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The present paper is a contribution to the quantitative analysis of the cap-and-trade schemes touted by
some as the regulation of choice in the market based approach to climate change. Its main thrust is twofold.
Firstly we prove that the well known social optimality of cap-and-trade schemes, which is the main reason
for these schemes to be implemented, can be extended to the multi-period stochastic setting, if the reduction
targets are defined in an appropriate manner. As a side effect we obtain a new result on the asymmetry
between taxes and cap-and-trade regulations. Secondly, we propose a new allocation procedure incorporating
the advantages of the existing schemes while at the same time avoiding their documented shortcomings.
The cap-and-trade scheme introduced in this paper retains the social optimality property enjoyed by the
so-called standard cap-and-trade systems, and like them it can be calibrated to reach the emission target
with as much statistical confidence as desired. But like the relative schemes introduced and studied earlier,
and unlike the standard schemes, it provides a tight control of the windfall profits.

From a mathematical point of view, the main contributions of the paper are the proof of social optimality
in a dynamic stochastic setting, and the proof of an equivalence between equilibria. This last abstract result
identifies a one-to-one correspondence between economies based on different cap-and-trade schemes, and
gives explicit formulae for the changes in equilibrium prices. In particular, it explains why, and shows how,
the prices of goods are reduced by the new allocation scheme, demonstrating that an apparently innocuous
small change in the design of the allowance allocation procedure can have a dramatic economic impact.
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1. Introduction

Climate change has been a great source of concern for economists but the treatment of this exter-
nality had to wait for the development of cap-and-trade schemes, e.g. the successful acid rain
program in the US, the voluntary carbon dioxide markets, and most importantly, the mandatory
European Union Emission Trading Scheme (EU ETS).

However, the quantitative analysis of the market mechanisms for the control of greenhouse
gas emissions is a relatively recent trend in the economic literature, and even more so in the
mathematical literature, and only through the development of environmental finance. The starting
point is the seminal paper Montgomery (1972), proving that emission trading schemes are socially
optimal in the sense that a given emission target is reached at the lowest possible costs. This
result was proven in the static setting of a one period deterministic model where prices of the
goods were assumed given exogenously, and only allowance price formation was obtained by an
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equilibrium analysis. In a deterministic setting, agents are not allowed to emit more than their
allowance allocations, so emissions never exceed the cap. However emission trading schemes, e.g.
EU ETS, are operating in an uncertain world, and realistic models should allow for excess emissions
modulo a penalty payment which can be seen as a safety valve. In the first part of the paper, we
prove that, if the emission target is formulated appropriately, this kind of design is still socially
optimal in a dynamic stochastic setting even if both goods and allowances prices are derived from
an equilibrium argument. As an aside, we obtain new evidence on the asymetry between taxes and
cap-and-trade schemes. This topic was first addressed by Weitzman in Weitzman (1974) where the
author discusses whether to fix price or quantity in order to optimize overall efficiency of costs
and benefits of emission reduction. In contrast, we determine how emissions and reduction costs
relate to each under different regulatory policies. As an extension we also consider mixing taxes
and cap-and-trade schemes, as was done recently in the UK. The idea of mixing the schemes dates
back to Robert and Spence (1976) who extend the work Weitzman (1974).

In the second part of the paper, we consider the most controversial component of a cap-and-trade
scheme: the initial allocation of the emission certificates. We use the general framework of Carmona
et al. (2010), and we propose a new allocation mechanism which preserves social optimality and at
the same time, eliminates several of the shortcomings of the standard schemes. The overall initial
allocation of emission allowances, also known as the cap, should be dictated by the regulatory
emission target. While the initial allocation among the various installations does not influence
the overall emission reduction, other impacts are not as clear, and too many half-truths can be
found in the popular press and in some pseudo-scientific magazines. While we do not attempt to
describe exhaustively what allocation schemes can or cannot do, we analyze both theoretically and
numerically, the advantages of a natural extension of some of the schemes already implemented or
considered in the scientific literature.

Obviously, costs of production are higher in the presence of regulation. Worse, as observed during
the first phase of EU ETS, consumers costs can exceed the overall reduction costs: producers receive
the allowances for free, price them into their costs of production, and take advantage of the trading
scheme to make extra profit, the so-called windfall profits. Climate change regulation cannot afford
to be one more reason for higher heating bills since independently, fuel poverty already increased
dramatically in the wake of the recent economic crisis. Households are said to be in fuel poverty
when they spend more than 10% of income on keeping homes warm.

Fueled by populist pressure, auctioning of allowances has been touted as the solution to this
problem. While the measure which passed the US House of Representative last year included
auctioning of a mere 15% of the initial allocation, the original proposal favoured by President
Obama and ushered by Rep. Waxman and Markey was for 100% auctioning of the allowances. The
rationale is very appealing: if producers have to pay for their allowances, regulators can return
revenues to consumers, or invest these revenues in other emission reduction projects. However, we
argue that auctions are not sufficient since its return is essentially equal to the monetary value of
the auctioned allowances which is not enough to match the overall consumer burden, since the latter
is not directly related to the cap, but instead to the quantities consumed within one compliance
period. Using the example of Japan’s electricity market we confirmed this effect numerically, by
showing in Carmona et al. (2008) that auctioning of the total initial allocation of a standard
cap-and-trade scheme can not reduce windfall profits to a reasonable level.

Motivated by the above discussion of the shortcomings of standard cap-and-trade schemes, the
authors of Carmona et al. (2010) introduced relative allocation schemes and showed that these
schemes can be used to control the level at which allowances are priced into products, and in this
way, lead to lower equilibrium prices for the goods. The drawback of the relative scheme is the
fact that the actual amount of allowances injected in the market is not known in advance since it
depends upon the production and hence the demand for goods.
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In the second part of this paper, we propose to study a mixture of relative allocations and
auctions. Our goal is to reduce electricity prices by relative allocation while keeping the amount
of allowances in the market fixed at the regulatory cap. To this end, part of the initial allocation
is put into a pot from which allowances are withdrawn proportionally to production. If at the
end of the compliance period the implementation of the relative allocation does not exceed the
amount of allowances in the pot, the allowances that remain in the pot are auctioned, otherwise,
some procedure described in detail below in Section 2 is used to guarantee that the cap is not
exceeded. This procedure fixes the number of allowances in the market. It also reduces the marginal
cost of production for each agent because, he/she obtains for each unit of good produced, a given
number of allowances for free, relieving him/her from buying them later. This decrease in marginal
production costs leads to reduced prices of goods, and to a tighter control of the windfall profits
and fuel poverty.

Controlling the level at which allowances are priced into end products is not only interesting
when fighting fuel poverty, but it can also be useful when combining cap-and-trade schemes with
emission taxes as it can introduce a carbon price floor, as was done recently by the UK. This gives
more price certainty to the end-consumers unable to react to quick carbon price changes anyway.
It was shown in Carmona et al. (2010) (see also Section 5.2) that using a tax to regulate sectors
with volatile reduction costs(e.g. electricity) leads to a statistical distribution for the cumulative
emissions which is much wider than in the Business As Usual (BAU for short) case. This extra
emission uncertainty can be reduced by combining the tax with a cap-and-trade scheme on the
volatile sectors. And with the allocation mechanism we propose in this paper, this can be done
without influencing the consumers carbon price.

We close this introduction with a short summary of the contents of the paper.

Section 2 presents the mathematical model of the economy in which we introduce cap-and-trade
schemes to control externalities. We quickly review the basic building blocks introduced in Carmona
et al. (2010) and recall the notion of market equilibrium used there.

Economic theory posits that the transfer of allowances by trading is the core principle that
leads to the minimization of the costs caused by regulation. Section 3 examines this claim from
the mathematical point of view in the context of our multi-period stochastic setting. Our social
optimality results are presented in the form of three corollaries. Among other things, they show
that, given any choice of emission target, one can find a penalty level so that the standard cap-
and-trade regulation based on these choices has minimal costs of production and average excess
emissions. We use this result to shed new light on the asymetry between taxes and cap-and-trade
schemes.

