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Abstract

This work is concentrated on the microeconomic foundation of modern option pricing models.

We develop a model of market agents’ interactions, induced by heterogeneity of information,

which is consistent with both modern option pricing models and empirical facts about stock

price behavior. In particular, we focus on the connection between volatility and trading volume.

We show that the geometric Brownian motion model of asset prices is consistent with agents’

learning and asymmetric information. We verify empirically the theoretical implication of our

model that trading volume drives the price process: indeed, at very high frequency, the volume

of trade is able to explain more then one third of the variability in asset returns.

1 Introduction

The modelling of stock prices by an exogenous stochastic process originates with Bachelier (1900)

who assumed that stock prices follow a Wiener process. Since then, with the development of stochas-
∗Corresponding author. Please address correspondence to danilova@maths.ox.ac.uk.
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tic calculus and probability theory, this assumption has grown in depth and complexity, leaving the

geometric Brownian Motion assumption as a benchmark model for asset prices.

The development of stochastic calculus, especially martingale representation and Girsanov the-

orems gave way to tremendous development in no arbitrage pricing and hedging of derivatives for a

broad class of asset prices models. Initially, it was standard in the mathematical finance literature

to assume that the asset price process is exogenous, and the underlying role of asset prices to clear

the market and transmit possible private information was overlooked.

More recently, the question of consistency of asset prices models with agents’ interactions has

gained more attention and a theoretical justification for a broad class of stochastic diffusion models

has been achieved (see, among others, Horst (2005), Follmer and Schweizer (2003), He and Leland

(1993)).

However, this research does not take into account the informational role of the asset prices as

well relationship between the prices and other important market processes such as number of trades

and volume of trades. The aim of this work is to propose a consistent treatment of the stock price

process, number of trades process and and volume of trade process. We develop a microstructure

model which provides a theoretical explanation of the empirical facts about the role of volume of

trades in the stock price process formation and results in a geometric Brownian Motion price process

in the limit as intensity of trading goes to infinity.

The empirical research on the relationship between trading volume and volatility documents

that these processes are strongly related (see, among others, Gallant, Rossi, and Touchen (1992)

and Karpoff (1987)). However, the theoretical relationship between volume of trades and volatility is

not yet well understood. This relationship is widely discussed in the market microstructure literature

both in the noisy equilibrium framework (see O’Hara, 1995 for the review of this approach), which

concentrates on volume of trades and in the asymmetric information sequential trading (see, among

others, Glosten and Milgom (1985) and Andersen (1996)) setting, which concentrates on the number

of trades as a proxy for volume of trades. The general theoretical view on the phenomenon is that

the relation is caused by private information, which is revealed by the informed traders through

their strategies, and gets reflected in the prices and volume in different ways.

Since the empirical findings on relationship between volume of trades, number of trades and

volatility are based on high frequency data, the model presented in this work hinges on explaining
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the trade by trade evolution rather than the long run movements of the asset price. Hence, it is set in

the market microstructure theory framework (see O’Hara (1995) and Hasbrouck (2004) for reviews

of the subject) and uses asymmetric information as a mechanism for generating the relationship

between volume of trade and volatility. The model allows us to distinguish the roles of number of

trades and of trading volume in the price process formation. The results of the theoretical model

and the empirical tests suggest that on the trade by trade basis the trading volume carries more

information then number of trades process. However, it should be noted that this singular role of

volume of trades in asset price process formation hinges on our assumption of zero transaction costs.

Another important feature of this model is that it delivers the price process as geometric Brow-

nian motion thus showing that it is consistent not only with efficient markets but also with ones

with asymmetric information and agents’ learning.

The rest of the paper is organized as following: in Section 2 we present the model and derive an

equilibrium market maker’s ask and bid pricing functions and informed traders’ optimal strategy,

in Section 3 we derive the resulting equilibrium price and prove convergence result and in Section 4

we present empirical tests of the model.

2 Theoretical model and the equilibrium

Our model concentrates on the adverse selection component of the bid/ask spread. We assume that

both order processing and inventory costs are zero.

In what follows it is assumed that all random variables are defined on a stochastic basis
(
Ω,F , (Fs)s≤T , P

)
.

The market considered has finite time horizon T and consists of one riskless asset with a constant

growth rate r and one risky stock whose value at time T is given by eDT , where {Dt}t≤T is the

continuous log profit process of the firm which issued the stock, and where D follows the stochastic

differential equation

dDt = µdt + σdWt

D0 = const

The trading process is modelled as a generalization of the model of Glosten and Milgrom (1985).
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There are three types of market participants: uninformed traders, informed traders and market

makers, all of which have power utility function U(x) = xγ

γ with γ ∈ (0, 1]. At each time t, the

market maker chooses two functions (Bt (v−)), the bid price and (At (v+)), the ask price (or, for

brevity, ”bid” and ”ask”). The argument, v, of these functions is interpreted as the order size1. If

v is positive it is interpreted as an order to buy and if it is negative then as an order to sell. It

is assumed that investors arrive one by one according to some counting stochastic process Nt (the

number of arrivals by time t process) with associated stopping times θi = inf {t ≥ 0 : Nt = i}. At

the arrival time θi, the probability of the event Ui, that an uninformed trader arrives is qu, and the

probability that an informed trader arrives is (1− qu). Later we will define different information

sets for these two types of traders. Denote by

NU
t =

∞∑
i=1

1{θi≤t}∩Ui
,

θU
i = inf

{
t ≥ 0 : NU

t = i
}

,

the number of uninformed traders arrivals process and associated stopping times. Similarily, denote

by

N I
t =

∞∑
i=1

1{θi≤t}∩Ūi
,

θI
i = inf

{
t ≥ 0 : N I

t = i
}

,

the number of informed traders arrivals process and associated stopping times.

Each investor is informed of Bθi
(·) and Aθi

(·) upon arrival, and is free to trade vi units of the

risky asset (negative v is interpreted as an order to sell, positive as an order to buy and v = 0 means

that the investor decides not to trade).

Let the process Lt be the cumulative number of trades by time t, i.e. a counting process given

1The assumption that bid and ask quotes depend on the order size is supported by the market
data: there are often several quotes for different order sizes. The assumption that ask price depends
only on positive part and bid price only on the negative part of order size is equivalent to assuming
that a trader cannot submit buy and sell orders at the same time.
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by

Lt =
∞∑

i=1

1{θi≤t}∩{vi 6=0}

with associated stopping times τ i = inf {t ≥ 0 : Lt = i}, and define

Vt =
∞∑

i=1

vi1{θi≤t} (1)

as the cumulative order size of all trades by time t. Define also

ṽi =
∞∑

j=1

vj1{θj=τ i}

the order size of the ith trade.2

The ith trade occurs at the price (note that by definition ṽi 6= 0)

p̃i = Aτ i

(
ṽ+

i

)
1{ṽi>0} + Bτ i

(
ṽ−i
)
1{ṽi<0}. (2)

Define

Pt =
∞∑

i=1

p̃i1{τ i≤t<τ i+1} + p̃01{t<τ1} (3)

where p̃0 = exp
{

D0 +
(
µ− r

γ + σ2γ
2

)
T
}

is the price at which the last transaction before or at t

was dealt3.

The market participants differ in their information sets, as follows.

The uninformed investors observe transaction price process, volume of trade process and receive

some private signal si = SθU
i

at time θU
i and their information set at their time of arrival is

HU
i = σ

(
F (P,V )

θU
i

∪ σ (si)
)
.

The informed traders observe the profit process D, the transaction price process and the volume of

2Notice that Vt =
P∞

i=1 ṽi1{τi≤t}.
3The price process should be defined for all t ≥ 0. Since there are no trades before τ1 we postulate that the

price before τ1 is p0 which is the equlibrium price of the market at t = 0 given the utility functions of the market
participants which are introduced later.
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trade process their information set at their time of arrival θI
i is

HI
i = σ

(
F (P,V,D)

θI
i

)
.

The market maker observes bid, ask, transaction prices and volume of trades evolution and knows

the structure of the market, so her information set at time t is

GM
t = σ

(
F (P,V )

t

)

and notice that number of trades process is adapted to the market maker’s filtration, i.e. FL
t ⊂ GM

t .

In the spirit of Glosten and Milgrom, traders maximize their utility change at the time of their

entry to the market,4 but instead of being risk neutral they have a power utility function. The

discounted utility from holding the stock for a market participant at time θk
i is

zk
i =

1
γ

e−r(T−θk
i )E

[
eγDT |Hk

i

]
, k = I, U

and 1 − γ is the Arrow-Pratt relative risk aversion parameter, for γ ∈ (0, 1]. Hence the trader

arriving at time θk
i maximizes

max
v

(v+
)γ [

zk
i −

Aγ

θk
i

(v+)

γ

]
+
(
v−
)γ Bγ2

θk
i

(v−)

γ
− zk

i

 (4)

where k = I, U depending on the type of investor. Let

zi =
∞∑

j=1

[
zI
j 1{θi=θI

j} + zU
j 1{θi=θU

j }
]
,

i.e. zi is the discounted utility of one stock for the investor which arrived at time θi.

Following Glosten and Milgrom, we assume that the market maker sets up bid and ask prices

under zero utility gain constraint. This assumption consists of two conditions on the market maker’s

behavior. First, she does not regret the trade ex-post,5. Second, the competition among market

4Maximizing the utility change instead of the final utility allows to omit the dependence of
optimal strategy on the initial wealth distribution and to concentrate on its informational content.

