn(m+1)∆t, i) against {Bj(xnm∆t)} and use the resulting
map Êt1 to replace (30) with

̂n(t1; i) = argmax
j

(
−Ci,j +J(t1, xnt1 , j), ψi(t1, x

n
t1

)∆t+ Êt1
[
J(t2, ·, i)

]
(xnt1)

)
.

We stress that this is not equivalent to computing JK(t, x, i) for large K in (31) because the values
used in the regression are different. Numerically, computing J(t, x, i) directly is definitely much
faster and also appears to be more stable, however (31) is conceptually clearer and more tractable
analytically.

4.2.1. Choosing the Basis Functions. The choice of appropriate basis functions (Bj) is
rather heuristic. Several canonical choices have been proposed, including the Laguerre polynomials
in the original paper of Longstaff and Schwartz (2001), the indicator functions of a partition of
the domain of {Xt} in Gobet et al. (2005), and the logistic basis in Haugh and Kogan (2004).
However, there is now widespread consensus that the numerical precision can be greatly improved
by customizing the basis (for example, the customization advantage is documented by Andersen
and Broadie (2004)). In particular, it helps to use basis functions that resemble the expected shape
of the value function. In our examples ψi are usually linear and our favorite set of bases Bj(x)
is of the form xp, eαx and max(x−K,0). In a multi-dimensional setting the simplest choice is to
use tensor products of one-dimensional bases

∏
kBjk . This suggests that the required number of

basis functions is exponential in the dimension of {Xt}. However, if the rewards only depend on
fixed linear combinations of components of Xt, even a linear number of bases might be sufficient
to capture the relationship between the value function J(t, x, i) and x. In practice, NB as small as
5 or 6 normally suffices, and having more bases can often lead to worse numerical results due to
overfitting.

4.2.2. Delay and Time Separation. An important feature of a realistic model is operational
delay. Turning a physical plant on/off is not only costly, but also takes a significant amount of
ramping time. To model this phenomenon we may want to assume that each switch has a delay of
δ. The control ut is still Ft-measurable, but the actual regime switch and the corresponding payoff
are only realized at t+ δ. Unfortunately, delay introduces cumbersome technical difficulties, see
e.g. Bar-Ilan et al. (2002).

As an approximation of time delay we impose time separation, i.e. the constraint τk > τk−1 + δ.
Consequently, a dispatch decision has immediate effect but then the plant becomes locked-up for
a period of δ. Time separation is less risky than true delay because decisions have instantaneous
impact, however it does limit the flexibility of the operator. A related situation (but for entirely
different economic reason) occurs in the case of power Swing options, see Carmona and Touzi
(2005). Strictly speaking, with separation the value function is no longer Markov: if a switch is
made at t, time advances to t+ δ while the agent’s hands are tied. Hence, (11) only holds at the
switch times. However, this does not pose a practical difficulty since we only compute J(m∆t, ·)
anyway; the advantage is that in discrete time, especially if δ is a multiple of ∆t, separation is
very convenient to implement. Instead of evaluating E[Jk(t+ ∆t,Xt+∆t, i)|Ft] we now compute
E[Jk(t+δ,Xt+δ, i)

∣∣Ft] the conditional expectation δ/∆t steps ahead, which is as easy as the original
computation.

4.3. Summary of Algorithm.

For the reader’s convenience we summarize our basic algorithm that combines the Longstaff-
Schwartz features together with simultaneous computations of the ‘layers’ Jk for k= 1,2, . . . , K̄.

1. Select a set of basis functions (Bj) and algorithm parameters ∆t,M ],Np, K̄, δ.
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2. Generate Np paths of the driving process: {xnm∆t, m = 0,1, . . . ,M ], n = 1,2, . . . ,Np} with
fixed initial condition xn0 = x0.

3. Initialize the value functions and switching times Jk(T,xnT , i) = 0, τk(T,xnT , i) =M ], ∀i, k.
4. Moving backward in time with t=m∆t, m=M ], . . . ,0 repeat the Loop:

(a) Compute inductively the layers k = 0,1, . . . , K̄ using (11). To evaluate the conditional
expectation E

[
Jk(m∆t+ ∆t, ·, i)|Fm∆t

]
regress {Jk(m∆t+ ∆t, xnm∆t+∆t, i)} against current set of

selected basis functions {Bj(xnm∆t)}
NB
j=1. Add the reward ψi(m∆t, xnm∆t) ·∆t to the continuation

value.
(b) Update the switching times and value functions using (29), (30) and (31).

5. end Loop.
6. Check whether K̄ switches are enough by comparing J K̄ and J K̄−1 (they should be equal).
We call the described algorithm the Longstaff-Schwartz Monte Carlo regression scheme, or just

(LS). It is distinguished from the Tsitsiklis-van Roy (TvR) scheme which in step 4b directly uses
the conditional expectations,

Jk(m∆t, xnm∆t, i) =Mk,i(m∆t, xnm∆t)
∨

[
Êm∆t

[
Jk((m+1)∆t, ·, i)

]
(xn(m+1)∆t)+ψi(m∆t, xnm∆t) ·∆t

]
. (32)

4.3.1. Algorithm Requirements. The speed of the algorithm is O(M 2 · K̄ ·Np ·M ]) where
M is the number of possible regimes, K̄ maximum number of switches, Np number of Monte Carlo
paths, and M ] the number of discrete time steps used. Observe that during the main loop we only
need to store the buffer J(t, ·), . . . , J(t+ δ, ·); and τ(t, ·), . . . , τ(t+ δ, ·). Consequently, the memory
requirements are O(Np · (M ] +D · K̄ ·M)) where D = δ

∆t
+ 1 > 2 is the buffer size and the two

terms represent storage of sample paths and value functions respectively.
The algorithm complexity is quadratic in the number of regimes since we must check the possibil-

ity of switching from each mode i into each other mode j. The algorithm is linear in Np since during
the regression step we only deal with matrices of size Np×NB where NB denotes the dimension of
the projection space used for regression purposes. Because the other dimension is fixed, the number
of arithmetic operations is linear in the bigger dimension. In practice, the biggest constraint is in
space, because the backward induction requires keeping the entire array M ]×Np of sample paths in
memory. Even for minimal values such as M ] = 500,Np = 25,000 this is already 50MB of storage.