In Section 4 we introduce the hybrid allocation procedure which we advocate in this paper. We
prove a form of equivalence between standard and hybrid cap and trade schemes showing that any
equilibrium production strategy of the standard cap-and-trade scheme is also an equilibrium pro-
duction strategy for the hybrid cap-and-trade scheme. Hence the social optimality of the standard
cap and trade scheme is preserved by the hybrid scheme. But on the other hand we prove that in
contrast to the standard scheme the hybrid scheme can control the extent to which allowances are
priced into products.

In Section 5 we illustrate our theoretical results with a case study. We use data from the Korean
electricity market to compare numerically the impacts of a tax and cap-and-trade schemes with
different allocation rules. We also show why and how the hybrid allocation mechanism can be used
to combine an emission tax with a cap-and-trade scheme.

The paper ends with appendices collecting the technical definitions of the various costs used to
compare regulations, the details of the case study of the Korean electricity market, as well as the
proofs of five technical lemmas and the main theorem of the second part of the paper which are
not given in the text.
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2. Description of the Model and First Equilibrium Results

In this section we present the elements of our mathematical model. In what follows (Ω,F ,F =
{Ft, t∈ {0,1, . . . , T}},P) is a filtered probability space. We denote by E[.] the expectation operator
under the probability P and by Et[.] the expectation operator conditional on the information
available at time t as given by the σ-field Ft. We will also make use of the notation Pt(.) :=Et[1{.}]
for the conditional probability with respect to Ft.

2.1. Production, Trading and Profits

Production A finite set I of firms produce and sell a set K of different goods at times
0,1, . . . , T − 1. In order to produce good k ∈K, each firm i∈ I has access to a set J i,k of different
technologies which are sources of emissions (e.g. greenhouse gases ).

We denote by C̃i,j,k
t the marginal cost of producing one unit of good k at time t with technology

j ∈ J i,k, ei,j,k ≥ 0 measuring the volume of pollutants emitted per unit of good k produced by firm
i with technology j, and κi,j,k the production capacity. In our model, the instantaneous costs C̃i,j,k

t

are random. We assume that for each (i, j, k), they form an integrable adapted process.
At each time t, firm i∈ I decides to produce throughout the period [t, t+ 1) the amount ξi,j,kt of

good k ∈K, using the technology j ∈ J i,k. The choice of the production level ξi,j,kt is based only on
present and past information (i.e. the processes ξi,j,k are adapted), and 0≤ ξi,j,kt ≤ κi,j,k. We denote
by U i the set of adapted processes satisfying this capacity constraint. U i is the set of admissible
production strategies for firm i∈ I.

We denote by Dk
t the demand at time t for good k ∈K, and we assume that it does not exceed

the capacity κk =
∑

i∈I
∑

j∈Ji,k κ
i,j,k. As for the costs, demand is random. We further assume that

demand is inelastic. We denote by U the set of admissible production strategies:

U =

{
ξ ∈
∏
i∈I

U i;
∑
i∈I

∑
j∈Ji,k

ξi,j,kt =Dk
t P− .a.s. , k ∈K, t= 0, · · · , T − 1

}
. (1)

Beyond the design of the allocation scheme, a cap-and-trade scheme is identified by two scalar
parameters controlled by the regulator: the cap giving the emission target for the compliance period,
and the penalty π ∈ [0,∞) applied to each unit of pollutant which is not offset by an allowance
certificate. As in Carmona et al. (2010), we assume for the sake of simplicity that the entire period
[0, T ] corresponds to a single compliance period, we do not allow firms to borrow allowances from
a subsequent compliance period, and allowances become worthless if not used by time T , i.e. we
do not allow for banking from one phase to the next. This was the case for the first phase of the
European Union Emission Trading Scheme (EU ETS).

Trading In a standard scheme, each installation i ∈ I is at time t = 0 provided with a free
allocation Λi

0 of allowances that may be traded on the market. Instead of considering the spot price
of these contracts, we denote by At the price at time t of a forward contract guaranteeing either
physical or financial settlement of one allowance certificate at maturity T . Firms take positions on
the forward market, and we denote by θit the number of forward contracts held by firm i at time t.
As usual, θit > 0 when the firm is long θit contracts, and θit < 0 when it is short |θit| contracts. The
net cash position at time T resulting from the pure financial trading of forward contracts is given
by:

T−2∑
t=0

θit(At+1−At)− θiT−1AT−1. (2)

Notice that even though firms can take very large long/short positions, each sale must be offset
by a purchase and vice versa, so that the clearing constraint

∑
i∈I θ

i
t = 0 must hold at each time

t= 0, . . . , T − 1. We now denote by θiT the number of (physical) allowances settled at time T from
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the financial positions in the various forward contracts and we call the sequence {θit}i∈I,t=0,1,··· ,T a

(financial) trading strategy. With this notation, we get the final form of the clearing condition∑
i∈I

θit = 0, t= 0,1, · · · , T, (3)

and the net cash position at time T resulting from trading the forward contracts and settling the

final positions for physical allowances is given by:

RA
T (θ) =

T−1∑
t=0

θit(At+1−At)− θiTAT . (4)

With this interpretation, Λi
0 + θiT is the number of (physical) allowance certificates that firm i

surrenders for compliance, and it is the number used for the computation of the penalty given by

formula (7). Of course this amount must be nonnegative, giving a lower bound for the trading at

the last time point T of the compliance period, i.e. θiT ≥−Λi
0 must hold almost surely.

Profits Since T is the only horizon we consider in this work, we find it convenient to express

all the prices (replacing if needed spot prices by T -forward prices), costs, wealths, etc in time

T -currency, avoiding all forms of discounting in the process. So if we denote by Skt the T -forward

price at time t of good k ∈K, and by Ci,j,k
t the T -forward cost incurred by firm i∈ I at time t for

producing one unit of good k ∈K with technology j ∈ J i,k, the total net gains of firm i∈ I from a

production schedule ξi = {ξi,j,kt }j,k,t are given by:

T−1∑
t=0

∑
(,k

(Skt −C
i,j,k
t )ξi,j,kt , (5)

the corresponding cumulative emissions being given by:

Πi(ξi) :=
T−1∑
t=0

∑
(j,k)∈Mi

ei,j,kξi,j,kt . (6)

We also include sources of emissions on which firm i has no control in the final cumulative emissions

tally. They are given in the form of a random variable denoted by ∆i ≥ 0 a.s. whose value is only

known at time T . With the notation θiT defined above, the penalty payment due by firm i at time

T for using the strategy ξi is:

π

(
∆i + Πi(ξi)− θiT −Λi

0

)+

. (7)

Combining (5) – (7) together with (4), we obtain the following expression for the terminal wealth

(profits and losses at time T ) of firm i

LA,S,i(θi, ξi) :=
T−1∑
t=0

∑
(j,k)∈Mi

(Skt −C
i,j,k
t )ξi,j,kt +

T−1∑
t=0

θit(At+1−At)−θiTAT−π
(
∆i + Πi(ξi)−Λi

0− θiT
)+

.

(8)
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2.2. Equilibrium for Standard Cap-and-Trade Systems

Some of the theoretical results which we prove in this work rely on results proven in Carmona et
al. (2010) for equilibria of standard cap-and-trade schemes with cap

∑
i∈I Λi

0 = Λ> 0 for which all
the allowances are given away for free as an upfront allocation at time t= 0. We recall the notion
of market equilibrium and the fundamental equilibrium result for standard schemesof Carmona et
al. (2010). But first, we fix the spaces for the price processes and the agents strategies. To this end
we introduce for any 1≤ p≤∞ and for any normed vector space F , the following space of adapted
processes:

Lpt (F ) :=
{

(Xs)
t
s=0; F-adapted, F -valued,‖Xs‖ ∈Lp(Fs), s= 0, . . . , t

}
. (9)

Based on these spaces we choose allowance and product price processes in the space L1
T (R) ×

L1
T−1(R|K|). Moreover, we define the following spaces of admissible strategies:

Qi(A) :=

{
(θi, ξi)

∣∣ ξi ∈ U i ,RA
T (θi) are integrable , θiT ≥−Λ̃i

0 a.s.