5i.e. if trader submits the order of size v the market maker’s utility wouldn’t decrease if she
executes it at the quoted price
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makers does not allow her to set up ask and bid such that executing the order will result in a utility

gain. 6 Therefore, the optimal bid (for v− > 0) and ask (for v+ > 0) at time t should satisfy7

Aγ
t

(
v+
)

= e−r(T−t)
∞∑

i=1

E
[
eγDT |H̃i−1, ṽi, τ i

]∣∣∣
ṽi=v+,τ i=t

1{Lt−=i−1} (5)

Bγ
t

(
v−
)

= e−r(T−t)
∞∑

i=1

E
[
eγDT |H̃i−1, ṽi, τ i

]∣∣∣
ṽi=v−,τ i=t

1{Lt−=i−1} (6)

where H̃M
i = GM

τ i
= σ

(
{ṽj}i

j=1 , {τ j}i
j=1 ,N

)
.

In addition, in order to have a well defined problem, we search for ask and bid curve processes

satisfying the following technical conditions:

C1 For fixed v, the processes Bt (v−) and At (v+) are left continuous with right limits.8

C2 For a fixed t, At : R̄+ → R̄+\ {0} is continuous, nondecreasing and unbounded, i.e. limv→∞At(v) =

∞.

C3 For a fixed t, Bt : R+ → R̄+ is continuous, nonincreasing and limv→∞Bt(v) = 0.9

C4 For a fixed t, At (0) ≥ Bt (0) for all ω.

In what follows it is assumed that Nt, Dt, NU
t and St satisfy the following assumptions:

A1 dDt = µdt + σdWt and Wt is BM wrt Ft;

A2 FW
T ,FN

T and Sθi
are independent given Hi−1 where Hi = σ

(
{zj}i

j=1 , {θj}i
j=1

)
for any i;

A3 Ui is independent of σ
(
FN,S,D

T ∪ σ
(
(Uk)k 6=i

))
;

A4 NT < ∞ a.s.;

6This is what would happen with many market makers and perfect competition between them.
7It should be noted, that at the time when the market maker sets bid and ask, she doesn’t know

the next order size and direction (i.e. whether it will be the buy or sell order). All she can do is to
derive At

`
v+

´
assuming that the next order will be the order to buy v+ shares and to derive Bt

`
v−

´
assuming that the next order will be the order to sell v− shares.

8Notice that by definition of p̃i in (2) the specialist can not revise the bid and ask prices at the
moment of trade, however, she is free to revise prices after the trade occurrence and before the
arrival of the next investor, i.e. Bt (v−) and At (v+) must be left continuous processes for a fixed v

9Since the empirical investigation by Lin, Sanger and Booth (1995) demonstrated that adverse
information component in the bid-ask spread grows with the order size, it is reasonable to search
for an optimal ask (respectively, bid) curve which increase (respectively, decrease) with order size.
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A5 P (zi ∈ C|Hi−1, U
c
i , θi) = P (zi ∈ C|Hi−1, Ui, θi) for C ∈ B (R) which means that trading strat-

egy of a participant does not allow the identification of her type.

Notation 1 In what follows all processes are considered on three different timescales - continuous

time, number of trades and number of arrivals. To distinguish between them we use following

notation: processes considered on continuous time are denoted by upper case letters (e.g. Gt), the

same processes on the scale of number of arrivals are denoted by lower case letters (e.g. gi = Gθi
)

and on the scale of number of trades are denoted by lower case letters with tilde (e.g. g̃i = Gτ i
)

2.1 Existence and uniqueness of the equilibrium

To derive the equilibrium price, we first characterize the traders’ optimal strategy and then use it

to find the optimal bid and ask curves which define the price process.

Since, as assumed above, the trader who arrives at time θi observes Bθi (·) and Aθi (·), she can

solve her optimization problem (4) and the characterization of the solution is given by the following

theorem:

Theorem 2 Suppose At (v+) and Bt (v−) satisfy conditions C1-C4. Consider a trader who enters

the market at time θi. Suppose she observes bid and ask prices as a functions of the order size

(Bθi (v−), Aθi (v+)). Then

• if zi > 1
γ Aγ

θi
(0) her optimal trade is given by v > 0 satisfying

zi =
1
γ

[
Aγ

θi
(v) + vAγ−1

θi
(v) A

′

θi
(v)
]

(7)

• if zi < 1
γ Bγ

θi
(0) her optimal trade is given by v < 0 satisfying

zi =
1
γ

[
Bγ

θi
(−v)− vBγ−1

θi
(−v)B

′

θi
(−v)

]
(8)

• if 1
γ Bγ

θi
(0) ≤ zi ≤ 1

γ Aγ
θi

(0) then her optimal trade is given by v = 0

Proof. Apply the first order condition to the trader’s maximization problem and notice that

conditions C2 and C3 insure existence and finiteness of the global maximum
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Remark 3 In Theorem 2, v is not necessarily unique. However, we can ensure uniqueness by

assuming that if there are multiple optimal order sizes, then trader picks the smallest one. In what

follows we assume that this is the case.

It follows from above that if market maker’s optimal ask and bid curve processes satisfy con-

ditions C1-C4 then the size of the order placed by a trader is in one-to-one correspondence with

the discounted utility derived by the trader from holding the stock, as expressed by (7) and (8).

Therefore, we have σ (vj) = σ (zj) for any j, and hence

Hi = σ
(
{vj}i

j=1 , {θj}i
j=1

)
,

for any i, and assumption A5 is equivalent to

P (vi ∈ C|Hi−1, U
c
i , θi) = P (vi ∈ C|Hi−1, Ui, θi) .

Moreover, due to the homeomorphism between trader’s order size and utility of the stock, exis-

tence and uniqueness of the equilibrium of this market is equivalent to the existence and uniqueness

of the optimal bid and ask curve processes satisfying conditions C1-C4 which we now proceed to

show.

As the market maker observes the buy and sell orders, it follows from the above that she observes

the value of the stock for the trader. Therefore, based on the optimal trader’s strategy it is possible

to determine the market maker’s optimal bid and ask functions.

Theorem 4 Suppose assumptions A1- A5 are satisfied. Then there exist optimal bid and ask such

that conditions C2-C4 and equations (5), (6) are satisfied. Moreover, At and Bt can be expressed

as

Aγ
t

(
v+
)

= XM
t

(
1 + A

(
v+
)pγ)

, (9)

Bγ
t

(
v−
)

=

 XM
t

(
1−B (v−)pγ) , 1 > B (v−)pγ

,

0 otherwise ,
(10)
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where A and B are positive constants, p = qu

1−qu and

XM
t = e−r(T−t)

∞∑
i=1

E
[
eγDT |H̃M

i−1, τ i

]∣∣∣
τ i=t

1{Lt−=i−1}.

Proof. ¿From the definition (5) of ask A(v+), and (6) of bid B(v−) and Theorem 2 it follows (by

Bayes rule) that

(
Aγ

t

(
v+
)
−Xt

(
v+
))

p
(
v+, t, ω

)
= v+Aγ−1

t

(
v+
)
A
′

t

(
v+
)
, (11)(

Bγ
t

(
v−
)
−Xt

(
−v−

))
p
(
−v−, t, ω

)
= v−Bγ−1

t

(
v−
)
B

′

t

(
v−
)
, (12)

where

p (x, t, ω) =
∞∑

i=1

P
(
Ũi|H̃M

i−1, ṽi, τ i

)
P
(
Ũ c

i |H̃M
i−1, ṽi, τ i

)
∣∣∣∣∣∣
ṽi=x,τ i=t

1{Lt−=i−1}, (13)

Xt (x) = e−r(T−t)
∞∑

i=1

E
[
eγDT |H̃M

i−1, ṽi, Ũi, τ i

]∣∣∣
ṽi=x,τ i=t

1{Lt−=i−1} (14)

and Ũi = ∪∞j=1 {Uj ∩ {τ i = θj}} is the event that an uninformed trader submitted the order at time

τ i.

To simplify (13) notice that

P
(
Ũi|H̃M

i−1, ṽi ∈ C, τ i

)
=

P
(
Ũi|H̃M

i−1, τ i

)
P(ṽi∈C|H̃M

i−1,τ i)
P(ṽi∈C|H̃M

i−1,Ũi,τ i).

(15)

Since a trade can happen only at entry time we have τ i = θj for some j. Moreover, since on

{τ i = θj} we have H̃M
i−1 ⊂ Hj−1, ṽi = vj , Ũi = Uj , assumption A5 gives

P
(
ṽi ∈ C|H̃M

i−1, τ i

)
= P

(
ṽi ∈ C|H̃M

i−1, Ũi, τ i

)
,

for any C ∈ B (R). Hence (15) becomes

P
(
Ũi|H̃M

i−1, ṽi ∈ C, τ i

)
= P

(
Ũi|H̃M

i−1, τ i

)
.
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It follows from assumption A3 that Uj is independent of Hj−1 and θj for any j, and τ i = θj for

some j, so we have

P
(
Ũi|H̃M

i

)
= P

(
Ũi

)
= qu. (16)

Therefore

p = p (x, t, ω) =
qu

1− qu
.

To simplify (14), notice that by the tower property and A2,

Xt (v) er(T−t) =
∞∑

i=1

E
[
E
[
eγDT |H̃M

i−1, Sτ i
, Ũi, τ i

]
|H̃M

i−1, ṽi, Ũi, τ i

]∣∣∣
ṽi=v,τ i=t

1{Lt−=i−1}

=
∞∑

i=1

E
[
eγDT |H̃M

i−1, τ i

]∣∣∣
τ i=t

1{Lt−=i−1}.

Therefore

Xt (v) = XM
t ,

i.e. Xt (v) does not depend on v and (11) and (12) can be rewritten as

(
Aγ

t

(
v+
)
−XM

t

)
p =

v+

γ

(
Aγ

t

(
v+
))′

,

(
Bγ

t

(
v−
)
−XM

t

)
p =

v−

γ

(
Bγ

t

(
v−
))′

.