4.4. Convergence.

The algorithm described in the previous section incorporates several layers of approximations. Four
sources of errors can be identified: error due to discretizing the SDE (8), error due to restricting
switching times to S∆, projection error and Monte Carlo sampling error. To understand the asso-
ciated effects we shall systematically address each of these and focus on error bounds in terms
of ∆t and the number of paths Np. To do so we return to the framework of backward stochastic
differential equations from Section 3.5. The basic TvR scheme (32) is essentially a simple algorithm
for solving discrete-time reflected BSDE’s, a topic that has been a very active area of research, see
e.g. Chevance (1997), Bouchard and Touzi (2004), Gobet et al. (2005). Empirical evidence strongly
suggests that the convergence properties of the TvR scheme are not as good as of the LS scheme,
however the former is much more amenable to analysis.

The BSDE approach starts from (25) and constructs a discrete time approximation to the pairs
(Y k,i,Zk,i), k= 1,2, . . .. Recall that Y k,i

t = Jk(t,Xx
t , i), while Zk,i will be replaced with a conditional

expectation similar to (27).
To simplify the proofs we shall impose,

Assumption 2. The functions x ↪→ µ(x) and x ↪→ σ(x) appearing in (8) are C2(Rd) with uniformly
bounded first derivatives. The payoff functions ψm(t, x) are time-homogeneous, and continuously
differentiable with uniformly bounded derivatives.
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The convergence analysis will proceed in several steps, isolating each source of error identified
above. Recall that M ] and N =Np are used to denote the number of discrete time periods and
total number of Monte Carlo simulations respectively. The time steps are indexed by m and the
paths by n. For brevity, C is a generic constant that may change from line to line, and t1 and t2 are
two generic consecutive time grid points t1 =m∆t and t2 = t1 + ∆t. Finally, we use the standard
notation X ∨ Y M= max(X,Y ) and ‖X‖p = E

[
|X|p

]1/p
, p > 1. At this point let us also recall the

following discrete version of Gronwall’s inequality:

Lemma 3. If positive sequences (am), (bm), (cm), 0 6m6M ] satisfy am−1 6 max{(1 +C∆t)am +
bm−1, cm−1} then

am 6 eC(T−m∆t)
[
aM] +

∑
j>m

bj +max
j>m

cj

]
. (33)

This lemma will be key for L2 estimates when combined with Young’s inequality: (a + b)2 6
(1+ γ)a2 +(1+ 1

γ
)b2 for any γ > 0.

4.4.1. Discretization Error. To pass to discrete time, we first use the classical Euler scheme
for the process {Xt}, replacing (8) with

X∆
t =X∆

t1
+µ(X∆

t1
)(t− t1)+σ(X∆

t1
) · (Wt−Wt1), for t∈ (t1, t2]. (34)

Then a standard Lp-bound for the discretization error is (Bouchard and Touzi 2004, Lemma 3.2)

limsup
∆t→0

1√
∆t

∥∥ sup
06t6T

|Xt−X∆
t |

∥∥
p
<∞ ∀p> 1. (35)

Note that in some practical applications {Xt} can be simulated exactly, eliminating (35). In any
case, assuming (34) for (X∆

t ), the discretized versions of (Y k,i,Zk,i,Mk,i) from (25), now labelled
(Y k,i,∆,Zk,i,∆,Mk,i,∆), solve

Y k,i,∆
t1

=Mk,i,∆
t1

∨
{

E
[
Y k,i,∆
t2

|Ft1
]
+ψi(X∆

t1
)∆t

}
, Y k,i,∆

T = 0,

Mk,i,∆
t1

= max
j 6=i

{
−Ci,j +Y k−1,j,∆

t1

}
,

Zk,i,∆t1
= E

[
Y k,i,∆
t2

· (Wt2 −Wt1)
∆t

∣∣∣Ft1].
(36)

The alternative

Y k,i∆
t1

= max
{
Mk,i,∆

t1
, E

[
Y k,i,∆
t2

+ψi(X∆
t2

)∆t
∣∣Ft1]} (37)

has also been used by some authors, e.g. Bally and Pagès (2003). In the numerical analysis termi-
nology (36) is an explicit scheme, while (37) is an implicit scheme. From a financial point of view
(36) means that the payoff between today and tomorrow is certain. It is not clear which assumption
is more realistic but numerically for small ∆t the differences seem to be negligible.

The next theorem is an analogue of Theorem 7.1 in Bouchard and Touzi (2004). For completeness
the proof, as well as proofs of all other theorems to follow, is provided in the Appendix.

Theorem 3. For all p> 1,

limsup
∆t→0

1√
∆t

sup
06m6M]

∥∥Y k,i,∆
m∆t −Y

k,i
m∆t

∥∥
p
<∞. (38)

The above error due to replacing the ‘American’ switching policy with a ‘Bermudan’ version has
also been studied by Dupuis and Wang (2005). They showed that for a one-dimensional optimal
stopping problem the discretized value functions in fact converge with rate O(∆t), but the optimal
stopping rules converge only with rate O(

√
∆t), as in (38).
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4.4.2. Projection Error. For the next step we approximate the conditional expectations
Et1

M= E[·|Ft1 ] appearing in (36) by a finite-dimensional projection Pt1 onto the set of bases Bt1 =
Bt1(Xt1) (the latter is a vector of length NB, but we do not write out the individual components).
We label by Ŷ k,i

t1
the approximation of Y k,i,∆

t1
so that the projection is given by Pt1 [Ŷ

k,i
t2

] = αt1 ·Bt1 ,
where the coefficients αt1 = argminαE

[
|Ŷ k,i
t2

− α ·Bt1 |2
]
, are a random vector in RNB depending

only on Xx
t1

. Equation (36) becomes

Ŷ k,i
t1

=
(
Pt1 [Ŷ

k,i
t2

] +ψi(Xt1)∆t
)
∨M̂k,i

t1
. (39)

Theorem 4. Define Ŷ k,i
m∆t by recursively applying (39). Then

1. (Ŷ k,i
m∆t) is uniformly L2-integrable in m.

2. Let Y̌ k,i
t1

M= αt1 ·Bt1. Then there exists a constant C such that

|Y̌ k,i
t1
|6 |αt1 | · |Bt1(X

x
t1

)|6 |Bt1(X
x
t1

)|
√
C(1+ ‖x‖2). (40)

The bound (40) allows us to give an a priori bound on the regression coefficients αt1 . Namely,
we can construct a truncation function Tt1 such that |Y̌ k,i

t1
|6 Tt1(Xt1) and E[Tt1(Xt1)

2]<∞. This
truncation implies that

|αt1 |
2 = E|Y̌ k,i

t1
|2 6 E[Tt1(Xt1)

2].