}
.

Q(A) :=
∏
i∈I

Qi(A).

Our first assumption guarantees existence of expected values.

Assumption 1. we suppose that the uncontrolled emissions ∆i and the production costs Ci,j,k
t are

integrable random variables.

We will also use a technical assumption introduced in Carmona et al. (2010) on the nature of the
uncontrolled emissions. This technical assumption states that up until the end of the compliance
period, there is always uncertainty about the expected pollution level due to unpredictable events.
More precisely, we shall assume that

Assumption 2. conditionally on the information available at time T − 1, the distribution of∑
i∈I ∆i possesses almost surely no point mass.

As we already pointed out, these technical assumption help refine the statements of some of
the results leading to the equilibria. Throughout this paper we also assume that the sets I and
K are nonempty and finite. Moreover, we assume that for all agents i ∈ I the set J i,k of different
technologies to produce good k ∈K is finite and that for all k ∈K there is at least one i ∈ I with
J i,k nonempty.

In Theorem 1 we will see that the equilibrium allowance price process A∗ is in L∞T (R). However,
our definition allows in principle for a rather general set L1

T (R) of equilibrium prices. As we will
prove uniqueness of the allowance price process, this leads to stronger results than if we had
restricted A∗ to L∞T (R).

Following Carmona et al. (2010), we define the notion of equilibrium for a standard cap-and-trade
scheme:

Definition 1. A pair of integrable price processes (A∗, S∗) ∈ L1
T (R)×L1

T−1(R|K|) form an equi-
librium if there exist admissible trading and production strategies (θ∗, ξ∗)∈Q(A∗) such that:

(i) All financial positions are in zero net supply (34)
(ii) Supply meets demand for each good (36)
(iii) Each firm i∈ I is satisfied by it’s own strategy, in the sense that

E[LA
∗,S∗,i(θ∗i, ξ∗i)]≥E[LA

∗,S∗,i(θi, ξi)] (10)

for all (θi, ξi)∈Qi(A∗).
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For standard schemes the equilibrium is closely related to the global optimal control problem

inf
ξ∈U

E
[
Gπ,Λ(ξ)

]
(11)

where the objective function is given by

Gπ,Λ(ξ) =C(ξ) +π(∆ + Π(ξ)−Λ)+ (12)

where ∆ =
∑

i∈I ∆i denotes the overall uncontrolled emissions,

Π(ξ) =
∑
i∈I

Πi(ξi) =
∑
i,j,k,t

ei,j,kξi,j,kt (13)

denotes the total cumulative emissions from production, and where

C(ξ) =
∑
i,j,k,t

ξi,j,kt Ci,j,k
t (14)

stands for the total costs of production in the economy. We will need the following result proven
in Carmona et al. (2010).

Theorem 1. Under Assumptions 1 and 2 , the following hold:
(i) If ξ ∈ U is a solution of the global optimization problem (11), then the processes (A,S) defined
by

At = πPt(Γ + Π(ξ)≥ 0), t= 0, . . . , T (15)

and

S
k

t = max
i∈I, j∈Ji,k

(Ci,j,k
t + ei,j,kAt)1{ξi,j,kt >0}, t= 0, . . . , T − 1 k ∈K, (16)

is an equilibrium for which the associated production strategy is ξ.
(ii) The equilibrium allowance price process is almost surely unique.

(iii) For each good k ∈K, the price S
k

is the smallest equilibrium price for good k in the sense that

for any other equilibrium price process S∗k, we have S
k ≤ S∗k almost surely.

3. Emission Targets and Social Optimality

In a ground breaking contribution, Montgomery proved in a one period deterministic setting that
emission trading schemes are socially optimal in the sense that a given emission target is reached
at the lowest possible cost. See Montgomery (1972). Because there is no randomness in the model,
the emission target is a hard constraint, i.e. emissions in equilibrium have to stay below the cap.
However, in the more realistic situation of random emissions, a stringent emission target can rapidly
become prohibitive. Hence emission trading schemes, as e.g. EU ETS, allow for excess emissions
modulo a penalty π which serves as a safety valve for the allowance price. In a stochastic setting,
we need a new notion of emission target.

3.1. Definition of the Emission Target

A natural choice is to control the statistical distribution of the cumulative emissions at the end
of the regulation period [0, T ] by a risk measure, as was done in Carmona et al. (2010) using a
quantile measure. Like Value at Risk, the measure used there does a poor job at controlling the
tail of the distribution since it controls only the frequencies of exceedances and not their actual
sizes. In complete analogy with the expected shortfall used in financial applications, we propose to
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control the emissions by setting an upper bound η on the expected excess emissions Eλ(ξ) above
a threshold λ for a production strategy ξ ∈ U , as defined by:

Eλ(ξ) =E

[(
∆ + Π(ξ)−λ

)+
]
. (17)

Recall that Π(ξ) defined in (13) represents the global cumulative emissions due to production
strategy ξ. Due to demand inelasticity, there exists for every λ a lower bound on excess emissions
given by

ã(λ) = inf
ξ∈U

Eλ(ξ). (18)

This lower bound is attained for a specific production schedule ξ̃ whose existence is proven in
Proposition 4.2 of Carmona et al. (2010).

3.2. Social Optimality of Standard Cap-and-Trade Schemes

In the sequel we say that a cap-and-trade scheme is socially optimal if given any choice of a reduction
target, one can find control parameters (e.g. cap and penalty level) such that in equilibrium, the
scheme reaches the emission target at minimal costs of production while the demands for goods
are met. More precisely for the emission regulations discussed in this paper we define:

Definition 2. An emission regulation is said to be socially optimal if for every choice of the
threshold λ> 0 and upper bound η > ã(λ) there exist regulatory parameters π and Λ such that (at
least) one corresponding equilibrium production schedule ξ∗ is a solution of

inf
ξ∈U s.t.Eλ(ξ)≤η

E[C(ξ)] (19)

The meaning of equilibrium production schedule depends on the specific design of the emission
regulation and is given by Definitions 3 and 1 respectively.

We now show that standard cap-and-trade schemes are socially optimal in the sense of Definition
2. To be more specific, we show that for every choice of emission target λ> 0 and for every upper
bound η > ã(λ) ever so slightly greater than the minimum emission level possible ã(λ), there exists
a standard cap-and-trade model whose equilibrium production schedule solves (19). The cap of
this model is given by Λ = λ, and the penalty π is found as the Lagrange multiplier (shadow price)
of the constraint appearing in (19) which is computed as the argument of

sup
π≥0

(
inf
ξ∈U

Lη,λ(ξ,π)
)

(20)

where

Lη,λ(ξ,π) :=E[Gπ,λ(ξ)]−πη=E[C(ξ)] +π(Eλ(ξ)− η) (21)

denotes the Lagrangian of problem (19) while

Gπ,λ(ξ) =C(ξ) +π(∆−λ+ Π(ξ))+ (22)

denotes the costs to society incurred through production and penalty payments. This is the same
as G(ξ) with Λ = λ. We merely highlight its dependence on λ and π. Corollary 1 below states that
under appropriate assumptions, the standard cap-and-trade scheme is socially optimal. For the
proof we need following result.
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Theorem 2. Under Assumption 1 it holds for every λ≥ 0 and η > ã(λ) that:
(i) There exists both a solution ξ ∈ U to the optimal control problem

inf
{

sup
π≥0

Lη,λ(ξ,π)
∣∣∣ξ ∈ U} (23)

and a solution π ∈ [0,∞) of problem (20).
(ii) The solution (π, ξ) forms a saddle point of the Lagrangian, i.e.