The solutions of these ODEs, given conditions C2- C4, are unique and given by (9) and (10)

The above theorem shows that the optimal ask and bid curves satisfying conditions C2-C4 exist

and are unique for each t. However, whether ask and bid curves satisfy condition C1 (and therefore

defined for each t) is still not proven.

Clearly, condition C1 is a condition on the process XM
t . Therefore showing the existence (and

a.s. uniqueness) of the process XM
t satisfying C1 is our next goal.

To prove this we will need the following auxiliary result: under assumptions A1-A5 and condi-

tions C1-C4 the process of number of arrivals coincides with the process of number of trades.

This result is based on the observation that due to the shape of the ask and bid curves, Aγ
t (0) =

Bγ
t (0) = XM

t and therefore by Theorem 1 the trade at time θi occurs if and only if xM
i 6= γzi,

where xM
i = XM

θi
. Therefore, by Theorem 1, the market maker observes the value of the stock, if
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and only if her valuation of the stock differs from that of the trader entering the market. So, in

the next lemma we only need to prove that the event of market maker’s valuation being equal to

trader’s valuation has probability zero.

Lemma 1 Suppose assumptions A1-A5 and conditions C1-C4 are satisfied. Then

NT = LT a.s.

Proof. Let nk = Nθk
and lk = Lθk

. We will use induction to prove that nk = lk. Clearly for k = 0

we have θk = 0 and therefore n0 = l0 = 0.

Suppose that nk−1 = lk−1 a.s.. Let HM
i = GM

θi
and define (i < k)

Hk
i : = σ

(
σ (θk) ,HM

i

)
∩ {nk−1 = lk−1} (17)

= σ (σ (θk) ,Hi) ∩ {nk−1 = lk−1} .

Notice that Hk
k−1 = GM

θk− ∩ {nk−1 = lk−1}. Then by Theorem 4 (and the discussion following it)

and since nk−1 = lk−1 a.s. we have that

P
(
nk 6= lk|GM

θk−
)

= P
(
nk 6= lk|Hk

k−1

)
= P

(
xM

k = γzk|Hk
k−1

)
.

Notice that xM
k is measurable wrt Hk

k−1 since

xM
k er(T−t) = E

[
eγDT |HM

k−1, τk

]∣∣
τk=θk

.

Hence to prove that nk = lk a.s. it is enough to show that zk|Hk
k−1 has a continuous distribution.

In fact, due to the assumption A5 and Theorem 2 it is enough to show that zk|Hk
k−1 , U

c
k has

continuous distribution. By assumption A3

P
[
zk ≤ z|Hk

k−1 , U
c
k

]
= P

[
dk ≤ fk (z) |Hk

k−1 , U
c
k

]
= P

[
dk ≤ fk (z) |Hk

k−1

]
,
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where dk = Dθk
and

fk (z) =
log (γz)

γ
−
(

µγ −
r

γ

)
(T − θk) ,

µγ = µ +
σ2γ

2
.

Since fk (z) is measurable with respect to Hk
k−1 it is enough to show that dk|Hk

k−1 has a continuous

distribution. Since nk−1 = lk−1 a.s. (hence θi−1 = τ i−1 a.s. for any i ≤ k) and due to A3 we have

for any i ≤ k

P
(
Ui−1|Hk

i−1

)
= P (Ui−1|Hi−1, θk, nk−1 = lk−1) (18)

= P (Ui−1|Hi−1) = qu

a.s., and therefore for any i ≤ k

P
[
dk ≤ fk (z) |Hk

i−1

]
= (1− qu)P

[
dk ≤ fk (z) |U c

i−1,Hk
i−1

]
(19)

+quP
[
dk ≤ fk (z) |Ui−1,Hk

i−1

]
.

Due to assumptions A3 and A2 we have for any i ≤ k a.s.

P
[
dk ≤ fk (z) |Ui−1,Hk

i−1

]
= E

[
P
[
dk ≤ fk (z) |si−1, θi−1, Ui−1,Hk

i−2

]
|Ui−1,Hk

i−1

]
= P

[
dk ≤ fk (z) |Hk

i−2

]
.

Due to the assumptions A2 and A1 we have, for any i ≤ k − 1,

P
[
dk ≤ fk (z) |U c

i ,Hk
i

]
= P

[
fi(zi) + εk,i ≤ fk (z) |Hk

i

]
(20)

P
[
dk ≤ fk (z) |U1,Hk

1

]
= P

[
d0 + εk,0 ≤ fk (z) |Hk

0

]
where εi,j = µ∆i,j + σ

√
∆i,jνij , ∆i,j = θi − θj ; νij ∼ N (0, 1) and is independent of Hk

j ; fi(zi) is

measurable with respect to Hk
i . Therefore we can iterate (19) by applying (18) and (20) to it, and

13



so obtain

P
[
dk ≤ fk (z) |Hk

k−1

]
= (qu)k−1

(
P
[
εk,0 ≤ fk (z)− d0|Hk

0

]
+

k−1∑
i=1

(1− qu) (qu)−iP
[
εk,i ≤ fk (z)− fi(zi)|Hk

i

])
.

Hence dk|Hk
k−1 has continuous distribution and therefore we have

P [nk = lk] = 1.

By induction we have

P [nk = lk] = 1, for any k.

Hence

P [NT 6= LT ] =
∞∑

i=0

P [nk 6= lk|NT = k]P [NT = k]

and since NT < ∞ a.s., it follows that

P [NT = LT ] = 1.

Several important observations follow from this lemma. The first is that

τ i = θi for ∀i,

and since all the filtrations we consider in this paper are complete we have

Hi = HM
i = H̃M

i . (21)

Therefore in the rest of the paper we will not distinguish between trade and arrival times and

filtrations H, HM and H̃M .

The second observation (which will be used in deriving the limiting distribution of the price

process) is that we can characterize the distribution of zk conditional on σ (Hk−1, θk) as stated in

14



the next remark.

Remark 5 Denote by

d̂k = fk(zk), (22)

where

fk(z) =
log (γz)

γ
−
(

µγ −
r

γ

)
(T − θk) .

It can be proved, in an analogous manner to the proof of lemma 1, that

P
[
d̂k ≤ z|Hk−1, θk

]
= (qu)k−1 (P [εk,0 ≤ z − d0|θk] (23)

+
k−1∑
i=1

(1− qu)
(qu)i−k+1

P
[
d̂i + εk,i ≤ z|d̂i,∆k,i

])
,

where εi,j = µ∆i,j + σ
√

∆i,jνij and νij is a standard normal random variable independent of

d̂j ,∆k,j.

With these results at hand we can characterize the market maker’s learning process.

Theorem 6 Suppose assumptions A1-A5 and conditions C1-C4 are satisfied. Then

XM
t =

∞∑
i=0

er(t−θi)zM
i 1{Nt−=i}, (24)

with

zM
i = (1− qu) γzi + quer(θi−θi−1)zM

i−1,

and where

zM
i = e−r(T−θi)E

[
eγDT |Hi

]
.
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Proof. By Lemma 1 and relationships(21) between filtrations, we have

XM
t = e−r(T−t)

∞∑
i=0

E
[
eγDT |GM

τ i−, τ i

]∣∣∣∣∣
τ i=t

1{Lt−=i}

= e−r(T−t)
∞∑

i=0

E
[
eγDT |GM

θi−, θi

]∣∣∣∣∣
θi=t

1{Nt−=i}

= e−r(T−t)
∞∑

i=0

E
[
eγDT |Hi−1, θi

]∣∣∣∣∣
θi=t

1{Nt−=i}

= e−r(T−t)
∞∑

i=0

E
[
eγDT |Hi−1

]
1{Nt−=i}

= er(t−θi)
∞∑

i=0

zM
i 1{Nt−=i}

a.s. where the last but one equality is due to A2.

To show that

zM
i = (1− qu) γzi + quer(θi−θi−1)zM

i−1,

we use Bayes rule and assumptions A1 and A3 in a similar manner as in the proof of lemma 1, to

get

zM
i = (1− qu) γzi + e−r(T−θi)quE

[
eγDT |Hi−1

]
,

a.s.. By A2, and the fact that NT = LT ṡ., we have

zM
i = (1− qu) γzi + er(θi−θi−1)quzM

i ,

a.s. as claimed.

Notice that the resulting process XM
t is indeed left-continuous with right limits (LCRL for

brevity), and so the ask and bid curves satisfy condition C1. Hence Theorem 6 completes the proof

of existence and uniqueness of the equilibrium of the market.

In the next section we will use these results to derive the price process resulting from the optimal

behavior of the market participants.

16



3 Equilibrium price process

3.1 Equilibrium price process at ultra-high frequency

Suppose the trade at time τ i−1 was executed at the ask price i.e. vi−1 > 0, then by (2) we have

pγ
i−1 = Aγ

τ i−1
(vi−1) = e−r(T−τ i−1)E

[
eγDT |HM

i−2, vi−1, τ i−1

]
= e−r(T−τ i−1)E

[
eγDT |HM

i−1

]
= zM

i−1.

Since the same considerations apply if the trade happens at bid, we have

pγ
i−1 = zM

i−1, (25)

for all i. Therefore it follows from Theorem 4 and equation (24 ) that the price process satisfies

pγ
i = er(τ i−τ i−1)pγ

i−1

(
1 + ξi

(
Vτ i − Vτ i−1

)pγ)
, (26)

where Vt is process of cumulative volume of trade and

ξi =

 A if the ith trade is at the ask price

−B if the ith trade is at the bid price.