We now investigate the build-up of regression errors. Let Rt1 denote the remainder after the pro-
jection Pt1 so that for any X ∈Ft1 , X =Pt1(X)+Rt1(X), and the two latter terms are orthogonal
in L2. The following theorem is similar to Theorem 2 in Gobet et al. (2005). It shows the relationship
between the error at the k-th layer, |Ŷ k,i

m∆t−Y
k,i
m∆t|, the intrinsic regression error Rj(Em[Y k,i

(m+1)∆t])
and the error at the k− 1-st layer |Ŷ k−1,j

m∆t −Y k−1,j
m∆t |.

Theorem 5. With the notation of (39) and Y k,i ≡ Y k,i,∆, there exists C such that

max
06m6M]

E
[
|Ŷ k,i
m∆t−Y

k,i
m∆t|2

]
6C

M]∑
m=0

E
[
Rm(Em[Y k,i

(m+1)∆t])
2
]
+
C

∆t
max

06m6M]
max
j 6=i

E
[
|Ŷ k−1,j
m∆t −Y k−1,j

m∆t |2
]
.

(41)

In a more general way we can think of Pt1 as any approximation of the conditional expectation.
For example, Pt1 may be an empirical Monte Carlo average. In this case the above theorem is
slightly modified because we can no longer use the orthogonality of the projection errors. We state
the following result which originally appeared in Bouchard and Touzi (2004). The proof uses same
techniques as for Theorem 5.

Proposition 2. There exists a constant C such that for any m,k, i,

‖Ŷ k,i
m∆t−Y

k,i
m∆t‖p 6

C

∆t
max

m6j6M]

(∥∥(Ej −Pj)(Ŷ k,i
(j+1)∆t)

∥∥
p
+max

j′ 6=i
‖Ŷ k−1,j′

j∆t −Y k−1,j′

j∆t ‖p
)
. (42)

4.4.3. Sampling Error. In the final step we simulate N sample paths {xnm∆t, n= 1, . . . ,N}
and replace the projection Pm by an empirical regression. We call the resulting regression coeffi-
cients αNt1 and the resulting basis functions Bn

t1
=Bt1(x

n
t1

). To control the simulated Y ’s another
truncation function T nt1(x) is used such that T nt1(α

N
t1
·Bt1(xnt1)) 6 2 ·Tt1(xnt1) and T nt1(αt1 ·Bt1(x

n
t1

)) =
αt1 ·Bt1(xnt1).
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The approximation of Ŷ k,i along the n-th path is labelled Ŷ k,i,n and satisfies

Ŷ k,i,n
t1

=
(
T nt1(α

N
t1
·Bn

t1
)+ψi(xnt1)∆t

)
∨M̂k,i,n

t1
, (43)

αNt1 = argmin
α

1
N

N∑
n=1

(Ŷ k,i,n
t2

−α ·Bn
t1

)2. (44)

The truncation T nt1(x) ensures that |Y̌ k,i,n
t1

|= |αNt1 ·B
n
t1
|6 2 · |Y̌ k,i

t1
|, which combined with (40) gives

a priori control on the empirical solutions Ŷ k,i,n. Note again that the formula (43) represents the
TvR scheme (32) rather than the LS scheme (31).

Full analysis of the Monte Carlo sampling error E[|Ŷ k,i
t1
− Ŷ k,i,N

t1
|2], where Ŷ k,i,N

t1

M= 1
N

∑N

n=1 Ŷ
k,i,n
t1

appears to be intractable. The major difficulty is the presence of the recursively defined M̂k,i,n

which causes the sampling error to propagate in a nonlinear fashion between layers. Moreover, it
is not clear how to compare the empirical Ŷ k,i,N which is an average of pairwise maximums in (43)
with the single maximum in Ŷ k,i. Looking closely the sampling error has three components that
are closely intertwined— error due to using αNt1 rather than αt1 , error due to using M̂k,i,n rather
than M̂k,i, and error due to potentially choosing the wrong side in the max-comparison (43), i.e.
picking T nt1(α

N
t1
·Bn

t1
)+ψi(xnt1)∆t over M̂k,i,n, when in fact αt1 ·Bn

t1
+ψi(xnt1)∆t < M̂

k,i(xnt1).
We do not know how to isolate these error sources. This appears to be a difficult problem and

existing results, even in simpler settings, are still incomplete. To summarize the current state-of-
the-art in this field, let us mention the work of Clément et al. (2002) and Egloff (2005) on the
Longstaff-Schwartz scheme and Bouchard and Touzi (2004), Bally and Pagès (2003) and Gobet
et al. (2005) on numerical methods for backward SDEs.

For the LS scheme it has been shown that the use of optimal-stopping-time iteration in (29) is
consistent, namely that for a fixed NB the asymptotic sampling error as N →∞ has mean zero and
Gaussian distribution (Clément et al. 2002). This result was recently improved by Egloff (2005)
who showed that the L2-sampling error for a single optimal stopping problem and fixed ∆t is
O(logN ·N−1). However, the joint rate of convergence between the time step ∆t, the number of
basis functions NB and the number of paths N remains unknown.

More generally, it has been proven (Bouchard and Touzi 2004, Theorem 4.1) that if one directly
approximates Et1 with an independent Monte Carlo simulation then the resulting rate of conver-
gence in Lp-norm is O(∆t−1−d/4p ·N−2p). However, the involved computational level is an order
of magnitude higher. Alternatively, Gobet et al. (2005) obtain the O(N−1/2) L2-convergence rate
when using a single set of paths but no reflection in (43). We conjecture that the sampling L2-error
is on the order O(∆t−1N−1/2) for our problem as well, since this is the general convergence rate
for Monte Carlo methods.

4.4.4. Final Word On Convergence. Summarizing the last three subsections, the total
error we have is

‖Y k,i
m∆t− Ŷ

k,i,∆,N
m∆t ‖2 6 ‖Y k,i

m∆t−Y
k,i,∆
m∆t ‖2 + ‖Y k,i,∆

m∆t − Ŷ
k,i,∆
m∆t ‖2 + ‖Ŷ k,i,∆

m∆t − Ŷ
k,i,∆,N
m∆t ‖2

6C
(√

∆t+
(
∑

j E[Rj∆t(Ej∆t[Y 1,i
(j+1)∆t])

2])1/2

∆tk
+

1
∆t
√
N

)
. (45)

Even without the last term which is an unproven conjecture, these convergence rates are quite
conservative. We observe a general explosion in the regression errors as we cascade through the
number of switches k, cf. the second term in (45). This would suggest that to obtain any con-
vergence, the projection plus sampling errors must be decreasing exponentially in k. In the best
case, with adaptive choice of (Bj), we expect the projection error to decrease exponentially in the
number of basis functions NB, so the latter needs to grow linearly with k. However, an implicit
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issue that is hidden above is the relationship between NB and N . Unfortunately, Glasserman and
Yu (2004) give a negative result and show that in the worst case one may need as many as eNB

Monte Carlo paths to obtain a comparable sampling error. It follows that to compute J K̄ we must
use at least N ∼ (∆t)−K̄ paths, which would make the computations intractable.

