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Tangent Lévy Market Models
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Abstract In this paper, we introduce a new class of models for the time evolution of the
prices of call options of all strikes and maturities. We capture the information contained in
the option prices in the density of some time-inhomogeneous Lévy measure (an alternative
to the implied volatility surface), and we set this static code-book in motion by means of
stochastic dynamics of Itôs type in a function space, creating what we call a tangent Lévy
model. We then provide the consistency conditions, namely, we show that the call prices pro-
duced by a given dynamic code-book (dynamic Lévy density) coincide with the conditional
expectations of the respective payoffs if and only if certain restrictions on the dynamics of
the code-book are satisfied (including a drift condition à la HJM). We then provide an exis-
tence result, which allows us to construct a large class of tangent Lévy models, and describe
a specific example for the sake of illustration.
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1 Introduction

The classical approach to modeling prices of financial instruments is to identify a certain
(small) family of ”underlying” processes, whose dynamics are described explicitly, and
compute the prices of the financial derivatives written on these underliers by taking expec-
tations under the risk-neutral measure or maximizing an expected utility. Such is the famous
Black-Scholes model, where the underlying stock price is assumed to be given by geometric
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Brownian motion. On the contrary, the present paper is concerned with the construction of
so-called market models which describe the simultaneous dynamics of all the liquidly traded
derivative instruments. The new family of models proposed in this paper can be viewed as
an extension of the results of [3] which should be consulted for a more detailed discussion
of the history of the ”market model” approach.

As it was done in [3], we limit ourselves to a single underlying index or stock on which
all the derivatives under consideration are written. We also assume that the discount factor
is one, or equivalently that the short interest rate is zero, and that the underlying security
does not pay dividends. These assumptions greatly simplify the notation without affecting
the generality of our derivations as long as the interest and dividend rates are deterministic.

We assume that in our idealized market European call options of all strikes and maturi-
ties are traded, that their prices are observable, and that they can be bought and sold at these
prices in any quantity. We denote by Ct(T,K) the market price at time t of a European call
option of strike K and maturity T > t. We assume that today, i.e. on day t = 0, all the prices
C0(T,K) are observable. According to the philosophy of market models adopted in this
paper, at any given time t, instead of modeling only the price St of the underlying asset, we
use the set of call prices {Ct(T,K)}T≥t,K≥0 as our fundamental market data. This is partly
justified by the well documented fact that many observed option price movements cannot
be attributed to changes in St, and partly by the fact that many exotic (path dependent) op-
tions are hedged (replicated) with portfolios of plain (vanilla) call options. In this context,
it becomes important to have a model that is consistent with the market prices of vanilla
options. However, it is well known that the Black-Scholes model does not reproduce prices
of call options with different strikes and maturities faithfully. This phenomenon is some-
times referred to as the ”implied smile” effect. Stochastic volatility models containing more
parameters, can be calibrated to match at least approximately, a finite set of observed option
prices and solve the ”implied smile” problem in a rather satisfactory manner. However, the
calibration has to be done at the beginning of each trading period, implying computational
complexity and a lack of time-consistency in the model: as time passes by, not only does
the value of the underlying index change, but the values of the calibrated parameters also
change, even though they are assumed to be constant by the model. On the contrary, mod-
els from the family of market models introduced in this paper are automatically consistent
with observed option prices, since these prices become a part of the initial condition for the
dynamics of the model.

Early attempts to construct market models for vanilla options can be found in [16], [9]
and [10]. This idea was then developed more thoroughly in the works of Schönbucher [32],
Schweizer and Wissel [34] and Jacod and Protter [21], but the recent works of Schweizer
and Wissel [33] and Carmona and Nadtochiy [3], [2] are more in the spirit of the market
model approach that we advocate here.

The first hurdle on the way to creating a stochastic dynamic model for the call price
surface (price is considered as a function of strike and maturity) is to describe its state
space. Clearly, not every nonnegative function of two variables can be a surface of call
prices – there are conditions it has to satisfy: for example, prices should converge to the
payoff as time to maturity goes to zero. In addition, there are so-called ”static no-arbitrage”
conditions: a call price is a nondecreasing function of maturity and a nonincreasing and
convex function of strike (see [26], [13], [1] and [15] for more on this). Notice that these
(necessary) conditions can be violated by a ”small” (in the sense of corresponding norm)
perturbation of the surface, which implies that the set of admissible call price surfaces cannot
be defined as an open subset of a linear space. In a sense, this set forms a manifold in the
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infinite dimensional space of functions of two variables. However, since we would like to
model the time evolution of call prices through a system of stochastic differential equations
(SDE’s), it becomes necessary to have some kind of differential calculus on this manifold.
Differentiation on a manifold is usually done via mapping it into a linear space, where the
differential calculus is well developed. Therefore, in order to describe the state space, we
need to find the right parametrization for the surface of option prices, or in other words, the
right code-book.

In [3] we proposed the local volatility as a code-book for option prices. Defining the lo-
cal volatility through Dupire’s formula (see [18]), one can obtain a correspondence between
the local volatility and option prices. This correspondence results in a parametrization of a
class of admissible call price surfaces, and one important feature of this parametrization is
that the new ”variable”, i.e. the local volatility, has only to be non-negative and to satisfy
some mild smoothness conditions in order to produce an admissible call price surface. These
properties define open sets in appropriate linear spaces on which the dynamic local volatility
can then be constructed.

Notice, however, that not every call price surface can be represented via a local volatil-
ity surface: for example, it is easy to see that, if the underlying is given by a pure jump
martingale, the corresponding local volatility surface resulting from the Dupire’s formula
will explode at short maturities (as T ↘ t), and such a surface cannot be used to repro-
duce the call prices in this case. Then two questions arise naturally: ”what is the set of call
price surfaces which can be reproduced by local volatility models?” and ”what are the other
possible code-books which can be used when local volatility can’t?” The first question has
been answered by Gyongy [19], who showed that, in the case when underlying follows a
regular enough Itô process, the local volatility can be used to reproduce the call prices. In
accordance with this result, the underlying in [3] was assumed to be a continuous Itô process
satisfying some regularity conditions. Addressing the second question, one would first ask:
besides relaxing the technical conditions, what is a possible extension of these assumptions
on the underlying index? Staying within the class of semimartingales, we can only introduce
jumps.

In this paper we assume that the risk-neutral dynamics of the option underlier are given
by a pure jump martingale and we argue that the right substitute for the local volatility, as
a code-book for option prices, can be based on a specific Lévy measure. We assume that at
any given time, the surface of call prices can be recovered by the use of an additive (inhomo-
geneous Lévy) process. Since the distribution of such a process is completely characterized
by its Lévy measure, assuming that this measure is absolutely continuous, we end up cap-
turing the information contained in the call prices in the density of a (time-inhomogeneous)
Lévy measure. This point of view is static since it leads to the analysis of the option prices
at a fixed point in time. But like in [3] and [2], our goal is to construct market models by
putting in motion the static code-book chosen to describe the option prices. So, at each fixed
time, our pure jump martingale model for the underlying asset will have to produce the same
option prices as the static model given by the additive process with Lévy density being the
current value of the code-book. Therefore, just like in the case of dynamic local volatility
models treated in [3] and [2], with each call price surface we associate a process from a pa-
rameterized family of ”simple” (exponential additive, in the present case) processes which
reproduce the observed option prices, and then model the time evolution of the parameter
value (density of the Lévy measure), obtaining a market model. So, at each fixed time, our
pure jump martingale model for the underlying asset admits a form of tangent Lévy process,
in the sense that locally (at the current point in time) both processes produce the same option
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prices. This is the reason for our terminology of tangent Lévy model. This class of pure jump
martingales should not be confused with the class of processes admitting an additive tangent
process in the sense introduced by Jacod in [20] and further studied in [22], in his attempt
to generalize the notion of semi-martingale.

The idea of using processes with jumps to model the prices of financial assets has a long
history and dates back to Merton [29] who first introduced jumps in the stock price dynamics
in 1976. The extension provided by Kou’s double exponential jump diffusion model (see
[24]) produces closed form expressions not only for the prices of European options but also
for some exotic derivatives. A number of papers by Carr, Geman, Madan and Yor were
devoted to the use of Lévy processes for pricing derivatives. Probably, the most popular
one is the CGMY model (see [5]), which is an extension of the Variance Gamma model
introduced in [28]. In this model, the logarithm of the underlying index is assumed to follow
a pure jump Lévy process whose Lévy density, separately for positive and negative jump
size x, is given by a scaled ratio of decaying exponential over a power of |x|. The pure
jump exponential Lévy models allow for implied smile and heavy tails in the log-return
distribution, and they, clearly, fit the option prices better than the Black-Scholes model. It is,
however, worth mentioning that the above models are of the classical type, in the sense that
their main idea is to describe precisely the risk-neutral dynamics of the underlying process
and compute the prices of derivatives by taking expectations. The framework developed in
this paper is dictated by the market model approach, and, therefore, the resulting models are
fundamentally different from the ones described above: in particular, they allow for much
more general dynamics of the underlying than the exponential Lévy processes.

In 2004 Carr, Geman, Madan and Yor [6] proposed a way to reproduce option prices
of all strikes and maturities by a time changed Lévy process, introducing the local Lévy
models. These authors constructed the local speed function as an analogue of local volatility
for pure jump models. Their paper served as an inspiration for the present work, even though
we do not use the local speed function. Instead, we propose a different, more convenient,
code-book in lieu of local volatility.

We close this introduction with a quick summary of the contents of the paper. Section 2
introduces the code-book designed to capture the information contained in the surface of call
options. In doing so, we precise the type of non-homogeneous Lévy processes (also called
additive processes) which we use to reproduce call prices at any given time. The class of
pure jump martingales providing the risk neutral dynamics of the underlying asset, together
with the definition of tangent Lévy models are presented in Section 3. There, we explain
how the static code-book, given by the time-inhomogeneous Lévy density, is set in motion
by means of a stochastic dynamics of Itô’s type in a function space. Section 4 is devoted
to the derivation of the consistency conditions: the necessary and sufficient conditions for
a given dynamic Lévy density and an underlying process to form a tangent Lévy model.
These conditions are formulated explicitly in terms of the semimartingale characteristics
of the processes (including a drift restriction à la HJM). Finally, we prove existence of a
large class of tangent Lévy models in Section 5. We construct explicit examples and briefly
discuss their implementation in Section 6. Two short appendices are devoted to the technical
proofs of results needed throughout the paper.
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2 Preliminaries

In this section we summarize the results on additive processes, which we subsequently use
to construct new code-books for the call price surfaces.

2.1 Background on Additive Processes

Additive processes are Lévy processes without time homogeneity, so most of their properties
can be derived from the results known for Lévy processes. Let us denote by

“
S̃T

”
T≥0

the

exponential additive pure jump martingale, given by the solution of the following stochastic
integral equation:

S̃T = S̃0 +

Z T

0

Z
R
S̃u−(ex − 1)(Ñ(dx, du)− η̃(dx, du)), (1)

where Ñ(dx, du) is a Poisson random measure (associated with the jumps of the logarithm
of the process) which has the following deterministic compensator

η̃(dx, du) = κ(u, x)dxdu. (2)

Definition (1) looks indeed like an equation for S̃, but, in fact, a simple application of Itô’s
rule shows that the solution is given by S̃T = exp X̃T , with

X̃T = log S̃0 −
Z T

0

Z
R

`
ex − x− 1

´
η̃(dx, du) +

Z T

0

Z
R
x(Ñ(dx, du)− η̃(dx, du)) (3)

being an additive process (which explains the terminology ”exponential additive”). In order
for the expressions above and the derivations that follow to make sense, we need to assume
that the Lévy density κ satisfiesZ T

0

Z
R

(|x| ∧ 1)|x|(1 + ex)κ(u, x)dxdu <∞, t > 0. (4)

Let us assume for a moment that 0 ≤ t < T are fixed. Then, for each bounded Borel subset
B of R, the random variable Ñ (B × [t, T ]) has the same distribution as N̂ (B × [t, T ]),
where N̂ is a time-homogeneous Poisson random measure given by its Lévy measure

η̂(dx) =
1

T − t

 Z T

t
κ(u, x)du

!
dx. (5)

Therefore, the conditional distribution of X̃T given X̃t = x is the same as the distribution
at time T − t of a Lévy process which starts from x at time 0, and has Lévy measure η̂. If,
for t = 0 and x = log S̃0, we denote such a process by X̂, we can apply the classical theory
developed for Lévy processes (see for example Theorem 25.3 and 25.17 in [31]) to conclude
that

ES̃T = E exp X̂T = exp X̂0 = S̃0, (6)
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which is true for any T > 0. Notice also that, by definition, S̃ is the stochastic (Doléans-
Dade) exponential of the process Ỹ defined by

ỸT = log S̃0 +

Z T

0

Z
R

(ex − 1)(Ñ(dx, du)− η̃(dx, du)).

The above observations yield that S̃ is a positive local martingale, which, together with (6),
implies that S̃ is a true martingale by a standard argument. This fact is also mentioned on p.
460 of [11].

