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Introduction

We want to compute by simulation credit portfolio loss distributions (at �xed points in time,
e.g., T = 5y, in view for instance of pricing CDO tranches by simulation). For the high
levels of the loss distribution we are thus facing a rare events simulation problem (many not
so rare accounting for contagion e�ects, but yet).

In factor copulae models the conditional loss distribution can be recovered analytically by
various means, and the (unconditional) distribution follows by numerical quadrature. Al-
ternatively, from the Monte Carlo point of view, it is possible to apply various variance
reduction techniques to the simulation of the conditional distribution, or the unconditional
distribution can be sampled directly (but slowly).
For pricing CDO tranches by Monte Carlo the most commonly used Monte Carlo vari-
ance reduction technique is control variate (using the portfolio loss at maturity as control
variable).

In more general dynamic models of credit risk the loss distribution can be computed by
numerical resolution of the related forward Kolmogorov equations. However practical res-
olution by deterministic numerical schemes is precluded by the curse of dimensionality for
models of (Markovian) dimension d greater than a few units. So for high d (as in general
bottom-up models) simulation approaches are the only way to go.

But, given the complexity and variety of models at hand, it is not easy to devise generic and
e�cient variance reduction schemes. In this work we consider application to this problem
of the so-called Interacting Particle System approach (Pierre Del Moral and Josselin
Garnier, Genealogical particle analysis of rare events [4], Annals of Applied Probability,
2005; see also the monograph [3]).

Application of IPS to the Computation of CDO Tranche Spreads was already considered in
Douglas Vestal, René Carmona and Jean-Pierre Fouque, Interacting Particle Systems

for the with Rare Defaults (paper under submission), yet in a structural model of credit risk.
Here we consider application of IPS to computation of a credit portfolio loss distribution in
reduced-form intensity models of credit risk.

1 Interacting Particle Systems for the Computation of Rare

Events

The purpose of this review section is to give a crash course on Feynman-Kac path measures
and their subsequent interacting particle system (IPS for short) interpretation. The basic
material is borrowed from [3] and the actual application to the Monte Carlo computation
of probabilities of rare events from [4]. Technical details are included for the sake of com-
pleteness and to ease the introduction of a speci�c set of notations. The IPS method of [4]
was already used in the computation of CDO tranche spreads based on structural models in
[10]. The point of view of the present paper is di�erent: we use a reduced-form approach,
and for this reason, the dimension and the complexity of the IPS which we bring to bear
in the computation of small probabilities are signi�cantly smaller, thus streamlining the
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application to CDO valuation.

1.1 Twisted Feynman-Kac Expectations

The problem at hand is the computation of small probabilities of events relative to a (possibly
time inhomogeneous) Markov chain {Xn}n, Xn being a random element taking values in a
general measurable space (En, En) which can change with n. Roughly speaking, the method
proposed in [4] is based on the deformation of the Markov chain successive transitions by way
of mutations and selections in order to force the chain into the rare events of interest. This
strategy is reminiscent of classical importance sampling. However, the main di�erence is that
while the Monte Carlo sample of an importance sampling computation are generated from
the twisted distribution, the Monte Carlo samples used in an IPS Monte Carlo computation
are generated under the original distribution of the chain. In other words, the knowledge of
the distribution of the underlying Markov chain is not really necessary. As we are about to
see, all we need to have in order to implement the IPS Monte Carlo computations is a black
box capable of generating Monte Carlo samples from the distribution of the chain.

We denote by Kn(xn−1, dxn) the transition kernel of the underlying Markov chain at time
n, and we denote by {Yn}n the historical process of {Xn}n de�ned by:

Yn = (X0, · · · , Xn) ∈ Fn = E0 × · · · × En.

Now, let Mn(yn−1, dyn) denote the Markov transitions associated with the inhomogeneous
Markov chain {Yn}n. We will also use the generic notation Bb(E) for the space of bounded,
measurable functions on the measurable space (E, E) equipped with the uniform norm.
Finally, for each integer n ≥ 0 we consider non-negative measurable functions Gn on Fn

equipped with the product σ-�eld, and we interpret these functions as potential functions.
It is assumed in [4] that these potential functions are bounded and bounded away from zero
in the sense that:

sup
(yn,y′n)∈Fn×Fn

Gn(yn)
Gn(y′n)

< ∞. (1)

This restrictive boundedness assumption can be relaxed in many cases. Here, we only
mention it for the sake of completeness.