Because the LS scheme relies on stopping-time iteration, it avoids repeated conditioning and
therefore regression errors are accumulated only when a wrong switching decision is made. This
means that as long as the switching decision is correct (i.e. the correct side of the max-comparison
is chosen in (43)), the pathwise value function is computed exactly (modulo discretization error).
As a result, along a given path of {Xt}, the computation of J(t, x, i) involves only a few projection
errors, rather than an error at each ofM ] steps. The number of these errors is upper bounded by the
(typical) number of switching decisions made over the entire horizon. Consequently, we conjecture
that the total error grows linearly in the maximum number of switches K̄. This is corroborated
by our extensive numerical experimentation. To prove this conjecture analytically, one probably
should use the fact that the barrier M̂k,i is closely related to the current Ŷ k,i, and so the various
errors in the barrier cancel out the errors in the regression approximation. This would produce
tight bounds on expressions of the form E[Ŷ k,i

t2
∨M̂k,i

t1
] in terms of E[Ŷ k,i

t2
] and E[M̂k,i

t1
], cf. (55) and

proof of (54).
From our experience, the algorithm is quite stable for up to a thousand time steps, M ] < 1000.

The corresponding discretization step ∆t should be good enough for most financial problems. The
real key to successful implementation is a judicious choice of the basis functions (Bj). After that
N =Np ∼ 25000 simulated paths are more than enough for the examples we tried. The empirical
success of the algorithm is typical for statistical learning problems where the low but positive
probability of ‘bad’ events dramatically worsens the worst case provable convergence rates (Egloff
2005) but is harmless otherwise.

To check the actual rate of convergence with respect to the size of the Monte Carlo simulation
we ran Example 1 from Section 5 using 2000− 32000 paths and tabulated the resulting means
and standard deviations over 50 separate runs in Table 1. We used 400 time steps and six basis
functions. We observe that the variance decreased by about 40% when we doubled the number
of simulations and then stabilized, as the remaining randomness was mostly coming from the
projections and not from the Monte Carlo. We also see that in this example the value function was
decreasing in N , approaching the ‘true’ value of 5.931. In general, the LS scheme should provide
a lower bound on Jk(t, x, i) since it finds a (sub-optimal) switching policy; however, this is often
obscured by the projection and Monte Carlo errors that tend to dominate.

Table 1 Convergence of Monte
Carlo simulations for
Example 1.

No. Paths Mean Std. Dev

2000 6.90 0.37
4000 6.44 0.30
8000 6.16 0.22
16000 5.90 0.19
24000 5.86 0.17

5. Numerical Examples.

We now give a series of numerical examples to illustrate the algorithm and the problem structure.
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Example 1. Our main example strives to give a reasonable approximation of a real gas-fired power
plant that we discussed in Section 2.1. We take a 100 MW plant that can be either offline, running
at half capacity of 50 MW with heat rate of 7.5 MWh/MMBtu or running at full capacity with
heat rate 10 MWh/MMBTU. The maximum total annual production is therefore 100∗8760 = 0.876
TW. Changing the regime of the plant requires 12 hours and 10,000 MMBtu of gas with zero
output during ramping. We assume that operational decisions are made once every six hours and
price the resulting tolling agreement over a period of three months (360 operational periods). For
price process we take

dPt = Pt(5(50− logPt)dt+0.5dW 1
t + ξtdNt) (46)

dGt =Gt(2(6− logGt)dt+0.4 (0.8dW 1
t +0.6dW 2

t ))

where ξt ∼ exp(0.15) and jump intensity is λt = 8 times a year. This is supposed to roughly represent
energy markets in Eastern US in 2006; electricity prices are both more volatile and exhibit price
spikes (only upward, with 10% increase on average), while gas prices do not. Below all values
are specified on an annual basis and in millions of dollars. The profit functions are ψ0(Xt) =−1
representing fixed costs of operating a shut-down plant, ψ1(Xt) = 0.438(Pt − 7.5Gt) − 1.1 and
ψ2(Xt) = 0.876(Pt−10Gt)−1.2 representing the spark-spread revenue plus fixed costs of operating
a plant online. In line with above description, the switching costs are C01 =C10 = 0.01Gt.

Example 2. Our second example shows some possibilities for singling out the value of different
operational flexibilities. Consider a dual-mode power plant that can use either natural gas or oil.
These have become popular in recent times due to extra flexibility and development of natural gas
infrastructure in coastal US regions. Furthermore, natural gas prices have become less correlated
with crude prices allowing for more diversification effect.

To model a dual-fuel plant, we consider a driving process Xt = (Pt,Gt,Ot) where the components
are prices of electricity, gas and crude oil respectively. The state dynamics extend (46) by keeping
same equations for (Pt) and (Gt) and adding

dOt =Ot(2(50− logOt)dt+0.4 (0.3dW 1
t +

√
0.91dW 3

t )),W 3 indep. of W 1,W 2. (47)

Observe that while oil and gas are individually correlated to power, the two input fuels are assumed
to be uncorrelated between themselves.

To allow further flexibility, with either input fuel, the plant can be run at normal capacity or
at full capacity which produced more power but is less efficient (due to excessive heat loss, use of
older equipment, higher wear-and-tear, etc.). Thus, we assume that there are a total of five regimes
available to the manager: complete shutdown ψ0(Xt) ≡ 0 as well as (all values are in millions of
dollars and using annualized units):

ψ1(Xt) = 1 · (Pt− 8Gt), ψ2(Xt) = 1 · (Pt−Ot),
ψ3(Xt) = 3 · (Pt− 32Gt), ψ4(Xt) = 3 · (Pt− 4Ot).

To isolate the effect of other variables, the switching costs are taken to be constant with Ci,j = 0.05
for any i 6= j. The planning horizon is six months T = 0.5 with twice-daily flexibility. While the
switching costs are simplified, we assume that changing the regime takes a significant amount of
time and model the delay explicitly.