2.2 Option Prices in Exponential Additive Models

We now consider a financial market consisting of a single underlying instrument, assume
that the interest rates are zero and pricing is done via expectations under a risk-neutral
measure. We denote the level of the underlying index at time t by St. For the rest of this
section, time t is fixed and St should be viewed as a fixed positive real number (we will give
prescriptions for its stochastic dynamics in the subsequent sections). Then, in a hypothetical
model, in which from time t on the underlying risk-neutral dynamics are given by S̃, defined
in (1), and the market filtration is generated by S̃, the time t price of a call option with strike
K = ex and maturity T is given by

CSt,κt (T, x) = E
»“
S̃T − ex

”+
˛̨̨̨
S̃t = St

–
. (7)

It is clear that the above call prices are uniquely determined by the conditional distribution
of
“
S̃u
”
u∈[t,T ]

, given S̃t = St, which in turn, depends only upon St and κ. This justifies

the notation CSt,κ.
It is important to keep in mind the fact that the model given by (1) is not the actual

model for the underlying asset which we propose and study in this paper!
The rest of this section is devoted to the derivation of analytic expressions for the call

prices (7) in terms of the Lévy density κ of the process
“
S̃u
”
t≤u≤T

. Notice that, although

the derivation of equations (10) and (12) below is heuristic, a rigorous proof of the resulting
formula (13) is given by (14) and references listed in the subsequent paragraph.

Repeating essentially the derivations from [6] or [12], we obtain the following Partial
Integro-Differential Equation (PIDE) for the call prices (see, for example, equation (13) in
[6]) 8><>:

∂TC
St,κ
t (T, x) =

R
R ψ(κ(T, · );x− y)DyC

St,κ
t (T, y)dy

CSt,κt (t, x) = (St − ex)+,

(8)

where Dx denotes the second order partial differential operator Dx = ∂2
x2 − ∂x and

ψ(f ;x) :=

8<:
R x
−∞(ex − ez)f(z)dz x < 0R∞
x (ez − ex)f(z)dz x > 0,

(9)

is the double exponential tail function introduced in [6]. We will sometimes write ψ(f(T );x)

instead of ψ(f(T, · );x) when the function f has two arguments.



7

The initial value problem (8) involves constant coefficient partial differential operators
and convolutions, so it is natural to use Fourier transform. Unfortunately, the function giving
the initial condition in problem (8) is not integrable on R, hence its Fourier transform is
not well defined as a function in the classical sense. In order to resolve this problem, we
rewrite (8), differentiating both sides with respect to the ”log-strike”variable x (see [7] for
the alternative approach). Using the notation ∆t(T, x) = −∂xCSt,κt (T, x), we have8<:

∂T∆t(T, x) =
R

R ψ(κ(T );x− y)Dy∆t(T, y)dy

∆t(t, x) = ex1(−∞,logSt](x),

(10)

We chose to use the Greek letter delta as it is, at least in finance, the standard notation for
the derivative of the price of an option with respect to the underlying value or the strike.
Because of the presence of the two arguments T and x, we believe that this choice will
not create confusion with the use of ∆ for the Laplacian or second derivative. The initial
condition of the above problem being in L1(R), we can solve (10) in the Fourier domain.
As a general rule, we shall use a superscript ”hat” for the direct Fourier transform, and a
”check” for the inverse Fourier transform. In particular

ψ̂(f ; ξ) :=

Z
R
e−2πixξψ(f ;x)dx. (11)

Problem (10) becomes8>><>>:
∂T ∆̂t(T, ξ) = ψ̂(κ(T ); ξ)∆̂t(T, ξ)

“
−4π2ξ2 − 2πiξ

”
∆̂t(t, ξ) = elog St(1−2πiξ)

1−2πiξ

(12)

As a side remark we notice that the first equation above gives a mapping from the call prices
(as given by ∆̂) to κ (as given by ψ̂). We continue deriving analytic expressions for call
prices in terms of κ. Solving (12), we obtain

∆̂t(T, ξ) =
elogSt(1−2πiξ)

1− 2πiξ
exp

 
−2π(2πξ2 + iξ)

Z T

T∧t
ψ̂(κ(u); ξ)du

!
, (13)

where we employ the notation

a ∧ b := min (a, b) , a ∨ b := max (a, b) ,

which will be used throughout the paper. Notice that in this section, the maturity T is never
smaller than the current calendar time t, and, therefore, T ∧ t = t. However, since (13)
will be referenced in the subsequent sections, where the domain of the T -variable does not
depend upon t, we need (13) to be well defined for t > T . Notice now that, as shown in
Appendix A, the following equality holds

exp

 
−2π(2πξ2 + iξ)

Z T

T∧t
ψ̂(κ(u); ξ)du

!
= E

“
e(1−2πiξ) log S̃T

˛̨̨
log S̃t = 0

”
, (14)

As mentioned earlier, the distribution of log S̃T , conditioned by log S̃t = logSt, is the same
as the marginal distribution at time T − t of a Lévy process that starts from logSt at time
0 and has Lévy measure (5). Exponential Lévy models in finance have been studied rather
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thoroughly, and several methods for the computation of option prices have been proposed.
In the present situation, equality (14) establishes an equivalence between (13) and the well
known formula for the Fourier transform of call prices in the exponential Lévy models,
derived in [7] and also stated in [11] (see, for example, equation (14) in [7] or equation
(11.19) in [11]). This simple observation provides a rigorous proof of (13).

It also follows from the representation formula (14) that, for all ξ ∈ R,˛̨̨̨
˛exp

 
−2π(2πξ2 + iξ)

Z T

T∧t
ψ̂(κ(u); ξ)du

!˛̨̨̨
˛ ≤ E

“
S̃T

˛̨̨
S̃t = 1

”
= 1, (15)

which implies that ∆̂t(T, · ) ∈ L2(R). The Fourier transform and its inverse are well defined
and unitary on this space. In particular, inverting the Fourier transform and integrating, one
can obtain the following expression for CSt,κt (T, x):

CSt,κt (T, x) = (16)

St lim
λ→+∞

Z
R

e2πiξλ − e2πiξ(x−logSt)

2πiξ(1− 2πiξ)
exp

 
−2π(2πξ2 + iξ)

Z T

t∧T
ψ̂(κ(u); ξ)du

!
dξ.

The purpose of formula (16) is not to provide the most efficient method for the com-
putation of call prices in the exponential Lévy and additive models. The interested reader
is referred to [7], [11] and the references therein for more on such methods. In fact, for the
derivations that follow, formula (13) is the most convenient analytic representation of the
call prices in exponential additive models, and it will be used in the subsequent sections. We
chose to provide equation (16) only for the sake of completeness and in order to highlight
the difficulties associated with it (see the paragraph following the proof of Proposition 6).

3 Tangent Lévy Models

In this section we introduce the family of models studied in this paper. From now on, we fix
T̄ > 0 and we consider only t ∈ [0, T̄ ]. We work with a stochastic basis (Ω,F ,F,Q), the
filtration F satisfying the usual hypotheses (see definitions I.1.2 and I.1.3 in [23]), and on
which all the random processes introduced below are defined.

Our financial market consists of a single underlying asset whose price is given by an
adapted semimartingale (St)t∈[0,T̄ ], and we assume that European call options with all pos-
sible strikes K = ex and maturities T ∈ (t, T̄ ] are available for trade at time t at the price
Ct(T, x) given by the conditional expectation under Q of the payoff at maturity T .

As explained in Section 1, we are interested in constructing a class of models in which
call prices have explicit and flexible dynamics. Namely, we assume that, at each point in
time t, there exists a nonnegative function κt( · , · ), such that the call prices are given by
CSt,κtt (T, x) defined in (7). We emphasize that the surface κt characterizing the call prices,
is different at each instant t, explaining why we now add the time as a subscript. With
the above convention, we can model explicitly the joint dynamics of κt and St through a
system of stochastic differential equations, which in turn, produce the dynamics of the call
prices. Clearly, one needs to make sure that the dynamics of St and κt are such that the
two ”definitions” of the call prices are consistent with each other, namely, make sure that
the call prices produced by κ are indeed the conditional expectations of the corresponding
payoffs. This results in the consistency conditions, which take the form of restrictions on the



9

characteristics of S and κ and are formulated explicitly in Theorem 12 in Section 4. The rest
of this section is mostly concerned with defining a priori dynamics of κt and St.

3.1 Function Spaces

First, we choose a state space for the stochastic process κ = (κt)t∈[0,T̄ ]. Recall that all it has
to satisfy in order to produce feasible call prices, besides nonnegativity, is (4). We introduce
the Banach space B0 of equivalence classes of Borel measurable functions f : R ↪→ R
satisfying

‖f‖B0 :=

Z
R

(|x| ∧ 1) |x|(1 + ex)|f(x)|dx <∞.

Next, we define the Banach space B of absolutely continuous functions f : [0, T̄ ] ↪→ B0

satisfying

‖f‖B := ‖f(0)‖B0 +

Z T̄

0

‚‚‚‚ dduf(u)

‚‚‚‚
B0
du <∞.

Recall that a Borel function f : [0, T̄ ] ↪→ B0 is said to be absolutely continuous if there
exists a measurable function g : [0, T̄ ] ↪→ B0, such that for any t ∈ [0, T̄ ] we have

f(t) := f(0) +

Z t

0
g(u)du,

where the above integral is understood as the Bochner integral (see p. 44 in [17] for a
definition) of a B0-valued function. In such a case, the equivalence class of such functions g
is denoted d

dtf . In order to check that the definition of B makes sense, it is enough to notice

that the space L1
“

Leb[0,T̄ ],B
0
”

of equivalence classes of integrable B0-valued functions
defined almost everywhere, equipped with its natural norm, is a Banach space (see Section
II.2 of [17]). For the sake of convenience we will often say that a function f of two variables,
(t, x) 7→ f(t, x), belongs to B, if the function f̃ defined by f̃(t) := f(t, · ) for all t, is an
element of B.

Clearly, κt should be in B. However, in order to apply Itô’s formula, we need a condi-
tional Banach space (see III.5.3 in [25] for definition). With this in mind, we introduce the
Hilbert space H0 of equivalence classes of functions satisfying

‖f‖2H0 :=

Z
R
|x|4(1 + ex)2|f(x)|2dx <∞

(the inner product of H0 being obtained by polarization), and the Hilbert space H of abso-
lutely continuous functions f : [0, T̄ ] ↪→ H0 satisfying

‖f‖2H := ‖f(0)‖2H0 +

Z T̄

0

‚‚‚‚ dduf(u)

‚‚‚‚2

H0
du <∞.

It is not hard to establish (via iterative use of Cauchy’s inequality) thatH0 ⊂ B0,H ⊂ B and
‖ · ‖B0 � ‖ · ‖H0 , ‖ · ‖B � ‖ · ‖H, where the notation � means that the natural inclusion
of the space on the left into the space on the right is one-to-one with dense range. Clearly,
the completion ofH0 in ‖ · ‖B0 norm is B0 (sinceH0 contains the set of all bounded Borel
functions with bounded support, which is dense in B0), and the completion of H in ‖ · ‖B
norm is B. Thus, the couple (H,B) is indeed a conditional Banach space.
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3.2 Model Definition

Here we define the components of the model more specifically. In particular, we assume that
the risk-neutral evolution of the underlying index is given by (St)t∈[0,T̄ ], which is a cádlág
martingale, satisfying, for every t ∈ [0, T̄ ], almost surely

St = S0 +

Z t

0

Z
R
Su−(ex − 1)[M(dx, du)−Ku(x)dxdu], (17)

where M is an integer valued random measure on (R \ {0}) × [0, T̄ ] with compensator
Kt,ω(x)dxdt (see II.1.3, II.1.13 and II.1.8 in [23] for definitions), such that (Kt)t∈[0,T̄ ] is a
predictable integrable stochastic process with values in B0. Notice that, as follows from the
integrability property of the compensator, the measure M satisfies:

M
`
(R \ (−ε, ε))× [0, T̄ ]

´
<∞,

for all ε > 0, and Z T̄

0

Z
R

(|x| ∧ 1)2M(dx, du) <∞

almost surely. Formula (17) looks like an equation for S, however, as it was demonstrated
in Section 2, a simple application of Itô’s rule shows that St = expXt, where

Xt = logS0−
Z t

0

Z
R

(ex−x− 1)Ku(x)dxdu+

Z t

0

Z
R
x[M(dx, du)−Ku(x)dxdu]. (18)

Starting from (18), we can work backwards to obtain (17), implying the positivity of S. We
now define the dynamics of κ.

Definition 1 A B-valued continuous stochastic process (κt)t∈[0,T̄ ] is a dynamic Lévy den-
sity if, almost surely, for all t ∈ [0, T̄ ) and T ∈ (t, T̄ ]

ess infx∈R κt(T, x) ≥ 0,

and the following representation hold almost surely, for all t ∈ [0, T̄ )

κt = κ0 +

Z t

0
αudu+

mX
n=1

Z t

0
βnudB

n
u , (19)

where B =
“
B1, . . . , Bm

”
is a multidimensional Brownian motion, α is a progressively

measurable integrable stochastic process with values in B, and β =
“
β1, . . . , βm

”
is a

vector of progressively measurable square integrable stochastic processes taking values in
H.