Since the transaction price, Pt, between trades is unchanged we have that

log
(

Pt

Ps

)
=

1
γ

Lt∑
i=Ls

log
(
1 + ξi

(
Vτ i

− Vτ i−1

)pγ)+
r

γ
(τLt

− τLs
) , (27)

so the model implies a direct relationship between the price change and the volume of trade for the

tick-by-tick price movements. However, the relationship is not linear as in Jones, Kaul and Lipson

(1994) or Ane and Geman (2000), but nonlinear as in Gallant, Rossi and Touchen (1992).

Equation (27) gives a direct relationship between the volume of trade and the price change.

However, the volume of trade is not an exogenous variable since it is a function of zi. Therefore, to

study the limiting distribution of the price process we need an alternative characterization of it in
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terms of zi or, equivalently, in terms of d̂ given by (22), which is provided by the next remark.

Remark 7 Using the result of Theorem 6 and equations (25) and (22) we may rewrite (26) as

pγ
i = quer(τ i−τ i−1)pγ

i−1 + (1− qu) exp
{

γd̂i +
(
γµγ − r

)
(T − τ i)

}
, (28)

p0 = exp
{
µγT + d0

}
.

3.2 Equilibrium price process at low frequency

For simplicity of presentation it is assumed that r = 0 in what follows. This is not a restrictive

assumption since we can obtain the same results for the discounted price process. Also, all processes

are defined on [0, T ] unless stated otherwise.

The aim of this section is to establish the limiting behavior of the transaction price process as

the intensity of the traders’ arrival process increases. This is summarized in the following result:

Theorem 8 Suppose that process D satisfies A1 and Ň is a Poisson process such that F Ň is

independent of FW .

Then there exists a sequence of Poisson processes Nn satisfying P
[
Nn

t = Ňtn

]
= 1 for any

t ∈ [0, T ] and a constant q∗ > 0 such that for any qu ∈ [0, q∗] the price process Pn resulting

from any sequence of markets Mn (qu, Nn, D, Sn, 1(Un)) satisfying A1-A5 weakly converges in the

Skorokhod topology (Pn→wP ), and the limit process, P , is geometric Brownian motion independent

of F Ň with drift µ + σ2γ
2 and volatility σ.

To set the stage for proving theorem 8 we first define a sequence of traders’ arrival process

Nn. In the rest of this section we assume that the process D satisfying A1 is given and fixed.

For any given Poisson process Ňt on (Ω,F , P) with intensity λ and corresponding arrival times
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τ̌ i = inf
{
t ≥ 0 : Ňt ≥ i

}
, independent of FW , consider the following sets

Ω1 =

{
ω ∈ Ω : lim

i→∞

∑bzic
j=1 [τ̌ j − τ̌ j−1]

2∑i
j=1 [τ̌ j − τ̌ j−1]

2
= z for any z ∈ [0, 1]

}

= ∩z∈[0,1]∩Z

{
ω ∈ Ω : lim

i→∞

∑bzic
j=1 [τ̌ j − τ̌ j−1]

2∑i
j=1 [τ̌ j − τ̌ j−1]

2
= z

}
,

Ω2 =
{

ω ∈ Ω : max
i≤k

[τ̌ i − τ̌ i−1] < ∞ for any k ∈ N+

}
,

Ω3 = ∪∞k=1 ∩∞i=k {ω ∈ Ω : [τ̌ i − τ̌ i−1] ≤ 2 log (i)}

Ω4 =
{

ω ∈ Ω : lim
n→∞

Ňtn

n
= λt for any t ∈ [0, T ]

}
= ∩t∈[0,T ]∩Z

{
ω ∈ Ω : lim

n→∞

Ňtn

n
= λt

}
.

Clearly Ωi ⊂ Ω and Ωi ∈ F for i = 1, 2, 3, 4. Moreover, it directly follows from the Strong Law of

Large Numbers and the properties of the Poisson process that P (Ωi) = 1, i = 1, 2, 4, and from the

Borel-Cantelli lemma that P (Ω3) = 1.

Consider a Poisson process Ñt, a modification of Ňt given by:

τ̃0 (ω) = 0,

τ̃ i (ω) =

 τ̌ i (ω) , ω ∈ ∩4
j=1Ωi,

τ̃ i−1 (ω) + λ, ω ∈ Ω\
(
∩4

j=1Ωi

) ,

Ñt =
∞∑

i=1

1{τ̃ i≤t},

and a corresponding sequence of counting processes Nn
t given by

Nn
t = Ñtn, (29)

τn
i =

τ̃ i

n
, (30)

which defines the sequence of trader’s arrival process in the markets Mn of Theorem 8.

To define the sequence of markets Mn with the sequence of traders’ arrival process given by Nn,

we need to define a sequence of processes Sn and 1(Un) such that Mn (qu, Nn, D, Sn, 1(Un)) satisfy

assumptions A1-A5. However, due to assumptions A2, A3 and A5 the law of the price process Pn

19



conditional on F Ñ
∞ (notation: L(Pn|F Ñ

∞)) resulting from any market Mn (qu, Nn, D, Sn, 1(Un)) sat-

isfying A1-A5 is uniquely defined by (23) and (28). Since we are aiming to prove a weak convergence

result, it is enough to define the process P̃n such that L(P̃n|F Ñ
∞) = L(Pn|F Ñ

∞).

Fix any market Mn = Mn (qu, Nn, D, Sn, 1(Un)) satisfying assumptions A1-A5 with Nn given

by equation (30) and let Pn be the transaction price process resulting from it. Consider processes

D̃n
t =

∑∞
j=0 d̃n

j 1{Nn
t =j} and P̃n

t =
∑∞

j=0 p̃n
j 1{Nn

t =j} with random variables d̃n
j and p̃n

j given by

d̃n
j =

j−1∑
i=0

ζj−1
i

(
d̃n

i + µ
(
τn

j − τn
i

)
+ σ

√
τn

j − τn
i νj−1

)
, (31)

d̃n
0 = d0,(

p̃n
j

)γ = qu
(
p̃n

j−1

)γ + (1− qu) exp
{

γd̃n
j + γµγ

(
T − τn

j

)}
, (32)

p̃n
0 = exp

{
µγT + d0

}
,

where ζ and ν are independent, νj are independent standard normal random variables, ζj =
(
ζj

i

)n

i=1

are independent random variables with
∑j

i=1 ζj
i = 1, ζj

i ∈ {0, 1},

P(ζj
i = 1) =

 (1− qu) (qu)j−i for i > 0

(qu)j for i = 0

and ν ⊥ ζ, νi ⊥ F d̂
i−1 ∨ FNn

and ζi ⊥ F d̂
i−1 ∨ FNn

.

Then we will have L(P̃n|F Ñ
∞) = L(Pn|F Ñ

∞). To demonstrate this, note that due to the one-to-

one correspondence between processes pn (defined by pn
i = Pn

τn
i
) and d̂n, and between p̃n and d̃n,

expressed by (28) and (32) respectively, it is enough to show that L(D̃n|F Ñ
∞) = L(D̂n|F Ñ

∞), where

D̂n
t =

∑∞
i=0 d̂n

i 1{Nn
t =i} and d̂n

i is given by (22) applied to the market Mn. From (23), (31) and by

Lemma 1, it follows that

L
(
D̂n|F Ñ

∞

)
= L

(
D̂n|FNn

T

)
= L

(
D̃n|F Ñ

Tn

)
= L

(
D̃n|F Ñ

∞

)
.

Therefore to prove Theorem 8 it is enough to show that P̃n defined by equations (32) and (31)

converges weakly in the Skorokhod topology to geometric Brownian Motion independent of F Ñ
∞.

Since we consider weak convergence and L(P̃n|F Ñ
∞) = L(Pn|F Ñ

∞), in what follows we shall not
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distinguish between the processes P̃n and Pn so we drop the ”tilde” notation.

Observe that if we define the new (random) probability measure P̃ by the regular version of the

kernel P
(
A|F Ñ

∞

)
on F̃ = σ

(
F Ñ
∞ ∪

(
∪nF D̂n

T

))
, i.e.

P̃ (A) = P
(
A|F Ñ

∞

)

and define a filtration Fn
t = σ

(
F Ñ
∞ ∪ FP n

t

)
, then if we show that there exists a process MP , a

geometric Brownian motion such that

L̃ (Pn) → L̃
(
MP

)
, as n →∞,

then we will have that

L (Pn) → L
(
MP

)
, as n →∞,

and FMP

is independent of F Ñ
∞, so Theorem 8 will be proved.

Based on this observation we derive the convergence result for the process

Pn
t = Pn

t (qu)

on
(
Ω,F , P̃

)
and then the result for the price process on (Ω,F , P) follows. First we prove the

tightness result presented in the following lemma.

Lemma 2 Consider the sequence of processes

Mn
t =

∞∑
i=0

(
d̂n

i + µ (T − τn
i )
)

1{Nn
t =i}

There exists qu
1 > 0 such that for any qu ∈ [0, qu

1 ] and (µ, σ) the sequence of processes (Pn,Fn) and

(Mn,Fn) are tight in the Skorokhod topology. Moreover, the limits of Mn and (Pn)γ are continuous

local martingales in their natural filtration.
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To prove this lemma we will need the following result: let Hn
i = Fn

τn
i

and consider

ηn
i = ηn

i (qu) = (pn
i (qu))γ −

(
pn

i−1 (qu)
)γ

, (33)

ξn
i = ξn

i (qu) = Ẽ
[
D̂n

T (qu) |Hn
i

]
− Ẽ

[
D̂n

T (qu) |Hn
i−1

]
, (34)

and

(
ση

n,i

)2 = Ẽ (ηn
i )2 , (35)(

σξ
n,i

)2

= Ẽ (ξn
i )2 . (36)

Then the following lemma holds:

Lemma 3 Consider ση
n,i and σξ

n,i given by (35) and (36). If conditions of Theorem 2 are satisfied

we have that

max
i≤Nn

t

ση
n,i → 0 as n →∞

max
i≤Nn

t

σξ
n,i → 0 as n →∞

a.s. for any qu > 0 and t ≥ 0.