In this setting, we study the effect of:
• Number of Regimes. The more operational regimes are available to the manager, the higher

is the value of tolling the plant. For comparison, we check the value associated with using only a
subset of the above five regimes.
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• Switching Delay. Longer switching delays will lower the tolling value since the manager faces
more risk when changing the operational regime.

Number of Switches Many plants have cycling restrictions due to engineering constraints. As a
result, the manager may have absolute upper bounds on the total number of regime switches allowed
(e.g. at most two each month). This will reduce value since each switch also incurs opportunity
cost of reduced future flexibility.

Table 2 summarizes our findings. Removal of regimes has a strong effect. Without allowing
the high-capacity oil production regime 4, the value decreases by about 9%, and without both
regimes 3 and 4 which are initially 33% out-of-the-money, the expected profit declines by over 16%.
Restrictions on number of switches k have an obvious and dramatic effect when k is small (nearly
20% loss of value) but less so for moderate k. It can be checked that for k = 7, the loss of value
is less than 1%. Put differently, in the given model, one expects to make less than 7 switches over
the next two months in nearly every case. The switching delay is less significant (at least for this
example), this might have to do with the relatively small number of switches normally used, so
that inability to react immediately becomes a ‘second-order’ effect.

Table 2 Summary of results from Exam-
ple 2

Setting J(0,X0, ‘off ′)

Base Case 5.98
Regimes 0-3 only 5.33
Regimes 0-2 only 4.97

Switching delay of 1 day 6.03
Switching delay of 3 days 5.60

At most 2 switches allowed 4.86
At most 4 switches allowed 5.11

We ran the LS scheme with M ] = 360 steps
and N = 24000 paths. Initial prices are P0 =
50,G0 = 6,O0 = 50.

5.1. Approximating the Switching Boundary.

The algorithm of Section 4.3 produces a natural approximation to the switching boundary. Recall
that for each for each k and i, the switching boundary is given by the graph {(t, xt)}, such that the
minimal optimal switching time of Jk(·, i) is given by the first time of hitting this barrier. In our
case, for each instant t and regime i we have (M−1) boundaries containing the thresholds at which
our optimal strategy at the current time step changes to regime j. Since we already keep track of
optimal minimal τ in (29), we can easily reconstruct the switching boundary by summarizing at
the end of the algorithm the graph of τk(0, x0, i) against Xt. Namely, the set

{xnm∆t : n is such that τk(0, xn, i) =m} (48)

defines the empirical region of switching from regime i at instant m∆t and we can determine the
regime switched into by keeping track of ̂n from (30).

For a multidimensional (Xt) and several regimes, like in Examples 1 and 2, visualizing the
switching boundaries is difficult. Figure 1 presents two slices of the switching regions for different
time instances t for example 1. As can be seen the boundaries form a continuous curve in the
(Pt,Gt) space, but getting a good grip on the dependence of the continuation and switching sets
on t and their interrelationship for different current regimes i requires more graphing skills than
we have.
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Figure 1 Optimal Exercise Boundaries for Example 1. The hysteresis band widens closer to maturity.

Switching boundary from regime 0 at 45 days to
maturity

Switching boundary from regime 1 at 15 days to
maturity

For a better grasp of what is going on, we illustrate the algorithm on a stylized one-dimensional
example. The example uses a one-dimensional Xt (that can be interpreted as the spark spread)
which can be plotted directly as a function of time. Let

dXt = 2(10−Xt)dt+2dWt, X0 = 10,

with time horizon T = 2. We have two regimes with continuous reward rates of ψ0(Xt) = 0 and
ψ1(Xt) = 10(Xt− 10), and the switching cost between them is C0,1 =C1,0 = 0.3.

Besides illustrating the switching boundaries, we also directly show the optimal strategy for a
sample path of (Xt). Indeed, given an initial regime u0 and a realization of {Xt}, we keep track
for each j 6= u0 of the switching sets Switch(u0, j; t) defined in (23). At the first instant t that
Xt ∈ Switch(u0, j; t) for some j, we invoke our operational flexibility, switch to regime j and proceed
inductively until T . The top panel of 2 shows the switching boundaries of J(t, x, i) and a realized
path of Xt. The top boundary is for switching from regime 1 to regime 2 and the bottom is from
regime 2 to regime 1. The area in between is the hysteresis band where no switching takes place
(note that at-the-money is x= 10). Thus, if the plant is ‘off’, it will be brought online only when Xt

is about 10.8. The boundaries dramatically widen close to expiration T since at that point the time
decay dominates and the fixed cost is larger than any gain from switching. On the other hand, far
from maturity, the exercise boundary is essentially flat as time stationarity and unlimited number
of allowed switches in this example make time decay insignificant. This parallels the situation with
infinite horizon where the switching boundary is constant. The bottom panel of Figure 2 shows
the total cumulative wealth obtained from the policy. The discrete switching costs are indicated
by drops of C = 0.3 in the wealth at the switching times.

5.2. Alternative Computational Methods

The optimal switching problem can be solved using a variety of other numerical approaches.
Roughly speaking, there are three possible strategies. First, one can directly tackle the quasi-
variational formulation of (24). A number of partial differential equation (PDE) solvers can be
adapted to solve the free boundary Kolmogorov equation. For example, a (a) finite-difference
algorithm Wilmott et al. (1995) can be implemented. Second, one can attempt to replace the
continuous-space dynamics of {Xt} by some sort of discrete approximation. For this approximation
one can then apply the Dynamic Programming approach directly, since conditional expectations are
transformed into weighted sums. Examples include the (b) Markov Chain approximation method
of Kushner and Dupuis (2001) and the (c) Optimal Quantization technique of Bally et al. (2005).
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Figure 2 Implementing optimal policy on a one-dimensional example.

Finally, one can go back to the key representation (27) and look for other means of computing
conditional expectations, see e.g. (d) kernel regression proposed by Carrière (1996).

In Ludkovski (2005), an extensive benchmarking was carried out to test the relative performance
of each of the above approaches (a-d), plus the described (e) LS and (f) TvR schemes. It was
observed that the LS scheme is significantly more accurate than the TvR scheme and at least on
simple problems performs better than optimal quantization. Numerical solution of the QVI (24) was
the most accurate but also the slowest approach. Let us stress that the benchmarking was carried
out on a relatively simple 2-dimensional problem similar to Example 1. For real-life purposes, it is
more important to keep in mind the robustness of different schemes and the scaling properties in
the dimension of Xt1. . In this context, as already mentioned the QVI formulation is poor since
it suffers from dimensionality curse and often necessitates use of model-specific speed-ups. Rather,
we recommend the use of the LS and Quantization schemes instead. Both are simulation-based
and therefore can easily incorporate many degrees of flexibility. Comparing the two, the regression
Monte Carlo approach is attractive due to ease of implementation and quick setup. In contrast,
quantization requires extensive pre-computation (often coupled with more sophisticated code), but
offers better theoretical convergence control.