Lη,λ(ξ,π)≥Lη,λ(ξ,π)≥Lη,λ(ξ,π) for all ξ ∈ U , π≥ 0.

(iii) For a standard cap-and-trade scheme with penalty π and cap Λ = λ the strategy ξ is a
solution of the global optimal control problems (11) and (19).

Proof of Theorem 2 (i) From Carmona et al. (2010), we know that the function ξ ↪→Lη,λ(ξ,π) =
E[Gπ,λ(ξ)]−πη is weak∗ lower semicontinuous. Since the pointwise supremum of a family of lower
semicontinuous functions is also lower semicontinuous, the function ξ ↪→ supπ≥0L

η,λ(ξ,π) is lower
semicontinuous in the weak∗ topology. Moreover, since U is weak∗ compact we conclude that its
infimum is attained at a point ξ ∈ U .

Let us now prove that the supremum of [0,∞)3 π ↪→ infξ∈U L
η,λ(ξ,π) is attained at some π <∞.

Recall that ξ̃ denotes the cleanest production schedule from (18). Moreover assume momentarily
that ξ∗ ∈ U is a minimizer of ξ ↪→E[Gπ,λ(ξ)], and that Eλ(ξ∗)> η and π=E[C(ξ̃)]/(η− ã(λ)). Then

E[Gπ,λ(ξ∗)]≥ πEλ(ξ∗)>πη = E[C(ξ̃)] +πã(λ)

= E[C(ξ̃)] +πE[(∆ + Π(ξ̃)−λ)+] =E[Gπ,λ(ξ̃)]

which contradicts the optimality of ξ∗, and proves that for any optimal ξ∗ it holds that

Eλ(ξ∗)≤ η if η=
E[C(ξ̃)]

π
+ ã(λ).

Hence for all π≥ 0 it holds that

inf
ξ∈U

Lη,λ(ξ,π) ≤ sup
ξ∈U

E[C(ξ)] +π
(
ã(λ) +

C(ξ̃)

π
− η
)

= sup
ξ∈U

E[C(ξ)] +π(ã(λ)− η) +C(ξ̃).

The same argument as before shows that the supremum is attained and it follows that

limsup
π→∞

inf
ξ∈U

Lη,λ(ξ,π) =−∞

whereas Proposition 4.2 in Carmona et al. (2010) implies that

inf
ξ∈U

Lη,λ(ξ,π)>−∞

for all 0≤ π <∞, which proves that there exists a finite constant b(η,λ)> 0 such that

sup
π≥0

inf
ξ∈U

Lη,λ(ξ,π) = sup
0≤π≤b(η,λ)

inf
ξ∈U

Lη,λ(ξ,π).

The function π ↪→ Lη,λ(ξ,π) is affine for each fixed ξ ∈ U . Hence the infimum over ξ ∈ U of this
family of functions is an upper semicontinuous function of π and its supremum over the compact
set [0, b(η,λ)] is attained at some π ∈ [0,∞).
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(ii) With these choices of ξ and π it holds that

sup
π≥0

inf
ξ∈U

Lη,λ(ξ,π) = inf
ξ∈U

Lη,λ(ξ,π) ≤ Lη,λ(ξ,π)≤ sup
π≥0

Lη,λ(ξ,π) = inf
ξ∈U

sup
π≥0

Lη,λ(ξ,π).

Since moreover U is convex and weak∗ compact and ξ ↪→ Lη,λ(ξ,π) is convex and weak∗ lower
semicontinuous for all π ≥ 0 while π ↪→Lη,λ(ξ,π) is concave for all ξ ∈ U it holds due to Theorem
2.10.2 in Zalinescu (2002) that

sup
π≥0

inf
ξ∈U

Lη,λ(ξ,π) = inf
ξ∈U

sup
π≥0

Lη,λ(ξ,π).

Hence we conclude that
inf
ξ∈U

Lη,λ(ξ,π) =Lη,λ(ξ,π) = sup
π≥0

Lη,λ(ξ,π)

and in particular (ξ,π) is a saddle point of the Lagrangian Lη,λ since

Lη,λ(ξ,π)≥Lη,λ(ξ,π)≥Lη,λ(ξ,π) for all ξ ∈ U , π≥ 0.

(iii) The saddle point property implies that for all ξ ∈ U it holds that

E[Gπ,λ(ξ)]−πη≥E[Gπ,λ(ξ)]−πη

or equivalently
E[Gπ,λ(ξ)]≥E[Gπ,λ(ξ)]

proving that ξ is a solution of the global optimization problem (11) with cap Λ = λ and hence an
equilibrium strategy.

Now let us prove that ξ is also a solution to (19). Clearly for each ξ ∈ U we have:

sup
π≥0

Lη,λ(ξ,π) =

{
E[C(ξ)] if Eλ(ξ)≤ η
∞ if Eλ(ξ)> η

.

so that problem (19) rewrites

inf
ξ∈U,Eλ(ξ)≤η

E[C(ξ)] = inf
ξ∈U

(
sup
π≥0

Lη,λ(ξ,π)
)

which completes the proof. �
From the result of this proposition it is straight forward to conclude that standard cap-and-trade

schemes are socially optimal:

Corollary 1. Under Assumptions 1 and 2 the standard cap-and-trade scheme is socially optimal.

Proof of Corollary 1 For every λ> 0 and η > ã(λ) Theorem 2 shows the existence of a penalty
π and cap Λ = λ such that there exists a strategy ξ which is a solution of the global optimal control
problem (11) and (19). If Assumptions 1 and 2 are fulfilled Theorem 1 implies that ξ is also an
equilibrium strategy, which concludes the proof. �

Remark 1. The fact that Λ = 0 makes no sense for a cap-and-trade scheme explains why we
choose λ> 0 in Definition 2.

The significance of the preceding result is to give a precise formulation of social optimality in a
multi-period stochastic setting and to show that the emission target is actually reached at lowest
expected cost by a cap-and-trade scheme with safety valve. Moreover we emphasize that as a
side effect, it also gives a precise differentiation/comparison of emission taxes and cap-and-trade
schemes.
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3.3. Emission Tax versus Cap-and-Trade and Hybrid Schemes

While Corollary 1 states that the standard cap-and-trade scheme is an optimal policy to control
expected shortfall emissions, we show now that a tax is the best policy to reduce emissions in
average/expectation. The proof is similar to Corollary 1 and follows directly from Theorem 2 and
Proposition 6.1 in Carmona et al. (2010). The precise result reads:

Corollary 2. For any η > ã(0), there exists a tax level π ≥ 0 such that at least one equilibrium
production schedule ξ∗ is a solution to

inf
ξ∈U s.t. E[∆+Π(ξ)]≤η

E[C(ξ)] (24)

Corollaries 1 and 2 give a new interpretation of the differences between standard cap-and-trade
and tax schemes. If a regulator fixes a cap and does not want to overshoot the cap by too much in
average, he should use a standard cap-and-trade scheme. If on the other hand, he is only interested
in the average emissions, he should use a tax. However the results do not tell us how badly a tax
performs if it is applied to reach a fixed cap or vice versa. We answer these questions numerically
in Section 5.2 below. It is interesting to note that both regulations are equivalent in a deterministic
setting like the one chosen by Montgomery in his groundbreaking work. This suggests that in
markets where reduction costs are not very volatile, a tax may still be a good policy instrument
to reach a fixed cap.

This result can not be interpreted in the framework proposed by Weitzman (1974) to find which
scheme to use in order to optimize overall reduction costs and benefits from emission reduction,
when reduction costs are uncertain. In contrast, we determine how emissions and reduction costs
relate to each other under the different policies. For policy makers, emissions and costs might
be more significant than benefits from emission reductions which need to be projected far in the
future, and as a consequence, are difficult to asses.

A straightforward generalization of the above results is stated in the following corollary. If the
goal is to reduce emissions in average to a certain level while at the same time controlling expected
shortfall emissions, then a hybrid scheme combining tax and cap-and-trade is the best policy.