Then, for any given fn ∈ Bb(Fn), we de�ne the Feynman-Kac expectation γn(fn) by:

γn(fn) = E

f(Yn)
∏

1≤i<n

Gi(Yi)

 . (2)

Note that as a non-negative linear form on a cone of non-negative functions, γn can be
viewed as a measure. We shall denote by ηn the corresponding normalized measure which
is naturally de�ned as

ηn(fn) =
E

{
f(Yn)

∏
1≤i<n Gi(Yi)

}
E

{∏
1≤i<n Gi(Yi)

} =
γn(fn)
γn(1)

. (3)

Notice that

γn+1(1) = γn(Gn) = ηn(Gn)γn(1) =
n∏

i=1

ηi(Gi). (4)
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This seemingly innocent remark will play a crucial role in the following. Consequently, for
any given bounded measurable function fn, we have

γn(fn) = ηn(fn)
∏

1≤i<n

ηi(Gi).

The above relationship has the merit of relating the un-normalized expectations in the left
hand side to normalized twisted expectations in the right hand side. We will �nd it convenient
later on to use the potential functions G−

n de�ned by

G−
n =

1
Gn

(who incidently still satisfy the positive boundedness condition if the orginal potential func-
tions Gn do), and the associated normalized and non-normalized measures which we denote
by η−n and γ−n respectively. Given all these de�nitions and notation we easily get:

E{fn(Yn)} = E

fn(Yn)
∏

1≤i<n

G−
i (Yi)

∏
1≤i<n

Gi(Yi)


= γn

fn

∏
1≤i<n

G−
i


= ηn

fn

∏
1≤i<n

G−
i

 ∏
1≤i<n

ηi(Gi). (5)

This shows that expectations over the original process can be computed if one can compute
normalized twisted expectations. This is in fact possible, in a dynamic way because, like in
classical �ltering theory, it is easily checked that, the sequence of normalized twisted prob-
ability measures form a well de�ned dynamical system in the space of probability measures.
Indeed we have

ηn = Φn(ηn−1), η1 = M1(X0, · ) (6)

where the nonlinear operators Φn giving the dynamics are de�ned as

Φn(η) =
1

η(Gn−1)

∫
Fn−1

η(dyn−1)Gn−1(yn−1)Mn(yn−1, · ) (7)

1.2 IPS and Empirical Estimations

1.2.1 Model Simulation

For the purpose of numerical computations and Monte Carlo estimation of expectations of
the form (??), we introduce approximations of the above probability distributions by convex
combinations of Dirac measures, and we show that the time evolution of the measures ηn

given by the dynamical system (??) and (??) implies a natural time evolution for the point
masses of the convex combinations of Dirac measures, hence the interpretation of these
approximations as an interacting particles system.
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We choose an integer m which we shall interpret as the number of particles. So clearly, we
can think of m as being large. A particle at time n is an element

ξj
n = (ξj

0,n, ξj
1,n, · · · , ξj

n,n) ∈ Fn = E0 × E1 × · · · × En.

where the superscript j of the particle ranges from 1 to m. We shall start with an initial
con�guration ξ1 = (ξj

1)1≤j≤m that consists of m independent and identically distributed
random samples from the distribution:

η1(d(x0, x1)) = M1(X0, d(x0, x1)) = δX0(dx0)K1(x0, dx1)

where we use the notation δx for the Dirac measure at the point x. In other words, the
ξj
1 = (ξj

0,1, ξ
j
1,1) = (X0, ξ

j
1,1) ∈ F1 = E0 ×E1 are independent and in such a way that all the

ξj
1,1 are all independent with the same distribution K1(X0, · ). Based on the transition given
by the dynamic equation (??), we de�ne the transition for the particles which are providing
the approximation of η2 by ξn−1 → ξn from Fm

n−1 into Fm
n according to the transition

probability

P{ξn ∈ d(y1
n, · · · , ym

n ) | ξn−1} =
m∏

j=1

Φn(µ(ξn−1))(dyj
n), (8)

where ρ(ξn−1) is the empirical measure de�ned by

ρ(ξn−1) =
1
m

m∑
j=1

δ
ξj
n−1

and d(y1
n, · · · , ym

n ) is an in�nitesimal neighborhood of the point (y1
n, · · · , ym

n ) ∈ Fm
n . Recall-

ing the de�nition of the operators Φn giving the dynamics of the ηn, one can see that (??) is
the superposition of two clearly identi�able elementary transitions, a selection followed by
a mutation. In other words:

Fm
n−1 3 ξn−1

selection−→ ξ̂n−1 ∈ Fm
n−1

mutation−→ ξn ∈ Fm
n

as follows. The selection stage is performed by resampling with replacement (i.e. choosing
independently) m (path) particles

ξ̂j
n−1 = (ξ̂j

0,n−1, ξ̂
j
1,n−1, · · · , ξ̂j

n−1,n−1) ∈ Fn−1,

with possible repetitions according to the Gibbs measure∑m
j=1

Gn−1(ξj
0,n−1,ξj

1,n−1,··· ,ξj
n−1,n−1)∑m

j=1 Gn−1(ξj
0,n−1,ξj

1,n−1,··· ,ξj
n−1,n−1)

δ
(ξj

0,n−1,ξj
1,n−1,··· ,ξj

n−1,n−1)
(9)

Then, the mutation stage of the transition is performed by extending each selected (path)
particle ξ̂j

n−1 into a (path) particle ξj
n ∈ Fn = Fn−1 × En of the form

ξj
n = (ξj

0,n, ξj
1,n, · · · , ξj

n,n)

= (ξ̂j
0,n−1, ξ

j
1,n−1, · · · , ξ̂j

n−1,n−1, ξ
j
n,n)

where the m samples ξj
n,n are independently drawn from the distributions Kn(ξ̂j

n−1,n−1, · ).
1.2.2 Convergence Results
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We are now in a position to quote the theoretical result on which the Monte Carlo approxi-
mations are based. See for example [3] or [4] for details. For each �xed n we have

lim
m→∞

ηm
n = ηn

in distribution, where the empirical measures ηm
n are de�ned by:

ηm
n =

1
m

m∑
j=1

δ
(ξj

0,n,ξj
1,n,··· ,ξj

n,n)
.

This result is screaming for the introduction of the particle approximation

γm
n (fn) = ηm

n (fn)
∏

1≤i<n

ηm
n (Gi)

for γn(fn). The main result of [4] which we use below states that γm
n is an unbiased estimator

for γn in the sense that for any integer p ≥ 1 and fn ∈ Bb(Fn) with ‖fn‖ ≤ 1, we have

E{γm
n (fn)} = γn(fn),

and in addition
sup
m≥1

√
mE{|γm

n (fn)− γn(fn)|p}1/p ≤ cp(n),

for some positive constant cp(n) < ∞ whose value does not depend upon the particular
choice of the function fn.

In view of (??), we thus get the following unbiased (at �xed m) and asymptotically conver-
gent (as m →∞) estimate to E{fn(Yn)}:

γm
n (fn

∏
1≤i<n

G−
i ) = ηm

n (fn

∏
1≤i<n

G−
i )

∏
1≤i<n

ηm
i (Gi) (10)

= Em
n

fn(ξn)
∏

1≤i<n

G−
i (ξ0,n, · · · , ξi,n)

 ∏
1≤i<n

Em
i Gi(ξi) (11)

where for every i the notation Em
i refers to expectation under the empirical distribution

de�ned by the ξj
i 's. More importantly, the variance of the estimator can be analyzed. In

case the expectation of interest is tantamount to the probability of a �rare� event

E{fn(Yn)} = E{1A(V (Yn))} = P{V (Yn) ∈ A} ,

where V is a function from En to R, the conclusion is that in order to minimize this variance,
one should use weight functions G favoring the occurence of the rare event without involving
too large normalizing constants. Moreover, the choice of G should give rise to an algorithm
that can be easily implemented.

We shall use these guidelines below for rare events of the form V (Xn) ∈ [x, x + δx) with
large x and small δx. In this case the asymptotic variance of the IPS estimator can in
turn be estimated, at least, whenever the distribution of V (Xn) given Xi for i < n admits a
density with respect to the Lebesgue measure. In this case we thus end-up with a con�dence
interval.