Our implementation was written in Matlab and without using any special optimization takes
about five minutes to run when using 32,000 paths, 360 periods and six basis functions. The timing
was done on 2.4GHz desktop. While certainly not lightning fast, we believe this is acceptable for
the back-office applications we envision. Furthermore, a practical user is likely to have access to a
lot more computing power and one feature of Monte Carlo algorithms is that they are naturally
parallelizable.

Remark 2. All the simulation-based methods above produce a lower-bound for the value of oper-
ational flexibility since they identify an approximately optimal exercise strategy. It is also possible
to obtain upper bounds by using the duality theory developed for American options (Andersen and
Broadie 2004, Haugh and Kogan 2004). Recently, this has also been extended by Meinshausen and
Hambly (2004) to cover possibility of multiple exercise times. However, the implementation for our
heap of optimal stopping problems is somewhat involved and is beyond the scope of this paper.
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5.3. Comparison to Strip-of-Options Method.

We recall the currently popular method of pricing operational flexibility as a strip of spark-spread
options. If for simplicity we consider just two regimes ‘off’ and ‘on’, and a set of “exercise times”
Tm =m∆t, this means that the overall value of running the power plant is approximated by

V (0, x;∆t) = Ex
[ M]∑
m=0

(Pm∆t−HR ·Gm∆t−K)+ ·∆t
]
, (P0,G0) = x. (49)

For direct comparison of the two valuations, the major obstacle is the switching cost Ci,j. Indeed,
as the next proposition shows, without switching costs the two approaches are equivalent.

Lemma 4. Let C = maxi,j Ci,j. In the limit of vanishing switching costs C→ 0 the discretized value
function J(0, x, i) of optimal switching converges to the value function V (0, x) coming from the
spark spread approximation.

Proof: Fix a time step ∆t and current time t1. Clearly, V (t1, x) is the maximum value that one can
extract from the plant since there are no operational constraints, so trivially V (t1, x) > J(t1, x, i).
By a basic conditioning,

V (t1, x) = E[V (t2,X
t,x
t2

)|Xt1 = x] + (Pt1 −HR ·Gt1 −K)+ ·∆t. (50)

Next observe that for any x there exists mode i such that ψi(x) = (Pt1 −HR ·Gt1 −K)+. For this
mode i, J(t1, x, i) > E

[
J(t2,X

t,x
t2
, i)|Xt1 = x

]
+ψi(x)∆t, and combining with (50),

|J(t1, x, i)−V (t1, x)|6 E
[
|J(t2,X

t,x
t2
, i)−V (t2,X

t,x
t2

)|
∣∣Xt1 = x

]
Now we use the fact that |J(t, x, i)−J(t, x, j)|6C to get

sup
x

max
i
|J(t1, x, i)−V (t1, x)|6C +sup

x
max
i
|J(t2, x, i)−V (t2, x)|.

Inducting on t1, we get supx supt |J(t, x, i)− V (t, x)|6M ] ·C and taking the limit C→ 0 we are
done. �

With the strip of options approach even when Ci,j’s are significant, the switching costs do not
enter into the decision process so that many exercises are made to capture relatively small gains.
A possible fix is to compute V (t, x) and then estimate the corresponding number of switches. This
can be done by picking an approximate set of switching boundaries and counting the number of
times (Xt) will cross it. The last part can be done via simulation. The method can provide rough
answers, but of course finding a reasonable set of switching boundaries in a multidimensional setup
is entirely non-obvious and is in fact as hard as the original problem.

Remark 3. Analysis of downcrossings of {Xt} can also shed light on the error between Jk and the
true value function J . Indeed, the probability that more than k switches are needed for optimal
strategy can be bounded from above by some conservative estimate on the number of ‘profitable
switching opportunities’ which are closely related to {Xt} crossing the switching boundaries of Jk.

6. Extensions.

6.1. Exhaustible Resources.

Besides valuing energy tolling agreements, our model is closely related to management of
exhaustible resources. In the latter, the firm owns a natural resource, such as a mining site or an
oilfield, that it would like to optimally extract. The resource is subject to fluctuating price levels
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and the firm can stop and restart extraction. On infinite horizon, exhaustible resources have been
studied in a classic paper by Brennan and Schwartz (1985). However, for realistic financial plan-
ning the horizon should be finite. Most development licenses have finite lifetimes and the operating
company must extract as much as possible by the deadline. For instance, a mining company may
have only a 20-year lease on the mine site after which it will have to obtain a new license from the
government.

Management of exhaustible resources is easily convertible into our recursive optimal stopping
framework. Let us postulate again that the mine can be operated in a discrete number of regimes
with production rates ai. Let It denote the current level of resources left (thus It is a non-increasing
process). Given initial known inventory of I0 the objective is to maximize the total profit so that
the value function J(t, x, c, i) satisfies J(t, x, c, i) = sup

u∈U(t)

E
[∫ T

t

ψus(s,Xs)ds−
∑
τk<T

Cuτk−,uτk

∣∣∣Xt = x, It = c,ut = i
]

J(t, x,0, i)≡ 0, It > 0.
(51)

The boundary condition models resource depletion after which the mine must be mothballed.
The new complexity in (51) arises due to the inventory It, which depends on past history and

specifically the policy chosen over [0, t]. However, we observe that (It) is degenerate in the sense that
it can be deterministically computed from knowledge of initial inventory level I0 and scheduling
policy u. In particular, if τ denotes the time of next switching decision then (51) can be re-written
as

J(t, x, c, i) = sup
τ∈St,j 6=i

E
[∫ τ

t

ψi(s,Xs)ds+J(τ,Xτ , Iτ , j)−Ci,j
∣∣∣Xt = x, It = c

]
, (52)

and Iτ = c−ai(τ−t), allowing us to effectively eliminate (It). As a result, given ∆t we can construct
a finite grid It ∈ {m∆c : 0 6m 6 Nc}, such that the remaining inventory following any policy u
always lies on the grid points, ∃m′, s.t. Im∆t =m′∆c. After that, the framework of Section 3 can
be straightforwardly re-used, see Ludkovski (2005) for full details.

