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René Carmona and Max Fehr

Abstract. In this paper, we propose an equilibrium model for the joint price
formation of allowances issued by regulators in the framework of a cap-and-
trade scheme such as the European Union Emissions Trading Scheme (EU
ETS) and offset certificates such as CERs generated within the framework of
the Clean Development Mechanism (CDM) or the Joint Implementation (JI)
of the Kyoto Protocol. The main thrust of the paper is to derive equilibrium
price formulas which explain the spreads observed historically.
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1. Introduction

The Kyoto protocol offers three flexible mechanisms to meet pollution targets. The
first is emission trading. Based on the success of the SOx and NOx markets set
up in the US in the 1980s and the subsequent acid rain program, several regional
voluntary markets have sprouted with various degrees of success. The most ambi-
tious of these attempts is the recent Regional Greenhouse Gas Initiative (RGGI,).
While limited to electric power plants in Northeastern and Mid-Atlantic states, it
is the first mandatory market-based effort in the United States to reduce green-
house gas emissions: its goal is to reduce CO2 emissions from these installations
by 10% by 2018. However, the European Union Emission Trading Scheme (EU
ETS) is the largest mandatory market of emission allowances. It was set up by
Directive 2003/87/ec of the European parliament as a market mechanism to help
its participants meet the Green House Gas (GHG) emission reduction targets set
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within the Kyoto protocol signed by its members. The gory details of EU ETS
can be found in the original directive [1] and a comprehensive presentation can
be found in the edited volume [8]. A number of alternative approaches to GHG
mitigation are under consideration in the United States and a measure proposing
a national cap-and-trade system (the American Clean Energy and Security Act
of 2009 also known and the Waxman-Makey bill) was recently voted by the US
House of Representatives, and is soon to be considered by the Senate. If such a
legislation is voted, it is highly likely that countries like Canada, Japan, Australia,
New Zeland, etc. will follow suit and the carbon markets could become some of
the largest and most active financial markets in the near future.

The other flexible mechanisms proposed by the Kyoto protocol are the Clean
Development Mechanism (CDM) and the Joint Implementation (JI). They differ
in that they apply to different geographic regions and are governed by different
rules and different bodies. For example, JI status can be given to projects located
in economies in transition while CDM status is granted to projects in developing
countries. However, because of their strong similarities, we will only refer to the
Clean Development Mechanism in this paper.

The CDM allows emission-reduction (or emission removal) projects in devel-
oping countries to earn Certified Emission Reduction (CER) credits, each equiva-
lent to one ton of CO2. These CERs can be traded and sold, and used by indus-
trialized countries to a meet a part of their emission reduction targets under the
Kyoto Protocol. The mechanism stimulates sustainable development and emission
reductions, while giving industrialized countries some flexibility in how they meet
their emission reduction targets.

The projects must qualify through a rigorous and public registration and is-
suance process designed to ensure real, measurable and verifiable emission reduc-
tions that are additional to what would have occurred without the project. The
mechanism is overseen by the CDM Executive Board which ultimately reports to
the countries that have ratified the Kyoto Protocol. In order to be considered for
registration, a project must first be approved by the Designated National Author-
ities (DNA). Operational since the beginning of 2006, the mechanism has already
registered more than 1,000 projects and is anticipated to produce CERs amounting
to more than 2.7 billion tonnes of CO2 equivalent in the first commitment period
of the Kyoto Protocol, 2008 – 2012.

A general description of the framework of JI and CDM can be found in [13]
and [14] and the practical elements of their financial implications in [9]., Equilib-
rium models for simple forms of cap-and-trade schemes not including the trading
of offsets generated by mechanisms like the CDM or JI have been studied by many
authors since the groundbreaking work of Montgomery [10] in the deterministic
case. See for example [3, 5, 4] for example. The specific issues related to banking of
allowances from one compliance period to the next was already studied in [7, 12]
and [11] for example.

We close this introduction with a short survey of the contents of the paper.
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Section 2 presents our mathematical model of the economy. The economic
agents we consider are firms or installations covered by cap-and-trade regulations.
The firms are involved in different markets, and these markets are subject to regu-
lations with different (non-overlaping) compliance periods. They produce and sell
goods. They are risk neutral as they aim at maximizing their expected terminal
wealth, using linear utility. They face an inelastic demand. This assumption may
be restrictive for some markets, but it will come handy with our equilibrium anal-
ysis. Production processes are the source of an externality, say emissions of GHGs,
and market mechanisms in the form of cap-and-trade regulations are imposed to
control and possibly reduce these emissions. Most inputs of our model, demands
for goods, costs of production, etc. are given by stochastic processes. Already,
equilibrium models have been proposed and used in stochastic frameworks to en-
lighten price formation for the pollution certificates issued by the regulators (see
for example [5]) or for the joint formation of the prices of goods and emissions (see
for example [4]). As a minor side effect, the present paper gives a generalization of
the analysis of [5] to the multi-markets, multi-compliance periods framework. But
most importantly, our new model accommodates different abatement strategies,
say based on short term or long term abatement measures, and so doing, can be
used to model emission reduction by means of projects covered by the Clean De-
velopment Mechanism of the Kyoto protocol. The main thrust of the paper is the
joint price formation for pollution permits coming from two different sources: 1)
standard emission cap-and-trade schemes, and 2) the Clean Development Mecha-
nism. Prices appear in a competitive equilibrium based on a model of short and
long term abatement strategies, emission trading involving physical and financial
positions and regulatory compliance restrictions. The gory details are spelled out
in Section 2 below. We choose to work in the framework of discrete time processes
for the sake of convenience only. But even then, notations are rather involved and
to help the reader follow the presentation, we collected most of the notations and
the definitions in two short appendices at the end of the paper. These appendices
play the role of an index of notation.

The competitive equilibrium set-up is given in Section 3. We first articulate
the optimization problem faced by each individual firm, we give the definition of
the notion of equilibrium appropriate for our model, and we give an equivalence
result which reduces the equilibrium analysis to the study of a reduced form of
equilibrium for a simpler model not involving trading. We then formulate the prob-
lem of an informed central planner (the so-called representative agent) and rewrite
its optimization problem as a large linear program in function space. Note that,
despite the fact that like in [4] we use properties of the weak* topologies of L∞-
spaces when in duality with L1-spaces, the proof given here is quite different since
it relies on established properties of the theory of linear programming in infinte
dimensional topological vector spaces. Duality theory is used and the complemen-
tarity slackness conditions are spelled out carefully as they are the main source
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of information from which properties of the equilibrium prices are derived in the
following Section 4.

An interesting phenomenon is illustrated in Figure 1. The price of a CER is
not equal to the price of an EUA even though a CER, like an EUA, is a certifi-
cate which can be used to offset one ton-equivalent of CO2 emissions. The spread
between the prices of these two offsets is a source of risk for the emission market
participants, and various forms of trading this spread have emerged as risk mit-
igation maneuvers. It is enlightening to see that the equilibrium prices produced
by our model do exhibit a spread, and in some sense, its analysis is the main
goal of Section 4. We give several formulas expressing this difference in price be-
tween regular allowances and CERs, and we give intuitive explanations for their
existence.

In this paper, we use the following conventions: we restrict the word allowance
or allowance certificate for the permits issued by the regulator of a given market,
while we use CER for permits and certificates generated through the Clean De-
velopment Mechanism (CDM) and Joint Implementation (JI). The generic term
offset will refer to either one of these types of certificates.

2. Joint Model for Multiple Emissions Markets

In this section we present the set-up of our mathematical analysis. We consider
an economy with different emission markets m ∈M . Each market covers a certain
set of firms I(m), with I(m)∩ I(m′) = ∅ if m 6= m′. This assumption is justified if
one thinks of national or regional markets whose coverages are naturally disjoint.
We denote by I the set of all the agents, i.e. the union of all the I(m), I :=⋃
m∈M I(m). We assume that each market is similar to EU ETS, and comprises

a finite set Q(m) = {1, . . . , |Q(m)|} of consecutive compliance periods. We denote
by Tm0 < Tm1 < · · · < Tmq the end points of the compliance periods. In other words,
[Tmq−1, T

m
q ] is the q-th compliance period in emissions market m ∈M . In order to

avoid unnecessary technical issues we assume that no two markets have compliance
periods ending at the same time, i.e. for all m 6= m′ ∈M it holds that Tmq 6= Tm

′

q′

for all q ∈ Q(m) and q′ ∈ Q(m′). Moreover we assume that emission trading
stops at Tm|Q(m)|. This could be either because transition to clean technologies
is completed, or after time Tm|Q(m)| emission trading schemes do not couple to
preceding periods (i.e. banking is not allowed and penalty is purely financial).
Further, we denote by T = max{Tm|Q(m)||m ∈M} the last time point of our model.
Also for notational ease we introduce the set P = {1, . . . ,

∑
m∈M |Q(m)|} and

denote by (Tp)p∈P the vector of subsequent compliance time points such that for
each m ∈ M and q ∈ Q(m) there exists a p ∈ P with Tp = Tmq and Tp < Tp′ if
and only if p < p′.

The main thrust of the paper is to propose a model for the coupling of the
different markets through the Clean Development mechanism (CDM) by allowing
each firm i ∈ I to use up to a certain amount κi of Certified Emission Reductions
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(CER) for compliance. Notice that countries where CDM projects are carried out
are usualy not covered by emission trading schemes. For notational convenience
we consider these markets to be covered by emission trading schemes with zero
penalty and without allocation.

In what follows (Ω,F , {Ft, t ∈ {0, 1, . . . , T}},P) is a filtered probability
space. We assume that F is complete and that F0 contains all the sets of probability
zero. We denote by E[.] the expectation operator under probability P and by
Et[.] the conditional expectation with respect to Ft. The σ-field Ft represents
the information available at time t. We will also make use of the notation Pt(.) :=
Et[1{.}] for the conditional probability with respect to Ft. We will use the notation
η ∈ L1(Ft) or η ∈ L1

t (resp. η ∈ L∞(Ft) or η ∈ L∞t ) to mean that η is an integrable
(rep. bounded) random variable which is Ft measurable (i.e. known at time t). For
example, we denote by Γi,q ∈ L∞(FTmq ) the emissions of firm i ∈ I(m) of market
m ∈M over the period q ∈ Q(m) .

2.1. Emission Reductions

In a cap -and-trade system, the allowance price is determined by the cap, namely
the total number of emission certificates issued by the regulator, the penalty ap-
plied to emissions which are not offset by redeemed certificates, the existing abate-
ment strategies, their flexibility and costs. Conceptually, we have to distinguish
the abatement measures according to the time horizon which is required to re-
turn a profit. In this regard, abatement measures range from short-term measures
(no initial investments, savings being returned within days) to long-term measures
(high and irreversible investments, savings are returned over decades). Examples
of long-term measures are optimization/substitution of high polluting production
units, installation of scrubbers, investment in CDM and JI projects. On the con-
trary, typical short term abatement measures yield emission savings by switching
fuels or skipping/re-scheduling the production.

For the purpose of this study, and for the sake of simplicity, we assume that
each firm i ∈ I has access to either a short term abatement measure or a CDM
project. In our model, firms have access to both short and long term reduction
measures. However, optimal CDM strategies are not necessarily indicative of opti-
mal long term abatement strategies, so this assumption may need to be revisited
in subsequent studies.

Short Term Abatement. At each time 0 ≤ t ≤ T − 1, firm i ∈ I decides to reduce
emission throughout the period [t, t+ 1) by the amount ξit. Since the choice of the
reduction level ξit is based only on present and past observations, the processes
ξi are supposed to be adapted and, since reduction cannot exceed a maximum
reduction level ξ

i
, we require that the inequalities

0 ≤ ξit ≤ ξ
i
, i ∈ I, t = 0, 1, · · · , T − 1, (2.1)

hold almost surely. Here, ξ
i

is a deterministic constant giving the maximum abate-
ment level possible for firm i ∈ I(m). The actual cumulative short term emission
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reduction of firm i during compliance period q ∈ Q(m) when it uses the short term
abatement strategy ξi reads

Πi,q(ξi) :=
Tmq −1∑
t=Tmq−1

ξit. (2.2)

CDM / Long Term Abatement. At each time 0 ≤ t ≤ T − 1, firm i ∈ I decides
wether to exercise part of its CDM project or not. The amount that is exercised
is given by a real number ζit . If ζit = 1, the whole project is started at time point
t. To avoid integer constraints altogether, we will assume that each CDM project
can also be realized piece by piece. Especially for big CDM projects with several
emission sources this is certainly a realistic assumption. For example, half of the
project can be exercised at one time point and the other half at another point in
time. Since the choice to exercise the project is based only on present and past
observations, the processes ζi are also supposed to be adapted and, since a CDM
project cannot be used for credit beyond its original scope, we require that the
inequalities

0 ≤
T−1∑
t=0

ζit ≤ 1, i ∈ I (2.3)

hold almost surely. Moreover for notational convenience we assume that CERs
generated by CDM projects are issued right after their starting dates. Again, this
is somehow an unrealistic assumption as it disregards the fact that an investment
in a CDM can turn out to be a net loss if the project is not approved or rewarded
with CERs. Let µi denote the emission reduction that is generated if agent i ∈ I
exercises his whole CDM project. The actual cumulative emission reduction of firm
i during compliance period p ∈ P when it uses reduction strategy ζi reads

Πi,p(ζi) := µi
Tp−1∑
t=Tp−1

ζit . (2.4)

Note that µi = 0 simply means that firm i does not have access to CDM projects.