Moreover, there exists qu
1 > 0 such that for any t ≥ 0, qu ∈ [0, qu

1 ] , the sets

Uη =

{
(ηn

i )2(
ση

n,i

)2 , n ∈ N, i ≤ Nn
t

}
,

Uξ =

 (ξn
i )2(

σξ
n,i

)2 , n ∈ N, i ≤ Nn
t

 ,

are a.s. uniformly integrable and for any α > 0

lim
n

P̃
(

max
i≤Nn

t

|ηn
i | > α

)
= 0,

lim
n

P̃
(

max
i≤Nn

t

|ξn
i | > α

)
= 0,

a.s.. (Proof: Appendix A)
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Proof. With this result at hand we can prove Lemma 2. Consider a sequence of processes

M̂n
t = Ẽ

[
D̂n

T (µ, σ, qu) |Fn
t

]
. Due to the Lemma 3 and the result of McLeish (1977) we obtain that

the processes (Pn (qu) ,Fn) and
(
M̂n (qu) ,Fn

)
are tight in the Stone’s topology for all qu ∈ [0, qu

1 ].

Since Stone’s topology is equivalent to the Skorokhod topology on D ([0, T ]) we have that the pro-

cesses (Pn (qu) ,Fn) and
(
M̂n (qu) ,Fn

)
are tight in the Skorokhod topology for all qu ∈ [0, qu

1 ] as

well. Moreover, by Lemma 3, for such a qu we have

lim
n

P̃
(

max
t≤K

|∆Pn
t (qu)| > α

)
= lim

n
P̃
(

max
i≤Nn

K

|ηn
i | > α

)
= 0, (37)

lim
n

P̃
(

max
t≤K

∣∣∣∆M̂n
t (qu)

∣∣∣ > α

)
= lim

n
P̃
(

max
i≤Nn

K

|ξn
i | > α

)
= 0, (38)

and the fact that sequences Pn (qu) and M̂n (qu) are tight, we have that they are C-tight, i.e. all

limit points of the sequences
{
L̃ (Pn)

}
and

{
L̃
(
M̂n

)}
are laws of continuous processes (see Jacod,

Shiryaev (2003), Proposition VI.3.26). Moreover, consider any convergent subsequence Pnk , M̂nk .

Then by (37) and (38) there exists a further subsequence nki
such that

max
t≤Nn

T

∣∣∆P
nki
t (qu)

∣∣ → 0 P̃ a.s.,

max
t≤Nn

T

∣∣∣∆M̂
nki
t (qu)

∣∣∣ → 0 P̃ a.s..

Hence there exist N , b ∈ F Ñ
∞ such that

∣∣∆P
nki
t (qu)

∣∣ ≤ b,∣∣∣∆M̂
nki
t (qu)

∣∣∣ ≤ b,

a.s. for all i ≥ N and therefore the limit processes are local martingales (see Jacod, Shiryaev (2003)

Proposition IX.1.17). Since the choice of convergent subsequence was arbitrary we have that the

limits of M̂n and (Pn)γ are continuous local martingales in their natural filtration on
(
Ω,F , P̃

)
.

To prove the same result for Mn, observe that

Mn
t = M̂n

t +
qu

1− qu
ξn

i ,
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and since ξn
i satisfies (38) we have that Mn

t converges to the same limit as M̂n (see Jacod, Shiryaev

(2003) Lemma VI.3.31)

Since, as demonstrated above, the processes (Pn (qu) ,Fn) and (Mn (qu) ,Fn) are tight in the

Skorokhod topology for all qu ∈ [0, qu
1 ], identification of the limit of these processes is equivalent

to finding their limiting finite dimensional distributions. Since, by Lemma 2, Mn and (Pn)γ are

continuous local martingales in their natural filtration on
(
Ω,F , P̃

)
, it is possible to show that Pn

is geometric Brownian motion in the limit, as demonstrated in the next lemma.

Lemma 4 For any qu ∈ [0, qu
1 ], the sequence of price processes Pn (qu) converges in law to MP

given by

MP
t = MP

0 exp
{
σWt − µγt

}
where Wt is Brownian motion.

Proof. Consider a subsequence ni such that Pni and Mni converge weakly to MP and M respec-

tively. Consider a sequence of processes

P̃ni
t =

∞∑
j=0

exp
{

γd̂ni
j + γµγ

(
T − τni

j

)}
1{N

ni
t =j}.

Then, since P̃ni
t = Pni

t + qu

1−qu

∑∞
j=0 ξni

j 1{N
ni
t =j} and ξ satisfies equation (37), we have as in proof

of Lemma 2 that P̃ni converges weakly to MP .

Hence we have that

P̃
(
MP

t ≤ x
)

= lim
i→∞

P̃
(
P̃ni

t ≤ x
)

= lim
i→∞

P̃
(

d̂ni
j ≤ lnx

γ
− µγ

(
T − τni

j

))
1{N

ni
t =j}

= P̃
(

exp
{

γMt +
σ2γ2

2
(T − t)

}
≤ x

)
.

But by definition of Nn (29), we have that
∑∞

j=0 τn
j 1{Nn

t =j} → t a.s. and hence

lim
i→∞

∞∑
j=0

P̃
(
d̂ni

j ≤ y + (µ + z) τni
j

)
1{N

ni
t =j} = lim

i→∞

∞∑
j=0

P̃

N (0, 1) ≤ y

σ
√

τni
j

+
z

σ

√
τni

j

 1{N
ni
t =j}

= P̃
(

N (0, 1) ≤ y

σ
√

t
+

z

σ

√
t

)
.
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Hence

P̃
(
MP

t ≤ x
)

= P̃
(

exp
{

N

(
µγT +

σ2γ2

2
(T − t) , γ2σ2t

)}
≤ x

)
and therefore

Ẽ
[
MP

T

]
= exp

{
µγT

}
= MP

0

. By Lemma 2, MP is a local martingale, and since it is positive, it follows that it is a true

martingale. Therefore 〈M〉t = σ2t (see Karatzas and Shreve Exercise 3.3.38.ii) and since Mt is a

continuous local martingale it follows from the Levy characterization of Brownian motion that M
σ

is a Brownian motion independent of F Ñ
∞. Therefore

MP
t = MP

0 exp
{
σWt − µγt

}
as claimed Proof. From Lemmas 2 and 4 and the discussion in the beginning of this section, the

proof of Theorem 8 is complete.

Therefore, as the number of arrivals tends to infinity the price process converges to a geometric

Brownian motion independent of the Poisson arrival process. This demonstrates that the efficient

market hypothesis is not a necessary assumption to justify geometric Brownian Motion model of

stock prices – it is also consistent with asymmetric information and agents’ learning models.

4 Empirical test of the model

This section explores the time series relation between stock returns and volume of trade implied by

the model developed in the previous section. Moreover, we assess the relative explanatory power of

volume of trade for the price movements compared with the number of trades that, in the previous

literature, have been shown to explain a large part of price variability.

Since the degree of information asymmetry is likely to be higher for small stocks, the model at

hand implies that volume of trade should matter more for small stocks then large stocks.10 We there-

fore focus on two stocks that have been previously employed in the literature for analogous purposes:

International Business Machines corp. (IBM) - as the large stock - and Bentley Pharmaceuticals

10Suggestive evidence that volume of trade has a larger impact on the price movements of smaller
firms than bigger ones can be found in Jones, Kaul and Lipson (1994).
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(BNT) - as the small stock.

The data was obtained from the NYSE trade and quote database (TAQ) and consists of one

week (for IBM) and one month (for BNT) time stamped observations of bid and ask quotes together

with prices and trade sizes. 11

Since the model developed in the previous section implies that order size affects prices on a

trade-by-trade basis, we consider log returns on a tick-by-tick basis rather then on fixed intervals.

Furthermore, the models imply that any trade would result in a price change, but it is often ob-

served in the market that there are several trades clustered in time and executed at the same price.

Therefore, to be consistent with the theoretical setup, such trades are treated as one,12 with the

order size being the sum of the order sizes of these trades, and the time of execution given by the

time of execution of the last trade. To put this formally, define the new trading times recursively as

τ̃0 = 0

τ̃ i =
{
s ≥ τ̃ i−1 : Ps 6= Pτ̃ i−1

}
.

Then the log return over the period [τ̃ i−1, τ̃ i] is given by

Yi = log
(

Pτ̃ i

Pτ̃ i−1

)
.

Summary statistics of the data are reported in Table 1, where
(
∆̃N

)
n

= Nτ̃n
−Nτ̃n−1 ,

(
∆̃V

)
n

=

Vτ̃n − Vτ̃n−1 , ∆τ̃n = τ̃n − τ̃n−1 (measured in seconds), Nt is the cumulative number of trades by

time t and Vt is the cumulative volume of trade by time t (measured in shares).

11A larger sample period is used for BNT since this asset is traded less frequently. The time
period is 5/10/04-5/14/04 for IBM (15685 data points) and May 2004 for BNT (877 data points).