Example 3. For comparison we take up the example of mine management in Brennan and
Schwartz (1985). Consider a copper mine with finite inventory worth 15 years of production. The
mine can be either operated at a fixed rate or kept idle and the license expires after 99 years. The
price process is a one-dimensional geometric Brownian motion

dXt = 0.01Xt dt+
√

0.08Xt dWt,

and the payoff rates in annualized millions of dollars are

ψ0(Xt) =−0.5 and ψ1(Xt) = 10(Xt− 0.5)− 5(Xt− 0.5)+.

The switching cost is C0,1 = C1,0 = 0.2 and there is a discount rate of r = 4%. In addition, the
mine operator has the option of complete abandonment, shutting down all operations and exiting
the business. Such extra flexibility provides insurance against really low prices and has been also
studied by Zervos (2003). In our framework, we implement it by directly imposing the constraint
J(m∆t, x, i) > 0 during Dynamic Programming.

The original paper of (Brennan and Schwartz 1985, p. 343) solves the problem by using a PDE
solver applied to the corresponding quasi-variational inequality. In contrast, we utilize our extended
regression Monte Carlo scheme described in the last paragraph. We took 600 time steps, 10000
paths and 75 gridpoints in the inventory I-space. The results are summarized in Table 3. We find
that our simulation-based solver (labelled CL ’06) has errors of less than 2% everywhere and is an
order faster than the PDE method (which we reproduced through a basic FD method), already
showing significant savings for this toy example.
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Table 3 Comparison of pricing methods for
the mining example of Brennan and
Schwartz (1985), varying the initial cop-
per price P0

Method/ P0 0.3 0.4 0.5 0.6 0.7 0.8

BS ’85 1.45 4.35 8.11 12.49 17.38 22.68
CL ’06 1.35 4.41 8.15 12.44 17.52 22.41

The initial inventory is I0 = 150 million pounds and the
values are in millions of dollars.

6.2. Plant Outages.

In the setting of tolling agreements a crucial feature is outages. Sometimes the plant experiences
a malfunction and must be shut down for maintenance. Outages are critical in practice and are
responsible for many of the electricity price spikes. They make the operator more risk averse
since the expected benefit of being online is reduced. For simplicity let us assume that emergency
maintenance shutdowns are completely unpredictable and occur independently with a constant
intensity rate λ. Letting T̃k represent the random time of the k-th emergency, we have P[T̃k ≥
s+ T̃k−1] = e−λs. Since the times between outages have the memoryless exponential distribution, λ
acts like an additional discount factor and the recursive construction (11) becomes

Jk(t, x, i) = sup
τ∈St

E
[∫ τ

t

e−λ(s−t)(ψi(s,Xs)+λ(Jk−1(s,Xs,0)−Ci,0)
)
ds

+e−λ(τ−t) max
j 6=i

(
Jk−1(τ,Xτ , j)−Ci,j

)∣∣∣Xt = x
]
.

The first term above represents the probability of an outage and a forced switch to mode ‘off’
before τ . Related work on investment with forced exit has been done by Wang (2005). Numerically,
in discrete time the benefit of no-switch at instant t is simply changed to E

[
(1 − λ∆t)Jk(t +

∆t,Xt+∆t, i)+λ∆t(Jk−1(t+∆t,Xt+∆t,0)−Ci,0)|Ft
]
+ψi(t,Xt)∆t.

6.3. Further Features.

From the point of view of realistic implementation, it is clear that the models presented so far
are dramatic simplifications. Accordingly, let us briefly discuss what other features need to be
added for practical use. To begin, a satisfactory description of electricity and/or gas prices is
likely to use several stochastic factors or a regime-switching model. Since our model is stated for
generic {Xt}, there is no difficulty in extending the dimension. Various forms of non-stationarity,
including seasonality and time-dependent coefficients are also certainly needed. These are similarly
straightforward to incorporate, as long as we have a method for simulating the forward {Xt} paths.
Clearly, any agent wishing to price an {Xt}-payoff should already have handy some scheme for such
simulations. Extra operational constraints can be dealt with by modifying the set of acceptable
policies U(t) in (6). For instance, one can add planned maintenance shutdowns or requirements for
running the plant at specific times.

Price impact is another important feature. A simple version can postulate that the agent moves
the market by a fixed amount (either directly or proportionally). Such an effect can be directly
incorporated into the actual profit functions ψm. A more sophisticated effect can be obtained by
relying on supply-demand equilibrium. Suppose that the supply is fixed at level S. The demand
Dt on the other hand is stochastic and fluctuates such that the clearing price is determined by a
demand-supply equilibrium. Then Pt = g(Dt, S+ ξt) where ξt is the supply generated by the plant
itself. Observe that after adding Dt as a state variable, we can still write ψm(Pt,Gt,Dt) preserving
a Markov state space. An important application of this situation concerns guaranteed serving loads,
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a contract where the power company agrees to supply as much electricity as demanded by the
retail customers and exposing itself to volume risk.

Finally, it is also possible to imagine that actions of the agent influence the parameters of
the price processes, so that e.g. the mean-reversion level of Pt depends on the current regime.
Such situation can also be dealt with straightforwardly. Notice that we just need to simulate
Pt under each regime and then use the Longstaff-Schwartz scheme over each set of paths. The
backward recursion algorithm then proceeds by resetting the value functions using the approximate
conditional expectation Ê after each switching decision. Such a mixed TvR-LS scheme has been
generally described by Egloff (2005).

Some potentially useful features are unsuitable for our framework. These include any ‘memory’
properties of operating a plant that destroy the Markov property of {Xt}. For instance, in practice
the heat rate is a function of the time the plant has been in operation. The plant is less efficient
when just started and when running for a long time. Moreover, ψi(s,Xs) may depend on the
previous regime (e.g. the heat rate will be larger when the plant is cold compared to when it has
been running and is warm). In principle, such situations can be incorporated by enlarging the
state space to preserve the Markovianity of {Xt}. However, on a practical level this is likely to be
infeasible due to explosion of computational complexity.

6.4. Conclusion.

This paper investigated the numerical solution of operational flexibility problems that arise in
management of energy assets. Our key proposal is a stochastic control framework that allows
natural merging between the operational constraints and the dynamic nature of the problem.
Moreover our framework is tractable since it is equivalent to a cascade of optimal stopping problems.
Those can be solved by numerically computing the corresponding Snell envelopes via simulation
and backward recursion. We hope that the breadth of examples listed is compelling as to the
merit of this approach. We believe that when it comes to practical implementation our method is
more robust and versatile than any that appeared so far in the academic literature. Moreover, it is
superior to the current practice of strip-of-spread-options that ignores the operational constraints
of tolling agreements.