2.2. Emission Trading

We denote by πmq ∈ [0,∞) the financial penalty applied in market m ∈ M to
each unit of pollutant in compliance period q ∈ Q(m). However we assume that
it is only at the last time point Tm|Q(m)| that the penalty is actually paid. For
the sake of simplicity, we assume that the entire period [Tmq−1, T

m
q ] corresponds

to one simple compliance period. Moreover, for periods q < |Q(m)| banking of
allowances and CERs to the next period is allowed. i.e. allowances that are not
used for compliance, may be used for compliance in all subsequent periods up to
time Tm|Q(m)|.
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In this economy, operators of installations that emit pollutants will have three
fundamental choices in order to avoid unwanted penalties: 1) reduce emissions by
producing with cleaner technologies, 2) buy allowances, 3) buy CERs.

At time Tmq−1, i.e. at the beginning of the q-th compliance period of the
market m ∈M , each firm i ∈ I(m) in this market is given an initial endowment of
Θi,q ∈ L∞(FTmq−1

) allowances. Notice that Θi,q depends upon the market m ∈ M
through the participant i in this market. So if it were to hold on to this initial set
of allowances until the end, it would be able to offset up to Θi,q units of emissions,
and start paying penalty only if its actual cumulative emissions exceeded that
level. This is the cap part of a cap-and-trade scheme. Depending upon their views
on the demands for the various products and their risk appetites, firms may choose
production schedules leading to cumulative emissions in excess of their caps. In
order to offset expected penalties, they subsequently engage in buying allowances
from firms which expect to meet demand with less emissions than their own cap.
This is the trade part of a cap-and-trade schemes.

Allowances are physical in nature, since they are certificates which can be
redeemed at time Tmq to offset measured emissions. But, because of trading, these
certificates change hands and they become financial instruments. In EU ETS,
allowances are allocated in March each year, while the 5 year compliance period
of the second phase started in January 2008. Therefore a significant amount of
allowances are traded via forward contracts. Because compliance takes place at
time Tmq for q ∈ Q(m) and m ∈ M , and only at these times will we restrict
ourselves to the situation where trading of emission allowances is done via forward
contracts settled at time Tmq .

Remark 2.1. Because compliance takes place at time Tp for p ∈ P , a simple no-
arbitrage argument implies that the forward and spot prices both for allowances and
CERs, differ only by a discounting factor, such that trading spot or forwards gives
the same expected discounted payoff at time Tp. Therefore under the equilibrium
definition that will be introduced in Section 3, considering only forward trading
yields no loss of generality. For notational ease, we restrict ourselves to the case
where all forwards are paid at time T and not Tmq . Moreover allowing trading in
forward contracts in our model provides a more flexible setting: it is more general
than considering only spot trading, since it allows for trading even before these
allowances are issued or allocated. This is an important feature when dealing with
several compliance periods. In particular if at Tp all CERs are used for compliance
it is not possible to trade CER spot before new CERs are issued.

2.3. Financial and Physical Positions

We denote by Ãq,mt the price at time t = 0, . . . , Tmq of a (q,m)-allowance forward
contract guaranteeing delivery of one allowance certificate (that can be used for
compliance in market m at Tmq ) at maturity Tmq and payment at T . Moreover C̃pt
denotes the price at time t = 0, . . . , Tp of a p-maturity CER forward contract (that
can be used for compliance in all markets) at maturity Tp and payment at T .
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Financial Positions. For simplicity we assume that agents can take positions only
on their own allowance market, and we denote for m ∈ M and q ∈ Q(m) by
θ̃i,qt the number of (q,m)-allowance forward contracts held by firm i ∈ I(m) at
the beginning of the time interval [t, t + 1). Similarly we denote for all p ∈ P by
ϕ̃i,pt the number of p-maturity CER forward contracts held by firm i ∈ I at the
beginning of the time interval [t, t+ 1).

We define a trading strategy (θ̃i, ϕ̃i) for firm i ∈ I(m) as a couple of vector
valued adapted stochastic processes θ̃i = (θ̃i,q)q∈Q(m) and ϕ̃i,p = (ϕ̃i,p)p∈P where
θ̃i,q = (θ̃i,qt )t=0,··· ,Tmq −1 and ϕ̃i,p = (ϕ̃i,pt )t=0,··· ,Tmp −1 are scalar adapted processes.
The net cash position at time T resulting from this trading strategy is:

R
(A,C)
T (θi, ϕi) :=

∑
q∈Q(m)

Tmq −1∑
t=Tmq−1

θ̃i,qt (Ãq,mt+1 − Ã
q,m
t ) +

∑
p∈P

Tp−1∑
t=Tp−1

ϕ̃i,pt (C̃pt+1 − C̃
p
t ).

(2.5)

Physical Positions. We denote by Aq,mTmq the price at time Tmq of a (q,m)-allowance
which is paid at time T . Similarly, CpTp denotes the price at time Tp of a p-maturity
CER forward contract with payment at T .

For simplicity we assume again that agents can take positions only on their
own forward allowance market, and we denote for each m ∈ M and q ∈ Q(m) by
γi,qTq and θi,qTq the number of (q,m)-allowances banked and used for compliance by

firm i ∈ I(m) at Tmq respectively. Similarly we denote for each p ∈ P by φi,pTp and

ϕi,pTp the number of p-maturity CERs banked and used for compliance by firm i ∈ I
at Tp respectively. Clearly φi,pTp = 0 if Tp is not a compliance date Tmq .

We define a banking strategy (γi, φi) of firm i ∈ I(m) by adapted processes
γi = (γi,qTq )q∈Q(m) and φi = (φi,pTp )p∈P . Similarly we define a compliance strategy

(θi, ϕi) of firm i ∈ I(m) by adapted processes θi = (θi,qTq )q∈Q(m) and ϕi = (ϕi,pTp )p∈P .

The random variables ϕi,pTp will have to satisfy a constraint of the upper bound type
since because of regulation, a firm can only use a limited amount of CERs toward
its excess emissions.The costs at time T of these strategies read∑

q∈Q(m)

Aq,mTmq

(
θiTmq + γiTmq − γ

i
Tmq−1

−Θi
Tmq

)
(2.6)

for allowance trading, and∑
p∈P

CpTp

(
ϕiTp + φiTp − φ

i
Tp−1

−Πi,p(ζ)
)
. (2.7)

for CER trading.

Penalties. We denote by πmq ∈ [0,∞) the financial penalty per unit of pollutant
not covered by emission offset, whether in the form of allowance certificates or
CERs in compliance period q ∈ Q(m). This penalty is only paid at the last time
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point Tm|Q(m)|. For compliance periods q < |Q(m)| ending at Tmq this penalty has
two components: not only does it include the payment of πmq times the numbers of
emission units not covered by redeemed offsets, but it also includes the transfer to
the current period of the number of missing offsets from the next trading period.
For each firm i ∈ I(m) in market m ∈ M , the penalty is paid for each ton of
net cummulative emission βiTmq for period q ∈ Q(m). It is computed at time Tmq
as the difference between the total amount Γi,q − Πi,q(ξi) of pollutants emitted
over the entire period [Tmq−1, T

m
q ] plus the short position βiTmq−1

from the preceding

allowance period minus the number ϕiTmq +θiTmq of allowances and CERs submitted
for compliance by the firm at time Tmq . The net cumulative emission βiTmq is this
difference whenever positive, and 0 otherwise. Hence it fullfills

βiTmq =
(

Γi,q −Πi,q(ξ)− ϕi,pTmq − θ
i
Tmq

)+

(2.8)

and the financial penalty at time Tmq is given by πmq β
i
Tmq

for all q ∈ Q(m), i ∈ I(m)
and m ∈M .

Compliance Restrictions. Both for allowances and for CERs the amount that can
be banked or used for compliance is restricted by their amount available in the
market. Moreover, in the case of CERs, regulatory requirements impose further
restrictions. For allowances, on any given period, the total number of allowances
banked from the preceding periods and those resulting from compliance strategies
should equal to the initial allocation for this period (vintage). Hence for each
market m ∈M , one should have∑

i∈I(m)

[θiTmq + γiTmq − γ
i
Tmq−1

+ βiTmq−1
] =

∑
i∈I(m)

Θi,q, (2.9)

for each q ∈ Q(m). For CERs, the amount that can be banked or redeemed for
compliance is also restricted by the number of allowances available in the market.
These are given by the amount banked from the previous period plus the amount
of CERs generated since the last compliance event p− 1 corrected by the number
Ξi,p ∈ L∞(FTp) of CERs that firm i ∈ I decided to withdraw from the market, for
example for voluntary offsets. These are not part of the strategy but an exgenously
given random variable. Later we shall assume that there are no point masses in the
distributions of these quantities. Hence balancing CER banking and compliance
strategies at each date Tp for p ∈ P gives∑

i∈I
[ϕiTp + φiTp − φ

i
Tp−1

] =
∑
i∈I

[Πi,p(ζ)− Ξi,p].. (2.10)

2.4. Costs

Despite the fact that we are jointly modeling markets with possibly different cur-
rencies, we purposedly ignore the risks and opportunities associated with fluctua-
tions in foreign exchange rates. For the sake of simplicity, we assume that all the
financial quantities are expressed in one single currency. Moreover as explained
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earlier, we express all cash flows, position values, firm wealth, and good prices in
time T -currency. As a side fringe benefit, this avoids discounting in the compu-
tations. We use for numéraire the price Bt(T ) at time t of a Treasury (i.e. non
defaultable) zero coupon bond maturing at T . We denote by {S̃it}t=0,1,··· ,T and
{L̃it}t=0,1,··· ,T the adapted stochastic processes giving the short and long term
abatement costs of firm i ∈ I, and according to the above convention, we find it
convenient to work at each time t with the T -forward price

Sit = S̃it/Bt(T ) , Lit = L̃it/Bt(T )

and we skip the dependence upon T from the notation of the T -forward prices.
For us, a cash flow Xt at time t is equivalently valued as a cash flow Xt/Bt(T ) at
maturity T . So if firm i ∈ I follows the abatement policy (ξi, ζi) = (ξit, ζ

i
t)
T−1
t=0 , its

time T -forward costs are given by
T−1∑
t=0

[Sitξ
i
t + Litζ

i
t ]. (2.11)

Combining (2.11), (2.5), (2.6) and (2.7) together with (2.5), we obtain the following
expression for the terminal cumulative costs CÃ,C̃,A,C,i of firm i:

CÃ,C̃,A,C,i =
Tm|Q|∑
t=0

ζitL
i
t +

Tm|Q|∑
t=0

ξitS
i
t +R

(Ã,C̃)
T (θ̃i, ϕ̃i)

+
∑

q∈Q(m)

Aq,mTmq

(
θiTmq + γiTmq − γ

i
Tmq−1

+ βiTmq−1
−Θi

Tmq

)

+
∑
p∈P

CpTp

(
ϕiTp + φiTp − φ

i
Tp−1

−Πi,p(ζ) + Ξi,p
)

+
∑

q∈Q(m)

πq
(

Γi,q −Πi,q(ξ)− ϕiTmq − θ
i
Tmq

)+

. (2.12)

Recall that expected emissions and production costs change with time in a sto-
chastic manner. The statistical properties of these processes are given exogenously,
and are assumed to be known at time t = 0 by all firms. Moreover, we always as-
sume that these processes satisfy the constraints (2.1) and (2.3) almost surely.
Agents adjust their production and trading strategies in a non-anticipative man-
ner to their observations of the fluctuations in demand and production costs. In
turn, the production and trading strategies (ξi, ζi, θi, ϕi, γi, φi, θ̃i, ϕ̃i) become a
vector valued adapted stochastic processes on the stochastic base of the demand
and production costs.