Corollary 3. For every threshold λ, η1 > ã(λ) and η2 > ã(0) there exists a tax π ≥ 0 and a
penalty π≥ 0 such that at least one equilibrium production schedule ξ∗ of the corresponding hybrid
scheme is a solution to

inf
ξ∈U s.t.Eλ(ξ)≤η1 & E[∆+Π(ξ)]≤η2

E[C(ξ)] (25)

Again the proof of this result is straightforward though it requires an extension of Theorem 2 to
the two constraints in (25). In this hybrid scheme the price of emissions remains in between π̄
and π̄+ π. The existence of a floor is the main reason for the attraction of the idea of mixing the
schemes.

Again this result can not be interpreted in the framework of the paper by Robert and Spence
(1976) which is a generalization of Weitzman (1974).

4. Fixed Cap Generation Performance Standard

In this section we introduce the Fixed Cap Generation Performace Standard (FCGPS) which is a
mixture of a cap-and-trade scheme with a generation performance standard. Our goal is to reduce
electrity prices by relative allocation while keeping the amount of allowances in the market (the
cap) fixed. To this end, part of the initial allocation is put into a pot from which the relative
allocation is withdrawn. If at the end of the compliance period the relative allocation does not
exceed the amount of allowances in the pot, the allowances that remain in the pot are auctioned,
which fixes the number of allowances in the market. The exact allocation procedure is defined
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in Subsection 4.1, Subsection 4.2 is concerned with the corresponding trading bounds and profits
while Subsection 4.3 gives the appropriate equilibrium definition. Finally Subsection 4.4 states the
second main result of this paper, namely the equivalence between standard cap-and-trade schemes
and the fixed cap generation performance standard.

4.1. Allocation Rule

Generation Performance Standard In a standard cap-and-trade scheme, each installation
i∈ I is provided with a free initial allocation Λi

0 at time t= 0. This is in contrast to the Generation
Performance Standard (or relative scheme) introduced and studied in Carmona et al. (2010), where
each installation i ∈ I is not only provided with the initial allocation of a specific number Λ̃i

0

of free allowances at time t = 0, but throughout the compliance period, it is also provided with
free allowances on the basis of its production. To be more specific, for each good k ∈ K, the
regulator chooses a relative allocation factor yk ≥ 0 and at each time t, firm i ∈ I could claim∑

k∈K
∑

j∈Ji,k y
kξi,j,kt allowances if this amount were available. For each admissible strategy ξi ∈ U i

of agent i∈ I, we denote by

Y i(ξi) :=
∑
k∈K

∑
j∈Ji,k

T−1∑
t=0

ykξi,j,kt (26)

the amount of allowances potentially earned by firm i in the name of the relative allocation up to
time T− 1, T∈ {0, . . . , T − 1}, and we denote by

Y (D) :=
∑
k∈K

T−1∑
t=0

ykDk
t (27)

the total allocation that the relative scheme would require before time T for a production schedule
satisfying the demand.

Fixed Cap Generation Performance Standard We now describe the allocation mech-
anism of the Fixed Cap Generation Performence Standard that we propose in this study. This
scheme is characterized by a cap Λ̃> 0, an initial allocation of Λ̃i

0 of free allowances given at time
t = 0 to each participating installation i ∈ I,r an initial period [0,T] with T ∈ {0, . . . , T − 1}, a
relative distribution of free allowances during this initial period, and at time T, an auction of the
remaining allowances if the number of allowances already given away by the regulator is still below
the intended cap Λ̃> 0. We explain below what happen if the cap is reached before time T. We
now give the specifics of this new scheme which we sometimes call hybrid.

Once the free initial allocation of the Λ̃i
0 allowances to firm i are taken care of, the remaining

Υ := Λ̃−
∑
i∈I

Λ̃i
0 (28)

allowances are set for relative distribution and auction. We use the suggestive terminology of a pot
from which the allowances will be allocated relatively to production levels and possible auctioned
off. If the size of the pot is large enough so that the relative allocation never exceeds the size of
the pot, then the allocation mechanism is simple. In this case each agent following the strategy ξi

is given Y i(ξi) allowances out of the pot, and the remaining allowances in the pot Υ−
∑

i∈I Y
i(ξi)

are auctioned. For each agent, this mechanism reduces the marginal cost of production because,
he/she obtains for each unit of good produced, a given number of allowances for free, relieving
him/her from buying them later at the auction. This decrease in marginal production costs leads
to reduced prices of goods, and to a tighter control of the windfall profits and fuel poverty.
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If the size of the pot is not large enough to guaranty that the relative allocation stays smaller than
the pot, then we have to deal with some technicalities. Given agents production strategies (ξi)i∈I
we have to distinguish between scenarios for which {

∑
i∈I Y

i(ξi)<Υ} and {
∑

i∈I Y
i(ξi)≥Υ}. The

first case was discussed above. If {
∑

i∈I Y
i(ξi)<Υ} on the other hand, then in order to prevent

the free allocation to exceed the cap, each agent i∈ I is given the amount

Γ(ξ−i) :=

(
Υ−

∑
i′∈I\{i}

Y i′(ξi
′
)

)+

, (29)

of free allowances where ξ−i := (ξi
′
)i′∈I\{i} denotes the strategies of the other agents. Then as before,

the Υ−
∑

i∈I Γ(ξ−i) remaining allowances in the pot are actioned.
Given these rules it is easy to see that the allowances allocated from the pot to each firm i∈ I is

always given by Γ(ξ−i)∧Y i(ξi). i.e. the amount of allowances given from the pot is bounded from
above by Γ(ξ−i) which depends on the strategies ξ−i := (ξi

′
)i′∈I\{i} of the other agents.

Following this allocation rule the number of allowances that remain in the pot and are auctioned
at time T are given by

Υ(ξ) =

{
Υ−

∑
i∈I Y

i(ξi) if
∑

i∈I Y
i(ξi)<Υ

Υ−
∑

i∈I Γ(ξ−i) if
∑

i∈I Y
i(ξi)≥Υ

In the sequel, we assume that the auction is an Open Ascending-Bid Auction (English Auction)
and we denote by the FT-measurable random variable P the price of the auctioned allowances,
and by ϕi the FT-measurable auction strategy, i.e. the number of allowances bought by firm i at
the auction. For simplicity we assume that the allowances are paid and delivered at time T , even
though they are auctioned at time T.

The following proposition is crucial for the hybrid scheme to work:

Proposition 1. The relative allocation in the hybrid allocation scheme does never exceed the size
of the pot, i.e.

Υ(ξ)≥ 0 (30)

holds almost surely for all ξ = (ξi)i∈I with ξi ∈ U i.
Proof of Proposition 1 It is sufficient to prove that

∑
i∈I Γ(ξ−i)≤Υ is true on

{∑
i∈I Y

i(ξi)≥
Υ
}

. As Y i(ξi)≥ 0 for all i∈ I it holds on
{∑

i∈I Y
i(ξi)≥Υ

}
that

Γ(ξ−i) ≤
(

Υ−
∑

i′∈I\{i}

Y i′(ξi
′
)

Υ∑
i∈I Y

i(ξi)

)+

=

(
Υ−

∑
i′∈I\{i}

Y i′(ξi
′
)

Υ∑
i∈I Y

i(ξi)

)
where the last equality holds because

∑
i′∈I\{i} Y

i′(ξi
′
)≤
∑

i∈I Y
i(ξi

′
) implies that the last term is

nonnegative. Moreover simple algebra yields

Υ−
∑

i′∈I\{i}

Y i′(ξi
′
)

Υ∑
i∈I Y

i(ξi)
= Υ

∑
i∈I Y

i(ξi)∑
i∈I Y

i(ξi)
−

∑
i′∈I\{i}

Y i′(ξi
′
)

Υ∑
i∈I Y

i(ξi)

= Y i(ξi)
Υ∑

i∈I Y
i(ξi)

and we conclude ∑
i∈I

Γ(ξ−i)≤
∑
i∈I

(
Y i(ξi)

Υ∑
i∈I Y

i(ξi)

)
= Υ

which concludes the proof. �
Since the rest of the allowances in the pot are auctioned, the total amount of allowances in the

market is Λ as in the standard scheme. Notice that for yk = 0 we recover the standard scheme
where the whole Υ of the pot is auctioned. If on the other hand Υ = 0, then we are in the realm
of the standard cap-and-trade scheme without auction and without relative allocation.
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4.2. Trading Constraints and Profits

If for each firm i ∈ I we denote by ϕi the number of allowances purchased in the auction, by ξi

its production strategy and by ξ−i the other firms strategies, then the total number of allowances
that an agent obtains through allocation and auctioning in the FCGPS hybrid scheme reads Λ̃i

0 +
Γ(ξ−i)∧Y i(ξi)+ϕi. Hence this has to replace Λi

0 in the trading constraints and profits from Section
2.