Remark 2 Notice that κ takes values in an infinite dimensional space, therefore, it may seem
natural to have an infinite dimensional Brownian motion driving its dynamics. Indeed, it is
possible to treat the case of m =∞ by considering the canonical Gaussian measure of some
real separable Hilbert space H̄ and its associated cylindrical Brownian motion B (see [4] or
[25]). The process β in this case would take values in the space of Hilbert-Schmidt operators
from H̄ into H, and βnt would be the value of βt on the n-th vector of some orthonormal
system in H̄. All the results presented in this paper, as well as their derivation, essentially
remain the same in the case of m = ∞. However, in order to avoid some technicalities, we
assume that m <∞ or equivalently, that H̄ is finite dimensional.
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Remark 3 The time evolution of κ defined by (19) is obviously not the most general. A
straightforward extension of the present framework would be to introduce jumps in the dy-
namics of κ. This is natural since we do allow for jumps in the underlying process. And,
although some of the derivations in the subsequent sections will have to be modified if κ
has jumps, we believe that there is no serious obstacles for treating this case. However, we
restrict our framework to the continuous evolution of the code-book, in order to increase the
transparency of the results and their derivations.

We can now give the definition of a tangent Lévy model.

Definition 4 A pair of stochastic processes (St, κt)t∈[0,T̄ ], where S is a positive (scalar)
martingale and κ is a dynamic Lévy density, form a tangent Lévy (tL) model if, for any
x ∈ R, T ∈ (0, T̄ ] and t ∈ [0, T ), the following equality holds almost surely

CSt,κtt (T, x) = E
“

(ST −K)+
˛̨̨
Ft
”
,

where CSt,κtt (T, x) is defined by (7), for each (t, ω), using κt,ω ( · , · ) in lieu of κ ( · , · ).

Notice that (17) implies that S is a local martingale. However, the martingale property
does not follow immediately and has to be enforced exogenously, by, for example, assuming
a form of Novikov condition for pure jump processes.

Remark 5 The martingale property of S can be guaranteed by the following version of
Novikov condition

E exp

 
e

2

Z T̄

0
‖Kt‖B0dt

!
<∞.

This follows from Theorem IV.6 in [27] and the following estimate˛̨
xex − ex + 1

˛̨
≤ e

2
(|x| ∧ 1) |x|(ex + 1),

which holds for all x ∈ R.

Another way to ensure the martingale property is presented in Section 5.

Finally, for the sake of simplicity, we make some regularity assumptions on the struc-
ture of βnt (T, x) as a function of x. These assumptions will only be used at the end of the
proof of Theorem 12, namely, to compute the right hand side of (30). Roughly speaking, the
regularity assumptions make sure that the derivatives of βnt (T, · ) are well defined, decay
exponentially at infinity and satisfy locally some integrability properties.

For convenience, we introduce

In,kt,ε := sup
T∈[t,T̄ ]

h
esssupx∈R\[−ε,ε](e

x + 1)
˛̨̨
∂kxkβ

n
t (T, x)

˛̨̨
+

Z
R

(ex + 1)|x|3 (|x| ∧ 1)k−1
˛̨̨
∂kxkβ

n
t (T, x)

˛̨̨
dx

–
,

whenever the derivatives appearing in right hand side are well defined.

Regularity Assumptions. For each n ≤ m, almost surely, for almost every t ∈ [0, T̄ ], we
have:
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RA1 For every T ∈ [t, T̄ ], the function βnt (T, · ) is continuously differentiable on R \ {0},
and its derivative is absolutely continuous.

RA2 For any ε > 0,
P2
k=0 I

n,k
t,ε <∞.

The above assumptions can be relaxed, if we decrease the order of singularity of βnt (T, · )
at zero. Namely, we obtain
Alternative Regularity Assumptions. For each n ≤ m, almost surely, for almost every
t ∈ [0, T̄ ], we have:

ARA1 supT∈[t,T̄ ]

R 1
−1 |x| |β

n
t (T, x)| dx <∞

ARA2 For every T ∈ [t, T̄ ], the function βnt (T, · ) is absolutely continuous on R \ {0}.
ARA3 For any ε > 0,

P1
k=0 I

n,k
t,ε <∞.

These alternative regularity assumptions are used in Corollary 13 in order to simplify
the ”drift restriction” in Theorem 12. The improved ”drift restriction” is used in Section 5.

4 Consistency Conditions

The main objective of this section is to provide necessary and sufficient conditions for a
given underlying process and a dynamic Lévy density to form a tangent Lévy model. These
conditions are expressed explicitly in terms of the semimartingale characteristics of these
processes. These consistency conditions are stated in Theorem 12.

The notation of Section 3 holds throughout. In particular, throughout this section, un-
less otherwise specified, S = (St)t∈[0,T̄ ] is a cádlág martingale, satisfying (17), with the
corresponding random measure M and its compensator K (described in Section 3), and
κ = (κt)t∈[0,T̄ ] always stands for a dynamic Lévy density, with corresponding Brownian
motion B and processes α and β (as described in Definition 1). Some of the formulas from
Section 2 (namely, (7) and (13)) are also used in this section, with κt,ω ( · , · ) in lieu of
κ ( · , · ). We begin with

Proposition 6 A cádlág martingale (St)t∈[0,T̄ ] and a dynamic Lévy density (κt)t∈[0,T̄ ]

form a tangent Lévy model if and only if, for any x ∈ R and T ∈ (0, T̄ ], the call price
process

“
CSt,κtt (T, x)

”
t∈[0,T )

produced by κ is a martingale.

Proof:
The fact that the martingale property is necessary follows immediately from the defi-

nition of a tL model. So we only prove sufficiency. Fix some T ∈ (0, T̄ ] and notice that
every call price CSt,κtt (T, x), defined via (7), is bounded by St, which implies that the call
price process is uniformly integrable. The martingale convergence theorem yields that, as
t↗ T , each call price process has a limit, in ”almost sure” and L1 (Ω) sense, and we show
that this limit is (ST− − ex)+. First, notice that ‖κt(T, · )‖B0 is almost surely bounded over
t ∈ [0, T ] and make use of the estimate (20) to conclude that, as t↗ T

exp

 
−2π(2πξ2 + iξ)

Z T

T∧t
ψ̂(κt(u); ξ)du

!
→ 1,

for all ξ ∈ R. This yields that, as t↗ T , ∆̂t(T, ξ) given by (13) converges to

elogST−(1−2πiξ)

(1− 2πiξ)
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in L2 (R), as a function of ξ. Since the Fourier transform is unitary on L2 (R), we conclude
that ∆t(T, x) converges in L2 (R), as a function of x, to ex1(−∞,logST−](x). Therefore,
there is a sequence tn ↗ T , such that ∆tn(T, x) converges (to the same limit) for almost
every x ∈ R. Now, recall (7) and apply the dominated convergence theorem to conclude that
almost surely, the call prices vanish, as x goes to infinity. This, together with the nonnega-
tivity of ∆t(T, x), implies that

CSt,κtt (T, x) =

Z ∞
x

∆t(T, y)dy.

From the convergence of the call prices, we conclude that the above integral converges
almost surely along {tn}. Recall that the L1 ([x,∞)) and ”almost everywhere” limits of
∆tn(T, · ) should coincide, which gives us the desired expression for the limit of call prices.
It only remains to notice that ST− = ST almost surely, since S does not have any fixed
points of jump, because of the absolute continuity of its compensator.

Thus, in order to characterize consistency of S and κ, we need to determine when the
call prices produced by κ are martingales. It may seem reasonable to pursue the following
strategy: consider the (T, x)-surface of call prices at time t as a function of St and κt, prove
Fréchet differentiability of this function, then apply an infinite dimensional version of Itô’s
formula to obtain the semimartingale representation of call prices, and, finally, set the drift
term to zero. This approach was successfully used in [3]. However, Fréchet differentiability
of the call prices with respect to κ cannot be proven by direct computation in the present
situation: in particular, straightforward differentiation inside the integral in (16) results in a
non-integrable expression. To take full advantage of the specifics of our set-up, we charac-
terize the martingale property of call prices in the Fourier domain first, and then ”carry it
through” by Fourier inversion.

4.1 Semimartingale Property in Fourier Domain

First, we need to show that ∆̂t(T, ξ) defined by (13), with κt( · , · ) in lieu of κ( · , · ), is a
semimartingale as a process in t. Fix any T ∈ (0, T̄ ], ξ ∈ R and ε ∈ (0, T ) and consider the
mapping

FT,ξ : B × [0, T − ε] ↪→ R,

given by

FT,ξ(v, t) = exp

 
−2π(2πξ2 + iξ)

Z T

t∧T
ψ̂(v(u); ξ)du

!
,

where ψ̂ is defined in (11). Next we study the properties of FT,ξ ( · , · ).

Proposition 7 1. For each v ∈ B, FT,ξ(v, · ) is continuously differentiable on [0, T − ε],
and the partial derivative ∂FT,ξ/∂t is jointly continuous on B × [0, T − ε].
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2. For each t ∈ [0, T − ε], FT,ξ( · , t) is twice continuously Fréchet differentiable, and for
any h, h′ ∈ B we have

F′T,ξ(v, t)[h] = −2π(2πξ2 + iξ)

Z T

t
ψ̂(h(u); ξ)du ·

exp

 
−2π(2πξ2 + iξ)

Z T

t
ψ̂ (v(u); ξ) du

!
,

F′′T,ξ(v, t)[h, h
′] = 4π2(2πξ2 + iξ)2

Z T

t
ψ̂ (h(u); ξ) du

Z T

t
ψ̂
`
h′(u); ξ

´
du ·

exp

 
−2π(2πξ2 + iξ)

Z T

t
ψ̂ (v(u); ξ) du

!
.

Proof:
Since we limit ourselves to t < T − ε, it is clear that:

∂

∂t
FT,ξ(v, t) = 2π(2πξ2 + iξ)ψ̂(v(t); ξ) exp

 
−2π(2πξ2 + iξ)

Z T

t
ψ̂(v(u); ξ)du

!
.

Notice that ψ can be viewed as a continuous linear operator from B0 into L1(R), sinceZ
R
|ψ(f ;x)| dx ≤ c1

Z
R

(|x| ∧ 1) |x|(ex + 1) |f(x)| dx, (20)

where ci’s, appearing here and further in the paper, are positive constants. The above implies
that ψ̂ is a continuous operator from B0 into C(R). Then we have

‖ψ̂(v1(t1))− ψ̂(v2(t2))‖C(R)

≤ ‖ψ̂(v1(t1)− v1(t2))‖C(R) + ‖ψ̂(v1(t2)− v2(t2))‖C(R)

≤ ‖ψ̂‖B0↪→C(R)

Z t1∨t2

t1∧t2

‚‚‚‚ dduv1(u)

‚‚‚‚
B0
du+ ‖ψ̂‖B0↪→C(R)‖v1(t2)− v2(t2)‖B0

≤ ‖ψ̂‖B0↪→C(R)

„Z t1∨t2

t1∧t2

‚‚‚‚ dduv1(u)

‚‚‚‚
B0
du+ ‖v1 − v2‖B

«
. (21)

Using the above inequality, it is easy to see that ∂
∂t

FT,ξ( · , · ) is jointly continuous.
Expressions for the first two derivatives of FT,ξ with respect to v follow immediately

from (20) and the estimates on residuals in the Taylor expansion of the exponential function.
Their continuity follows, again, from the estimate (21).

Corollary 8 The stochastic process
˘
FT,ξ(κt, t)

¯
t∈[0,T−ε] is an adapted continuous semi-

martingale with the following decomposition

FT,ξ(κt, t) = FT,ξ(κ0, 0) +

Z t

0

„
∂

∂u
FT,ξ(κu, u) + F′T,ξ(κu, u)[αu]

+
1

2

mX
n=1

F′′T,ξ(κu, u)[βnu , β
n
u ]

!
du+

mX
n=1

Z t

0
F′T,ξ(κu, u)[βnu ]dBnu .
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Proof:
Follows immediately from Itô’s lemma for conditional Banach spaces (see, for example,

Theorem III.5.4 in [25]).

Corollary 9 The stochastic process
“
∆̂t(T, ξ) = elog St(1−2πiξ)

1−2πiξ FT,ξ(κt, t)
”
t∈[0,T−ε]

is an

adapted semimartingale with the following decomposition

∆̂t(T, ξ) = ∆̂0(T, ξ) +Z t

0

elogSu(1−2πiξ)

1− 2πiξ

"
∂

∂u
FT,ξ(κu, u) + F′T,ξ(κu, u)[αu] +

1

2

mX
n=1

F′′T,ξ(κu, u)[βnu , β
n
u ]

+

Z
R

FT,ξ(κu, u)
“
ex(1−2πiξ) − ex(1− 2πiξ)− 2πiξ

”
Ku(x)dx

–
du

+

mX
n=1

Z t

0

elogSu−(1−2πiξ)

1− 2πiξ
F′T,ξ(κu, u)[βnu ]dBnu

+

Z t

0

Z
R

elogSu−(1−2πiξ)

1− 2πiξ
FT,ξ(κu, u)(ex(1−2πiξ) − 1)[M(dx, du)−Ku(x)dxdu]

Proof:
Follows from the previous corollary and the general form of Ito’s lemma applied to

semimartingales with jumps (see, for example, Theorem I.4.57 in [23]).