3. Equilibrium Analysis

We first consider the individual firm optimization problems.
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3.1. The Individual Firm Optimization Problems

Clearly, each firm i ∈ I tries to minimize its expected terminal cost, i.e. the
expectation of CÃ,C̃,A,C,i defined above in (2.12). In this subsection, we define
rigorously this optimization problem. Our strategy is to first linearize the objective
function. Since the only non-linearities come from the positive parts in the last
summation accounting for the penalty payments, we use the fact that for any
integrable random variable X on a probability space (Ω,F ,P), we have

E{X+} = inf
β∈F,β≥0,β≥X

E{β}.

Using this identity, we can replace each expectation

E{
(

Γi,q −Πi,q(ξ)− ϕiTmq − θ
i
Tmq

)+

}

with the infimum of E{βiq} over βiq ∈ L∞Tmq such that βiq ≥ 0 and βiq ≥ Γi,q −
Πi,q(ξi)−ϕiTmq − θ

i
Tmq

. So, for each given pair of price processes (A,C) and (Ã, C̃)
the individual optimization problem of agent i ∈ I is given by

inf
xi∈Fi,(θ̃i,ϕ̃i)∈Hi

E{IÃ,C̃,A,C,i} (3.1)

where IÃ,C̃,A,C,i is defined as:

IÃ,C̃,A,C,i =
Tm|Q|∑
t=0

ζitL
i
t +

Tm|Q|∑
t=0

ξitS
i
t +R

(Ã,C̃)
T (θ̃i, ϕ̃i) +

∑
q∈Q(m)

πqβiTmq

+
∑

q∈Q(m)

Aq,mTmq

(
θiTmq + γiTmq − γ

i
Tmq−1

+ βiTmq−1
−Θi

Tmq

)

+
∑
p∈P

CpTp

(
ϕiTp + φiTp − φ

i
Tp−1

−Πi,p(ζ) + Ξi,p
)
.

and where the feasibility sets Fi and Hi are defined as follows. First, we denote
by xi the physical strategy (βi, ξi, ζi, θi, ϕi, γi, φi) which belongs to the following
L∞ space L∞i which we write down as a product of individual L∞ spaces in order
to emphasize the respective measurability properties of the components of xi.

L∞i :=
{
xi = (βi, ξi, ζi, θi, ϕi, γi, φi)

∣∣∣∣βi, θi ∈ |Q(m)|∏
q=1

L∞Tmq ; ξi, ζi ∈
T−1∏
t=0

L∞t ;

ϕi ∈
|P |∏
p=1

L∞Tp ; γi ∈
|Q(m)|−1∏
q=1

L∞Tmq ; φi ∈
|P |−1∏
p=1

L∞Tp

}
and

H1
i :=

{
(θ̃, ϕ̃)

∣∣∣∣θ̃ ∈ |Q(m)|∏
q=1

Tmq −1∏
t=0

L1
t ; ϕ̃ ∈

|P |∏
p=1

Tp−1∏
t=0

L1
t

}
(3.2)
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where for t = 0, . . . , T and p = 1, . . . ,∞, Lpt denotes the space of equivalence
classes of Ft-measurable random variables in Lp. For notational convenience we
also set:

L∞ =
∏
i∈I
L∞i , and H1 =

∏
i∈I
H1
i .

We already explicitly stated the individual constraints satisfied by some of the
components of xi, for example:

βiTmq + ϕiTmq + θiTmq + Πi,q(ξi) ≥ Γi,q for all q ∈ Q(m) (3.3)

ϕiTp ≤ κi for all p ∈ P (3.4)

ξit ≤ ξ
i

for t = 0, . . . , T − 1 (3.5)
T−1∑
t=0

ζit ≤ 1, (3.6)

where by convention we set:

βiTm0 = 0, γiTm0 = 0, and φiTm0 = 0.

For the sake of notational convenience, we rewrite them (together with those we did
not explicitly stated) in two different forms. We view xi as ami = 1+2(T+|Q(m)|+
|P |)-tuple of bounded random variables (with their own individual measurability
properties which are irrelevant for the purpose of the present discussion), say
xi = [xi,j ]j=1,··· ,mi . There exist mi bounded random variables χi,j satisfying the
constraints

0 ≤ xi,j ≤ χi,j , j = 1, · · · ,mi. (3.7)

According to our assumptions, most of the bounded random variables χi,m are in
fact constants, and the other ones have the same measurability properties as the
corresponding strategies xi,j . We write this set of mi constraints as

0 ≤ xi ≤ χi, (3.8)

where we think of χi as the mi-tuple χi = [χi,j ]j=1,··· ,mi of bounded random
variables. We singled out the constraints (3.7) because they will be at the heart of
some of the compactness arguments providing existence of optima. Together with
the set of remaining constraints, see for example constraints (3.3) and (3.6) above,
as

F ixi ≥ f i , xi ≥ 0 (3.9)

for an appropriate linear map F i : L∞i 7→ K∞i and a vector f i ∈ K∞i with

K∞i =
{

(zj,i)4
j=1

∣∣∣∣z1,i ∈
|Q(m)|∏
q=1

L∞Tmq , z
2,i ∈

|P |∏
p=1

L∞Tp , z
3,i ∈

T−1∏
t=0

L∞t , z
4,i ∈ L∞T−1

}
.

Hence, the set of feasible strategies for firm i ∈ I(m) can be defined as:

Fi = {xi ∈ L∞i | xi ≥ 0, F ixi ≥ f i} (3.10)
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and as usual, we set
F =

∏
i∈I

Fi and K∞ =
∏
i∈I
Ki.

3.2. Equilibrium Definitions

In equilibrium, strategies must satisfy (2.9) and (2.10) for all m ∈ M, q ∈ Q(m)
and for all p ∈ P . In the following we write these constraints as

Gx = g, (3.11)

for a linear map G : L∞ 7→ K∞G and an element g ∈ K∞G with

K∞G =
{

(zA, zC)
∣∣∣∣zA ∈ ∏

m∈M

|Q(m)|∏
q=1

L∞Tmq ; zC ∈
|P |∏
p=1

L∞Tp

}
. (3.12)

Using this notation the global feasible strategy set reads

G = {x ∈ L∞|Gx = g}, (3.13)

and if we define price spaces as

K1
G =

{
(A,C)

∣∣∣∣A ∈ ∏
m∈M

|Q(m)|∏
q=1

L1
Tmq

; C ∈
|P |∏
p=1

L1
Tp

}
(3.14)

and

H∞ :=
{

(Ã, C̃)
∣∣∣∣Ã ∈ ∏

m∈M

|Q(m)|∏
q=1

Tmq∏
t=0

L∞t ; C̃ ∈
|P |∏
p=1

Tp∏
t=0

L∞t

}
(3.15)

in order to emphasize once more the measurability properties of the constraints,
the natural definition of a perfectly competitive equilibrium in the present set-up
reads:

Definition 3.1. The pair of forward price processes (Ã∗, C̃∗) ∈ H∞ and spot prices
processes (A∗, C∗) ∈ K1

G form an equilibrium if for each i ∈ I there exists x∗i ∈ Fi

and (θ̃∗i, ϕ̃∗i) ∈ H1
i such that: (i) All forward positions are in zero net supply, i.e.

for all m ∈M and q ∈ Q(m) it holds that∑
i∈I

θ̃∗i,q,mt = 0, t = 0, . . . , Tmq − 1 (3.16)

and for all p ∈ P ∑
i∈I

ϕ̃∗i,pt = 0, t = 0, . . . , Tp − 1. (3.17)

(ii) Strategies fullfill equilibrium constraints in the sense that (x∗i)i∈I ∈ G. (iii)
Each firm i ∈ I is satisfied by its own strategy in the sense that

E[IÃ
∗,C̃∗,A∗,C∗,i(x∗i, θ̃∗i, ϕ̃∗i)] ≤ E[IÃ

∗,C̃∗,A∗,C∗,i(xi, θ̃i, ϕ̃i)]

for all xi ∈ Fi and (θ̃i, ϕ̃i) ∈ H1
i . (3.18)
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Because trading only plays a marginal role in the construction of equilibriums, we
introduce a somehow more restrictive notion of equilibrium without trading, and
after proving that it is actually equivalent to the more general notion spelled out
above, we use it in the existence proof. For each pair of price processes (A,C) and
for each firm i ∈ I(m) participating in market m ∈ M with individual strategy
xi ∈ Xi we define the individual physical utility (without forward trading) as:

LA,C,i(xi) = E
[ T−1∑
t=0

ζitL
i
t +

T−1∑
t=0

ξitS
i
t +

∑
q∈Q(m)

πq,mβiTmq

+
∑

q∈Q(m)

Aq,mTmq

(
θiTmq + γiTmq − γ

i
Tmq−1

+ βiTmq−1
−Θi,q

)

+
∑
p∈P

CpTp

(
ϕiTp + φiTp − φ

i
Tp−1

−Πi,p(ζ) + Ξi,p
)]
.

Using this notation we define a reduced equilibrium (without forward trading) as
follows.

Definition 3.2. The spot prices (A∗, C∗) ∈ K1
G form a reduced equilibrium of the

market if there exists x∗ ∈ F such that: (i) Strategies fullfill equilibrium constraints
x∗ ∈ G. (ii) Each firm i ∈ I is satisfied by its own strategy in the sense that

LA
∗,C∗,i(x∗i) ≤ LA

∗,C∗,i(xi) for all xi ∈ Fi. (3.19)

The following equivalence result shows that there is no loss of generality in using
this more restrictive notion of equilibrium.

Proposition 3.3. Forward prices (Ã∗, C̃∗) ∈ H∞ and spot prices (A∗, C∗) ∈ K1
G

with associated strategies x∗i ∈ F i and (θ̃∗,i, ϕ̃∗,i) ∈ H1
i for all i ∈ I form an

equilibrium in the sense of Definition 3.1 if and only if the spot prices (A∗, C∗) ∈
K1
G form an equilibrium in the sense of Definition 3.2 with associated strategies

x∗i ∈ Fi for all i ∈ I and

Ã∗q,mt = E[A∗q,mTmq
|Ft] for all t = 0, . . . , Tmq ,m ∈M, q ∈ Q(m) (3.20)

C̃∗pt = E[C∗pTp |Ft] for all t = 0, . . . , T p, p ∈ P. (3.21)

Proof. We first show that for each m ∈ M, q ∈ Q(m) the futures allowance price
process Ã∗q,m is a martingale for if not, there exists a time t and a set A ∈ Ft
of non-zero probability such that Et[Ã∗q,mt+1 1A] > 1AÃ

∗q,m
t (or resp. <). Then for

each firm i ∈ I the trading strategy given by θ̃i,q,ms = θ̃∗i,q,ms for all s 6= t and
θ̃i,q,mt = θ̃∗i,q,mt + 1A (resp θ̃i,q,mt = θ̃∗i,q,mt − 1A) outperforms the strategy θ̃∗i,
contradicting the property (3.16) of an equilibrium. Moreover the payoff of the
forward is A∗q,mTmq

and Ã∗q,mTmq
= A∗q,mTmq

which proves (3.20). The same argument

holds for C̃∗ together with property (3.17) of an equilibrium proving (3.21). Since
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both Ã∗ and C̃∗ are martingales it follows that

LA
∗,C∗,i(xi) = E[IÃ

∗,C̃∗,A∗,C∗,i(xi, θ̃i, ϕ̃i)] (3.22)

for all xi ∈ Fi, (θ̃i, ϕ̃i) ∈ H1
i and i ∈ I. Therefore (3.18) implies (3.19). Which

proves that (A∗, C∗) form an equilibrium in the sense of Definition 3.2.
Conversely, if we assume that (A∗, C∗) ∈ K1

G form an equilibrium in this sense
with associated strategies x∗i ∈ Fi for all i ∈ I, and (Ã∗, C̃∗) ∈ H∞ are given by
(3.20) and (3.21), then since (Ã∗, C̃∗) are martingales it follows again that

LA
∗,C∗,i(xi) = E[IÃ

∗,C̃∗,A∗,C∗,i(xi, θ̃i, ϕ̃i)] (3.23)

for all xi ∈ Fi, (θ̃i, ϕ̃i) ∈ H1
i and i ∈ I. In particular this holds for x∗i together

with (θ̃∗i, ϕ̃∗i) = (0, 0) which also satisfy conditions (3.16) and (3.17). Hence we
conclude that (3.19) implies (3.18) proving that (A∗, C∗) and (Ã∗, C̃∗) form an
equilibrium with associated strategies x∗i and (θ̃∗i, ϕ̃∗i) = (0, 0) for all i ∈ I. �

3.3. Equilibrium and Global Optimality: Linear Programming Formulation

The space L∞ of strategies was defined in the previous section. Now we set

K∞F =
{

(zi)i∈I

∣∣∣∣zi ∈ K∞i for all i ∈ I
}
. (3.24)

and we define the space of constraints as

K∞ =
{

(z, zA, zB)
∣∣∣∣z ∈ K∞F ; (zA, zB) ∈ K∞G

}
. (3.25)

We then define the linear map F : L∞ 7→ K∞F in a natural way as the matrix of
linear maps

F :=

 F 1

. . .
F |I|

 .

the vector f by f = [f i]i∈I and the upper bound χ by χ = [χi]i∈I . The space of
feasible strategies can be rewritten as:

F ∩G = {x ∈ L∞| x ≥ 0, Fx ≥ f, Gx = g}. (3.26)

The above notations were introduced in order to reformulate the equilibrium ex-
istence problem as a linear program. The primal problem (P) of a representative
agent (informed central planner) can be stated as:

P ∗ = inf
x≥0, Fx≥f, Gx=g

〈x, c〉L (3.27)

if we use the notation

〈x, c〉L = E
[∑
i∈I

( T−1∑
t=0

ζitL
i
t +

T−1∑
t=0

ξitS
i
t

)
+
∑
m∈M

∑
i∈I(m)

∑
q∈Q(m)

πm,qβiTmq

]
. (3.28)
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The sum of individual problems (SIP) can be written as

R(A,C) = inf
x≥0, Fx≥f

∑
i∈I

LA,C,i(xi) (3.29)

for all (A,C) ∈ K1
G, the Lagrange relaxation (LR) of the global constraints Gx = g

is given by

LR∗ = sup
(A,C)∈K1

G

R(A,C) = sup
(A,C)∈K1

G

inf
0≤x≤χ, Fx≥f

∑
i∈I

LA,C,i(xi) (3.30)

and the dual program (D) of the representative agent problem is given by

D∗ = sup
wF∈K1

F , wF≥0, wG∈K1
G, F

∗wF+G∗wG+wχ≤c
〈(f, g), (wF , wG)〉K. (3.31)

3.4. Existence of Optima and Relation with the Original Equilibrium Model

The main existence result is given in the following proposition.