More precisely, since the number of (physical) allowance certificates Λ̃i
0 +Γ(ξ−i)∧Y i(ξi)+ϕi+θiT

that firm i ∈ I surrenders for compliance must be nonnegative we obtain a lower bound for the
trading at the last time point T of the compliance period, i.e.

θiT ≥−
(

Λ̃i
0 + Γ(ξ−i)∧Y i(ξi) +ϕi

)
(31)

must hold almost surely. Moreover the penalty payment due by firm i at time T for using the
strategy ξi while the other firms are using strategies ξ−i is:

π

(
∆i + Πi(ξi)− Λ̃i

0−ϕi− θiT −Γ(ξ−i)∧Y i(ξi)

)+

. (32)

Combining (4) – (5) together with (32), we obtain the following expression for the terminal wealth
(profits and losses at time T ) of firm i

HA,S,P,ξ−i,i(θi, ξi,ϕi) :=
T−1∑
t=0

∑
(j,k)∈Mi

(Skt −C
i,j,k
t )ξi,j,kt

+
T−1∑
t=0

θit(At+1−At)− θiTAT −ϕiP

−π
(

∆i + Πi(ξi)− Λ̃i
0−ϕi− θiT −Γ(ξ−i)∧Y i(ξi)

)+

.

4.3. Equilibrium Definition

In this subsection we adjust the equilibrium definition of Section 2 to the FCGPS. To this end
we choose allowance and product price processes in the space L1

T (R)×L1
T−1(R|K|). Moreover, in

line with the trading constraints spelled out above, we define the following spaces of admissible
strategies:

Q̃ξ
−i,i(A,P ) :=

{
(θi, ξi,ϕi)

∣∣ ξi ∈ U i , ϕi ≥ 0, ϕi ∈FT,

ϕiP and RA
T (θi) integrable, θiT ≥−

(
Λ̃i

0 + Γ(ξ−i)∧Y i(ξi) +ϕi
)

a.s.

}
.

and

Q̃(A,P ) :=
{

(θi, ξi,ϕi)i∈I
∣∣ (θi, ξi,ϕi)∈ Q̃ξ−i,i(A,P ) for all i∈ I

}
.

In addition to Assumptions 1 and 2, we shall also use the following technical property:

Assumption 3. we assume that the potentially earned amount of allowances Y (D) matches the
size of the pot only on sets of zero probability, i.e. P[Y (D) = Υ] = 0.
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Following the intuition that given prices A= {At}Tt=0, S = {(Skt )k∈K}T−1
t=0 and P , and the produc-

tion strategies ξ−i of the other firms, each firm aims at increasing its own wealth by maximizing
the function

(θi, ξi,ϕi) ↪→E[HA,S,P,ξ−i,i(θi, ξi,ϕi)], (33)

over its admissible investment and production strategies, we are led to define equilibrium in the
following way:

Definition 3. The triple (A∗, S∗, P ∗)∈L1
T (R)×L1

T−1(R|K|)×L1(FT) of integrable processes and
random variable are an equilibrium for the hybrid scheme if there exists (θ∗, ξ∗,ϕ∗) ∈ Q̃(A∗, P ∗)
such that:
(i) All financial positions are in zero net supply, i.e.∑

i∈I

θ∗it = 0, t= 0, . . . , T ; (34)

(ii) All allowances that are auctioned are bought, i.e.∑
i∈I

ϕ∗i = ΥT(ξ∗); (35)

(iii) Supply meets demand for each good∑
i∈I

∑
j∈Ji,k

ξ∗i,j,kt =Dk
t , k ∈K, t= 0, . . . , T − 1; (36)

(iv) Each firm i ∈ I is satisfied by its own strategy given the strategies ξ∗−i = (ξ∗i
′
)i′∈I\{i} of the

other firms, namely:

E[HA∗,S∗,P∗,ξ∗−i,i(θ∗i, ξ∗i,ϕ∗i)]≥E[HA∗,S∗,P∗,ξ∗−i,i(θi, ξi,ϕi)] (37)

for all (θi, ξi,ϕi)∈ Q̃ξ∗−i,i(A∗, P ∗).

From this definition it is obvious that ϕ∗i(P ∗−A∗T) = 0 almost surely for all i∈ I. If it would hold
that P[{P ∗ <A∗T}]> 0 then the auction and trading strategies ϕ∗i + 1{P∗<A∗

T
} and θ∗iT − 1{P∗<A∗

T
}

would outperform the original strategies ϕ∗i and θ∗i. However this does not lead to an equilibrium
as on {P ∗ <A∗T} it holds that ∑

i∈I

ϕ∗i + 1{P∗<A∗
T
} >
∑
i∈I

ϕ∗i = Υ(ξ∗)

contradicting condition (ii) of an equilibrium. On the other hand on {P ∗ >A∗T} it holds that ϕ∗i = 0
since it is cheaper buying allowances in the market than in the auction. Hence we conclude that
ϕ∗i(P ∗−A∗T) = 0.

4.4. Equivalence of Standard Cap-and-Trade Schemes and Fixed Quantity Generation
Performance Standards

In this section we prove a form of equivalence between standard cap-and-trade schemes and hybrid
cap-and-trade schemes. To be more specific we prove that every equilibrium production strategy
in a standard cap-and-trade scheme is also an equilibrium production strategy for a hybrid cap-
and-trade scheme with the same penalty and cap, and vice versa. Therefore we assume that the
caps in both schemes are identical, i.e. Λ̃ = Υ +

∑
i∈I Λ̃i

0 =
∑

i∈I Λi
0 = Λ. The main result of this

section is:
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Theorem 3. Under Assumptions 1 and 3 the following holds. If (A∗, S∗) is an equilibrium with
production strategies ξ∗ for the standard scheme then the prices (A∗, S

′∗, P ∗) where

S
′∗k
t = S∗kt − ykE[A∗T1{Y (D)<Υ}|Ft] k ∈K,t= 0, . . . ,T− 1 (38)

S
′∗k
t = S∗kt k ∈K, t=T, . . . , T − 1 (39)

P ∗ = A∗T (40)

define an equilibrium for the cap-and-trade scheme with the hybrid allocation having the same
production strategies ξ∗ and allowance price processes A∗. The converse statement is true as well.

A detailed proof of this result is given in the third appendix at the end of the paper. Theorem 3
implies that the results of Theorem 1 and Corollary 1 can be transferred to the hybrid scheme:

Corollary 4. Under Assumptions 1-3 it holds that:
(i) There exists a solution ξ ∈ U of the global optimization problem (11) and the triple (A,S

′
, P )

defined by
At = πPt[Γ + Π(ξ)≥ 0]

for all t= 0, . . . , T , P =AT and

S
′k
t = max

i∈I, j∈Ji,k
(Ci,j,k

t + ei,j,kAt)1{ξi,j,kt >0}− y
kE[AT1{Y (D)<Υ}|Ft]1{t<T}

for all t = 0, . . . , T − 1, k ∈ K form a market equilibrium of the hybrid cap-and-trade scheme.
Moreover, the equilibrium allowance price process is almost surely unique, while the process S

′
is

the smallest equilibrium price in the sense of Theorem 1.
(ii) The hybrid cap-and-trade scheme is socially optimal.