Notice that the values of FT,ξ and its derivatives do not depend upon ε, only the ”time”
domain does. Then, since we can choose ε > 0 arbitrarily small, the semimartingale decom-
position given in Corollary 9 holds for all t ∈ [0, T ), and we can drop ε.

Still for T and ξ fixed, we introduce the processes`
µt(T, ξ),

˘
νnt (T, ξ)

¯m
n=1

, jt(T, ξ)
´
t∈[0,T )

defined by

µt(T, ξ) =
elogSt(1−2πiξ)

1− 2πiξ

"
∂

∂t
FT,ξ(κt, t) + F′T,ξ(κt, t)[αt] +

1

2

mX
n=1

F′′T,ξ(κt, t)[β
n
t , β

n
t ]

+FT,ξ(κt, t)

Z
R

“
ex(1−2πiξ) − ex(1− 2πiξ)− 2πiξ

”
Kt(x)dx

–
,

νnt (T, ξ) =
elogSt−(1−2πiξ)

1− 2πiξ
F′T,ξ(κt, t)[β

n
t ],

jt(T, ξ) =
elogSt−(1−2πiξ)

1− 2πiξ
FT,ξ(κt, t),

so that

∆̂t(T, ξ) = ∆̂0(T, ξ) +

Z t

0
µu(T, ξ)du+

mX
n=1

Z t

0
νnu (T, ξ)dBnu

+

Z t

0

Z
R
ju(T, ξ)(ex(1−2πiξ) − 1) [M(dx, du)−Ku(x)dxdu] .
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4.2 Main Result

In order to go back from the Fourier domain to the space domain, we need to use the inverse
Fourier transform of generalized functions or Schwartz distributions, and consequently, we
need to understand, as we start varying ξ, in which spaces the above stochastic processes
take values.

We denote by S0 the space of bounded Borel functions on R which decay at infinity
faster than any negative power of |x|.

Proposition 10 For any φ ∈ S0, T ∈ (0, T̄ ] and t ∈ [0, T ), we have, almost surely:Z t

0

Z
R
|µu(T, ξ)| |φ(ξ)|dξdu <∞,Z t

0

Z
R

`
νnu (T, ξ)

´2
φ2(ξ)dξdu <∞, n = 1, . . . ,mZ t

0

Z
R

Z
R
j2u(T, ξ)

“
ex(1−2πiξ) − 1

”2
φ2(ξ)dξM(dx, du) <∞.

Proof:
Recall that (15) yields ˛̨

FT,ξ(κt, t)
˛̨
≤ c1.

Similarly, we have ˛̨̨̨
∂

∂t
FT,ξ(κt, t)

˛̨̨̨
≤ c2(1 + |ξ|2)‖κt‖B,˛̨

F′T,ξ(κt, t)[ht]
˛̨
≤ c3(1 + |ξ|2)‖ht‖B,˛̨

F′′T,ξ(κt, t)[ht, ht]
˛̨
≤ c4(1 + |ξ|4)‖ht‖2B,

and alsoZ
R

˛̨̨
ex(1−2πiξ) − ex(1− 2πiξ)− 2πiξ

˛̨̨
Kt(x)dx

≤ c5(1 + |ξ|2)

Z
R

(|x| ∧ 1)2 (ex + 1)Kt(x)dx ≤ c5(1 + |ξ|2)‖Kt‖B0 .

Therefore

|µt(T, ξ)| ≤ c6St(1 + |ξ|3)

 
‖κt‖B + ‖Kt‖B0 + ‖αt‖B +

mX
n=1

‖βnt ‖2B

!
,˛̨

νnt (T, ξ)
˛̨
≤ c7St− (1 + |ξ|) ‖βnt ‖B.

And since we have, almost surely

sup
t∈[0,T̄ ]

(St + ‖κt‖B) <∞,

by construction, the integrability properties of α, βn’s and K, the definition of S0, together
with the above estimates imply the first two inequalities of the proposition.
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In order to prove the remaining inequality, we recall that, as discussed in Section 3,
M(dx, du) has only a finite number of atoms in (R \ [−1, 1])× [0, t] and, hence, it is enough
to show thatZ t

0

Z
R

Z
R
j2u(T, ξ)

“
ex(1−2πiξ) − 1

”2
1[−1,1](x)φ2(ξ)dξM(dx, du) <∞. (22)

holds almost surely. Since

j2t (T, ξ)
“
ex(1−2πiξ) − 1

”2
1[−1,1](x) ≤ c8S2

t− (|x| ∧ 1)2 , (23)

the left hand side of (22) is finite almost surely, as it is bounded from above by

c9 sup
u∈[0,T̄ ]

“
S2
u

”Z t

0

Z
R

(|x| ∧ 1)2M(dx, du) <∞.

Notice that the nonnegativity of κt is required in order to make use of (15), which only
makes sense if T−1 R T

0 κt(u, · )du can serve as a Lévy density.

We use the standard notation S for the Schwartz space of (complex-valued) C∞ func-
tions on R whose derivatives of all orders decay at infinity faster than any negative power
of |x|. Then any polynomially bounded Borel function f can be viewed as a continuous
functional on S via the duality

〈f, φ〉 =

Z
R
f(x)φ(x)dx. (24)

Corollary 11 For any φ ∈ S, T ∈ (0, T̄ ] and t ∈ [0, T ), the following equality holds almost
surely:

〈∆̂t(T, · ), φ〉 = 〈∆̂0(T, · ), φ〉+

Z t

0
〈µu(T, · ), φ〉du+

mX
n=1

Z t

0
〈νnu (T, · ), φ〉dBnu

+

Z t

0

Z
R
〈ju(T, · )(ex(1−2πi · ) − 1), φ〉 [M(dx, du)−Ku(x)dxdu]

Proof:
We use Fubini’s theorem to change the order of integration in the first integral, and the

absolute integrability follows from Proposition 10.
Changing the order of integration in the last two integrals can be justified by the stochas-

tic Fubini’s theorem (see, for example, Theorem 65 in [30]), which requires integrability of
the square of the integrand with respect to ”dξ × d[quadratic variation of the stochastic
integrator]”. This is justified, again, by Proposition 10.

Finally, we formulate the consistency conditions, namely, the necessary and sufficient
conditions for the pair (S, κ) to form a tangent Lévy model (see Definition 4), expressed in
terms of their semimartingale characteristics.

Theorem 12 Under the regularity assumptions RA1-RA2 of Section 3, a cádlág martingale
(St)t∈[0,T̄ ], satisfying (17), and a dynamic Lévy density (κt)t∈[0,T̄ ] form a tangent Lévy
model if and only if the following conditions hold almost surely for almost every x ∈ R and
t ∈ [0, T̄ ), and all T ∈ (t, T̄ ]:
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– Drift restriction

αt(T, x) = −e−x ·
mX
n=1

Z
R
∂4
y4ψ

`
β̄nt (T ); y

´ ˆ
ψ
`
βnt (T );x− y

´
− (25)

„
1− y∂x +

y2

2
∂2
x2 −

y3

6
∂3
x3

«
ψ
`
βnt (T );x

´–
−

∂2
y2ψ

`
β̄nt (T ); y

´ ˆ
ψ
`
βnt (T );x− y

´
− (1− y∂x)ψ

`
βnt (T );x

´˜
dy,

– Compensator specification

Kt(x) = κt(t, x). (26)

We use the notation

β̄nt (T ) =

Z T

t∧T
βnt (u)du,

and we understand functions of the form ψ (f ; · ), and their derivatives, as defined separately
on (0,∞) and (−∞, 0).

Proof:
In view of Proposition 6, it is enough to show that equations (25) and (26) hold if and

only if all the call prices, produced by κ, are martingales (up until expiry). Recall that the
Fourier transform is a bijection on S, and it is defined on the space S∗ of tempered distribu-
tions (i.e. the topological dual of S) via the duality (24). So, viewing ∆̂t(T, · ) as an element
of S∗, we have:

〈∆̂t(T, · ), φ〉 = 〈∆t(T, · ), φ̂〉,

and therefore, for any φ ∈ S, Corollary 11 yields

〈∆t(T, · ), φ〉 = 〈∆̂t(T, · ), φ̌〉 = 〈∆0(T, · ), φ〉+

Z t

0
〈µu(T, · ), φ̌〉du

+

mX
n=1

Z t

0
〈νnu (T, · ), φ̌〉dBnu (27)

+

Z t

0

Z
R
〈ju(T, · )(ex(1−2πi · ) − 1), φ̌〉 [M(dx, du)−Ku(x)dxdu] .

We now show that the martingale property of the call prices produced by κ is equivalent
to: almost surely for almost all t ∈ [0, T̄ ), µt(T, ξ) = 0 for all T ∈ (t, T̄ ] and all ξ ∈
R, or, in other words, µ ≡ 0. Notice that almost surely for all t ∈ [0, T̄ ), the function
{µt(T, ξ)}T∈(t,T̄ ],ξ∈R is jointly continuous. This observation is not necessary for the proof
but helps avoid ambiguity in understanding what it means for µt( · , · ) to be equal to zero.

If µ ≡ 0, we choose a sequence
n
φk
o∞
k=1

in S, such that

φk(x) ↓ 1[a,b](x),

for every x ∈ R. This sequence, of course, will also converge in L1(R). Making use of (27),
we conclude that “

〈∆t(T, · ), φk〉
”
t∈[0,T )

ff∞
k=1

(28)
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is a sequence of local martingales. Since each of them is bounded by a constant times St,
it is in fact a sequence of true martingales. The limit as k → ∞ of this sequence is, almost
surely, for any t ∈ [0, T ), equal to

〈∆t(T, · ),1[a,b]〉 = CSt,κtt (T, a)− CSt,κtt (T, b).

Since (28) is an almost surely decreasing sequence of martingales, by monotone conver-
gence, its limit is a martingale. Thus, for any a, b ∈ R, the difference“

CSt,κtt (T, a)− CSt,κtt (T, b)
”
t∈[0,T )

is a martingale. Finally, since call prices almost surely decrease to zero, as strike goes to
infinity, applying monotone convergence again, we conclude that all the call prices are mar-
tingales.

Conversely, if all the call prices produced by κ are martingales, then for any φ ∈ S we
have that

“
〈CSt,κtt (T, · ), φ〉

”
t∈[0,T )

is a martingale as well. To see this, recall that a call

price is a continuous function of log-strike and it is bounded by St. Then 〈CSt,κtt (T, · ), φ〉
can be viewed as a limit of Riemann sums Xn

t (T ), where the limit is understood for each
t ∈ [0, T ) in ”almost sure” sense. Varying t we find that each Xn

. (T ) is a martingale. From
the dominated convergence theorem then, we see thatXn

t (T ) converges to 〈CSt,κtt (T, · ), φ〉
in L1(Ω), and therefore, the limit is also a martingale.

For any φ ∈ S,
〈∆t(T, · ), φ〉 = 〈CSt,κtt (T, · ), φ′〉

is also a martingale since φ′ ∈ S. Due to (27), this implies that for any φ ∈ S and any
T ∈ (0, T̄ ], almost surely for almost all t ∈ [0, T ), we have

〈µt(T, · ), φ〉 = 0.

Now, we can choose a dense countable subset of S and conclude that, almost surely for
almost all t ∈ [0, T̄ ), the above equality holds for all rational T ∈ (t, T̄ ] and all functions φ
from the chosen set. This implies µ ≡ 0.

Thus, the martingale property of the call prices produced by κ is equivalent to µ ≡ 0.
Let us now formulate this condition in terms of α, β and K. Notice that an absolutely con-
tinuous function is equal to zero on an interval if and only if it is zero at a boundary point,
and its derivative is zero almost everywhere in the interval. In order to simplify the anal-
ysis of the derivative, we will work with µt(T, ξ)/FT,ξ(κt, t) instead of µt(T, ξ) (clearly,
µt(T, ξ) = 0 if and only if µt(T, ξ)/FT,ξ(κt, t) = 0). Letting T ↘ t in the equation
µt(T, ξ)/FT,ξ(κt, t) = 0, we obtain

−2π(2πξ2 + iξ)ψ̂(κt(t); ξ) =

Z
R

“
ex(1−2πiξ) − ex(1− 2πiξ)− 2πiξ

”
Kt(x)dx

which is equivalent to (26). To see this, we use the derivations given in detail in Appendix
A and conclude that the above right hand side is equal to −2π(2πξ2 + iξ)ψ̂(Kt; ξ), which
implies that ψ̂(κt(t)−Kt; ξ) = 0, which is equivalent to (26).