12The reason to define this sequence of trades at the same price as one trade is that there are many
market makers, which post their bid and ask, and when the trade happens they don’t withdraw their
quotes immediately, which results in several trades being very close to each other and executed at
the same price. Also, there is a lag between the execution and the reporting of a trade, hence a
market maker doesn’t observe the trade of other market makers immediately.
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IBM BNT

mean standard error mean standard error

Yt −4 · 10−7 3 · 10−4 3 · 10−5 2 · 10−4

(∆̃V )n 1655.7 3888.3 685.2 1270.8

(∆τ̃)n 7.3 8.1 366.2 526

(∆̃N) 1.8 1.5 2.1 1.9

Table 1: Summary statistics

4.1 Relative impact of number of trades and volume of trade on price

volatility

As a first exercise we test the conjecture of Ane and Geman (2000) and Jones, Kaul and Lipson

(1994) that, given the number of trades, the volume of trade does not affect the volatility of stock

prices. In contrast to these authors, and consistent with the model presented in Section 3, we

introduce volume of trade in a nonlinear way. Like Ane and Geman, we use IBM price data to test

this conjecture.

To investigate the relative role of number and volume of trade in explaining price volatility,

we follow the procedure developed by Jones, Kaul and Lipson (1994) and employed by Ane and

Geman (2000), therefore taking as a proxy for volatility the modulus of the shocks to the series of

log returns. The procedure consists of two steps.

First, the log return Yn is regressed on the 12 lagged returns to remove short term movements

in conditional expected returns. Thus, the first regression is

Yn =
12∑

j=1

ajYn−j + ζn (39)

Then, to find the relative importance of the number of trades versus the volume of trades, the

following three nonlinear regressions13 are performed

∣∣∣ζ̂n

∣∣∣ = const + ν
((

∆̃V
)

n

)q

+ η
(
∆̃N

)
n

+ µ∆τ̃n +
12∑

j=1

bj

∣∣ζn−j

∣∣+ θn, (a)

13The nonlinear regressions are estimated by nonlinear least squares.
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∣∣∣ζ̂n

∣∣∣ = const + η
(
∆̃N

)
n

+ µ∆τ̃n +
12∑

j=1

bj

∣∣ζn−j

∣∣+ θn, (b)

∣∣∣ζ̂n

∣∣∣ = const + ν
((

∆̃V
)

n

)q

+ µ∆τ̃n +
12∑

j=1

bj

∣∣ζn−j

∣∣+ θn, (c)

where ζ̂n are the estimated residuals for equation (4.1),
(
∆̃N

)
n

= Nτ̃n
−Nτ̃n−1 ,

(
∆̃V

)
n

= Vτ̃n
−

Vτ̃n−1 and ∆τ̃n = τ̃n − τ̃n−1 is added to control for the fact that the observations are not equally

spaced in time, and the lagged volatility proxies are included to control for the persistence in volatility

process.

Remark 9 Ane and Geman perform different regressions, of the form

|ζn| = const + ν (Vt+∆ − Vt) + η (Nt+∆ −Nt) +
12∑

j=1

bj

∣∣ζn−j

∣∣+ θn

|ζn| = const + η (Nt+∆ −Nt) +
12∑

j=1

bj

∣∣ζn−j

∣∣+ θn

|ζn| = const + ν (Vt+∆ − Vt) +
12∑

j=1

bj

∣∣ζn−j

∣∣+ θn.

However, since our model implies a nonlinear relation between the price movement and the order

size, we have replaced the (Vt+∆ − Vt) term with ν
(
Vτ̃n

− Vτ̃n−1

)q ≈ log(1 + ν
(
Vτ̃n

− Vτ̃n−1

)q) (if ν

is small). Also, since the price observations are not equally spaced, the term (τ̃n − τ̃n−1) appears.

Regression results are reported in the Table 2. Column a) reports the estimation output of the

regression in equation (a), and shows that the regressors considered are able to explain 10 percent of

price volatility. Moreover, both q and η are significant. Even though ν individually is not statistically

different from zero, the joint test of ν and q being zero is rejected at any standard level of marginal

significance14 consistent with the model proposed in the previous sections. Moreover, the sign of the

estimated coefficient for q agrees with the theoretical one (q = γ qu

1−qu > 0) as well as the estimated

sign of ν.

14A Wald type test of joint significance of these two coefficients produces a χ2 (2) statistic that is
in the order of the thousands, delivering a p-value that is less than10−6.
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IBM

Regression (a) Regression (b) Regression (c)

R2 0.10 0.05 0.09

R̄2 0.10 0.05 0.09

ν 3·10−6 1·10−6

(1.4) (1.2)

q 0.47 0.5

(6.3) (6.1)

η −2·10−5 −6·10−6

(14.1) (5.5)

µ −2·10−6 4·10−6 −3·10−5

(7.8) (12.9) (3.6)

const −3·10−5 8·10−6 1·10−6

(2.3) (3.5) (4.3)

Table 2: Relative impact of the number of trades and the volume of trades on volatility (All regres-

sions use Newey and West (1987) correction of standard errors for generalized serial correlation and

heteroscedasticity of the residuals. The t -statistics is reported in parenthesis)

The second column of Table 2 reports the results of regression (b), which uses only number of

trades as main explanator of price volatility. All the estimated coefficients are significant. However,

having dropped volume of trade as an explanatory variable, the measure of fit is reduced by one

half.

The last column considers volume of trade as the main regressor. The first thing to notice,

comparing these regression results with the ones in the first column, is that removing the number

of trades
(
∆̃N

)
n

causes a reduction of R2 of less then 1%. This suggests that, on a tick-by-tick

basis, once the volume of trade is introduced as explanatory variable, the number of trades do not

carry much additional information, consistent with the model presented in the previous sections.

Moreover, ν and q are jointly highly statistically significant.15

15The result of the joint significance test for ν and q is basically the same as in regression (a): the
p-value of this restriction is less than 10−6.
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What is the relative economic importance of this regressor for price volatility? The estimated

coefficients in the first column of Table 2 and statistics of the data given in Table 1 imply that a

one standard deviation change in volume of trade (
(
∆̃V

)
n
) causes a 0.13 basis point change in the

volatility proxy, while a one standard deviation change in the number of trades (
(
∆̃N

)
n
) causes

only a 0.026 change in price volatility. Therefore, the economic significance of volume of trade, on

a tick-by-tick basis, is about one order of magnitude larger than the one of number of trades.

Overall, the results in Table 2 suggest that, in accordance with the model presented, volume of

trade is the main factor affecting volatility at very high frequency, and that the number of trades

adds little additional information.

4.2 Relative impact of number of trades and volume of trade on price

process

As a second check, we test the empirical implications of the baseline model, by directly estimating

equation (27) through considering the approximation16

log
(
1 + ξNs+k

(
ṼNs+k − ṼNs+k−1

)pγ) 1
γ

'
ξNs+k

γ

(
ṼNs+k − ṼNs+k−1

)pγ

,

where

ξn =

 A if the nth trade is at the ask ,

−B if the nth trade is at the bid.

We therefore estimate the following regressions:

Yn = const + ((ν1 − ν2) ϕn + ν2)
((

∆̃V
)

n

)q

(a)

+ ((η1 − η2) ϕn + η2)
(
∆̃N

)
n

+ µ∆τ̃n + θn,

Yn = const + ((η1 − η2)ϕn + η2)
(
∆̃N

)
n

+ µ∆τ̃n + θn, (b)

Yn = const + ((ν1 − ν2) ϕn + ν2)
((

∆̃V
)

n

)q

+ µ (∆τ̃n) + θn, (c)

16We consider this approximation since ξNs+k, as shown below, is of an order of magnitude smaller
than 10−4., thus nonlinear regression will have too many parameters otherwise
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where ϕn is a dummy variable that takes value 1 if the trade is at the ask, and 0 otherwise. Note

also that, given the model at hand, equation (c) should be able to explain the variability of log

returns as well as equation (a)

IBM BNT

a b c a b c

R2 0.34 0.20 0.33 0.30 0.13 0.28

R̄2 0.34 0.20 0.33 0.29 0.13 0.27

ν1 3 · 10−5 3 · 10−5 2 · 10−4 2 · 10−4

(10.6) (8.9) (3.0) (2.1)

ν2 3 · 10−5 3 · 10−5 3 · 10−4 2 · 10−4

(11.2) (9.5) (2.7) (2.3)

q 0.26 0.26 0.3 0.28

(22.1) (18.5) (6.6) (4.6)

η1 −1 · 10−5 5 · 10−5 −5 · 10−5 3 · 10−4

(5.6) (18.2) (0.7) (5.3)

η2 −2 · 10−5 6 · 10−5 −3 · 10−4 3 · 10−4

(8.4) (21.5) (4.1) (3.3)

µ −4 · 10−7 −6 · 10−7 −4 · 10−7 −2 · 10−7 −3 · 10−7 −2 · 10−7

(1.4) (1.6) (1.4) (1.8) (2.5) (1.7)

const −7 · 10−7 7 · 10−6 1 · 10−6 −2 · 10−4 −5 · 10−5 −3 · 10−4

(0.1) (1.8) (0.2) (0.8) (0.5) (1.0)

Table 3: Empirical test of the model(All regressions use Newey and West (1987) correction of

standard errors for generalized serial correlation and heteroscedasticity of the residuals. The t

-statistics is reported in parenthesis)

The results of these regressions are summarized by the Table 3, where the left panel focuses

on IBM data and the right panel focuses on BNT data. Columns a) of the two panels show that

volume of trade and number of trades are able to explain, jointly, between 29 to 34 percent of the

variability in log returns. Moreover, the regression coefficients associated with
(
∆̃N

)
n

and
(
∆̃V

)
n

are all significant, and the signs of ν1, ν2 and q agree with the theory proposed. On the other hand,

31



the coefficients associated with number of trades (η1 and η2) have counterintuitive signs.