Proof of Corollary 4 (i) This follows directly from Theorem 1 and Theorem 3.
(ii) Corollary 1 implies that for every threshold λ > 0 and upper bound η > ã(λ) there exists

an equilibrium of the standard scheme with corresponding equilibrium strategy ξ which is a solu-
tion of (19). Due to Theorem 3 there exists an equilibrium of the hybrid scheme with the same
corresponding equilibrium strategy ξ proving the assertion. �

Notice that the conclusions of Theorem 3 are stronger than assertion (i) of Corollary 4. Namely
Corollary 4 implicitly relates the lowest possible product prices S of the standard scheme with the
lowest possible product prices S

′
of the hybrid scheme. On the other hand Theorem 3 relates all

equilibrium prices S∗ of the standard scheme to equilibrium prices S′∗ of the hybrid scheme and
vice versa. In the case study presented in Section 5, we will see that the hybrid scheme, in contrast
to schemes in which all the allowances are auctioned, can reduce windfall profits to zero in average,
while at the same time it preserves the social optimality of the standard scheme.

Remark 2. Simplified Allocation Rule. The complexity of the definition of a regulation is the
main hindrance to its popularity and likelihood to be adopted. So in order to avoid the technicalities
of handling scenarios for which a plain relative allocation would exceed the cap, one notice that
if there is not much demand uncertainty and the size of the pot is chosen large enough for the
probability of an empty pot to be small, and we can define a simpler allowance allocation scheme
by

T−1∑
t=0

∑
(j,k)∈Ji,k

ykξi,j,kt 1{∑t
s=0

∑
(i,j,k) y

kξ
i,j,k
s <Υ}. (41)

In this scheme, the relative allocation is simply stopped when it starts to exceed the size of the pot.
The equilibrium equivalence with a standard cap-and-trade scheme does not hold any longer, but
the equilibrium production strategies are in most applications very similar to those of the hybrid
scheme introduced in this paper.
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Figure 1 Histograms of emission distributions in the cases of BAU, a pure tax of 28$/tCO2 , and a cap-and-trade
scheme with penalty 100$/tCO2 and cap of 140 Mega-ton.

5. Case Study

We compare the properties of the three schemes discussed in this paper when implemented on the
Korean electricity market with data calibrated to the period 2006 - 2008.

5.1. Case Study: the Korean Electricity Market

At the core of our analysis is the main abatement mechanism in electricity production, the fuel
switch from coal to gas (i.e. when for some period of time, coal plants are turned off in favour of
cleaner gas plants). This was the main abatement mechanism in EU ETS Reinaud (2007). It has
large abatement potential in the Korean electricity market. We assume that the Korean electricity
market is totally deregulated and use the following production capacities.

Production Capacity in GW
Nuclear 18

Coal 19
LNG 23

5.2. Emissions

Corollaries 1 and 2 shed new light on the difference between standard cap-and-trade schemes
and taxes. If a regulator fixes a cap and does not want to overshoot the cap by too much in
average, he should use a standard cap-and-trade scheme. If on the other hand he is only interested
in the average emission reduction he should use a tax. In a deterministic setting both schemes
are equivalent. Hence the tax might perform very well if we want to regulate markets with not
so volatile reduction costs like e.g. end consumers. However the results do not tell us how well
or how badly a tax performs if it is used to reach a fixed cap under stochastic reduction costs.
This questions can only be answered numerically. Indeed, we show at the example of the Korean
electricity sector how difficult it can be to control emissions with a tax. To this end we consider a
tax of 28$/tCO2

and compare it to an emission trading scheme with cap 140 Mega-ton and penalty
of 100$/tCO2

. The resulting plots are shown in Figure 1. As expected the cap-and-trade scheme
leads to an emission distribution which is centered narrowly around the cap. At the same time the
tax gives an emission distribution which in average corresponds to the cap but at the same time
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Figure 2 Histograms of reduction costs for the pure tax and the cap and trade scheme. The average reduction
cost of the tax and the cap-and-trade scheme are 1.05$/MWh and 1.2$/MWh respectively.

is extremely broad - even much broader than the BAU distribution. In view of Corollary 2 this is
not surprising because the tax reaches average emission targets, with no constraint on the width
of the distribution.

Because both the tax and the cap-and-trade scheme give the same average reduction Corollary
2 tells us that the tax should be cheaper in average. Indeed the average reduction cost of the tax
is 1.05$/MWh while the average reduction cost of the cap-and-trade scheme are 1.2$/MWh. So
in terms of average cost the tax performs better but not much better. And the question is whether
the small difference in reduction costs justifies the broad emission distribution. Figure 2 compares
the histograms of reduction costs. We saw that the tax had a broader emission distribution than
the cap-and-trade scheme. We see now that it also has a broader reduction cost distribution. This
should not come as a surprise since the cap-and-trade scheme is more selective in triggering emission
reductions.

In many countries the power sector is the biggest emitter, so this broad emission distribution
can become problematic. This is a serious shortcoming for a policy based on a straight tax, but in
all fairness, it also has advantages. First and foremost, it gives a stable long term price signal that
triggers investment in low carbon technologies. Therefore it makes sense to think about combining
it with a cap-and-trade scheme as we will discuss in Section 5.4.

5.3. Costs, Windfall Profits and Fuel Poverty

Based on the results of Section 4 we compare different allocation mechanisms of cap-and-trade
schemes. The mechanisms we consider are the standard allocation, 100% auctioning and the fixed
cap generation performance standard (FCGPS) hybrid scheme. Notice that all three schemes have
the same production policies, reduction costs and emission processes. Hence we are particularly
interested in how consumer costs and windfall profits relate to reduction costs and penalty payments
under the different allocation mechanisms. In our case study, the standard scheme has a cap of 140
Mega-ton of carbon dioxide and a penalty of 100 USD.

5.3.1. Free upfront allocation Obviously, costs of production are higher in the presence of
a cap-and-trade scheme. This is because, due to emission constraints, producers switch to cleaner
and more expensive technologies to avoid penalty payments. However from Figure 3 we see that for
a 10% reduction target, average abatement costs are only 1.21$ per MWh of produced electricity!
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Figure 3 Histograms of consumer cost, reduction cost, windfall profits and penalty payments of a standard cap-
and-trade scheme calibrated to reach the emissions target with 95% probability.
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Figure 4 Histograms of consumer cost, reduction cost, windfall profits and penalty payments of a standard cap-
and-trade where all allowances are auctioned at the beginning of the trading period.

Though as observed in EU ETS consumers costs (in average 15.45$/MWh) exceed the overall
reduction costs by far (×8 in the present case). This has two related side effects first this can lead
to fuel poverty, secondly this gives rise to windfall profits which were observed in the first phase
of EU ETS, and have been the core of the main criticism of cap-and-trade schemes by consumer
advocates.

5.3.2. Auction The most frequently proposed approach to the reduction of windfall profits is
to replace the free allocation of allowances by an auction. This is a tempting proposition because
the auction proceeds constitute extra income for the auctioneers. These proceeds could be returned
to consumers, invested in cleaner technology Research & Development (R&D) or new emission
reduction projects, or even used as subsidies for the most vulnerable households. However, not only
is there no guarantee that any of these options will actually be exercised, but what is commonly
overseen, is that the consumer costs can exceed the auction revenue by far.
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As shown in Figure 4 in the case of our Korea case study, auctioning does neither reduce consumer
costs (in average 15.45$/MWh) nor does it reduce windfall profits to a satisfactory level. These are
in average still 3.26$/MWh. Because the auction revenue corresponds to 11.26$/MWh consumer
costs exceed significantly the revenue from the auction. This amount can only cover about three
forth of the consumer costs. Hence the commonly believed argument that auction revenues can
be used to cover costs of endconsumers is wrong and there is still significant wealth transfer from
consumers to producers.