Notice that the T -derivative of µt(T, ξ)/FT,ξ(κt, t) is well defined for all T ∈ (t, T̄ ).
Making use of the Proposition 7 and the definition of µt(T, x), we obtain
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∂T
µt(T, ξ)

FT,ξ(κt, t)
=
elogSt(1−2πiξ)

1− 2πiξ

 
−2π(2πξ2 + iξ)ψ̂(αt(T ); ξ)

+4π2(2πξ2 + iξ)2
mX
n=1

ψ̂
`
βnt (T ); ξ

´ Z T

t
ψ̂
`
βnt (u); ξ

´
du

!

Equating it to zero, we obtain

ψ̂(αt(T ); ξ) = 2π
“

2πξ2 + iξ
” mX
n=1

ψ̂
`
βnt (T ); ξ

´
ψ̂
`
β̄nt (T ); ξ

´
.

Inverting the Fourier transform yields

ψ(αt(T );x) = −
mX
n=1

h
∂2
x2 + ∂x

i„Z
R
ψ
`
βnt (T );x− y

´
ψ
`
β̄nt (T ); y

´
dy

«
, (29)

where the derivatives are understood in a generalized sense (as operators on S∗). The above
implication follows immediately from the properties of the Fourier transform (understood in
the generalized sense, acting on S∗). It will be shown later that the derivatives in (29) exist
in the classical sense. Assuming first that the right hand side of the above is well defined as
a classical function, we solve (29) for α, or in other words, we invert the operator ψ. The
inverse of ψ is e−x

h
∂2
x2 − ∂x

i
, which yields

αt(T, x) = −e−x
mX
n=1

h
∂4
x4 − ∂2

x2

i„Z
R
ψ
`
βnt (T );x− y

´
ψ
`
β̄nt (T ); y

´
dy

«
, (30)

given that the right hand side is well defined.
As mentioned above, the integral in (30) is well defined for all x 6= 0. However, a

modicum of care is required differentiating it, since derivatives of the integrands are not
absolutely integrable around zero. Typically, we need to compute an expression of the form

∂x

Z
R
f(x− y)g(y)dy,

when f, g ∈ L1(R) are both absolutely continuous outside any neighborhood of zero and
vanish at infinity. We can also assume that their first derivatives are bounded and absolutely
integrable outside any neighborhood of zero and, if multiplied by |x|, are locally absolutely
integrable at zero. We should think of f and g as ψ (βnt (T )) and ψ

`
β̄nt (T )

´
respectively. We

use integration by parts to be able to pass the derivative under the integral. Without any loss
of generality we assume that x > 0. ThenZ

R
f(x− y)g(y)dy = lim

ε→0

»Z −ε
−∞

∂y

„Z x+ε

x−y
f(z)dz

«
g(y)dy

+

Z x

ε
∂y

„Z x−ε

x−y
f(z)dz

«
g(y)dy +

Z ∞
x

∂y

„Z x−ε

x−y
f(z)dz

«
g(y)dy

–
=

Z x

−∞
g′(y)

Z x−y

x
f(z)dzdy +

Z ∞
x

g′(y)

Z x−y

x
f(z)dzdy,
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from which we conclude

∂x

Z
R
f(x− y)g(y)dy =

Z
R
g′(y) (f(x− y)− f(x)) dy.

Clearly, if in addition we assume that the first three derivatives of f and g vanish at infinity,
the first four derivatives of f and g are essentially bounded outside any neighborhood of
zero, and the following expressions(

|x|k

|x| ∨ 1
f (k)(x),

|x|k

|x| ∨ 1
g(k)(x)

)4

k=1

(31)

are absolutely integrable functions of x ∈ R, then, repeating the above derivations, we obtain

∂2
x2

Z
R
f(x− y)g(y)dy =

Z
R
g′′(y)

`
f(x− y)− f(x) + yf ′(x)

´
dy,

∂3
x3

Z
R
f(x− y)g(y)dy =

Z
R
g′′′(y)

„
f(x− y)− f(x) + yf ′(x)− y2

2
f ′′(x)

«
dy, (32)

∂4
x4

Z
R
f(x− y)g(y)dy =Z

R
g(4)(y)

„
f(x− y)− f(x) + yf ′(x)− y2

2
f ′′(x) +

y3

6
f ′′′(x)

«
dy.

Let us now continue with (30). Notice that, although the definition of ψ involves only
one integral, the integrand there depends upon the limit of integration, so that, effectively,
ψ(f ;x) is a double exponentially weighted integral of f (see [6]). However, its derivative is
an integral operator:

∂xψ (f ;x) = −ex
Z sign(x)∞

x
f(y)dy. (33)

The k-th order derivative of ψ (f ; · ), for any k ≥ 2, can be obtained by a straightforward
calculation, and it takes the form of the exponential, ex, multiplied by a linear combination
of the integral of f and its first k − 2 derivatives.

The above implies that, due to the regularity assumptions we made on the functions
βnt ( · , · ) (see RA1-RA2 in Section 3), the functions ψ (βnt (T ); · ) and ψ

`
β̄nt (T ); ·

´
have

all the properties of f and g, introduced above.
Thus, the derivatives in (29) and (30) are well defined in the classical sense, and (30)

and (32) yield (25).

As explained in Section 5, the additional integrability assumption ARA1 in Section 3 is
a very natural one, and, under this assumption, the drift restriction (25) can be simplified.
Namely, we have

Corollary 13 Under the alternative regularity assumptions ARA1-ARA3 of Section 3, a
cádlág martingale (St)t∈[0,T̄ ], satisfying (17), and a dynamic Lévy density (κt)t∈[0,T̄ ] form
a tangent Lévy model if and only if, almost surely for almost every x ∈ R and t ∈ [0, T̄ ), and
all T ∈ (t, T̄ ], the compensator specification (26) is satisfied and the following modification
of the drift restriction holds

αt(T, x) =

−e−x
mX
n=1

Z
R
∂3
y3ψ

`
β̄nt (T ); y

´ ˆ
∂xψ

`
βnt (T );x− y

´
− (1− y∂x) ∂xψ

`
βnt (T );x

´˜
− ∂yψ

`
β̄nt (T ); y

´
∂xψ

`
βnt (T );x− y

´
dy. (34)
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The above drift restriction becomes even more attractive after noticing that, in this case, the
drift is expressed in terms of ∂xψ (βnt (T );x) and ∂xψ

`
β̄nt (T );x

´
, and these functions are,

essentially, the first integrals of βnt (T, · ) and β̄nt (T, · ) respectively (see (33)).

Proof:
Let us rewrite the end of the proof of Theorem 12, starting with equation (30). First,

notice that if βnt takes values in H and the alternative regularity assumptions ARA1-ARA3
hold, ∂xψ (βnt ;x) and ∂xψ

`
β̄nt ;x

´
are absolutely integrable in x. Therefore, using integra-

tion by parts, we can pass two differential operators inside the integral in (30) and obtain

αt(T, x) = −e−x
mX
n=1

h
∂2
x2 − 1

i„Z
R
∂xψ

`
βnt (T );x− y

´
∂yψ

`
β̄nt (T ); y

´
dy

«
We then proceed as in the proof of Theorem 12, making use of (32), to derive (34).

In fact, if we assume in addition that βnt (T, · ) is locally integrable at zero, then the drift
restriction can be further simplified to take its most convenient form (see (47) and (40)),
which is used in Section 6.

5 Existence of Tangent Lévy Models

In Theorem 12 of Section 4 we described the tangent Lévy models in terms of the semi-
martingale characteristics of their components, S and κ. The question is now, how to param-
eterize explicitly a large family of tL models? We would like to identify the free parameter
whose value can be specified exogenously and whose admissible values determine uniquely
the tangent Lévy model. From Theorem 12 we see that β is a good candidate. In this section
we show how to construct a consistent tL model from any admissible value of β. However,
in order to do so, we loose some generality: we introduce specifications that effectively re-
duce the class of tL models described in Section 3, but, at the same time, make them more
tractable and amenable to implementation, and allow us to prove the existence result.

5.1 Choosing the Right Functional Subspaces

We first introduce a convenient specification of κ. A crucial point of the setup of Section 3 is
the assumption of nonnegativity of κ. We would like to construct its dynamics in such a way
that the nonnegativity property is preserved automatically. The most straight forward way to
preserve nonnegativity, is to stop the process before it becomes negative. Unfortunately, the
set of all f( · , · ) ∈ B, whose essential infimum is negative, is dense in B, which means that
we cannot control the corresponding stopping time by choosing the right initial condition
κ0. This is a problem for both numerical implementation of the model, and for the further
development of the theory, as one, eventually, would like to construct dynamics of κ in such
a way that it never leaves the set of nonnegative functions without having to be stopped (see
Proposition 18).

Thus, we narrow down the state space B by fixing the asymptotic behavior of its ele-
ments at x→∞ and at x→ 0, so that κ is always of the form

κt(T, x) = e−λ|x| (|x| ∧ 1)−1−2δ κ̃t(T, x), (35)
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for some fixed λ > 1 and δ ∈ (0, 1) and a function κ̃t(T, · ) which belongs to B̃0 := C̃(R),
the subspace of C(R) consisting of continuous functions with limits at ±∞, equipped with
the standard ”sup” norm. Clearly, such functions κt(T, · ) are inB0. Thus, we can specify the
time evolution of the dynamic Lévy density κt by modeling κ̃t. For notational convenience,
we introduce

ρ(x) = e−λ|x| (|x| ∧ 1)−1−2δ . (36)

From now on, we will use the notation ”tilde” for the functions normalized by ρ. The moti-
vation for such a choice comes from the CGMY model introduced in [5].

Remark 14 Notice that the above specification is not the only possible. For example, we
could have chosen κ to be of the form

κt(T, x) =

8<: e−λ
+|x|

“
|x|−1−2δ ∨ 1

”
κ̃+
t (T, x) x > 0,

e−λ
−|x|

“
|x|−1−2δ ∨ 1

”
κ̃−t (T, x) x < 0,

which corresponds to modeling the intensities of positive and negative jumps separately. All
the results obtained in this chapter can be extended to include the above specification, with
the only difference that we would have to study the dynamics of two functions κ̃+ and κ̃−

instead of a single one. However, for notational convenience, we will restrict ourselves to
specification (35).

In order to define the dynamics of κ̃, we need to describe the state space of its diffusion
coefficient β̃. We would like to construct the dynamics of κ̃ so that the Corollary 13 could be
applied to κ = ρκ̃, therefore, we need the alternative regularity assumptions ARA1-ARA3
in Section 3 to be satisfied. Thus, we choose a Hilbert space G of absolutely continuous
functions on R, whose first derivatives are in L1 (R) ∩ L∞ (R), and for which the following
inequality holds

‖f ′‖L1(R) + ‖f ′‖L∞(R) ≤ c‖f‖G ,

for some positive constant c. For example, G can be defined as the space of functions on R,
whose first derivatives vanish outside of some fixed compact, and whose second derivatives
are square integrable.

However, it is not enough to require that β̃nt (T, · ) takes values in G. Recall that we need
to construct the dynamics of κ̃ so that the drift restriction is satisfied for κ = ρκ̃. Analyzing
(25) or (34), we conclude that as x → 0, the asymptotic behavior of each term in the sums
in the right hand sides of these equations depends only on the singularity of βnt (T, · ) and
β̄nt (T, · ) at zero. If we assume a power-type behavior of βnt (T, x), say, |x|−ε, around x = 0,
computing the asymptotic behavior of the integrals in (25) or (34), we see that their rate of
growth as x→ 0, is given by |x|−2ε+1 (see, for example (61) for similar calculations). This
means that the drift restriction can, potentially, increase the singularity at zero if βnt (T, · )
is not integrable at zero. Notice also that, on the other hand, when ε ≤ 1, the order of
singularity will be decreased by the drift restriction. We know that the order of singularity
of αt(T, x) at x = 0 should not exceed |x|−1−2δ , therefore, we need ε ≤ 1+δ, which means
that we have to restrict ourselves to βnt (T, x)’s which grow at most like |x|−1−δ at x = 0.
Studying the drift restriction, we can also notice that it can potentially create some growth
at x → ∞ (although not of a very high order), if βnt (T, · )’s do not vanish fast enough at
infinity. The reader can consult the derivation of the estimates proven in Appendix B for
more details.
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Motivated by the above, and expecting, naturally, that βt = ρβ̃t, we then define the
Hilbert space H̃0 by

H̃0 =
n
e−λ

′| · |
“
| · |δ ∧ 1

”
f( · )

˛̨̨
f ∈ G

o
,

where λ′ > 0 is some fixed real number. The inner product on H̃0 is inherited from G.
Namely, if we rewrite functions f, g ∈ H̃0 in the form f(x) = e−λ

′|x|
“
|x|δ ∧ 1

”
f̃(x) and

g(x) = e−λ
′|x|
“
|x|δ ∧ 1

”
g̃(x) with f̃ , g̃ ∈ G, then

〈f, g〉H̃0 := 〈f̃ , g̃〉G

The spaces B̃ and H̃, of functions of two variables, are then constructed from B̃0 and H̃0

in the same way as B and H were constructed from B0 and H0 in Section 3, namely, using
the norms:

‖f‖B̃ := ‖f(0)‖B̃0 +

Z T̄

0

‚‚‚‚ dduf(u)

‚‚‚‚
B̃0
du <∞,

‖f‖2H̃ := ‖f(0)‖2H̃0 +

Z T̄

0

‚‚‚‚ dduf(u)

‚‚‚‚2

H̃0
du <∞.