Proposition 3.4. There exist feasible solutions both for the primal linear program
(P). The duality gap vanishes and the infimum P* is attained for an optimal
feasible solution x.

Proof. We first prove the feasibility claim by inspection.
The linear constraints Fx ≥ f translate for each market m ∈ M and for

the individual firm i ∈ I(m) to inequalities (3.3)-(3.6), while the global equality
constraints Gx = g yield (2.9) and (2.10) almost surely. In order to prove primal
feasibility, we need for each i ∈ I, to find xi such that x = (xi)i∈I satisfies x ≥ 0,
Fx ≥ f and Gx = g. Recall that xi = (βi, ξi, ζi, θi, ϕi, γi, φi), so that, if we
choose ξi = 0 (no abatement), ζi = 0 (no CDM project at all), θi = 0 (no
physical allowance redeemed for compliance), ϕi = 0 (no physical CER redeemed
for compliance), then setting βiTmq = Γi,q guarantees that inequalities (3.3)-(3.6)
are satisfied, and finally we construct γi and φi recursively from the equalities
(2.9) and (2.10) to guarantee that the equality constraints are satisfied as well.

The next part of the proof relies on standard arguments from the theory of
convex optimization in infinite dimensional topological vector spaces, so we only
outline the major steps, and for the reader’s convenience, we give precise references
to the classical functional analysis results which we use.

In order to solve the primal problem, we need to minimize the linear function
x ↪→ 〈x, c〉L over the set

U = {x ∈ L∞; x ≥ 0, Fx ≥ f, Gx = g}.
Extracting almost surely convergent sequences if needed, on easily check that U is
closed in the sense of the norm of L1. Moreover, U is weakly∗ closed in L∞. Indeed,
since U is a convex and a norm-closed subset of L1 it follows from the Hahn-Banach
Theorem that U is the intersection of halfspaces Hx,c = {y ∈ L1|〈y, x〉 ≤ c} with
x ∈ L∞ and c ∈ R such that U ⊆ H. Since L∞ ⊆ L1 it holds for each of these
halfspaces Hx,c that x ∈ L1. Thus we conclude that Hx,c∩L∞ = {y ∈ L∞|〈y, x〉 ≤
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c} is closed in (L∞, σ(L∞,L1)). Since by definition it holds that U ⊆ L∞ it follows
that U is given by the intersection of the sets Hx,c ∩L∞. Since any intersection of
closed sets is closed we conclude that U is weakly∗ closed in L∞.

Since U is bounded and weakly∗ closed, it follows from the theorem of Banach-
Alaoglu that U is weakly∗ compact. Moreover since the objective function we try
to minimize is continuous for the weak∗ topology, the proof is complete since any
continuous function attains its minimum on a compact set.

The final claim, vanishing of the duality gap, follows from standard linear
programming results. See for example [2] Chapter IV or [6] Chapter III. �

The following result highlights the correspondence between equilibrium prices
and the optimization problems (P) and (LR).

Proposition 3.5. Price processes (Ā, C̄) form an equilibrium with associated strate-
gies x̄ if and only if (Ā, C̄) and x̄ are optimal solutions of (LR) and (P) respectivelly
and the duality gap is zero, i.e. LR∗ = P ∗.

Proof. Notice that for x ∈ G (in particular when Gx = g), it holds that∑
i∈I

LA,C,i(x) = 〈x, c〉L (3.32)

for all (A,C) ∈ K1
G and hence∑

i∈I
LA,C,i(x∗) = 〈x∗, c〉L = P ∗ (3.33)

for all (A,C) ∈ K1
G for a primal optimal solution x∗. Now let us assume that

(A∗, C∗) and x∗ are optimal solutions of (LR) and (P) respectivelly. Then it holds
that

LR∗ = sup
(A,C)∈K1

G

∑
i∈I

inf
xi∈Fi

LA,C,i(xi)

=
∑
i∈I

inf
xi∈Fi

LA
∗,C∗,i(xi) ≤

∑
i∈I

LA
∗,C∗,i(xi∗) = P ∗.

Since we have LR∗ = P ∗ by assumption, we conclude that the above inequality is
in fact an equality and we obtain

LA
∗,C∗,i(x∗i) ≤ LA

∗,C∗,i(xi) for all xi ∈ Fi, i ∈ I (3.34)

proving that (A∗, C∗) is an equilibrium with associated strategies x∗. Conversely,
if we suppose that (Ā, C̄) is an equilibrium with associated strategies x̄ then it
follows that ∑

i∈I
inf
xi∈Fi

LĀ,C̄,i(xi) =
∑
i∈I

LĀ,C̄,i(x̄i) (3.35)
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and x̄ ∈ G. The latter implies that the right hand side of (3.35) equals 〈c, x̄〉 and
we obtain

LR∗ = sup
(A,C)∈K1

G

inf0≤x≤χ, Fx≥f
∑
i∈I

inf
xi∈Fi

LA,C,i(xi)

= sup
(A,C)∈K1

G

∑
i∈I

inf
xi∈Fi

LA,C,i(xi)

≥
∑
i∈I

inf
xi∈Fi

LĀ,C̄,i(xi) =
∑
i∈I

LĀ,C̄,i(x̄i)

= 〈c, x̄〉 ≥ inf
0≤x∈F∩G

〈c, x〉 = P ∗.

Since weak duality implies equality between above terms, it follows that the op-
timal solution of the Lagrange relaxation problem (LR) is attained at (Ā, C̄), the
primal optimal solution being attained at x̄ and LR∗ = P ∗. �

It seems difficult to prove that the supremum in the dual problem (D) is
attained in the full generality of this section. We will prove existence of a solution
to the dual problem, and hence existence of equilibrium prices for allowances and
CERs, essentially be inspection later in Subsection 4.4. However as we will see,
this existence proof requires some technical assumptions.

3.5. Complementary Slackness Conditions

For the sake of convenience, we bundle the operators F and G providing the linear
constraints into a single operator A defined by:

A : L∞ 3 x 7→ Ax = (Fx,Gx) ∈ K∞.

If we use L, a set with |L| =
∑
i∈I mi , to label the scalar components xl of

x = (xi)i∈I , then for each x ∈ L∞, Ax can be expressed as

Ax =

(∑
l∈L

ak,lxl

)
k∈L

. (3.36)

The specific forms of the constraints (3.3)-(3.6) and (2.9) and (2.10) give that
ak,l 6= 0 implies that tl ≤ sk. Hence each element of xl ∈ L∞tl is also an element of
L∞sk and A actually maps L∞ into K∞. Moreover if we write the canonical bilinear
form giving the duality between L∞ and L1 with this new notation, then

〈x, y〉L =
∑
l∈L

E[xlyl] for all x ∈ L∞, y ∈ L1 (3.37)

for the dual pair (L∞,L1) and

〈z, w〉K =
∑
k∈K

E[zkwk] for all z ∈ K∞, w ∈ K1 (3.38)

for the dual pair (K∞,K1) if we use K for the indexes of the components of the
elements of K∞ and K1.
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Lemma 3.6. The adjoint A∗ of A is given by

A∗ : K1 3 w 7→ A∗(w) =

(∑
k∈K

ak,lE[wk|Ftl ]

)
k∈K

∈ L1 (3.39)

Proof. Because wk ∈ L1
sk

it follows that E[wk|Ftl ] ∈ L1
tl

for all k ∈ K hence
(A∗(w))l ∈ L1

tl
for all l ∈ L which proves that

A∗ : K1 7→ L1. (3.40)

Moreover for all x ∈ L∞ and w ∈ K1 it holds that

〈x,A∗(w)〉L =
∑
l∈L

E

[
xl

(∑
k∈K

ak,lE[wk|Ftl ]

)]
(3.41)

= E

[
E

[∑
l∈L

∑
k∈K

xlak,lwk

∣∣∣∣Ftl
]]

=
∑
k∈K

E

[(∑
l∈L

ak,lxl

)
wk

]
= 〈A(x), w〉K,

where we used the property that xlE[wk|Ftl ] = E[xlwk|Ftl ] for all xl ∈ L∞tl and
wk ∈ L1

sk
. From (3.40) and (3.41) we conclude that A∗ is the adjoint of A. �

Primal Feasibility
By the very definition of the operators F and G, the linear constraints Fx ≥ f

translate for each market m ∈ M and for the individual firm i ∈ I(m) to the
inequalities (3.3)-(3.6), while the global equality constraints Gx = g yield (2.9)
and (2.10) almost surely.

Dual Feasibility
The dual feasibility conditions

c− F ∗w̄ −G∗(Ā, C̄)T ≥ 0
w̄ ≥ 0

imply that for each market m ∈M and agent i ∈ I(m), the following inequalities
hold almost surely:

(π + νE[w1,i
Tmq+1
|FTmq ]− w1,i

Tmq
) ≥ 0 , (Aq.mTmq − w

1,i
Tmq

) ≥ 0 (3.42)

(Aq,mTmq − E[Aq+1,m
Tmq+1

|FTmq )] ≥ 0 (3.43)

(CpTp − E[Cp+1
Tp+1
|FTp)] ≥ 0 , (CpTp − w

1,i
Tp

+ w2,i
Tp

) ≥ 0 (3.44)

(Sit − w
1,i
t + w3,i

t ) ≥ 0 , (Lit − E[w4,i
T + rCTp |Ft)] ≥ 0, (3.45)

as well as:
w1,i
Tmq
≥ 0 , w2,i

Tmq
≥ 0 a.s. for all i ∈ I(m) (3.46)
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Complementary Slackness

The complementary slackness condition

〈x̄, c− F ∗w̄ −G∗(Ā, C̄)T 〉L = 0 (3.47)

together with x̄ ≥ 0 and c − F ∗w̄ − G∗(Ā, C̄)T ≥ 0 give the following conditions
for allowance trading

〈βiTmq , π + νE[Aq+1,m
Tmq+1

|FTmq ]− w1,i
Tmq
〉 = 0 (3.48)

〈θiTmq , A
q,m
Tmq
− w1,i

Tmq
〉 = 0 (3.49)

〈γiTmq , A
q,m
Tmq
− E[Aq+1,m

Tmq+1
|FTmq ]〉 = 0. (3.50)

for all m ∈M , q ∈ Q(m) and i ∈ I(m) as well as the following conditions for CER
trading

〈φiTp , C
p
Tp
− E[Cp+1

Tp+1
|FTp ]〉 = 0 (3.51)

〈ϕiTp , C
p
Tp
− w1,i

Tp
+ w2,i

Tp
〉 = 0 (3.52)

for all periods p ∈ P and all agents i ∈ I. Moreover (3.47), together with dual
feasibility give for each i ∈ I, the following reduction policy constraints:

〈ξit, Sit − E[w1,i
Tmq
|Ft] + w3,i

t 〉 = 0 for all t = Tmq−1, . . . , T
m
q

〈ζit , Lit − E[rCTq |Ft] + E[w4,i
T |Ft]〉 = 0 for all t = Tp−1, . . . , Tp.