2 Credit Portfolio Loss Process
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We consider a continuous-time d-variate Markov Chain X̃ = (X̃1, · · · , X̃d) with components
in {0, 1, · · · , ν}, for some �xed integer ν. For simplicity we preclude simultaneous jumps of
the X̃ l's. The simulation of a d-dimensional model with generator (matrix) of dimension
(ν + 1)d may thus be reduced to the coupled simulation of d one-dimensional models with
generator of dimension ν + 1 (see Bielecki et al. [1]).

We denote by t̃i the ith jump time of X̃. We also set t̃0 = 0. We model the cumulative
default process L on a credit portfolio of size P as Lt = V (X̃t), for some (integer-valued)
loss function V. So L0 = 0 and L jumps by some (integer) amount at some of the t̃i's.

Note that many dynamic models of credit risk can be cast into this framework (after dis-
cretisation in space, if there are any space-continuous processes involved). Typical examples
will be given in later sections.

Since we are interested in the time horizon [0, T ], we introduce (using the convention inf ∅ =
−∞)

n = inf{i ∈ N ; t̃i ≥ T} .

We assume that n is �nite almost surely and we set further, for i ∈ N,

ti = t̃i∧n ∧ TX
i = X̃ti .

So ti = T i� i ≥ n, and for i ≥ n we have that Xi = X̃T and V (Xi) = LT .

2.1 IPS Algorithm

Introducing the weight function (for some �xed α > 0)

Gα
i (yi) = exp(α(V (xi)− V (xi−1))) = Gα(xi−1, xi) ,

we propose the following IPS algorithm (in which it is enough to keep track of jump times
and of the related two last components �father and son� of each path-particle, given this
choice of G) for computing the loss distribution pl(T ) = P(LT = l), for l ∈ NP .

Initialization: For every j = 1, · · · ,m, set ξj
0,1 = X̃0 and simulate a pair (tj1, ξ

j
1,1) starting

from ξj
0,1 at time 0 as de�ned above, using the dynamics of X̃ for this simulation step.

Loop: Assuming the m (time, father and son)-particles (tji−1, ξ
j
i−2,i−1, ξ

j
i−1,i−1) already

simulated:

Selection: Sample independently m (father and son)-particles (t̂ji−1, ξ̂
j
i−2,i−1, ξ̂

j
i−1,i−1) with

possible repetitions according to the Gibbs measure de�ned by the Gα(ξj
i−2,i−1, ξ

j
i−1,i−1)δtji−1,ξj

i−2,i−1,ξj
i−1,i−1

(normalized to one);

Mutation: For every j = 1, · · · ,m, set ξj
i−1,i = ξ̂j

i−1,i−1 and simulate a pair (tji , ξ
j
i,i)

starting from (t̂ji−1, ξ̂
j
i−1,i−1) using the dynamics of X̃ for this simulation step.

Termination: Exit from the loop when the (random) time n is reached on every path-
particle, for i = n̄, say, and compute the following estimate of the loss probability pl(T ) =
P(LT = l) and of the related asymptotic variance σ2

l (T ), for every l ∈ NP (note that

V (ξj
i,i) = Lj

T on i ≥ nj
i ) :

pm
l (T ) = Em

n̄ {δl(V (ξn̄,n̄)) exp(−αV (ξn̄−1,n̄))}
∏n̄−1

i=1 Em
i Gα(ξi−1,i, ξi,i) (12)

σ2,m
l (T ) = Em

n̄ {δl(V (ξn̄,n̄)) exp(−2αV (ξn̄−1,n̄))} (
∏n̄−1

i=1 Em
i Gα(ξi−1,i, ξi,i))2 (13)
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where for every �xed i the notation Em
i refers to the empirical distribution de�ned by the

ξj
i 's as j ranges from 1 to m.

Remark 2.1 (i) In this simulation it is crucial to exploit the fact that, according to our
assumptions, the components of the process X̃ do not jump simultaneously. So the simula-
tion of X̃ may be done �component by component�(see Bielecki et al. [1]), in time O(d).
(ii) We are not in the standard conditions ensuring convergence of the standard deviation
estimate (cf. end of section 1). However as it will be apparent in later sections it seems
that this estimate works in practice for assessing signi�cance of the related probability es-
timate (but it should be considered with caution as far as producing con�dence intervals is
concerned).