Restricting the coefficients associated with order size to be equal to zero (column b)), causes a

significant reduction of the explanatory power of the regression for both stocks (a reduction in R̄2 of

14 points for IBM and of 16 points for BNT). Moreover, the coefficients associated with the number

of trades change sign moving from column a) to column b).

On the other hand, if we remove number of trades as an explanatory variable (column c), the

volume of trade is able to explain 33 and 27 percent of the variability in log returns for, respectively,

IBM and BNT, with a reduction of R̄2 of less then 1 percent for both stocks.

Looking at the economic significance of the regressors, once again (for both stocks) the volume

of trade has an impact on log returns that is of an order of magnitude bigger then that of number of

trades. For the IBM stocks, a one standard deviation increase in
(
∆̃V

)
n

above its mean causes an

increase in log returns of about one third of its standard deviation. On the other side, a one standard

deviation change in
(
∆̃N

)
n

causes a change of only 6% of a standard deviation in logreturns. For the

BNT stock analogous shocks in the regressors generates, respectively, a 26% and 3% of a standard

deviation change in log returns.
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A Proof of Lemma 3

Lemma 5 Consider the sequences ση
n,i, ση

n,i defined by (35) and (36) then there exist constants

cη
min, cη

max, cξ, b (qu) ∈ F0 independent of n and i with b (qu) < 1 and cη
min > 0 such that

(
ση

n,i

)2
Ln

i

∈ [cη
min, cη

max] for all i ≤ Nn
T (40)(

σξ
n,i

)2

Ln
i

= cξ for all i ≤ Nn
T (41)

where Ln
i =

∑i
j=1 bi−j

[
τn

j − τn
j−1

]
Proof. Let Hn

i = Fn
τn

i
. Notice that due to (31) we have

Ẽ
[
D̂n

T |Hn
i

]
= (1− qu)

(
d̂n

i + µ (T − τn
i )
)

+ quẼ
[
D̂n

T |Hn
i−1

]

therefore (
σξ

n,i

)2

(1− qu)2
= σ2τn

i −
i−1∑
j=1

(
σξ

n,j

)2

and due to (32) we have

(
ση

n,i

)2
(1− qu)2

= Ẽ
(
eγd̂n

i +γµγ(T−τn
i ) −

(
pn

i−1

)γ)2

= (Pn
0 )2γ

[
eσ2γ2τn

i − 1
]
−

i−1∑
j=1

(
ση

n,j

)2
where Pn

0 = eD0+µγT i.e.

(
ση

n,i

)2
(1− qu)2

= (Pn
0 )2γ

i∑
j=1

(qu (2− qu))i−j [exp
{
σ2γ2τn

j

}
− exp

{
σ2γ2τn

j−1

}]
(
σξ

n,i

)2

(1− qu)2
= σ2

i∑
j=1

(qu (2− qu))i−j [
τn

j − τn
j−1

]
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therefore by Taylor expansion we have

1 ≤
(
ση

n,i

)2
(1− qu)2 (Pn

0 )2γ
σ2γ2

∑i
j=1 (qu (2− qu))i−j [

τn
j − τn

j−1

] ≤ eσ2γ2T

(
σξ

n,i

)2

(1− qu)2
= σ2

i∑
j=1

(qu (2− qu))i−j [
τn

j − τn
j−1

]

for all i ≤ Nn
T . Denoting by

cη
min = e−σ2γ2T

cη
max = (1− qu)2 (Pn

0 )2γ
σ2γ2

cξ = (1− qu)2 σ2

and b (qu) = qu (2− qu) < 1 we get the statement of the lemma.

Lemma 6 Consider the sequences ηn
i , ξn

i defined by (33) and (34) and

(
κη

n,i

)4 = Ẽ (ηn
i )4(

κξ
n,i

)4

= Ẽ (ξn
i )4

then there exist constants Cη, Cξ, a (qu) ∈ F0 independent of n and i such that

(
κη

n,i

)4 ≤ Cη

 i∑
j=1

ai−j
[
τn

j − τn
j−1

]2 for all i ≤ Nn
T (42)

(
κξ

n,i

)4

≤ Cξ

 i∑
j=1

ai−j
[
τn

j − τn
j−1

]2 for all i ≤ Nn
T (43)

Moreover, there exists qu
1 > 0 such that for any qu ∈ [0, qu

1 ] we will have a (qu) < 1.

Proof. Due to (31) and (32) and since

Ẽ
[
D̂n

T |Hn
i

]
= (1− qu)

(
d̂n

i + µ (T − τn
i )
)

+ quẼ
[
D̂n

T |Hn
i−1

]
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we have

(
κη

n,i

)4 ≤ 4 (1− qu)4 Ẽ [Y η
i ]4 + 4(qu)4

(
κη

n,i−1

)4 (44)(
κξ

n,i

)4

≤ 4 (1− qu)4 Ẽ
[
Y ξ

i

]4
+ 4(qu)4

(
κξ

n,i−1

)4

(45)

where

Y η
i = eγd̂n

i +γµγ(T−τn
i ) − eγd̂n

i−1+γµγ(T−τn
i−1)

Y ξ
i = d̂n

i − d̂n
i−1 + µ

(
τn

i−1 − τn
i

)
Since by (31) and (32)

Ẽ [Y η
i ]4 = Ẽ

(1− qu)
i−1∑
j=1

(qu)j−1

(
e
γ

“
d̂n

i−j+µ∆n
i,i−j+σ

√
∆n

i,i−jνi−1−µγ∆n
i

”
− eγd̂n

i−1

)4

+(qu)i−1

(
e
γ

“
d̂n
0 +µ∆n

i,0+σ
√

∆n
i,0νi−1−µγ∆n

i

”
− eγd̂n

i−1

)4
)

e4γµγ(T−τn
i−1)

]

Ẽ
[
Y ξ

i

]4
= Ẽ

(1− qu)
i−1∑
j=1

(qu)j−1
(
d̂n

i−j − d̂n
i−1 + µ∆n

i,i−j + σ
√

∆n
i,i−jν

i−1 − µ∆n
i

)4

+(qu)i−1
(
d̂n
0 − d̂n

i−1 + µ∆n
i,0 + σ

√
∆n

i,0ν
i−1 − µ∆n

i

)4
)]

where νi are as in (31) and ∆n
i,i−j = τn

i − τn
i−j, ∆n

i = τn
i − τn

i−1. Then

Ẽ [Y η
i ]4 = Ẽ

[
e4γµγ(T−τn

i−1)
(

(1− qu)
(

e
γ

“
d̂n

i−1+σ
√

∆n
i νi−1−σ2γ

2 ∆n
i

”
− eγd̂n

i−1

)4

+qu

(
e
γ

“
(d̂n

i−1)
′
+σ
√

∆n
i νi−1−σ2γ

2 ∆n
i

”
− eγd̂n

i−1

)4
)]

Ẽ
[
Y ξ

i

]4
= Ẽ

[
(1− qu)

(
σ
√

∆n
i νi−1

)4

+ qu

((
d̂n

i−1

)′
− d̂n

i−1 + σ
√

∆n
i νi−1

)4
]

where
(
d̂n

i−1

)′
|σ
(
Hn

i−2 ∪ σ(τn
i−1)

)
∼d d̂n

i−1|σ
(
Hn

i−2 ∪ σ(τn
i−1)

)
and

(
d̂n

i−1

)′
is independent of

d̂n
i−1 conditionally on σ

(
Hn

i−2 ∪ σ(τn
i−1)

)
. Therefore conditioning on

(
d̂n

i−1

)′
, Taylor expansion and
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elementary inequality ab ≤ a2+b2

2 give

Ẽ [Y η
i ]4 ≤ Kη (∆n

i )2 + 4quẼ
[
eγ(d̂n

i−1)
′

− eγd̂n
i−1

]4
Ẽ
[
Y ξ

i

]4
≤ Kξ (∆n

i )2 + 4quẼ
[(

d̂n
i−1

)′
− d̂n

i−1

]4

where Kη = σ4γ4 (21 + 3qu) e4γ(D0+µγT)+6σ2γ2T and Kξ = 3 (1 + qu) σ4.

Moreover, since by (31) and (32) we have

ηn
i−1 = (1− qu)

[
eγ(d̂n

i−1+µγ(T−τn
i−1)) −

(
pn

i−2

)γ]
ξn

i−1 = (1− qu)
[(

d̂n
i−1 + µ

(
T − τn

i−1

))
− Ẽ

[
D̂n

T |Hn
i−1

]]

and since
(
d̂n

i−1

)′
|σ
(
Hn

i−2 ∪ σ(τn
i−1)

)
∼d d̂n

i−1|σ
(
Hn

i−2 ∪ σ(τn
i−1)

)
and

(
d̂n

i−1

)′
is independent of

d̂n
i−1 conditionally on σ

(
Hn

i−2 ∪ σ(τn
i−1)

)
we have

Ẽ [Y η
i ]4 ≤ Kη (∆n

i )2 +
32qu

(1− qu)4
(
κη

n,i−1

)4
Ẽ
[
Y ξ

i

]4
≤ Kξ (∆n

i )2 +
32qu

(1− qu)4
(
κξ

n,i−1

)4

and therefore by (44) and (45) we have

(
κη

n,i

)4 ≤ 4 (1− qu)4 Kη (∆n
i )2 + 4

(
(qu)4 + 32qu

) (
κη

n,i−1

)4(
κξ

n,i

)4

≤ 4 (1− qu)4 Kξ (∆n
i )2 + 4

(
(qu)4 + 32qu

) (
κξ

n,i−1

)4

If we take Cη = 4 (1− qu)4 Kη, Cξ = 4 (1− qu)4 Kξ and a = 4
(
(qu)4 + 32qu

)
then the conclusion

of the lemma follows (clearly, for qu small enough a < 1).