The other complementary slackness condition

〈Fx̄− f, w̄〉K = 0 (3.53)

together with the primal feasibility condition Fx̄− f ≥ 0 and the dual feasibility
constraint w̄ ≥ 0 imply:

〈βiTmq + θiTmq + ϕiTmq + Πiq(ξ)− Γi,q − βiTmq−1
, w1,i

Tmq
〉 = 0 (3.54)

for all m ∈M , q ∈ Q(m) and i ∈ I(m), as well as:

〈κi − ϕiTp , w
2,i
Tp
〉 = 0. (3.55)

for all periods p ∈ P and all agents i ∈ I. Moreover they also give the following
reduction policy constraints:

〈w3,i
t , ξ

i − ξit〉 = 0 for all t = 0, . . . , T − 1

〈w4,i
T , 1−

T−1∑
t=0

ζit〉 = 0.
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4. Existence and Analysis of Equilibrium Prices

The goal of this section is to derive formulas for the equilibrium prices of allowance
and CERs which explain the spread separating them. These formulas will come at
the price of technical assumptions which we now formulate. As an added benefit,
these formulas will make it possible to prove the existence results which we could
not prove in the full generality of the abstract setting of last section.

4.1. Technical Assumptions

Notice that, because the complementary slackness conditions hold for all opti-
mal solutions of the primal and dual problems, we choose to restrict ourselves to
solutions which satisfy those conditions. In particular we only consider optimal
strategies x̄ ∈ L∞ where

β̄iTmq =
(

Γi,q −Πi,q(ξ̄)− ϕ̄iTmq − θ̄
i
Tmq

)
(4.1)

for all m ∈ M and q ∈ Q(m). This implies that the penalty does not exceed the
short position and no firm uses more allowances/CERs than needed for compli-
ance. Such a solution can be obtained from any optimal solution x∗ by increas-
ing/decreasing the amount of banked allowances and/or CERs.

Assumption 1. Let for each market m ∈M the initial allocations fullfill
q∑
p=1

∑
i∈I(m)

Θi,p >

q−1∑
p=1

∑
i∈I(m)

Γi,p a.s. (4.2)

for all q = 2, . . . , |Q(m)| while ∑
i∈I(M)

Θi,1 > 0 a.s.

This assumption guaranties that there is a positive amount of allowances re-
maining in each compliance period even tough the short position from one period
can be withdrawn from next periods allocations. This is made precise in the fol-
lowing lemma. For the results in this paper to be true we need Assumption 4.1 so
one could replace Lemma 1 by an other assumption yielding the same result.

Lemma 4.1. For any strategy x̄ that fullfills (4.1) it holds under Assumption 1 that∑
i∈I(M)

(Θi,q − β̄iTmq−1
+ γ̄iTmq−1

) > 0 (4.3)

almost surely for all m ∈M and q ∈ Q(m).

Proof. Due to ∑
i∈I(m)

(θ̄iTmq + γ̄iTmq + β̄iTmq−1
) =

∑
i∈I(m)

(Θi,q + γ̄iTmq−1
) (4.4)
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we have ∑
i∈I(M)

(β̄iTmq − γ̄
i
Tmq

)

=
∑

i∈I(M)

(Γi,q −Πi,q(ξ̄)− θ̄iTmq − ϕ̄
i
Tmq
− γ̄iTmq )

=
∑

i∈I(M)

(Γi,q −Πi,q(ξ̄)− ϕ̄iTmq −Θi,q + (β̄iTmq−1
− γ̄iTmq−1

)). (4.5)

Hence ∑
i∈I(M)

(β̄iTmq − γ̄
i
Tmq

) =
q∑
p=1

∑
i∈I(M)

(Γi,p −Πi,p(ξ̄)− ϕ̄iTmp −Θi,p,m)

and consequently ∑
i∈I(M)

(β̄iTmq − γ̄
i
Tmq

) ≤
q−1∑
p=1

∑
i∈I(M)

(Γi,p −Θi,p,m)

and ∑
i∈I(M)

(Θi,q − β̄iTmq−1
+ γ̄iTmq−1

) ≥
∑

i∈I(M)

Θi,q −
q−1∑
p=1

∑
i∈I(M)

(Γi,q −Θi,q) > 0.

�

Lemma 4.2. Assuming the conclusion (4.3) of Lemma 4.1, for each market m ∈M
, i ∈ I(m) and q ∈ Q(m), it holds that{

β̄iTmq > 0
}
⊆
{
Aq,mTmq = πq,m + E[Aq,mTmq |FTmq ]

}
(4.6)

up to zero sets.

Proof. {
β̄iTmq > 0

}
⊆

{
w1,i
Tmq

= πq,m + E[Aq,mTmq |FTmq ]
}
∩
{
Aq,mTmq ≥ w

1,i
Tmq

}
⊆

{
Aq,mTmq ≥ π

q,m + E[Aq,mTmq |FTmq ]
}

Moreover on{
Aq,mTmq > πq,m + E[Aq,mTmq |FTmq ]

}
⊆

⋂
i∈I(m)

{
γiTmq = 0

}
(4.7)

⊆
⋂

i∈I(m)

{
θiTmq > 0

}
(4.8)

⊆
⋂

i∈I(m)

{
w1,i
Tmq

= Aq,mTmq

}
(4.9)



CDM and CER Price Formation 23

where (4.8) follows from Lemma 4.1 This is a zero set due to primal feasibility

πq,m + E[Aq,mTmq |FTmq ] ≥ w1,i
Tmq

(4.10)

which concludes the proof. �

In the sequel let for each agent i ∈ I(m) we let

∆̄i,q
Tmq

= Γi,q −Πi,q(ξ̄). (4.11)

denote the effective emissions of agent i in period q ∈ Q(m). In the next lemma
we prove that if the amount of CERs used for compliance is not extremal then
allowance price and CER price are equal up to zero sets.

Lemma 4.3. Assuming the conclusion (4.3) of Lemma 4.1, for any optimal strategy
x̄ ∈ L∞ fullfilling restriction (4.1) it holds that{ ∑

i∈I(m)

ϕ̄iTmq ∈
(
0,
∑

i∈I(m)

min(∆i,q
Tmq
, κi)

)}
⊆
{
Aq,mTmq = CpTmq

}
(4.12)

Proof. First we notice that{
ϕ̄iTmq < min(∆̄i,q

Tmq
, κi)

}
∩
{
β̄iTmq = 0

}
(4.13)

⊆
({
ϕ̄iTmq < ∆̄i,q

Tmq

}
∩
{
β̄iTmq = 0

})
(4.14)

∪
({
ϕ̄iTmq < κi

}
∩
{

∆̄i,q
Tmq
≥ κi

}
∩
{
β̄iTmq = 0

})
⊆
{
θ̄iTmq > 0

}
⊆
{
Aq,mTmq = w1,i

Tmq

}
where the last inclusion follows from (3.49). Moreover it holds that{

β̄iTmq > 0
}
⊆

{
β̄iTmq > 0

}
∩
{
Aq,mTmq = πq,m + E[Aq,mTmq |FTmq ]

}
⊆

{
Aq,mTmq = w1,i

Tmq

}
where the last inclusion follows from (3.48) and Lemma 4.2. Also,{

ϕ̄iTmq < min(∆̄i,q
Tmq
, κi)

}
(4.15)

⊆
({
ϕ̄iTmq < min(∆̄i,q

Tmq
, κi)

}
∩
{
β̄iTmq = 0

})
∪
({
ϕ̄iTmq < min(∆̄i,q

Tmq
, κi)

}
∩
{
β̄iTmq > 0

})
⊆
{
ϕ̄iTmq < min(∆̄i,q

Tmq
, κi)

}
∩
{
Aq,mTmq = w1,i

Tmq

}
⊆
{
Aq,mTmq ≤ C

p
Tmq

}
.
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Hence we conclude that{ ∑
i∈I(m)

ϕ̄iTmq ∈
(
0,
∑

i∈I(m)

min(∆i,q
Tmq
, κi)

)}

⊆
( ⋃
i∈I(m)

{
ϕ̄iTmq > 0

})
∩
( ⋃
i∈I(m)

{
ϕ̄iTmq < min(∆̄i,q

Tmq
, κi)

})
⊆
{
Aq,mTmq ≥ C

p
Tmq

}
∩
{
Aq,mTmq ≤ C

p
Tmq

}
⊆
{
Aq,mTmq = CpTmq

}
where the second to last inclusion follows from (3.52). �

Assumption 2. For each m ∈ M and q ∈ Q(m) there is an agent i∗ ∈ I(m)
satisfying

Γi
∗,q −Πi∗,q(ξ

i∗

) > κi
∗

(4.16)
almost surely and the FTmq −1-conditional distribution of Γi

∗,q has almost surely no
point mass, or equivalently

P
[{

Γi
∗,q +

∑
i∈Ĩ

Γi,q = Z

}]
= 0 (4.17)

for all FTmq −1-measurable random variables Z and Ĩ ⊆ I(m) \ i∗.

This assumption is reasonable for the 2008-2012 phase of EU ETS. There it
is well known that the electricity sector could use significantly more CERs than
allowed. Therefore in EU ETS agents in the electricity sector need to convince
other industries to sell allowances and comply with more CERs. Only in that
way the total CER limit for EU ETS

∑
i∈I(m) ϕ

i
Tmq

=
∑
i∈I(m) κ

i can be reached.
Moreover the electricity sector faces uncontroled emissions (from the primary and
secondary markets) which satisfy the no point mass condition.

Lemma 4.4. Under Assumption 2 it holds that for any strategy x̄ that fullfills (4.1)
we have for all m ∈M and q ∈ Q(m)

P
[{ ∑

i∈I(m)

β̄iTmq = 0
}
∩
{ ∑
i∈I(m)

γ̄iTmq = 0
}
∩
{ ∑
i∈I(m)

ϕ̄iTmq =
∑

i∈I(m)

min(∆̄i,q
Tmq
, κi)

}]
= 0

(4.18)
and

P
[{ ∑

i∈I(m)

β̄iTmq = 0
}
∩
{ ∑
i∈I(m)

γ̄iTmq = 0
}
∩
{ ∑
i∈I(m)

ϕ̄iTmq = 0
}]

= 0. (4.19)

Proof. Notice first that for all m ∈M and q ∈ Q(m) Assumption 2 implies that

P
[{

Γi
∗,q +

∑
i∈I(m)\i∗

(Γi,q − Zi)1{Ai} = Z

}]
= 0 (4.20)

for all FTmq −1-measurable random variables Z,Zi and sets Ai ∈ FTmq .
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{ ∑
i∈I(m)

β̄iTmq = 0
}
∩
{ ∑
i∈I(m)

γ̄iTmq = 0
}
∩
{ ∑
i∈I(m)

ϕ̄iTmq =
∑

i∈I(m)

min(∆̄i,q
Tmq
, κi)

}

⊆
( ⋂
i∈I(m)

{
Γi,q −Πi,q(ξ̄)− θ̄iTmq − ϕ̄

i
Tmq

= 0
})

∩
{ ∑
i∈I(m)

θ̄iTmq =
∑

i∈I(m)

(
Θi,q − β̄iTmq−1

+ γ̄iTmq−1

)}

∩
( ⋂
i∈I(m)

{
ϕ̄iTmq = min(∆̄i,q

Tmq
, κi)

})

⊆
{

Γi
∗,q +

∑
i∈I(m)\i∗

(Γi,q −Πi,q(ξ̄)− κi)1{Ai} =
∑

i∈I(m)

(
Θi,q − β̄iTmq−1

+ γ̄iTmq−1

)}

where we used (4.16) for the last inclusion and Ai = {ϕ̄iTmq = ∆̄i,q
Tmq
} ∈ FTmq for all

i ∈ I(m). Since Zi := Πi,q(ξ̄) + κi and Z :=
∑
i∈I(m)

(
Θi,q − β̄iTmq−1

+ γ̄iTmq−1

)
are

FTmq −1-measurable which together with (4.20) implies (4.18). Similarly it holds
that { ∑

i∈I(m)

β̄iTmq = 0
}
∩
{ ∑
i∈I(m)

γ̄iTmq = 0
}
∩
{ ∑
i∈I(m)

ϕ̄iTmq = 0
}

⊆
( ⋂
i∈I(m)

{
Γi,q −Πi,q(ξ̄)− θ̄iTmq − ϕ̄

i
Tmq

= 0
})

∩
{ ∑
i∈I(m)

θ̄iTmq =
∑

i∈I(m)

(
Θi,q − β̄iTmq−1

+ γ̄iTmq−1

)}
∩
( ⋂
i∈I(m)

{
ϕ̄iTmq = 0

})

⊆
{

Γi,q +
∑

i∈I(m)\i∗
Γi,q =

∑
i∈I(m)

(
Θi,q + Πi,q(ξ̄))− β̄iTmq−1

+ γ̄iTmq−1

)}
.