2.2 Poisson Toy Model

We �rst consider application of the method to the simulation of the loss distribution at
T = 5y of a standard Poisson process N (stopped at level n = 125), so (for i < 125)
P(NT = i) = e−5 5i

i! .

We ran 11 Monte Carlo loops (one standard MC loops and µ = 10 IPS MC loops) of size
m = 105 each, yielding eleven di�erent estimates of the probabilities pi(T ) = P(NT = i),
for i ∈ Nn. Then, for every i, we retained the estimator of the related probability with the
highest signi�cance, in the sense of the highest ratio of the estimated probability relative
to the estimated standard deviation (which in our experience is practically equivalent to
choosing the estimator corresponding to the value α(i) having given rise to the greatest
number of trajectories at level i).

Table 2 displays the results obtained for the 35 �rst levels of the loss (i = 0, · · · , 34).
For higher levels of the loss, the related probabilities are too small and the generic IPS
methodology is not su�cient to provide reasonable estimates, more speci�cally problem-
dependent methodologies should be considered instead (see, e.g., Johansen, Del Moral and
Doucet [8]). In the fourth column, α(i) (to be understood as 0.2 × α(i)) refers to the best
value of α for estimating pi(T ) (best in the sense of signi�cance as explained above, among
the eleven values of α that were used), the one corresponding to the probability estimate
displayed in the third column in case α(i) = 0 and in the �fth one in case α(i) > 0.

The exact (black curve) and estimated (MC standard estimates in blue and MC IPS esti-
mates in red) probabilities are plotted in Figure 1.

3 Local Intensity Model

We now consider a local intensity model corresponding to a pure top approach of credit risk,
in which the cumulative default process N of a credit portfolio with n names is modeled as a
Markov point process stopped at level n (see, for instance, Laurent, Cousin and Fermanian
[9] or Cont and Minca [2]). The cumulative default process N is thus a pure birth process
with (risk-neutral) local intensity λ(t, Nt), for a local intensity function λ such that λ(t, i) = 0
for i ≥ n (in order to ensure that N is stopped at level n, since there are n names in the
pool). This corresponds to the case where X̃ = N = L in the set-up of the previous section.
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Figure 1: Standard Monte Carlo versus IPS approach.

i p(i) MC(i) α(i) IPS(i) errIPS(i)
0 6.737947e-03 6.850000e-03 0 � 1.6630140
1 3.368973e-02 3.381000e-02 0 � 0.3569782
2 8.422434e-02 8.287000e-02 0 � 1.6080120
3 1.403739e-01 1.411600e-01 0 � 0.5600074
4 1.754674e-01 1.762900e-01 0 � 0.4688223
5 1.754674e-01 1.741600e-01 0 � 0.7450786
6 1.462228e-01 1.465800e-01 0 � 0.2442792
7 1.044449e-01 0.10586 1 9.642260e-02 7.6808635
8 6.527804e-02 0.06519 1 7.269477e-02 11.3617485
9 3.626558e-02 0.03548 1 3.832182e-02 5.6699651
10 1.813279e-02 0.01884 2 1.706726e-02 5.8762642
11 8.242177e-03 0.00761 2 7.025229e-03 14.7648865
12 3.434240e-03 0.00331 2 3.798202e-03 10.5980232
13 1.320862e-03 0.00135 2 1.301592e-03 1.4588951
14 4.717363e-04 0.00039 2 4.948383e-04 4.8972237
15 1.572454e-04 0.00014 3 1.315650e-04 16.3314126

Table 1: Standard MC versus MC IPS.
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16 4.913920e-05 0.00007 3 5.158852e-05 4.9844475
17 1.445271e-05 0.00004 3 1.453860e-05 0.5943091
18 4.014640e-06 0 3 3.570278e-06 11.0685371
19 1.056484e-06 0 3 9.457888e-07 10.4777238
20 2.641211e-07 0 3 2.389309e-07 9.5373474
21 6.288597e-08 0 4 6.775490e-08 7.7424802
22 1.429227e-08 0 4 1.578648e-08 10.4547036
23 3.107014e-09 0 4 3.165438e-09 1.8803674
24 6.472947e-10 0 4 6.513996e-10 0.6341628
25 1.294589e-10 0 4 1.149943e-10 11.1731226
26 2.489595e-11 0 4 2.563031e-11 2.9497091
27 4.610361e-12 0 4 2.805776e-12 39.1419521
28 8.232787e-13 0 4 6.662209e-13 19.0771085
29 1.419446e-13 0 5 1.453048e-13 2.3672480
30 2.365743e-14 0 5 2.589671e-14 9.4654196
31 3.815715e-15 0 5 4.039209e-15 5.8571942
32 5.962055e-16 0 5 4.274102e-16 28.3115984
33 9.033417e-17 0 5 5.303823e-17 41.2866355
34 1.328444e-17 0 6 1.845935e-18 86.1045282