Since the surface κ̃t( · , · ) is continuous, it is convenient to introduce the following stop-
ping time

τ̃0 = inf

(
t ≥ 0 : inf

T∈[t,T̄ ],x∈R
κ̃t(T, x) ≤ 0

)
, (37)

and stop process κ̃ at τ̃0. Notice that infT∈[t,T̄ ],x∈R κ̃t(T, x) is an adapted continuous pro-
cess in t, hence τ̃0 is a predictable stopping time (see, for example, Proposition I.2.13 in
[23]). Notice that κ̃t∧τ̃0 ( · , · ) is almost surely nonnegative, and therefore, so is κt∧τ̃0 ( · , · ).

Thus, we construct the dynamic Lévy density κ = (κ)t∈[0,T̄ ] in the form κt = ρκ̃t∧τ̃0 ,
with

κ̃t = κ̃0 +

Z t

0
α̃udu+

mX
n=1

Z t

0
β̃nudB

n
u , (38)

where B =
“
B1, . . . , Bm

”
is a multidimensional Brownian motion, α̃ is a progressively

measurable integrable random process with values in B̃, and each β̃n is a progressively
measurable square integrable random process with values in H̃.

It is not hard to see that κ = (ρκ̃t∧τ̃0)t∈[0,T̄ ] with κ̃ defined by (38), is indeed a dynamic
Lévy density in the sense of Definition 1, with

αt(T, x) = ρ(x)α̃t(T, x)1t≤τ̃0 ,

βnt (T, x) = ρ(x)β̃nt (T, x)1t≤τ̃0 , n = 1, . . . ,m. (39)

Recall that we are only interested in dynamic Lévy densities which are consistent with the
underlying (so that the two form a tL model). It is easy to check that the assumptions ARA1-
ARA3 of Section 3 are satisfied for β defined by (39), and applying Corollary 13, we rewrite
the consistency conditions in the new variables:

α̃t(T, x)1t≤τ̃0 = Qβ̃t (T, x) 1t≤τ̃0 , Kt(x) = ρ(x)κ̃t(t, x), (40)
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where we introduced the notation

Qβ̃t (T, x) = − e
−x

ρ(x)
· (41)

mX
n=1

Z
R
∂3
y3ψ

“
ρ

¯̃
βnt (T ); y

” h
∂xψ

“
ρβ̃nt (T );x− y

”
− (1− y∂x) ∂xψ

“
ρβ̃nt (T );x

”i
− ∂yψ

“
ρ

¯̃
βnt (T ); y

”
∂xψ

“
ρβ̃nt (T );x− y

”
dy,

and

¯̃
βnt (T ) =

Z T

t∧T
β̃nt (u)du.

In this section we only use the ”sufficiency” of the consistency conditions given in
Corollary 13. Therefore, we assume that (40) holds almost surely for all x ∈ R and all
t, T ∈ [0, T̄ ]. Notice that for any admissible β̃, we can use α̃t = Qβ̃t to construct κ̃ =

(κ̃)t∈[0,T̄ ] via (38), and then stop it at τ̃0 (clearly, the stochastic differential of the stopped

process will have the drift Qβ̃t1t≤τ̃0 and the diffusion coefficient β̃t1t≤τ̃0 ). Then the only

remaining question is whether the process
“
Qβ̃t

”
t∈[0,T̄ ]

is admissible (satisfies the proper-

ties assumed for α̃). The following lemma gives a positive answer to this question.

Lemma 15 For any vector of progressively measurable square integrable H̃-valued stochas-
tic processes, β̃ =

n
β̃n
om
n=1

, the process
“
Qβ̃t ( · , · )

”
t∈[0,T̄ ]

, defined in (41), is a progres-

sively measurable integrable random process with values in B̃.

Proof:
Given in Appendix B.
The above algorithm gives us the dynamic Lévy density κ = ρκ̃, but what is the under-

lying process S, for which the pair (S, κ) is a tL model? Assuming that S satisfies (17), the
only thing that is required for the consistency, is the compensator specification in (40). Let
us now show how to construct a pure jump martingale with given characteristics.

5.2 Jump Measure Specification

Assume that we are given a Poisson random measure N (an integer valued random measure
with deterministic compensator) with compensator ρ(x)dxdt, where ρ is defined in (36).
Notice that this particular form of the compensator is not crucial for our derivations, as long
as the compensator is absolutely continuous, takes finite values on the sets (R \ [−ε, ε]) ×
[0, t], and is equal to infinity on ([−ε, ε] \ {0}) × [0, t], for any ε > 0 and t ∈ (0, T̄ ]. We
choose to use ρ(x)dxdt in order to simplify some of the notation.

We construct the measureM corresponding to the jumps of the logarithm of the underly-
ing, as having the same times of jump as N , but with, possibly, different jump sizes. In other
words, if {Tn, xn} denote the atoms of N , then we assume that the atoms of M are given by
{Tn,W (Tn, xn)}, for some predictable random function W : Ω × [0, T̄ ]× (R \ {0}) ↪→ R
(see Definition 1.3 in Section II.1 of [23]), which we need to specify.
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In order for ρ(x)κ̃t(t, x)dxdt to be a compensator of M , it is necessary and sufficient
that the following is satisfied: for any nonnegative predictable function f : Ω × [0, T̄ ] ×
(R \ {0}) ↪→ R, we have

E
Z

R×[0,T̄ ]
f(ω, t, x)κ̃t(t, x)ρ(x)dxdt = E

Z
R×[0,T̄ ]

f (ω, t, x)M(dx, dt).

Notice that, by our assumption on the form of M , the above right hand side is equal to

E
Z

R×[0,T̄ ]
f (ω, t,W (t, x))N(dx, dt),

which in turn, by the definition of a compensator (and because W is predictable), is equal to

E
Z

R×[0,T̄ ]
f (ω, t,W (t, x)) ρ(x)dxdt.

Thus, we need to find a predictable function W such that, for any nonnegative predictable
f , we have

E
Z

R×[0,T̄ ]
f(ω, t, x)κ̃t(t, x)ρ(x)dxdt = E

Z
R×[0,T̄ ]

f (ω, t,W (t, x)) ρ(x)dxdt. (42)

Such a function W may not be unique since the random measure M is not uniquely deter-
mined by its compensator. However, now with a possible loss of generality, we choose a
specific form of W , which satisfies (42). First, we introduce functions

Ft(x) =

Z sign(x)∞

x
κ̃t(t, y)ρ(y)dy, G(x) =

Z sign(x)∞

x
ρ(y)dy,

and make a change of variables in (42) to obtain

E
Z

R×[0,T̄ ]
f
“
ω, t, F−1

t (x)
”
dxdt = E

Z
R×[0,T̄ ]

f
“
ω, t,W

“
t, G−1(x)

””
dxdt,

where F−1
t ( · ) and G−1 ( · ) are the (right continuous) generalized inverse functions. Thus,

the specification W (t, x) = W κ̃t(x) with

W κ̃t(x) := F−1
t (G(x)) , W κ̃t(0) := 0, (43)

fulfills (42). An important property of representation (43) is that W κ̃t is expressed through
κ̃t in a deterministic manner. In particular, it implies that W κ̃t(x) is indeed predictable.
Therefore, the integer valued random measure M , defined by its atoms

n
Tn,W

κ̃Tn (xn)
o

,

has the compensator κ̃t(t, x)ρ(x)dxdt. Notice also that by construction, W κ̃.( · ), as a ran-
dom function, is locally integrable with respect to N (see II.1.27 in [23] for the definition of
such an integrability).
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5.3 Existence Result

Making use of the above constructions, we restrict our framework to dynamics of (St, κ̃t)t∈[0,T̄ ]

of the form8><>:
κ̃t = κ̃0 +

R t
0 Q

β̃u1u≤τ̃0du+
Pm
n=1

R t
0 β̃

n
u1u≤τ̃0dB

n
u ,

St = S0 +
R t
0

R
R Su−

“
exp

“
W κ̃t(x)

”
− 1
”

(N(dx, du)− ρ(x)dxdu) ,

(44)

where ρ is defined in (36), τ̃0 is given by (37), W κ̃t is defined in (43), Qβ̃t is given by (41),
B =

“
B1, . . . , Bm

”
is a multidimensional Brownian motion, N is a Poisson random mea-

sure (with compensator ρ(x)dxdt), each β̃n is a progressively measurable square integrable
random process with values in H̃, and the stochastic integrals in (44) are understood as their
cádlág modifications.

Finally, we need to make sure that the martingale property of the underlying price S
(which was imposed exogenously in Section 3) is satisfied. In general, S, given by (44), is a
martingale if and only if the following holds

E
Z T̄

0

Z
R
Su−

“
exp

“
W κ̃t(x)

”
− 1
”

(N(dx, du)− ρ(x)dxdu) = 0. (45)

To see this, recall that S is a positive local martingale (see (18)), and repeat the argument
presented in Subsection 2.1.

Notice that, if κ̃ is independent of N , the process Xt = log (St/S0) has condition-
ally independent increments with respect to the σ-algebra generated by (κ̃t)t∈[0,T̄ ]. Apply-
ing the Theorem II.6.6 in [23], we conclude that the conditional distribution of XT̄ , given
(κ̃t)t∈[0,T̄ ], is the one of the corresponding additive process at time T̄ . Then, using the
argument presented in Section 2 (recall (6)), we conclude that the respective conditional
expectation of exp (XT̄ ) is equal to one, which yields (45). Thus, in view of (44), the mar-
tingale property of S can be guaranteed by assuming that β̃ and the Brownian motion B are
independent of the Poisson random measure N .

Remark 16 It may seem too restrictive to require that κ̃ is independent of the measure N ,
which governs the arrival of jumps. In fact, it could be interesting to consider models in
which the behavior of the intensity changes, when large jumps occur. Then, in order to
guarantee the martingale property, we can use the version of Novikov condition, given in
Remark 5, which in the present setup rewrites as

E exp

 
e

2

Z T̄

0
‖κ̃t(t, · )‖B̃0dt

!
<∞.

Finally, we can formulate the desired existence result.

Theorem 17 For any given Poisson random measure N , with compensator ρ(x)dxdt, any
Brownian motionB =

“
B1, . . . , Bm

”
independent ofN , and any progressively measurable

square integrable H̃-valued stochastic processes
n
β̃n
om
n=1

independent of N , there exists a
unique (up to indistinguishability) pair (St, κ̃t)t∈[0,T̄ ] of processes satisfying (44). The pair
(St, ρκ̃t)t∈[0,T̄ ] gives a tangent Lévy model.
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Proof:
The construction presented before Lemma 15 provides κ̃ satisfying the first line of (44).

This construction is clearly unique given β̃ and B, and the resulting dynamic Lévy density
κ = ρκ̃ satisfies the drift restriction (34). Given κ̃ and N , the process S is uniquely de-
fined by the second line of (44), and, by construction, it satisfies (17) and the compensator
specification (26). Moreover, by the argument presented before Remark 16, under the inde-
pendence assumption of the theorem, the process S is a martingale. A simple application of
Corollary 13 completes the proof.

Notice that in some sense, the above theorem provides a local existence result: (44)
implies that the process κ̃ stops at τ̃0, and from this time on, the underlying evolves as the
exponential of a process with independent increments. Notice that this does not necessarily
lead to any pathological behavior of the underlying since most likely, κ̃τ̃0(T, x) is equal
to zero at only ”few” points (T, x), so that the resulting Lévy density is not degenerate.
However, the need to stop κ̃ at τ̃0 may not be a desirable property, in particular if one is
looking for some kind of stationarity in the model. Therefore, it is reasonable to consider the
diffusion coefficients

n
β̃nt

om
n=1

(and therefore α̃t) as functions of κ̃t, so that the resulting
dynamics of κ̃ guarantee that it always stays positive (in other words, τ̃0 =∞ almost surely).
In such case, it is also possible to make β̃t, and therefore κ̃t, depend upon St. Then, of
course, the independence assumption of Theorem 17 would be violated, and we would need
to make sure that for example, the dynamics of κ̃t are such that ‖κ̃t‖B̃ is bounded over
t ∈ [0, T̄ ] by a constant in order to use Remark 16. In addition, the system (44) would
become a ”true” system of equations for S and κ̃ (when all the terms in the right hand
side have a nontrivial dependence upon the left hand side, unlike it is in the present setup),
and the questions of existence and uniqueness of the solution would be significantly more
complicated. In the present paper, we do not provide the analysis of this problem in full
generality. However, Section 6 illustrates the above discussion with an example of a tL
model (St, ρκ̃t)t∈[0,T̄ ], in which κ̃ is constructed to stay positive at all times.