Lemma 7 Consider ση
n,i and σξ

n,i given by (35) and (36) then

max
i≤Nn

t

ση
n,i → 0 as n →∞

max
i≤Nn

t

σξ
n,i → 0 as n →∞
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a.s. for any qu > 0 and t ∈ [0, T ].

Proof. Notice that by definition of Ñ we have that for any ω ∈ Ω there exist k (ω) (k ∈ F Ñ
∞) such

that

n
[
τn

i (ω)− τn
i−1 (ω)

]
< 2 log (i)

for any i > k (ω).

Moreover, by definition of Ñ for any ω ∈ Ω we have

lim
n→∞

NTn (ω)
n

= λT

Fix ω ∈ Ω. Since by Lemma 5 we have that there exist constants cη
max, cξ, b (qu) ∈ F0 independent

of n and i with b (qu) < 1 such that

(
ση

n,i

)2 ≤ cη
max

i∑
j=1

bi−j
[
τn

j − τn
j−1

]
for all i ≤ Nn

T

(
σξ

n,i

)2

≤ cξ
i∑

j=1

bi−j
[
τn

j − τn
j−1

]
for all i ≤ Nn

T

from above it follows that

max
i≤Nn

T (ω)

(
ση

n,i

)2 (ω) ≤ cη
max

k(ω)∑
j=1

∆n
j (ω) +

2
n

log (Nn
T (ω))

1
1− b


max

i≤Nn
T (ω)

(
σξ

n,i

)2

(ω) ≤ cξ

k(ω)∑
j=1

∆n
j (ω) +

2
n

log (Nn
T (ω))

1
1− b


Since ∆n

j (ω) = ∆j(ω)
n and limx→∞

log(x)
x = 0 we have conclusion of the lemma.

Lemma 8 Consider ση
n,i and σξ

n,i given by (35) and (36) then there exists qu
1 > 0 such that for any

t ≥ 0, qu ∈ [0, qu
1 ] the sets

Uη =

{
(ηn

i )2(
ση

n,i

)2 , n ∈ N, i ≤ Nn
t

}

Uξ =

 (ξn
i )2(

σξ
n,i

)2 , n ∈ N, i ≤ Nn
t


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are uniformly integrable with respect to P̃.

Proof. ¿From lemmas 5 and 6 it follows that there exists qu
1 > 0 such that for any qu ∈ [0, qu

1 ] there

exist constants cη
min, cξ, b (qu), Cη, Cξ, a ∈ F0 independent of n and i with b (qu) < 1, a (qu) < 1

and cη
min > 0 such that

Ẽ
[
(ηn

i )4
]

(
ση

n,i

)4 ≤
Cη
[∑i

j=1 ai−j
[
τn

j − τn
j−1

]2]
(cη

min)2
∑i

j=1 b2(i−j)
[
τn

j − τn
j−1

]2
Ẽ
[
(ξn

i )4
]

(
σξ

n,i

)4 ≤
Cξ
[∑i

j=1 ai−j
[
τn

j − τn
j−1

]2]
(cξ)2

∑i
j=1 b2(i−j)

[
τn

j − τn
j−1

]2
therefore to prove uniform integrability of the sets Uη and Uξ it is enough to prove a.s. uniform

boundedness of ∑i
j=1 ai−j

[
τn

j − τn
j−1

]2∑i
j=1 b̃i−j

[
τn

j − τn
j−1

]2 =

∑i
j=1 ai−j [τ̃ j − τ̃ j−1]

2∑i
j=1 b̃i−j [τ̃ j − τ̃ j−1]

2

where b̃ = b2 < 1 and a < 1.

To do so, consider a random variable Yi on F Ñ
∞ with the (random) distribution given by

P̌
(

Yi =
i− j

i

)
=

[τ̃ j − τ̃ j−1]
2∑i

j=1 [τ̃ j − τ̃ j−1]
2

Then for any s ∈ [0, 1] we will have that

Fi (s) = P̌ (Yi ≤ s) =

∑bsic
j=1 [τ̃ j − τ̃ j−1]

2∑i
j=1 [τ̃ j − τ̃ j−1]

2

and by definition of Ñ we have that

lim
i→∞

Fi (s) = s

for any s ∈ [0, 1]. Therefore, (see Shiryaev (1996), Theorem III.1.2) we have that Yi →w
i→∞ Y

where Y has uniform distribution on [0, 1] and in particular we get limi→∞ Ě
[
e−cYi

]
= 1−e−c

c for

any c > 0. Notice that ∑i
j=1 ai−j [τ̃ j − τ̃ j−1]

2∑i
j=1 b̃i−j [τ̃ j − τ̃ j−1]

2
=

Ě
[
elog(a)iYi

]
Ě
[
elog(b̃)iYi

]
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where log (a), log
(
b̃
)

< 0 and therefore to prove the lemma we need uniform (in c) convergence of

Ě
[
e−cYi

]
.

To do so, consider G =
{

g : R+ → R+ : g (x) = e−cx

c , c ∈ [1,∞)
}

– a class of equicontinuous,

uniformly bounded functions (easy to demonstrate). Then (see Shiryaev (1996), Theorem III.8.3)

we have that

lim
i→∞

sup
c∈[1,∞)

∣∣∣∣Ě [e−cYi

c

]
−
(
1− e−c

)∣∣∣∣ = 0

and therefore for any ε ∈ (0, 1) there exists k ∈ F Ñ
∞ such that for any i ≥ k we will have

∑i
j=1 ai−j [τ̃ j − τ̃ j−1]

2∑i
j=1 b̃i−j [τ̃ j − τ̃ j−1]

2
≤ log (a)

log
(
b̃
) (1 + ε)

Fix

C = max

max
i≤k

(∑i
j=1 ai−j [τ̃ j − τ̃ j−1]

2∑i
j=1 b̃i−j [τ̃ j − τ̃ j−1]

2

)
,

log (a)

log
(
b̃
) (1 + ε)

 ∈ F Ñ
∞

Then by above we will have that

Ẽ
[(

ηn,qu

i

)4
]

(
ση

n,i

)4 ≤ C
Cη

(cη
min)2

< ∞

Ẽ
[(

ξn,qu

i

)4
]

(
σξ

n,i

)4 ≤ C
Cξ

(cξ)2
< ∞

and therefore the lemma is proved.

Proof. of Lemma 3

We proved that

max
i≤Nn

t

ση
n,i → 0 as n →∞

max
i≤Nn

t

σξ
n,i → 0 as n →∞

and that there exists qu
1 > 0 such that for any qu ∈ [0, qu

1 ] the sets

{“
ηn,qu

i

”2

(ση
n,i)

2 , n ∈ N, i ≤ Nn
t

}
,{“

ξn,qu

i

”2

(σξ
n,i)

2 , n ∈ N, i ≤ Nn
t

}
are uniformly integrable in lemmas 7 and 8.
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To prove that there exists qu
1 > 0 such that for any qu ∈ [0, qu

1 ] the jumps of the processes Pn (qu)

and D̂n (qu) uniformly converge in probability to zero consider stopping times

τn,η
α = inf {i ≥ 0 : |ηn

i | ≥ α}

τn,ξ
α = inf {i ≥ 0 : |ξn

i | ≥ α}

in the filtration Fn
t then by lemma 6 and Chebychev inequality we have that there exists qu

1 > 0

such that for any qu ∈ [0, qu
1 ]

P̃
(

max
i≤Nn

t

|ηn
i | > α

)
≤

∑
i≤Nn

t

(
Ẽ [ηn

i ]4 P̃ (τn,η
α = i)

) 1
2

α2

≤

[
Nn

t

n2 Cη
[∑Nn

t
j=1 ai−j [τ̃ j − τ̃ j−1]

2
]] 1

2

α2

P̃
(

max
i≤Nn

t

|ξn
i | > α

)
≤

[
Nn

t

n2 Cξ
[∑Nn

t
j=1 ai−j [τ̃ j − τ̃ j−1]

2
]] 1

2

α2

with a < 1. Notice that by definition of Ñ we have that for any ω ∈ Ω there exists k1 (ω) (k ∈ F Ñ
∞)

such that

[τ̃ i (ω)− τ̃ i−1 (ω)] < 2 log (i)

for any i > k1 (ω).

Moreover, by definition of Ñ for any ω ∈ Ω we have

lim
n→∞

Nn
t (ω)
n

= lim
n→∞

Ñtn (ω)
n

= λt

i.e. for any ω ∈ Ω and any ε > 0 there exists k2 (ω) (k ∈ F Ñ
∞) such that Nn

t (ω)
n ≤ λt + ε for any

n ≥ k2. Therefore we have (k ≥ k1, n ≥ k2)

P̃
(

max
i≤Nn

t

|ηn
i | > α

)
≤

[
(λt + ε)

a
Cη

[∑k
j=1 [τ̃ j − τ̃ j−1]

2

Nn
t

+ 2
log (Nn

t )
Nn

t

1
1− a

]] 1
2

P̃
(

max
i≤Nn

t

|ξn
i | > α

)
≤

[
(λt + ε)

a
Cξ

[∑k
j=1 [τ̃ j − τ̃ j−1]

2

Nn
t

+ 2
log (Nn

t )
Nn

t

1
1− a

]] 1
2
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Since maxi≤k [τ̃ j − τ̃ j−1]
2

< ∞, limn→∞ Nn
t = ∞ and limx→∞

log(x)
x = 0 we have

lim
n

P̃
(

max
i≤Nn

t

|ηn
i | > α

)
= 0

lim
n

P̃
(

max
i≤Nn

t

|ξn
i | > α

)
= 0
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