The related generator (spatial generator at time t) writes

At =


−λ(t, 0) λ(t, 0) 0 0 0

0 −λ(t, 1) λ(t, 1) 0 0
· · ·

0 0 0 −λ(t, n− 1) λ(t, n− 1)
0 0 0 0 0


So N0 = 0 and N jumps by one at some (increasing) (0,+∞)-valued random times t̃i.
Conditionally on the information Ft = FN

t available at time t, the probability of a jump
in the next time interval (t, t + dt) is thus λ(t, Nt)dt. The related loss distribution pi(t) =
P(Lt = i), for i = 0, · · · , n, satis�es the following forward Kolmogorov equation (system of
ODEs), in which A∗ represents the adjoint (transpose) of A:

(∂t −A∗t )p = 0 on (0, T ] , (14)

with initial condition p(0) = δ0 (Dirac mass at 0). Or equivalently, for t ∈ [0, T ] :

p(t) = exp(
∫ t

0
A∗sds)δ0 (15)

Computing the loss distribution p in this model can thus be achieved by various means, like
Runge-Kutta resolution of (6) or numerical matrix exponentiation based on (7).

3.1 Numerical Results

We applied the IPS method in the case λ(t, i) = 1− i
n (cf. Table 3), using numerical matrix

exponentiation as a benchmark. Note that this speci�cation λ(t, i) = n−i
n corresponds to

a model with homogenous and independent obligors, with individual (pre-default) intensity
equal to 1

n .

The left part of Figure 2 displays the concentration of loss levels hit depending on the value
of α used (number of hits increasing as the color ranges from blue to red). The right part of
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T n λ(t, i) m µ α (Step)

5y 125 1− i
n 100000 11 0.4

Table 2: Parameter Values.
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Figure 2: Losses and Values.

the �gure displays the log-probabilities, exact (black curve) and simulated (points in color).
The color of a point refers to the value of α retained for estimating the related probability,
from blue for the lowest α to red for the highest.

The left and right part of Figure 3 exhibit the related errors (log10-relative errors, so the level
0 corresponds to a 1% relative error) and signi�cances (estimated probabilities divided by
estimated standard deviations). For comparison we plotted in Figure 4 the errors obtained
in computing the loss distribution by discretization of the forward Kolmogorov equation (6),
using binomial trees with 50, 250 and 1500 time steps, respectively.

Remark 3.1 Even if loops with too small number of runs (like m = 5000) do not ensure
accuracy over the desired range of loss levels, however they can be fruitfully used for scaling
the range of values of α to be used in loops with more runs.

3.1.1 Explicit IS

Figures 5 and 6 display the results obtained by an explicit importance sampling method,
consisting on this problem in multiplying the involved intensities by a factor α ranging from
1 to 11, simulating 5000 trajectories in the models with scaled intensities and applying the
related payo�s corrections. Color code are as before (color ranging from blue to red as the
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Figure 3: Errors and Signi�cance.
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Figure 5: Explicit IS Losses and Values (m = 5000).
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Figure 6: Explicit IS Errors and Signi�cance (m = 5000).
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factor α increases).

4 Homogenous Classes Model

An important issue to consider is whether the IPS approach allows one to cope with the
so-called curse of dimensionality. Namely, we need to assess the robustness of the method as
the model dimension increases � recall that in low-dimensional models the loss distribution
can be recovered exactly by numerical matrix exponentiation, as we did in the previous
section.