6 Example of a Tangent Lévy Model and Implementation

In this section, we give an explicit example of a tangent Lévy model which does not need to
be stopped before T̄ . We pick λ > 1, λ′ > 0, δ ∈ (0, 1) and assume that we are in the setup
of Section 5, in particular, the dynamics of the model are given by (44). Then, according
to Theorem 17, in order to construct a tL model, we only need to specify the progressively
measurable and square integrable processes

n
β̃n
om
n=1

with values in H̃.

We choose m = 1 and use the notation β̃ for β̃1, which is specified in the following way

β̃t(T, x) = γtC(x),

where

C(x) = sign(x)e−λ
′|x|
“
|x|1+2δ ∧ 1

”“`
λ+ λ′

´
|x|1−δ − (1− δ)|x|−δ

”
, (46)

and γ is some scalar random process which will be specified later. This particular function
C is only chosen for its mathematical convenience: the integral of ρC can be computed in
closed form, and more importantly, ρC is locally integrable at zero, which will allow for
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further simplification of the drift restriction. But as it will become clear later on, the algo-
rithm described below works for any other function from H̃0 (see the definition in Section
5). Notice that with the above specification, we have

βt(T, x) = γtρ(x)C(x),

¯̃
βt(T, x) = γt(T − t ∧ T )C(x),

where ρ is defined in (36).
Now we compute α̃ from the drift restriction. Since function ρC is absolutely integrable,

∂2
x2ψ

“
ρ

¯̃
βnt (T );x

”
and ∂2

x2ψ
“
ρβ̃nt (T );x

”
are absolutely integrable on R as functions of x.

Then, integrating by parts in (41), one obtains

Qβ̃t(T, x) = − e
−x

ρ(x)

Z
R
∂2
y2ψ

“
ρ

¯̃
βt(T ); y

”
∂2
x2ψ

“
ρβ̃t(T );x− y

”
(47)

− ∂yψ
“
ρ

¯̃
βt(T ); y

”
∂xψ

“
ρβ̃t(T );x− y

”
dy,

which provides the simplest form of the drift restriction (recall (40)). Let’s compute the
following auxiliary components:

∂xψ (ρC;x) = exh(x), ∂2
x2ψ (ρC;x) = ex (h(x) + f(x)) ,

in the notation

f(x) = sign(x)e−(λ+λ′)|x|
“`
λ+ λ′

´
|x|1−δ − (1− δ)|x|−δ

”
,

h(x) = −|x|1−δe−(λ+λ′)|x|.

Now we recall the form of β̃ and ¯̃
β, and, plugging the above expressions into (47), obtain

Qβ̃t(T, x) = γ2
t (T − t ∧ T )A(x),

where
A(x) = −eλ|x|

“
|x|1+2δ ∧ 1

”Z
R

(f(y) + 2h(y)) f(x− y)dy (48)

As announced, we construct (κ̃t)t∈[0,T̄ ], so that it stays nonnegative (even positive) at all
times. In order to preserve nonnegativity, we let γt depend upon κ̃t, namely, we choose the
following specification

γt = γ(κ̃t, t) :=
σ

ε

 
inf

T∈[t,T̄ ],x∈R
κ̃t(T, x) ∧ ε

!
, (49)

where σ and ε are some positive constants. Then the process κ̃ is defined as the unique strong
solution of the following infinite dimensional stochastic differential equation

dκ̃t(T, x) = γ2(κ̃t, t) (T − t ∧ T )A(x)dt+ γ(κ̃t, t)C(x)dBt, (50)

where A, C and γ are given in (48), (46) and (49) respectively. The solution is well defined
since function γ : B̃ × [0, T̄ ] ↪→ R is globally Lipschitz in the first variable, uniformly over
the second one, and bounded (see, for example, Theorem 7.4 in [14]). Then the following
proposition shows that, almost surely

∀t ∈ [0, T̄ ], inf
x∈R,T∈[t,T̄ ]

κ̃t(T, x) ≥ 0. (51)
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Proposition 18 With positive initial condition, the process κ̃, defined by (50) is almost
surely nonnegative in the sense of (51).

Proof:
Since κ̃t takes values in the space of continuous functions, it is enough to show nonneg-

ativity of (κ̃t(T, x))t∈[0,T ] for any x ∈ R and T ∈ (0, T̄ ].
Notice that the process γ is continuous. Then the stopping times τn := inf {t : γt ≤ 1/n}

are well defined for any integer n ≥ 1. The process κ̃ · (T, x), stopped at τn, is strictly posi-
tive, therefore, its logarithm is correctly defined. Using Ito’s formula, we obtain

d [log κ̃t∧τn(T, x)] = Xn
t dt+ Y nt dBt,

where

Xn
t =

„
γ2(κ̃t, t) (T − t ∧ T )A(x)

κ̃t(T, x)
− γ2(κ̃t, t)C

2(x)

2κ̃2
t (T, x)

«
1t≤τn ,

Y nt =
γ(κ̃t, t)C(x)

κ̃t(T, x)
1t≤τn .

Notice that the ratios above are well defined, since, almost surely, κ̃t(T, x) is positive for
t ∈ [0, τn]. Let us now show that we have, almost surely

sup
n≥1
|log κ̃T∧τn | <∞. (52)

To see this, first notice that˛̨̨̨
˛
Z T

0
Xn
t dt

˛̨̨̨
˛ ≤ σ2

ε
T 2A(x) +

σ2

ε2
TC2(x), (53)

almost surely. Then, for each n ≥ 1, consider the martingale Mn, given by

Mn
t =

Z t

0
Y nt dBt.

These are true martingales, sinceZ T

0

`
Y nt
´2
dt ≤ σ2

ε2
TC2(x),

almost surely. Moreover using Doob’s maximal inequality, we obtain

E

 
sup

t∈[0,T ]
Mn
t

!2

≤ 4E
`
Mn
T

´2 ≤ 4
σ2

ε2
TC2(x).

Denoting
M∗ := lim

n→∞
sup

t∈[0,T ]
Mn
t ,

which is well defined for almost all ω, since τn is almost surely nondecreasing, and the
dentity

Mn+1
t 1t≤τn = Mn

t 1t≤τn
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implies that supt∈[0,T ]M
n
t is almost surely nondecreasing in n, the monotone convergence

theorem yields

E
`
M∗
´2

= lim
n→∞

E

 
sup

t∈[0,T ]
Mn
t

!2

<∞,

which implies that M∗ is finite almost surely, and the latter, together with (53), yields (52).

It only remains to notice that, if limn→∞ τn ≤ T , then supn≥1 |log κ̃T∧τn | = ∞.
Therefore, almost surely, there exists n, such that τn > T , which implies that κ̃t(T, x) is
almost surely nonnegative (even positive) for all t ∈ [0, T ].

Defined by (50), the process κ̃ satisfies the first line of (44), and τ̃0 = ∞ almost surely.
Therefore, choosing a Poisson random measureN (with compensator ρ), independent of the
Brownian motion B which drives the dynamics of κ̃, we define the underlying S via the
second line of (44) to obtain (St, ρκ̃t)t∈[0,T̄ ], and, applying Theorem 17 we conclude that
we have the desired example of a tL model.

The above example demonstrates the machinery that can be used to construct tL mod-
els, with β̃nt (T, x) being proportional to some fixed deterministic function C(x). In fact,
this construction can be generalized to functions of the form C(T, x). Notice nevertheless
that the particular form of C we chose in this example implies that the Brownian motion
B moves the intensities of positive and negative jumps of the underlying in opposite di-
rections. In general, it seems reasonable to combine β̃n( · , · )’s given by functions ”C” of
different shapes. These functions, {Cn}, would correspond to different Brownian motions
and may have different stochastic factors {γn}. An important question is then the choice of
the appropriate functions Cn. We do not elaborate on this important practical problem in the
present paper. However, we suggest that the functions Cn can be obtained from the analysis
in principal components (PCA) of the time series of κ̃t ( · , · ), fitted to the historical call
prices on dates t of a recent past, Notice that assuming that Cn’s are deterministic implies
that they don’t change as we revert back from Q to the real-world measure.

7 Conclusion and Future Research

In this paper, we introduced a new class of market models based on European call options.
Consistent with the market model philosophy, these models allow to start with the observed
surface of call prices and prescribe explicitly its future stochastic dynamics under the risk-
neutral measure. In particular, such dynamics do not produce arbitrage, and for example,
can be used to simulate the future (arbitrage-free) evolution of the implied volatility surface
in a rather flexible way. This is in stark contrast with the classical models in which the
implied volatility surface has very rigid dynamics. We outlined the main steps of a possible
implementation algorithm, and provided a specific example.

Unlike the models of dynamic local volatility considered in [3] and [2], the present
framework is consistent with the assumption that the underlying is given by a pure jump
process. Therefore, the classes of tangent Lévy and dynamic local volatility models do not
intersect, except for some degenerate cases.

Although it is clear that by definition, a tangent Lévy model implies that the underly-
ing is a pure jump martingale, one naturally would like to describe explicitly the set of all
possible underlying dynamics that can be generated by tangent Lévy models. Addressing
this issue, the first and somehow simpler question is: what are the possible underlying risk-
neutral dynamics which produce call price surfaces that can be represented through some
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time-inhomogeneous Lévy density? In other words, we would like to characterize the class
of stochastic processes whose marginal distributions can be mimicked by some exponential
additive process. As discussed in the introduction, the answer to analogous question in the
continuous case was provided by Gyöngy [19], whose results imply that, under some techni-
cal conditions, call price surfaces produced by underlying Itô processes can be represented
via a local volatility code-book. Unfortunately, there is very little hope that by imposing
some technical assumptions, we can guarantee that every pure jump martingale has marginal
distributions of some exponential additive process, since in particular, this would imply that
these marginal distributions are infinitely divisible (see [8] for an alternative representation
of the one-dimensional distributions of semimartingales with jumps). Nevertheless, for prac-
tical purposes, considering only infinitely divisible distributions is of course sufficient since
the full marginal distributions of the underlying are never known precisely.

Finally, we would like to mention a possible extension which would allow the result-
ing models to have some qualitatively different characteristics, and as we believe, can be
obtained by following the program outlined in the present paper. Namely, we suggest that
instead of considering the code-book consisting of the Lévy density alone, one could also
include a constant, which would have the meaning of the ”instantaneous volatility”. In this
case, the marginal distributions of the logarithm of the underlying would be reproduced
by an additive process with a nontrivial Brownian motion component, and it would make
it possible to allow the underlying to have a nonzero continuous martingale part. The ex-
tended code-book, consisting of the Lévy density and the (scalar) ”volatility”, can then be
put in motion, and one can try to derive the corresponding consistency conditions using the
techniques presented in this paper.

8 Appendix A

Fix some T > 0 and t ∈ [0, T ). Denote

κ̄(x) =

Z T

t

κ(u, x)

T − t du.

Due to (4), we can apply Fubini’s theorem and obtain

Z T

T∧t
ψ̂(κ(u);x)du = (T − t)

Z
R
e−2πixyψ(κ̄; y)dy.

Now, using integration by parts twice, we can simplify the integral in the right hand side
of the above. First, over the positive half line

Z ∞
0

e−2πixyψ(κ̄; y)dy =

Z ∞
0

∂y

 
e−2πixy

−2πix

!Z ∞
y

`
ez − ey

´
κ̄(z)dzdy

= − 1

2πix

Z ∞
0

“
ey(1−2πix) − ey

”Z ∞
y

κ̄(z)dzdy

= − 1

2πix(1− 2πix)

Z ∞
0

“
ey(1−2πix) − ey(1− 2πix)− 2πix

”
κ̄(y)dy.

And similarly proceed with the negative half line. As a result, we obtain
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Z
R
e−2πixyψ(κ̄; y)dy

= − 1

2πix(1− 2πix)

Z
R

“
ey(1−2πix) − ey(1− 2πix)− 2πix

”
κ̄(y)dy.

On the other hand, according to the Lévy-Khinchine formula

E
“
ei(−i−2πx) log S̃T

˛̨̨
log S̃t = 0

”
= exp

»
(T − t)

Z
R

“
ey(1−2πix) − ey(1− 2πix)− 2πix

”
κ̄(y)dy

–
,

which yields (14).

9 Appendix B

Proof of Lemma 15:
Throughout this proof, α̃t := Qβ̃t . We need to show that α̃t( · , · ) ∈ B̃ and its B̃-norm

is integrable in t ∈ [0, T̄ ]. The fact that α̃ is progressively measurable follows from its
representation through β̃.

Let’s rewrite (41) in the following form

α̃t(T, x) = −eλ|x|−x (|x| ∧ 1)1+2δ
NX
n=1

Z
R


∂3
y3ψ

“
w( · ) ¯̂

βnt (T, · ); y
”
·h

∂xψ
“
w( · )β̂nt (T, · );x− y

”
− (1− y∂x) ∂xψ

“
w( · )β̂nt (T, · );x

”i
− ∂yψ

“
w( · ) ¯̂

βnt (T, · ); y
”
∂xψ

“
w( · )β̂nt (T, · );x− y

”o
dy, (54)

where

w(x) = e−(λ+λ′)|x| (|x| ∧ 1)−1−δ ,

β̂nt (T, x) = eλ
′|x| (|x| ∧ 1)−δ β̃nt (T, x),

¯̂
βnt (T, x) = eλ

′|x| (|x| ∧ 1)−δ
Z T

t∧T
β̃nt (u, x)du.