The techniques described are applicable to many other energy-related problems. In particular,
gas storage and power supply guarantees are important practical challenges on which our method
can shed new light. Full analysis of these two settings is left to the companion paper (Carmona
and Ludkovski 2005). For optimal switching itself, several open problems remain that we would
like to settle. A better grip on the regression and Monte Carlo error propagation is needed to
understand the convergence properties of the LS scheme. Also, it would be very useful to have
tractable conditions regarding existence of connected switching sets, extending Section 3.3.

Appendix. Proofs for Section 4.4.

Proof of Theorem 3. As in all subsequent proofs we will proceed by induction on k. Let
S∆(m∆t) = {j∆t : m6 j 6M ]} be the set of discretized stopping times after m∆t and define the
auxiliary process

Rk,i
m∆t

M= ess sup
τ∈S∆(m∆t)

E
[
Mk,i

τ +∆t
M]∑
j=m

1τ>j∆t ·ψi(Xj∆t)
∣∣∣Fm∆t

]
,

By a standard argument under Assumption 2 (see e.g. Bally and Pagès (2003), Lemma 3 and
4), max06m6M] ‖Rk,i

m∆t − Y
k,i
m∆t‖p 6 C∆t. To estimate the difference of Rk,i

m∆t and Y k,i,∆
m∆t which use
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different barriers and different X’s, apply |(X1∨Y1)− (X2∨Y2)|6 |X1−X2| ∨ |Y1−Y2| on |Mk,i
τ −

Mk,i,∆
τ | to get

|Rk,i
m∆t−Y

k,i,∆
m∆t |6 ess sup

τ∈S∆(m∆t)

Em
[
|Mk,i

τ −Mk,i,∆
τ |+∆t

M]∑
j=m

1τ>j∆t· |ψi(X∆
j∆t)−ψi(Xj∆t)|

]
6 Em

[
max

m6j6M]
max
j′ 6=i

|Y k−1,j′

j∆t −Y k−1,j′,∆
j∆t |+C|X∆

j∆t−Xj∆t|
]

or ‖Rk,i
m∆t−Y

k,i,∆
m∆t ‖p 6C

√
∆t+

∥∥max06j6M] maxj′ 6=i |Y k−1,j′

j∆t −Y k−1,j′,∆
j∆t |

∥∥
p

by (35). Combining the
two bounds we obtain,∥∥ max

06m6M]
|Y k,i,∆
m∆t −Y

k,i
m∆t|

∥∥
p
6C

√
∆t+

∥∥ max
06m6M]

max
j′ 6=i

|Y k−1,j′

m∆t −Y k−1,j′,∆
m∆t |

∥∥
p

where the constant C is intrinsic to {Xt} and ψi’s. By induction on k, the O(
√

∆t) error propagates
through for any fixed level k. �

Proof of Theorem 4. We first check that for a fixed k, Ŷ k,i
m∆t is uniformly L2-integrable in time.

Using

E|(X1 ∨Y1)− (X2 ∨Y2)|2 6 (1+ γ)E|X1−X2|2 ∨ (1+
1
γ

)E|Y1−Y2|2 (53)

for any γ > 0, as well as Pt1 being an L2-contraction and Young’s inequality we obtain

E[|Ŷ k,i
t1
|2] = E

[
|
(
Pt1 [Ŷ

k,i
t2

] +∆tψi(Xt1)
)
∨M̂k,i

t1
|2

]
6

(
(1+C∆t)E

[
Pt1 [Ŷ

k,i
t2

]2
]
+(∆t2 +

∆t
C

)E
[
ψi(Xt1)

2
])
∨ (1+

1
C∆t

)E|M̂k,i
t1
|2

6
(
(1+C∆t)E

[
|Ŷ k,i
t2
|2

]
+C∆t(1+ ‖x‖2)

)
∨C(1+

1
∆t

)max
j 6=i

E[|Ŷ k−1,j
t1

|2]

so that by Gronwall’s lemma

max
06m6M]

E[|Ŷ k,i
m∆t|2] 6C

(
1+ ‖x‖2 +

1
∆t

max
j 6=i

max
06m6M]

E[|Ŷ k−1,j
m∆t |2]

)
. (54)

Completing the induction on k, max06m6M] E[|Ŷ k,i
m∆t|2] 6C(∆t)−k(1+ ‖x‖2). This provides a priori

estimates on the regression result Y̌t1 . By (54) and orthonormality of Bt1 we have E|Y̌ k,i
t1
|2 =

E[|αt1 |2|Bt1 |2] = |αt1 |2 6C(1+ ‖x‖2) and (40) follows. �

Proof of Theorem 5. The theorem shows that the regression errors add up when moving across
a fixed level k and get multiplied by 1

∆t
when moving down to level k−1. Set ηk,it1

M= E
[
|Ŷ k,i
t1
−Y k,i

t1
|2

]
.

We will show that

ηk,it1 6 (1+C∆t)
(
ηk,it2 + E[Rt1(Et1 [Y

k,i
t2

])2]
)
∨ (1+

1
C∆t

)max
j 6=i

ηk−1,j
t1

.

Combined once again with Lemma 3 this is enough to prove the theorem. To show the claimed
inequality, re-write

ηk,it1 = E
∣∣∣{Pt1(Ŷ k,i

t2
)+ψi(t1,Xt1)∆t∨M̂

k,i
t1

}
−

{
Et1(Y

k,i
t2

)+ψi(t1,Xt1)∆t∨M
k,i
t1

}∣∣∣2
6 E

[
|Pt1(Ŷ

k,i
t2

)−Et1(Y
k,i
t2

)|2 ∨ |M̂k,i
t1
−Mk,i

t1
|2

]
(55)
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Since Pt1 is an L2-projection, for any Z, Pt1(Z) = Pt1(Et1 [Z]) and so Et1(Y
k,i
t2

) = Pt1(Y
k,i
t2

) +
Rt1(Et1 [Y

k,i
t2

]) implying

E|Pt1(Ŷ
k,i
t2

)−Et1 [Y
k,i
t2

]|2 6 E[Rt1(Et1 [Y
k,i
t2

])2] + E
[
|Ŷ k,i
t2
−Y k,i

t2
|2

]
by the orthogonality of the remainder Rt1 . Substituting into (55) and using (53)

ηk,it1 6 (1+C∆t)
(
E[Rt1(Et1 [Y

k,i
t2

])2] + ηk,it2
)
∨ (1+

1
C∆t

)E|M̂k,i
t1
−Mk,i

t1
|2.

which immediately implies (41). �
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