Since Z :=
∑
i∈I(m)

(
Θi,q + Πi,q(ξ̄))− β̄iTmq−1

+ γ̄iTmq−1

)
is FTmq −1-measurable (4.19)

follows from (4.17). �

Assumption 3. For all m ∈ M , q ∈ Q(m) and p ∈ P with Tmq = Tp, the FTmq −1-
conditional distribution of the sum of

∑
i∈I(m) Γi,q and

∑
i∈I Ξi,p possesses almost

surely no point mass, or equivalently, for all FTp−1-measurable random variables
Z

P
[{ ∑

i∈I(m)

Γiq +
∑
i∈I

Ξi,p = Z

}]
= 0. (4.21)
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Lemma 4.5. Under Assumption 3 it holds that

P
[{ ∑

i∈I(m)

β̄iTmq = 0
}
∩
{ ∑
i∈I(m)

γ̄iTmq = 0
}
∩
{∑
i∈I

φ̄iTmq = 0
}]

= 0 (4.22)

and hence{ ∑
i∈I(m)

β̄iTmq = 0
}
∩
{ ∑
i∈I(m)

γ̄iTmq = 0
}
⊆
{
CTp = E[CTp+1 |FTp ]

}
(4.23)

up to zero sets.

Proof. Notice that{ ∑
i∈I(m)

β̄iTmq = 0
}
∩
{ ∑
i∈I(m)

γ̄iTmq = 0
}
∩
{∑
i∈I

φ̄iTmq = 0
}

⊆
{ ∑
i∈I(m)

(
Γi,q −Πi,q(ξ̄)− θ̄iTmq − ϕ̄

i
Tmq

)
= 0
}

∩
{ ∑
i∈I(m)

θ̄iTmq =
∑

i∈I(m)

(
Θi,q − β̄iTmq−1

+ γ̄iTmq−1

)}

∩
{∑
i∈I

ϕ̄iTmq =
∑
i∈I

(
φ̄iTmq + Πi,p(ζ̄)− Ξi,p

)}
⊆
{ ∑
i∈I(m)

(
Γi,q −Πi,q(ξ̄)− θ̄iTmq

)
−
∑
i∈I

(
φ̄iTmq + Πi,p(ζ̄)− Ξi,p

)
= 0
}

∩
{ ∑
i∈I(m)

θ̄iTmq =
∑

i∈I(m)

(
Θi,q − β̄iTmq−1

+ γ̄iTmq−1

)}
.

Since moreover the random variables∑
i∈I(m)

(
Πi,q(ξ̄) + θ̄iTmq

)
and

∑
i∈I

(
φ̄iTmq + Πi,p(ζ̄)

)
(4.24)

are FTmq −1-measurable, the lemma follows from Assumption 3.
�

Corollary 4.6. Assuming the conclusion (4.3) of Lemma 4.1, Assumptions 2 and
3, for any strategy x̄ that fullfills (4.1), it holds that for each m ∈M and q ∈ Q(m){ ∑

i∈I(m)

β̄iTmq = 0
}
∩
{ ∑
i∈I(m)

γ̄iTmq = 0
}
⊆
{
ATmq = E[CTp+1 |FTmq ]

}
(4.25)

up to zero sets.

Assumption 4. For all p ∈ P it holds that∑
i∈I
−Ξi,p > 0 (4.26)
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almost surely. Moreover for all FTp−1-measurable random variables Z

P
[{∑

i∈I
Ξi,p +

∑
i∈Ĩ

Γi,q = Z

}]
= 0. (4.27)

for all Ĩ ⊆ I(m).

Ξi,p models randomness in the number of CERs and offsets produced. As-
sumption 4 says that the random amount of CERs that enters the market is almost
surely greater than the amount of offsets. (resulting for example from projects that
were started before t = 0). It could as well be assumed that the optimal strategy
ζ always produces more CERs than used for offsetting purposes.

Lemma 4.7. Under Assumption 4 it holds that

P
[{ ∑

i∈I(m)

ϕ̄iTp = 0
}
∩
{∑
i∈I

φ̄iTp = 0
}]

= 0, (4.28)

and

P
[{ ∑

i∈I(m)

ϕ̄iTp =
∑

i∈I(m)

min(∆̄i,q
Tmq
, κi)

}
∩
{∑
i∈I

φ̄iTp = 0
}]

= 0, (4.29)

and consequently{ ∑
i∈I(m)

ϕ̄iTp = 0
}
∪
{ ∑
i∈I(m)

ϕ̄iTp =
∑

i∈I(m)

min(∆̄i,q
Tmq
, κi)

}
⊆
{
CTp = E[CTp+1 |FTp ]

}
(4.30)

up to zero sets.

Proof.{ ∑
i∈I(m)

ϕ̄iTp = 0
}
∩
{∑
i∈I

φ̄iTp = 0
}
⊆
{∑
i∈I

φ̄iTp−1
+ Πi,p(ζ̄)− Ξi,p = 0

}
(4.31)

this together with (4.26) implies (4.28). Due to (4.27) it holds that

P
[{∑

i∈I
Ξi,p +

∑
i∈I(m)

(Γi,q − Zi)1{Ai} + κi1{(Ai)c} = Z

}]
= 0. (4.32)

for all FTp−1-measurable Z,Zi and Ai ∈ FTp−1. This together with{ ∑
i∈I(m)

ϕ̄iTp =
∑

i∈I(m)

min(∆̄i,q
Tmq
, κi)

}
∩
{∑
i∈I

φ̄iTp = 0
}

⊆
{∑
i∈I

φ̄iTp−1
+ Πi,p(ζ̄)− Ξi,p =

∑
i∈I(m)

min(Γi,q −Πi,q(ξ̄), κi)
}

⊆
{∑
i∈I

φ̄iTp−1
+ Πi,p(ζ̄)− Ξi,p =

∑
i∈I(m)

(Γi,q −Πi,q(ξ̄))1{Ai} + κi1{(Ai)c})
}
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implies (4.29) with Ai = {ϕ̄iTp−1
= Γi,q − Πi,q(ξ̄)} and FTp−1-measurable Zi =

Πi,q(ξ̄), Z =
∑
i∈I φ̄

i
Tp−1

+ Πi,p(ζ̄).
�

4.2. First Equilibrium Price Formulas

In the sequel we assume that Lemma 4.1, Assumption 2, 3 and 4 are fullfilled.

Proposition 4.8. Let p ∈ P , m ∈ M and q ∈ Q(m) such that Tmq = Tp. Moreover
let (A,C) be an equilibrium with corresponding strategies x ∈ X then it holds for
that

Aq,mTmq = (π + νE[Aq+1,m
Tmq+1

|FTmq )]1{βTmq >0} (4.33)

+
(
E[Aq+1,m

Tmq+1
|FTmq ]1{γTmq >0} + E[Cp+1

Tq+1
|FTmq )1{γTmq =0}

)
1{βTmq =0}

with
βTmq =

∑
i∈I(m)

βiTmq , γTmq =
∑

i∈I(m)

γiTmq . (4.34)

The intuitive meaning of this formula is the following. On the event {βTmq >

0} that the economy at large is short of allowances despite the usage of CERs,
then the price of the allowance is given by the penalty π plus the cost of the
allowances from the next period which need to be used for compliance, appearing
in the formula as the conditional expectation of the price of the next period.
Alternatively, on the event {βTmq = 0} that the economy is not short of allowances
at time of compliance, then the price of the allowance is either the expected value
of the an allowance the next period on the event {γTmq > 0} that the allowances
are banked for use in the next period, or the expected value of a CER the next
period on the event {γTmq = 0} that the allowances are not banked and we use
CERs for compliance.

Proof. Since we clearly have:

P
[
{βTmq > 0} ∪

(
{βTmq = 0} ∩

(
{γTmq > 0} ∪ {γTmq = 0}

))]
= 1 (4.35)

the rest follows from Lemma 4.2, Corollary 4.6 and condition (3.50). �

Proposition 4.9. Let p ∈ P , m ∈ M and q ∈ Q(m) such that Tmq = Tp. Moreover
let (A,C) an equilibrium with corresponding strategies x ∈ X then it holds for each
q ∈ Q that

CpTp = E[Cp+1
Tp+1
|FTp ]1{ϕTp∈{0,κp}} +Aq,mTp 1{ϕTp∈(0,κp)} (4.36)

with

ϕTp =
∑

i∈I(m)

ϕiTp and κp =
∑

i∈I(m)

min(∆i,p, κi) for all p ∈ P. (4.37)



CDM and CER Price Formation 29

The intuitive meaning of this formula is the following. As defined κp is the
maximum amount of CERs which can be used at time Tp and ϕTp is the total
amount of CERs used for compliance at time Tp. So on the event that ϕTp is in
the open interval (0, κp), allowances and CERs can be used interchangeably for
compliance, so the price CpTp of a CER has to be the same as the price of an
allowance Aq,mTp . On the other end, when ϕTp is either 0 or κp, only CERs from the
next period can be used and the price CpTp becomes the conditional expectation of
the price of a CER of the next period.

Proof. This follows directly from Lemma 4.7 and Lemma 4.3. �

4.3. Equilibrium Abatement Strategies

Proposition 4.10. Fix a market m ∈M an associated compliance period q ∈ Q(m)
and time t ∈ {Tmq−1, . . . , T

m
q − 1}. Let Ā be an equilibrium allowance price process

and ξ∗ the corresponding equilibrium short term abatement policy then it holds that

{Sit −A
q,m
t < 0} ⊆ {ξ∗it = ξ

i}
{Sit −A

q,m
t > 0} ⊆ {ξ∗it = 0}.

The intuitive meaning of this result is the following. On the event {Sit −
Aq,mt < 0} that fuel switch is cheaper than the cost of an allowance, the production
is maximal, while on the event {Sit −A

q,m
t > 0} that fuel switch is more expensive

than the cost of an allowance, the equilibrium production is 0.

Proof. The complementary slackness conditions read

〈ξit, Sit −A
q,m
t + w3,i

t 〉 = 0 for all i ∈ I(m) (4.38)

〈ξi − ξit, w
3,i
t 〉 = 0 for all i ∈ I(m). (4.39)

While dual feasibility implies

Sit −A
q,m
t + w3,i

t ≥ 0 for all i ∈ I(m) (4.40)

w3,i
t ≥ 0 for all i ∈ I(m). (4.41)

On {St−Aq,mt < 0} condition (4.40) implies that w3,i
t > 0 and hence ξ∗t = ξ

i
with

condition (4.39). On the other hand on {Sit−A
q,m
t > 0} we have Sit−A

q,m
t +w3,i

t > 0
due to (4.41) and hence ξ∗it = 0 due to (4.38). �

In the next proposition we show how long term projects such as CER projects
are exercised in contrast to short term reductions such as fuel switches. In contrast
to these are only exercised if the spread between reduction cost and CER price
exceeds a price proces Bit given by

Bit = E[Liτ i − Ĉτ |Ft] (4.42)

for all t = 0, . . . , T − 1 where τ i = inf{t; ζit > 0} and Ĉt =
∑
p∈P C̃t1{Tp−1≤t<Tp}.

In the case that we have only one market and no restriction on CER compliance in
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this market CDM projects can be seen as normal irreversible emission reduction
projects and this result can be applied by setting A = C.

Proposition 4.11. Fix p ∈ P and let t ∈ {Tp−1, . . . , Tp − 1} while C is an equilib-
rium CER price process and ζ∗ the corresponding equilibrium long term abatement
policy. Then it holds that

{Lit − C
p
t +Bit < 0} ⊆ {ζ∗it = 1}

{Lit − C
p
t +Bit > 0} ⊆ {ζ∗it = 0}.

Proof.

〈ζit , Lit − E[rCTq |Ft] + E[w4,i
T |Ft]〉 = 0 for all t ≤ Tq, q ∈ Q, i ∈ I

〈1−
T∑
t=0

ζit , w
4,i
T 〉 = 0 for all q ∈ Q, i ∈ I.

Dual feasibility implies

Lit − E[rCTq |Ft] + E[w4,i
T |Ft] ≥ 0 for all i ∈ I, t = 0, . . . , T − 1

w4,i
T ≥ 0 for all i ∈ I

�

4.4. Existence of Equilibrium Prices

For the sake of convenience, we restate the contents of the two propositions of
Subsection 4.2 in the form of a necessary condition for the expression of equilibrium
prices.