In this view we now consider a Markov chain model of credit risk as of Frey and Backhaus [5],
Bielecki et al. [1], or Herbertsson [7]. Namely, the n names of a pool are grouped in d classes
of ν = n

d homogenous obligors (assuming ν integer), and the cumulative default processes
N l, l = 1, · · · , d, of the di�erent groups are jointly modeled as a d-variate Markov point
process N (so simultaneous jumps are excluded), with intensity of N l given as λl(t, Nt), for
some intensity function λl = λl(t, ι), where ι = (i1, · · · , id) ∈ Nd

ν . The related generator
may thus be written in the form of a (ν + 1)d-dimensional (sparse) matrix Γ. We are thus
in the general set-up of section 2 with X̃ = N and L = V (N) =

∑
N l.

For d = 1, we recover the local intensity model of the previous section. At the other extreme,
for d = n, we are in e�ect modeling the vector of the default indicator processes of the pool
names. As d varies between 1 and n, we thus get a variety of models of credit risk, ranging
from pure top models for d = 1 to pure bottom-up models for d = n.

The related classes loss distribution qι(t) = P(Nt = ι), for ι ∈ Nd
ν , satis�es the following

forward Kolmogorov equation (system of ODEs), in which Γ∗ represents the adjoint of Γ:

(∂t − Γ∗t )q = 0 on (0, T ] , (16)

with initial condition q(0) = δ0 (Dirac mass at 0 ∈ Nd
ν). Or equivalently, for t ∈ [0, T ] :

q(t) = exp(
∫ t

0
Γ∗sds)δ0 (17)

Knowing q(t), the related portfolio loss distribution p = pi(t) = P(Lt = i), for i = 0, · · · , n,
follows in a straightforward way. However practical resolution of (8) or (9) by determnistic
numerical schemes is precluded by the curse of dimensionality for d greater than a few units
(depending on ν). So for high d simulation approaches are the only way to go.

4.1 Numerical Results

However, observe that for λl given as λl(t, ι) = ν−il
n , the general Markov chain model (for

arbitrary d) reduces to the local intensity model of the previous section (case of independent
homogenous obligors λ(t, i) = 1− i

n). Applying the IPS methodology and using the results
of the previous section as a benchmark, we got the following results. The (rather expected
yet) good news is that the accuracy of the method is not altered in higher dimension (d = 5,
here).

Figures 7 and 8 are the counterparts to Figures 2 and 3, respectively.

Figures 9, 10, 11 and 12 show the results obtained using m = 20000 or 5000 runs by Monte
Carlo loop (instead of 105 above).

4.1.1 Explicit IS
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T n = d× ν λl(t, ι) µ α (Step)

5y 125 = 5× 25 ν−il

n 11 0.4

Table 3: Parameter Values.
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Figure 7: Losses and Values (m = 105).

0 10 20 30 40

−
0

.5
0

.0
0

.5
1

.0
1

.5
2

.0

i

lo
g

_
e

rr

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ●

●
●

● ● ●
● ● ● ● ● ● ●

0 10 20 30 40

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0
0

.3
5

0
.4

0

i

ra
tio

_
p

ro
b

_
st

d

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

● ●
●

●

●

●

●

● ● ●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

Figure 8: Errors and Signi�cance (m = 105).
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Figure 9: Losses (m = 20000, 5000).
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Figure 10: Values (m = 20000, 5000).
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Figure 11: Errors (m = 20000, 5000).
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Figure 12: Signi�cance (m = 20000, 5000).
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Figures 13 and 14 display the results obtained by an explicit importance sampling method
consisting in multiplying the involved intensities by a factor α ranging from 1 (standard
MC) to 11, simulating 5000 trajectories in the models with scaled intensities and applying
the related payo�s corrections (cf. Figures 5 and 6).
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Figure 13: Explicit IS Losses and Values (m = 5000).

Conclusions and Perspectives

This work is in a preliminary stage. We need to assess further the impact of contagion and
the actual application of the method to CDO (senior) tranches.

According to Del Moral and J. Garnier [4], the IPS approach is also powerful to compute
conditional probabilities or expectations given the occurrence of some rare event. This could
be exploited to deal with (senior) tranche options by simulation.

A pitfall of the approach is that it only allows one to estimate with some accuracy (with a
few percents to �fty percents of relative error, say) loss levels with �not so small� probability,
not less than 1e−15 to 1e−25, say. To get good results for �rarer events� one needs to switch
to related yet di�erent methodologies, more demanding for the user (see, e.g., Johansen, Del
Moral and Doucet [8]).
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