Notice that β̂nt (T, · ) and ¯̂
βnt (T, · ) are in G, and their G-norms are estimated by the

H̃0-norms of β̃nt (T, · ) and ¯̃
βnt (T, · ) respectively.

We will need the following auxiliary estimates˛̨̨
∂xψ

“
w( · )β̂nt (T, · );x

”˛̨̨
≤ ex

Z ∞
|x|

w(z)
˛̨̨
β̂nt (T, sign(x)z)

˛̨̨
dz

≤ c3‖β̃nt (T, · )‖H̃0e
x−(λ+λ′)|x| (|x| ∧ 1)−δ , (55)˛̨̨

∂kxkψ
“
w( · )β̂nt (T, · );x

”˛̨̨
≤ c4‖β̃nt (T, · )‖H̃0e

x−(λ+λ′)|x| (|x| ∧ 1)1−k−δ , k = 2, 3,

which also hold for ¯̂
βnt , with H̃-norm instead of H̃0-norm.
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Let us now estimate the terms inside the sum in the right hand side of (54). For now, we
fix some t ∈ [0, T̄ ), T ∈ (t, T̄ ] and n ∈ {1, . . . ,m}. The corresponding term in (54) has a
form of an integral, let’s concentrate on the first part of the integrand. Namely, we denote

I1(T, x) =

Z
R
∂3
y3ψ

“
w( · ) ¯̂

βnt (T, · ); y
”
· (56)h

∂xψ
“
w( · )β̂nt (T, · );x− y

”
− (1− y∂x) ∂xψ

“
w( · )β̂nt (T, · );x

”i
dy.

For notational convenience, we introduce λ̃ := λ+ λ′ > 1. We now split the domain of
integration into the following parts:

I1,1(T, x) = sign(x)

Z − 1
4 sign(x)(|x|∧1)

−sign(x)∞
(∗)dy, I1,2(T, x) =

Z 1
4 (|x|∧1)

− 1
4 (|x|∧1)

(∗)dy,

I1,3(T, x) = sign(x)

Z x− 1
4 sign(x)(|x|∧1)

1
4 sign(x)(|x|∧1)

(∗)dy, (57)

I1,4(T, x) =

Z x+ 1
4 (|x|∧1)

x− 1
4 (|x|∧1)

(∗)dy, I1,5(T, x) = sign(x)

Z sign(x)∞

x+ 1
4 sign(x)(|x|∧1)

(∗)dy,

where (∗) is the integrand in the right hand side of (56). Let’s estimate I1,5, making use of
(55)

˛̨̨
I1,5(T, x)

˛̨̨
≤ c5‖β̃nt ‖2H̃sign(x)

Z sign(x)∞

x+ 1
4 sign(x)(|x|∧1)

ey−λ̃|y| (|y| ∧ 1)−2−δ ·h
ex−y−λ̃|x−y| (|x− y| ∧ 1)−δ + ex−λ̃|x| (|x| ∧ 1)−δ

“
1 + |y| (|x| ∧ 1)−1

”i
dy

≤ c6‖β̃nt ‖2H̃

 
ex (|x| ∧ 1)−δ

Z ∞
|x|+ 1

4 (|x|∧1)
e−λ̃|y| (|y| ∧ 1)−2−δ dy

+ex−λ̃|x|
1X
k=0

(|x| ∧ 1)−k−δ
Z ∞
|x|+ 1

4 (|x|∧1)
e−(λ̃−1)|y| (|y| ∨ 1)k (|y| ∧ 1)k−2−δ dy

!

≤ c7‖β̃nt ‖2H̃e
x−λ̃|x| (|x| ∧ 1)−1−2δ

Similarly, we proceed with the first integral

˛̨̨
I1,1(T, x)

˛̨̨
≤ c8‖β̃nt ‖2H̃sign(x)

Z − 1
4 sign(x)(|x|∧1)

−sign(x)∞
ey−λ̃|y| (|y| ∧ 1)−2−δ ·h

ex−y−λ̃|x−y| (|x− y| ∧ 1)−δ + ex−λ̃|x| (|x| ∧ 1)−δ
“

1 + |y| (|x| ∧ 1)−1
”i
dy

≤ c9‖β̃nt ‖2H̃e
x−λ̃|x| (|x| ∧ 1)−1−2δ

In the same way we can estimate the third integral
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˛̨̨
I1,3(T, x)

˛̨̨
≤ c10‖β̃nt ‖2H̃sign(x)

Z x− 1
4 sign(x)(|x|∧1)

1
4 sign(x)(|x|∧1)

ey−λ̃|y| (|y| ∧ 1)−2−δ ·h
ex−y−λ̃|x−y| (|x− y| ∧ 1)−δ + ex−λ̃|x| (|x| ∧ 1)−δ

“
1 + |y| (|x| ∧ 1)−1

”i
dy

≤ c11‖β̃nt ‖2H̃e
x−λ̃|x| (|x| ∨ 1) (|x| ∧ 1)−1−2δ

Before providing estimates for the two remaining integrals, notice that, since β̂nt (T, x)

is absolutely continuous function of x outside any neighborhood of zero, the same is true for

∂kxkψ
“
w( · )β̂nt (T, · );x

”
,

with k = 1, 2. Then for y 6= x 6= 0 we have

˛̨̨
∂xψ

“
w( · )β̂nt (T, · );x− y

”
− (1− y∂x) ∂xψ

“
w( · )β̂nt (T, · );x

”˛̨̨
≤ y2 sup

z∈[(x−y)∧x,(x−y)∨x]

˛̨̨
∂3
z3ψ

“
w( · )β̂nt (T, · ); z

”˛̨̨
≤ c12y

2‖β̃nt (T, · )‖H̃0 sup
z∈[(x−y)∧x,(x−y)∨x]

ez−λ̃|z| (|z| ∧ 1)−2−δ .

Thus, we continue˛̨̨
I1,2(T, x)

˛̨̨
≤

c13‖β̃nt ‖2H̃

Z 1
4 (|x|∧1)

− 1
4 (|x|∧1)

ey−λ̃|y||y|−δdy sup
z∈

h
x− (|x|∧1)

4 ,x+ (|x|∧1)
4

i
“
ez−λ̃|z| (|z| ∧ 1)−2−δ

”
≤ c14‖β̃nt ‖2H̃ ex−λ̃|x| (|x| ∧ 1)−1−2δ

And, finally

˛̨̨
I1,4(T, x)

˛̨̨
≤ c15‖β̃nt ‖2H̃

Z x+ 1
4 (|x|∧1)

x− 1
4 (|x|∧1)

ey−λ̃|y| (|y| ∧ 1)−2−δ ·h
ex−y−λ̃|x−y| (|x− y| ∧ 1)−δ + ex−λ̃|x| (|x| ∧ 1)−δ

“
1 + |y| (|x| ∧ 1)−1

”i
dy

≤ c16‖β̃nt ‖2H̃e
x−λ̃|x| (|x| ∧ 1)−2−δ ·Z x+ 1

4 (|x|∧1)

x− 1
4 (|x|∧1)

(|x− y| ∧ 1)−δ + (|x| ∧ 1)−δ + |y| (|x| ∧ 1)−1−δ dy

≤ c17‖β̃nt ‖2H̃ ex−λ̃|x| (|x| ∨ 1) (|x| ∧ 1)−1−2δ

The above estimates yield˛̨̨
I1(T, x)

˛̨̨
≤ c18‖β̃nt ‖2H̃ ex−λ̃|x| (|x| ∨ 1) (|x| ∧ 1)−1−2δ ,
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It is also easy to see that the second term inside the integral in the right hand side of (54)
is estimated in the same way. As a result, we obtain

|α̃t(T, x)| ≤ c19‖β̃nt ‖2H̃ e−λ
′|x| (|x| ∨ 1) , (58)

which provides an upper bound on the B0-norm of α̃t(T, · ).

Let’s now show that α̃t(T, · ) is continuous. To prove the continuity at zero, we need to
show that the limit at x = 0 exists. We will need the following useful relations, holding for
all absolutely continuous functions f , with ‖f ′‖L∞(R) <∞

∂xψ (wf ;x) = sign(x)|x|−δ f(0)

δ
1[0,1](|x|) +O

“
e−(λ̃−1)|x| (|x| ∧ 1)1−δ

”
,

∂2
x2ψ (wf ;x) = |x|−1−δf(0)1[0,1](|x|) +O

“
e−(λ̃−1)|x| (|x| ∧ 1)−δ

”
, (59)

∂3
x3ψ (wf ;x) = −sign(x)|x|−2−δ(1 + δ)f(0)1[0,1](|x|) +O

“
e−(λ̃−1)|x| (|x| ∧ 1)−1−δ

”
,

where the first two equalities hold for all x ∈ R \ {0} and the last one is understood for
almost every x ∈ R \ {0}.

Now we are ready to proceed with the proof of the continuity at zero. As before, it
is enough to consider I1, defined by (56), the other term is treated similarly. Assume that
x→ 0. In order to make use of (59), we need to split the domain of integration in I1 into two
parts: [−|x|/2, |x|/2] and R \ [−|x|/2, |x|/2]. For the integral over the second domain, we
can apply (59) directly, but in the case of the integral around zero, we need to use integration
by parts first:

Z |x|
2

− |x|2
(∗) =

„
∂2
y2ψ

“
w( · ) ¯̂

βnt (T, · ); y
”
·

h
∂xψ

“
w( · )β̂nt (T, · );x− y

”
− (1− y∂x) ∂xψ

“
w( · )β̂nt (T, · );x

”i”˛̨̨y= |x|2

y=− |x|2
+

Z |x|
2

− |x|2
∂2
y2ψ

“
w( · ) ¯̂

βnt (T, · ); y
”
∂2
x2

h
ψ
“
w( · )β̂nt (T, · );x− y

”
− ψ

“
w( · )β̂nt (T, · );x

”i
dy

After integrating by parts once more, we can apply (59). As a result, we obtain, as x→ 0

I1(T, x) (60)

=
1 + δ

δ
¯̂
βnt (T, 0)β̂nt (T, 0)

Z 1

−1
−sign(y)|y|−2−δ

“
sign(x− y)|x− y|−δ1[0,1](|x− y|)

−sign(x)|x|−δ − δy|x|−1−δ
”
dy +O

“
|x|−2δ

”
(61)

=
1 + δ

δ
¯̂
βnt (T, 0)β̂nt (T, 0)|x|−1−2δ

Z 1
|x|

− 1
|x|

sign(y)|y|−2−δ ·“
1 + δy − sign(1− y)|1− y|−δ1[0, 1

|x| ]
(|1− y|)

”
dy +O

“
|x|−2δ

”
=

1 + δ

δ
¯̂
βnt (T, 0)β̂nt (T, 0)|x|−1−2δ `1 + o(1)

´
·Z

R
sign(y)|y|−2−δ

“
1 + δy − sign(1− y)|1− y|−δ

”
dy,
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where the last equality was obtained by splitting the domain of integration and applying the
dominated convergence theorem.

Continuity of I1(T, · ) at any other point follows from the dominated convergence the-
orem. Thus, we conclude that α̃t(T, · ) is continuous.

Now, applying Fubini’s theorem, we can compute the partial T -derivative of α̃t( · , · ),
say ∂T α̃t(T, x), defined pointwise at each x, for almost every T ∈ (0, T̄ ). Then the continu-
ity of ∂T α̃t(T, · ) can be shown in the same way as for α̃t(T, · ) above. Moreover, repeating,
essentially, the derivation of (58), we obtain

|∂T α̃t(T, x)| ≤ c19

„
‖β̃nt ‖2H̃ + ‖β̃nt ‖H̃

‚‚‚‚ d

dT
β̃nt (T )

‚‚‚‚
H̃0

«
e−λ

′|x| (|x| ∨ 1) , (62)

which, in particular, yields that ∂T α̃t(T, · ) ∈ B̃0. The above estimate also shows integra-
bility of ∂T α̃t as a mapping [0, T̄ ] ↪→ B̃0. And since, due to Hille’s theorem (see Theorem
II.6 in [17]), we can interchange the integration of a B̃0-valued function and the application
of a continuous functional (notice that Dirac delta-function is a continuous functional on
B̃0), we deduce that α̃t(T ) = α̃t(0) +

R T
0 ∂uα̃t(u)du, where the integral is understood as a

Bochner integral of a B̃0-valued function. Therefore, we conclude that the actual derivative,
d
dT α̃t, coincides with the partial derivative ∂T α̃t.

Finally, estimates (58) and (62) complete the proof: α̃ is a progressively measurable
integrable random process of t ∈ [0, T̄ ], with values in B̃.
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