Proposition 4.12. Let q′ denote the last compliance period |Q(m)| of market m ∈
M . And p′ = |P | be the last period where CERs can be used for compliance. For
each x ∈ L∞, we denote by A(x) and C(x) the price processes defined recursively
by (4.33) and (4.36) through the backward induction given by these formulas and
starting at E[Aq

′+1,m
Tm
q′+1

|FTm
q′

] = 0 and E[Cp
′

Tp′+1
|FTp′ ] = 0. Then if (A,C) is an

equilibrium with corresponding strategies x ∈ L∞ then A = A(x) and C = C(x).

We now revisit the existence problem for the dual problem. Recall that we
assume that the conclusion of Lemma 4.1, and Assumptions 2, 3 and 4 hold true.

Proposition 4.13. The dual optimal solution is attained and the duality gap is zero.

Proof. The dual objective function reads

E

∑
i∈I

(
− w4,i

T −
∑
p∈P

(
κiw2,i

Tp
+ Ξi,pCpTp

))

+
∑
m∈M

∑
i∈I(m)

∑
q∈Q(m)

(
Γi,qw1,i

Tmq
−Θi,qATmq −

Tmq −1∑
t=Tmq−1

χiw3,i
t

)
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Now let us prove that A and C as defined in (4.8) and (4.9) together with

w1,i
Tmq

= Aq,mTmq (4.43)

w2,i
Tp

= (Aq(p),m(p)
Tp

− CpTp)+ (4.44)

w3,i
t = (Aq,mt − Sit)+ t ∈ {Tmq−1, . . . , T

m
q − 1} (4.45)

w4,i
T = Ĉτ i − Liτ i (4.46)

give a dual optimal solution by proving that its value equals the primal optimal
solution. Here q(p) and m(p) are defined such that Tmq = Tp while the stopping
time τ i is given by τ i = inf{t; ζit > 0} and Cτ i :=

∑
p∈P C

p
τ i1{Tp−1≤τ i≤TP−1} .

Using (4.8), (4.9) and (3.3)-(3.6), the dual objective value can be rewritten as:

E

∑
i∈I

(
− (Ĉτ i − Liτ i)−

∑
p∈P

(
κi(Aq(p),m(p)

Tp
− CpTp)+ + Ξi,pCpTp

))

+
∑
m∈M

∑
i∈I(m)

∑
q∈Q(m)

(
Γi,qAq,mTmq −Θi,qAq,mTmq −

Tmq −1∑
t=Tmq−1

χi(Aq,mt − Sit)+
) .

Using the primal feasibility conditions (2.9) and (2.10) as well as Propositions 4.10,
4.11 and the definition of τ i this translates to

E

∑
i∈I

(
−
Tm|Q|−1∑
t=0

ζt(Ĉt − Lit)

−
∑
p∈P

(
ϕi(Aq(p),m(p)

Tp
− CpTp) +

(
ϕiTp + φ

i

Tp − φ
i

Tp−1
−Πi,p(ζ)

)
CpTp

))
+
∑
m∈M

∑
i∈I(m)

∑
q∈Q(m)

(
Γi,qAq,mTmq −

(
θ
i

Tmq
+ γiTmq − γ

i
Tmq−1

+ β
i

Tmq−1

)
ATmq

−
Tmq −1∑
t=Tmq−1

ξ
i

t(A
q,m
t − Sit)

 ,
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and simple algebraic manipulations lead to

E

∑
i∈I

(
−
Tm|Q|−1∑
t=0

ζt(Ĉt − Lit) +
Tm|Q|−1∑
t=0

ξ
i
Sit

−
∑
p∈P

(
ϕiTp(ApTp − C

p
Tp

) +
(
ϕiTp −Πi,p(ζ)

)
CpTp

)
+ φ

i

Tp(CpTp − C
p
Tp+1

)
)

+
∑
m∈M

∑
i∈I(m)

∑
q∈Q(m)

(
Γi,qAq,mTmq − θ

i

Tmq
ATmq − γ

i
Tmq

(ATmq −ATmq+1
)− βiTmq A

q+1,m
Tmq

)

−
Tmq −1∑
t=Tmq−1

ξ
i

tA
q,m
t

 .
Using E[φ

i

Tp(CpTp − C
p
Tp+1

)] = 0 and E[γiTmq (ATmq −ATmq+1
)] = 0 we easily get:

E

∑
i∈I

( Tm|Q|−1∑
t=0

ζtL
i
t +

Tm|Q|−1∑
t=0

ξ
i
Sit

)

+
∑
m∈M

∑
i∈I(m)

∑
q∈Q(m)

((
Γi,q − ϕiTp − θ

i

Tmq
−Πi,q(ξ)

)
Aq,mTmq − β

i

Tmq
Aq+1,m
Tmq

) ,
and because of Lemma 4.2 this reduces to

E

∑
i∈I

( Tm|Q|−1∑
t=0

ζtL
i
t +

Tm|Q|−1∑
t=0

ξ
i
Sit

)

+
∑
m∈M

∑
i∈I(m)

∑
q∈Q(m)

((
Γi,q − ϕiTp − θ

i

Tmq
−Πi,q(ξ)

)+

(π +Aq+1,m
Tmq

)− βiTmq A
q+1,m
Tmq

) ,
and hence

E

∑
i∈I

( Tm|Q|−1∑
t=0

ζtL
i
t +

Tm|Q|−1∑
t=0

ξ
i
Sit

)

+
∑
m∈M

∑
i∈I(m)

∑
q∈Q(m)

((
Γi,q − ϕiTp − θ

i

Tmq
−Πi,q(ξ)

)+

π

)
which corresponds to the primal optimal solution. Hence the duality gap is zero
and the dual optimal solution is attained. �

The next proposition shows that a dual solution can be obtained by com-
pleting the shadow prices A and C defined as the Lagrange multipliers given by
solution of the Lagrange relaxation problem (LR).
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Proposition 4.14. For any optimal solution (A,C) of the Lagrange relaxation prob-
lem (LR), there exist dual multipliers w such that (A,C,w) is an optimal solution
of the dual problem (D). Moreover, the equilibrium allowance and CER prices are
almost surely unique.

Proof. The Lagrange relaxation problem (LR) reads:

sup
(A,C)∈K1

G

inf
0≤x≤χ, Fx≥f

E

∑
i∈I

( Tm|Q|−1∑
t=0

ζtL
i
t +

Tm|Q|−1∑
t=0

ξiSit

)

+
∑
m∈M

∑
i∈I(m)

∑
q∈Q(m)

((
Γi,q − ϕiTp − θ

i
Tmq
−Πi,q(ξ)

)+

π

)
+
∑
m∈M

∑
i∈I(m)

∑
q∈Q(m)

(
θiTmq + γiTmq − γ

i
Tmq−1

+ βiTmq−1
−Θi,q

)
Aq,mTmq

+
∑
i∈I

∑
p∈P

(
ϕiTp + φiTp − φ

i
Tp−1

−Πi,p(ζ) + Ξi,p
)
CpTp


This implies that

C
p

Tp ≥ E[C
p+1

Tp+1
|FTp ] and A

q,m

Tmq
≥ E[A

q+1,m

Tmq+1
|FTmq ] (4.47)

almost surely for all p ∈ P , m ∈ M and q ∈ Q(m). Moreover for any optimal
solution (A,C) of (LR) and any optimal solution x of (P) it holds that

D∗ ≤ LR∗ = sup
(A,C)∈K1

G

inf
0≤x≤χ, Fx≥f

∑
i∈I

LA,C,i(xi)

= inf
0≤x≤χ, Fx≥f

∑
i∈I

LA,C,i(xi)

≤
∑
i∈I

LA,C,i(xi)

≤ sup
(A,C)∈K1

G

∑
i∈I

LA,C,i(xi)

= inf
0≤x≤χ, Fx≥f

sup
(A,C)∈K1

G

∑
i∈I

LA,C,i(xi) = P ∗.

Since strong duality holds between (P) and (D) all inequalities are fullfilled with
equality and in particular we conclude that∑

i∈I
LA,C,i(xi) = inf

0≤x≤χ, Fx≥f

∑
i∈I

LA,C,i(xi) (4.48)
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for any primal optimal solution x. This together with (4.47) implies that

0 = E[φ
i

Tp(C
p

Tp − C
p+1

Tp+1
)] for all p ∈ P, i ∈ I

0 = E[γiTmq (A
q,m

Tmq
−Aq+1,m

Tmq+1
)] for all q ∈ Q(m), i ∈ I(m),m ∈M.

Moreover we derive from (4.48) that

ζt(C
p

t − Lit) = κi(C
p

t − Lit)+

holds for all t ∈ {Tp−1, . . . , Tp − 1}, p ∈ P , i ∈ I while

qξ
i

t(A
q,m

t − Sit) = ξ
i
(A

q,m

t − Sit)+

holds for all t ∈ {Tmq−1, . . . , T
m
q − 1}, q ∈ Q(m), i ∈ I(m) and m ∈ M . If for each

market m ∈M Lemma 4.1 is fulfilled then we conclude from (4.48) that{
β̄iTmq > 0

}
⊆
{
A
q,m

Tmq
= πq,m + E[A

q+1,m

Tmq+1
|FTmq ]

}
holds up to zero sets for all i ∈ I(m) and q ∈ Q(m) and m ∈ M . Hence all
requirements for the proof of Proposition 4.13 are fullfilled if moreover w is choosen
as in (4.43)-(4.46). Hence (A,C,w) is an optimal solution of (D).

We now prove uniqueness of the equilibrium prices. Let us assume that we
have two different pairs P̂ = (Â, Ĉ) and P̃ = (Ã, C̃) of equilibria with strategies x̂
and x̃. From the first part it follows that there exist ŵ ∈ K1

F×L1 such that (Â, Ĉ, w)
is an optimal solution of (D), and since the equilibrium strategy x̃ is an optimal
solution of P . It follows that x̃ and ŵ must fullfill the complemtary slackness
conditions. Following the argumentation of the last subsection it follows that P̂ =
(A(x̃), C(x̃)) up to zero sets. Due to (ii) it holds also that P̂ = (A(x̂, C(x̂)) up to
zero sets implying that

(A(x̃), C(x̃)) = (A(x̂), C(x̂)) (4.49)

up to zero sets which concludes the proof. �

4.5. More Equilibrium Price Formulas

For the sake of simplicity we assume ν = 1 from now on. We first revisit the
derivation of formulas for the allowance prices. The following notation will simplify
some expressions.

Υq,m =
∑

i∈I(m)

[Θi,q − β̄iTmq−1
+ γ̄iTmq−1

] (4.50)

Υq,m gives the effective amount of allowances present in the market, including the
banked allowances and those withdrawn for use for compliance in the previous
period.

Lemma 4.15.

{γTmq = 0} ∩ {βTmq = 0} ∩ {E[Cp+1
Tq+1
|FTmq ] > E[Aq+1,m

Tmq+1
|FTmq ]}

= {∆q,m > Υq,m} ∩ {βTmq = 0} ∩ {E[Cp+1
Tq+1
|FTmq ] > E[Aq+1,m

Tmq+1
|FTmq ]}
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up to zero sets.

The intuition behind this equality is that on the event {βTmq = 0}∩{E[Cp+1
Tq+1
|FTmq ] >

E[Aq+1,m
Tmq+1

|FTmq ]} that the market is not short of allowance (i.e. βTmq = 0) and al-
lowance prices are expected to be cheaper than CERs, emissions exceed the total
number of allowances (i.e. ∆q,m > Υq,m) exactly when banking is not needed (i.e.
βTmq = 0).

Proof. Lemma 4.4 and primal feasibility imply that

{γTmq = 0} ∩ {βTmq = 0}

⊆ {
∑

i∈I(m)

ϕiTmq > 0} ∩
{ ∑
i∈I(m)

θiTmq =
∑

i∈I(m)

Θi,q − β̄iTmq−1
+ γ̄iTmq−1

}

⊆
{ ∑
i∈I(m)

Γi,q −Πi,q(ξ̄) >
∑

i∈I(m)

Θi,q − β̄iTmq−1
+ γ̄iTmq−1

}
= {∆q,m > Υq,m}.

Moreover it holds that

{∆q,m > Υq,m} ∩ {βTmq = 0} ∩ {E[Cp+1
Tq+1
|FTmq ] > E[Aq+1,m

Tmq+1
|FTmq ]}

⊆
{ ∑
i∈I(m)

Γi,q −Πi,q(ξ̄) >
∑

i∈I(m)

Θi,q − β̄iTmq−1
+ γ̄iTmq−1

}
∩ {βTmq = 0} ∩ {E[Cp+1

Tq+1
|FTmq ] > E[Aq+1,m

Tmq+1
|FTmq ]}

⊆ {ϕTmq > 0} ∩ {E[Cp+1
Tq+1
|FTmq ] > E[Aq+1,m

Tmq+1
|FTmq ]}

⊆ {Aq,mTmq = CpTp} ∩ {E[Cp+1
Tq+1
|FTmq ] > E[Aq+1,m

Tmq+1
|FTmq ]}

⊆ {Aq,mTmq > E[Aq+1,m
Tmq+1

|FTmq ]}

⊆ {γTmq = 0}

which concludes the proof. �

Proposition 4.16.

Aq,mTmq = E[Aq+1,m
Tmq+1

|FTmq ] + π1{βTmq >0}

+
(
E[Cp+1

Tq+1
|FTmq ]− E[Aq+1,m

Tmq+1
|FTmq ]

)+

1{βTmq =0}1{∆q,m>Υq,m}

This new form of the price of an allowance states that the spread between the
allowance price and its forward for the next period is equal to the penalty when
the market is short (i.e. βTmq > 0) or the positive part of the spread between the
forward CER price and the forward allowance price when compliance has to be
met with the use of CERs (i.e. when βTmq = 0 and ∆q,m > Υq,m).
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Proof.

Ãq,mTmq = E[Aq+1,m
Tmq+1

|FTmq ] + π1{βTmq >0}

+
(
E[Cp+1

Tq+1
|FTmq ]− E[Aq+1,m

Tmq+1
|FTmq ]

)+

1{βTmq =0}1{∆q,m>Υq,m}

= E[Aq+1,m
Tmq+1

|FTmq ] + π1{βTmq >0}

+
(
E(Cp+1

Tq+1
|FTmq )− E[Aq+1,m

Tmq+1
|FTmq ]

)
1{βTmq =0}1{∆q,m>Υq,m}

1{E[Cp+1
Tq+1

|FTmq ]>E[Aq+1,m
Tm
q+1

|FTmq ]}

Moreover

Aq,mTmq = (π + E[Aq+1,m
Tmq+1

|FTmq ]1{βTmq >0}

+
(
E[Aq+1,m

Tmq+1
|FTmq ]1{γTmq >0} + E[Cp+1

Tq+1
|FTmq ]1{γTmq =0}

)
1{βTmq =0}

= E(Aq+1,m
Tmq+1

|FTmq )) + π1{βTmq >0}

+
(
E(Cp+1

Tq+1
|FTmq )− E(Aq+1,m

Tmq+1
|FTmq )

)+

1{γTmq =0}1{βTmq =0}

= E(Aq+1,m
Tmq+1

|FTmq )) + π1{βTmq >0}

+
(
E[Cp+1

Tq+1
|FTmq ]− E[Aq+1,m

Tmq+1
|FTmq ]

)
1{γTmq =0}1{βTmq =0}

1{E[Cp+1
Tq+1

|FTmq ]>E[Aq+1,m
Tm
q+1

|FTmq ]}

where the second last equality holds due to dual feasibility. The proposition follows
from Lemma 4.15. �

We now consider the equilibrium CER prices, and we introduce the notation

Λp =
∑
i∈I

φ̄iTp−1
+ Πi,p(ζ̄)− Ξi,p =

∑
i∈I

φ̄i,pTp +
∑

i∈I(m)

ϕ̄i,pTp (4.51)

denoting the effective amount of CERs in the market.

Lemma 4.17. It holds almost surely that

{Λp < κp} ∩ {Aq,mTp > E[Cp+1
Tp
|FTp ]}

= {ϕTp ∈ (0, κp)} ∩ {φTp = 0} ∩ {Aq,mTp > E[Cp+1
Tp
|FTp ]}

Proof. Due to primal feasibility it holds that

{ϕTp ∈ (0, κp)} ∩ {φTp = 0} ⊆ {Λp < κp} (4.52)

up to zero sets.
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{Λp < κp} ∩ {Aq,mTp > E[Cp+1
Tp
|FTp ]}

⊆ {φ̄Tp + ϕ̄Tp < κp} ∩ {Aq,mTp > E[Cp+1
Tp
|FTp ]}

⊆
( ⋃
i∈I(m)

{ϕ̄Tp < min(∆i,p, κi)}
)
∩ {Aq,mTp > E[Cp+1

Tp
|FTp ]}

⊆ {Aq,mTp ≤ C
p
Tp
} ∩ {Aq,mTp > E[Cp+1

Tp
|FTp ]} (4.53)

⊆ {CpTp > E[Cp+1
Tp
|FTp ]} ⊆ {φTp = 0} ⊆ {φTp = 0} ∩ {ϕTp > 0}

up to zero sets where we used (4.15) for (4.53). Hence

{Λp < κp} ∩ {Aq,mTp > E[Cp+1
Tp
|FTp ]}

⊆ {ϕTp ∈ (0, κp)} ∩ {φTp = 0} ∩ {Aq,mTp > E[Cp+1
Tp
|FTp ]}

holds up to zero sets. �

Proposition 4.18. It holds almost surely that

CpTp = E[Cp+1
Tp+1
|FTp ] + (π + E[Am,q+1

Tmq+1
|FTp ]− E[Cp+1

Tp+1
|FTp ])+1{βTp>0}1{Λp<κp}

+(E[Am,q+1
Tmq+1

|FTp ]− E[Cp+1
Tp+1
|FTp ])+1{βTp=0}1{Λp<κp}

almost surely.

One particular case of the above formula has a clear intuitive interpretation.
It says that the spread between a CER price and its forward is 0 whenever the
total amount of CERs in the market is greater than the maximum amount which
can be used in the market (i.e. Λp ≥ κp).

Proof. Let

C̃pTp = E[Cp+1
Tp+1
|FTp ] + (π + E[Am,q+1

Tmq+1
|FTp ]− E[Cp+1

Tp+1
|FTp ])+1{βTp>0}1{Λp<κp}

+(E[Am,q+1
Tmq+1

|FTp ]− E[Cp+1
Tp+1
|FTp ])+1{βTp=0}1{Λp<κp}

= E[Cp+1
Tp+1
|FTp ]

+(π + E[Am,q+1
Tmq+1

|FTp ]− E[Cp+1
Tp+1
|FTp ])1{βTp>0}1{Λp<κp}

1{π+E[Am,q+1
Tm
q+1

|FTp ]−E[Cp+1
Tp+1

|FTp ]>0}

+(E[Am,q+1
Tmq+1

|FTp ]− E[Cp+1
Tp+1
|FTp ])1{βTp=0}1{Λp<κp}

1{E[Am,q+1
Tm
q+1

|FTp ]−E[Cp+1
Tp+1

|FTp ]>0}.

Dual feasibility implies that

{E[Am,qTmq
|FTp ] > E[Cp+1

Tp+1
|FTp ]} ⊆ {Am,qTmq

> E[Cp+1
Tp+1
|FTp ]}.
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Further Proposition 4.8 implies that

{βTp = 0} ∩ {Am,qTmq
> E[Cp+1

Tp+1
|FTp ]} ⊆ {βTp = 0} ∩ {E[Am,qTmq

|FTp ] > E[Cp+1
Tp+1
|FTp ]}

Because moreover Am,qTmq
= π + E[Am,q+1

Tmq+1
|FTp ] on {βTp > 0} this translates to

C̃pTp = E[Cp+1
Tp+1
|FTp ] + (Am,qTmq

− E[Cp+1
Tp+1
|FTp ])1{βTp>0}1{Λp<κp} (4.54)

1{Am,q
Tmq

>E[Cp+1
Tp+1

|FTp ]}

+(Am,qTmq
− E[Cp+1

Tp+1
|FTp ])1{βTp=0}1{Λp<κp}1{Am,q

Tmq
>E[Cp+1

Tp+1
|FTp ]}

= E[Cp+1
Tp+1
|FTp ] + (Aq,mTmq − E[Cp+1

Tp+1
|FTp ])1{Λp<κp}1{Aq,m

Tmq
>E[Cp+1

Tp+1
|FTp ]}(4.55)

almost surely. Proposition 4.9 implies that

CpTp = E[Cp+1
Tp+1
|FTp ]1{ϕTp∈{0,κp}} +Aq,mTmq 1{ϕTp∈(0,κp)}.

Due to dual feasibility it holds that Aq,mTmq ≥ E[Cp+1
Tp+1
|FTp ] on {ϕTp ∈ (0, κp)}.

Hence

CpTp = E[Cp+1
Tp+1
|FTp ] + (Aq,mTmq − E[Cp+1

Tp+1
|FTp ])+1{ϕTp∈(0,κp)}

= E[Cp+1
Tp+1
|FTp ] + (Aq,mTmq − E[Cp+1

Tp+1
|FTp ])1{ϕTp∈(0,κp)}1{Aq,mTp >E[Cp+1

Tp
|FTp ]}

= E[Cp+1
Tp+1
|FTp ] + (Aq,mTmq − E[Cp+1

Tp+1
|FTp ])1{ϕTp∈(0,κp)}1{φTp=0}1{Aq,mTp >E[Cp+1

Tp
|FTp ]}

= E[Cp+1
Tp+1
|FTp ] + (Aq,mTmq − E[Cp+1

Tp+1
|FTp ])1{Λp<κp}1{Aq,m

Tmq
>E[Cp+1

Tp+1
|FTp ]} (4.56)

holds almost surely where the last equality holds due to Lemma 4.17. Consequently
(4.55) and (4.56) imply that CpTp = C̃pTp almost surely. �

5. Appendix I: Index of Acronyms

CDM Clean Development Mechanism
JI Joint Implementation
CER Certified Emission Reduction
ERU Emission Reduction Unit
EU ETS European Union Emission Trading Scheme
RGGI Regional Greenhouse Gas Initiative
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6. Appendix II: Table of Notation

M Set of emission markets
I Set of all the firms in the economy
m Typical emission market
I(m) Set of firms involved in emission market m
Q(m) Set of compliance periods in emission market m
|Q(m)| Number of compliance periods in emission market m
[Tmq−1, T

m
q ] q-th compliance period in emission market m

T Horizon of the model
κi Maximum number of CERs firm i is allowed to use
Γi,q Emissions of firm i ∈ I(m) during compliance period q ∈ Q(m)
πmq Financial penalty for over-emission during compliance period q ∈ Q(m) in market m ∈M
ξit Short term abatement by firm i ∈ I for time period [t, t+ 1]
ξ
i

deterministic constant giving the maximum abatement level possible for firm i ∈ I(m)
Πi,q(ξi) Short term abatement by firm i ∈ I over compliance period q ∈ Q(m) for strategy ξi

ζit Proportion of CDM project, or long term abatement by firm i ∈ I for time period [t, t+ 1]
Πi,q(ζi) Long term abatement by firm i ∈ I over compliance period q ∈ Q(m) for strategy ξi

Sit T -forward cost of unit short term abatement by firm i ∈ I for time period [t, t+ 1]
Lit T -forward cost of long term abatement by firm i ∈ I for time period [t, t+ 1]
CÃ,C̃,A,C,i Terminal cumulative costs of firm i
Θi,q Initial allowance endowment of firm i ∈ I(m) at time Tmq−1

Ξi,p Number of CERs that agent i ∈ I voluntarily withdraws from the market at time Tp
Ãq,mt price at time t of a (q,m)-allowance forward contract with maturity Tmq
C̃pt price at time t of a p-maturity CER forward contract with maturity Tp
θ̃i,qt number of (q,m) allowances held by firm i ∈ I(m) at time t
ϕ̃i,pt number of p-maturity CERs held by firm i ∈ I(m) at time t

R
(Ã,C̃)
T (̃θi, ϕ̃i) P&L from financial trading in allowances and CERs

γi,qTq number of (physical) (q,m)-allowances banked by firm i ∈ I(m) at time Tmq
θi,qTq number of (physical) (q,m)-allowances used for compliance by firm i ∈ I(m) at time Tmq
φi,pTp number of (physical) p-maturity CERs banked by firm i ∈ I(m) at time Tmp
ϕi,pTp number of (physical) p-maturity CERs used for compliance by firm i ∈ I(m) at time Tmp
βiTmq Net cumulative emissions at time Tmq of firm i ∈ I(m)

IÃ,C̃,A,C,i P&L of firm i ∈ I(m)
Fi Admissible physical strategies for firm i ∈ I(m)
Hi Admissible financial strategies for firm i ∈ I(m)
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42 René Carmona and Max Fehr

 5

 10

 15

 20

 25

 30

 35

Apr 08 May 08 Jun 08 Jul 08 Aug 08 Sep 08 Oct 08 Nov 08 Dec 08 Jan 09 Feb 09

E
U

R
O

EUA and CER Futures Prices

EUA Dec 2009
CER Dec 2009

Figure 1. Prices of the December 2012 EUA futures contract
(EU-ETS second phase), together with the price of the corre-
sponding CER futures contract.