The reason why auctioning of allowances does not cover consumer costs is the following: by
selling allowances, one is able to collect an amount which is essentially equal to the total number of
allowances times the allowance price. This money will, in general not match the overall consumer
burden, since the latter is related not to the number of allowances, but instead to the number of
product units consumed within one compliance period.
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Figure 5 Histograms of consumer cost, reduction cost, windfall profits and penalty payments in the case of a
hybrid scheme.

5.3.3. Hybrid Scheme Because the equilibrium electricity spot price is given by

S
k

t = max
i∈I, j∈Ji,k

(Ci,j,k
t + ei,j,kAt)1{ξi,j,kt >0}−1{t≤T−1}y

kE[AT1{∑T−1
t=0 Dt≥Υ}|Ft] (42)

for all t= 0, . . . , T − 1 and k ∈K, the hybrid scheme reduces windfall profits at its origin: at the
formation of the electricity price. Hence the reduction of windfall profits is related to the product
units consumed within 0 and T− 1 rather than the number of allowances in the market, as in the
case of an auctioning of allowances. This results in a much more efficient reduction of windfall
profits, even if a significant amount of allowances is left over for free allocation and can be used to
set incentives to develop a sustainable production portfolio.

In this case study we used parameters y= 0.52 for electricity and a pot size Υ = 1.2×108, which
leaves 15% of the allowances for a free upfront allocation. As in Carmona et al. (2010) the relative
allocation is only given for electricity that was not produced by nuclear power, as nuclear power is
never the marginal technology.

Figure 5 shows that in contrast to the auction scheme the reduction in windfall profits comes
with a reduction of consumer costs which are 0.91$/MWh in average which implies that reduction
costs are split on endconsumers and producers. Also it reduces windfall profits to zero in average.

Notice also that consumer costs are much less volatile than under an upfront allocation or an
auction.
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Figure 6 Histograms of emission distributions in BAU, a pure tax of 25$/tCO2 and the same tax mixed with a
cap and trade scheme with penalty 20$/tCO2 and a cap of 140 Mega-ton. .

5.4. Mixing Tax with Cap-and-Trade Schemes and Generation Perforance Standards

We saw in the previous section that cap-and-trade schemes increase prices of goods and showed
that FCGPSs can help to reduce this price increase. In the following example we show that this
can be useful when we combine an emission tax with a cap-and-trade scheme. To this end we
consider again the example of Korea and assume that the government introduces a carbon tax
of 25$/tCO2 (Now slightly lower than in Section 5.2) over the whole economy and discuss what
happens if the tax is extended either by a standard cap-and-trade scheme or a FCGPS. Mixing
tax with cap-and-trade is pritty much the same as introducing a carbon price floor as was recently
done by the United Kingdom (see e.g. Ares (2011)).

Figure 6 shows the effect of different policy alternatives on the emissions in the Korean electricity
sector. As already seen in Section 5.2 the tax leads to a broad emission distribution, that is even
broader than in BAU.

Because the power sector is one of the biggest emitters this broad emission distribution introduces
a large emission uncertainty for the country. In case that policy makers want more certainty about
emission reductions from sectors with volatile reduction costs they could extend the economy wide
tax by a cap-and-trade scheme covering only those sectors. In the following we discuss the effect
of mixing the tax with a cap-and-trade scheme at our example of the Korean power sector. We
choose a penalty of 20$/tCO2 and in order to trigger even more emission reductions from the power
sector we use a relatively strict cap 140 Mega-ton.

While this leads to a good control of the emissions it has one important drawback. While for the
tax the carbon price is fixed at 25$/tCO2 the carbon price for the power market takes now values in
a range from 25$/tCO2 to 45$/tCO2. So not only does it increase the carbon price it also increases its
volatility. Power producers have the flexibility and are used to fully exploit this flexibility in order
to react on varying production costs and varying carbon price. However as seen in the previous
section the full carbon price is passed trough to the electricity price and power consumers are
faced with the same volatile carbon price that takes values in the 25$−45$ range instead of solely
the tax of 25$. This is totally unnecessary, in particular because endconsumers do not have the
flexibility to react quickly on varying carbon price. To illustrate the effect of this path through on
the electricity price we show in 7 the difference between average electricity price in BAU compared
to the different regulations. The average price increase in case of a pure tax is 13$/MWh. (With
average emission factor 0.52tCO2

/MWh this corresponds to a carbon price of 25$, matching of
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Figure 7 Histograms of the difference between consumer costs in BAU and consumer costs under the pure tax,
the tax mixed with a standard scheme and the tax mixed with FCGPS. This indicates that the tax
mixed with FCCPS gives a clear carbon price signal embedded in the electricity price, which is at the
same level as the pure tax. If we mix a tax with a standard cap-and-trade scheme the carbon price
embedded in power is higher and more volatile.

course the tax). On the other hand the average price increase with a mixed scheme compared to
BAU is 16$/MWh. Which corresponds to a carbon price of 31$. It is important to notice that
while the carbon price is higher in the mixed scheme it is also much more volatile.

If a policy maker wants to omit this pass through of the allowance price on the electricity price
and instead wants to fix the carbon price embedded in the power price at the level of the tax there
is a simple solution. With the FCGPS allocation mechanism we have a simple mechanism to reduce
the influence of the allowance price on power consumers carbon price. This is because the relative
allocation prevents the allowances from being priced into electricity. This is shown in Figure 7
where for the FCGPS the carbon price embedded in power is very close to the case of a pure tax.
The discrepancy comes from the constant relative allocation factor. If this would be chosen as the
instantaneous emission factor, the influence of the allowance price on the carbon price could be
eliminated. While a pure tax leads to widely fluctuating emissions and a standard cap-and-trade
scheme leads to widely fluctuating carbon prices, the mix of tax with FCGPS allows both to reach
a tight emission target and fixing endconsumers carbon price.

6. Conclusion

The main thrust of this paper is to design cap-and-trade schemes capable of reaching reasonable
pollution targets at low reduction costs while controlling end consumer prices. We prove that
emission trading schemes which allow for excess emissions modulo the payment of a penalty, such
as the EU ETS, are socially optimal in a multi-period stochastic setting, social optimality meaning
that a given a regulatory emission target (upper bound on the expected excess emissions) is reached
at lowest expected costs. As a special case of this result, we show that if the emission target is
given as a bound on the expected emissions, an emission tax reaches the target at lowest expected
cost.

Next, we build on the theory and numerical implementations of Carmona et al. (2010) to compare
standard cap-and-trade schemes – with and without auctioning of the initial allocation – with a
new allocation scheme which mimics a generation performance standard while preserving a fixed
cap and social optimality. The main results of this comparison are:
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Standard cap-and-trade schemes are socially optimal in a stochastic setting if they are
given the right emission targets and penalties. However, the numerical case study shows that the
consumers’ burden far exceeds the overall reduction costs (8 times the reduction cost for our case
study), giving rise for huge windfall profits.

Auctioning, despite its popularity among the supporters of cap-and-trade schemes puzzled by
the magnitude of the windfall profits of the first phase of EU ETS, cannot lower windfall profits
to a reasonable level. They merely help the re-distribution of these costs. Indeed, the revenues
of the auctions (expected to be in the range of 9,5 $ per MWh in our case study) can remain
significantly smaller than the consumer costs, covering only approximately two thirds of the latter.
Hence the common belief that auction revenues can be used to cover consumer costs needs to be
substantiated, as there is still significant wealth transfer from consumers to producers.

Hybrid cap-and-trade schemes incorporate the best of the standard and relative schemes:
they are socially optimal, they respect a cap fixed ex ante, and provide a tight control of the level
at which allowances prices enter the prices of products at the source of the emissions. This has
two interesting applications: Firstly they can be used to reduce windfall profits and fuel poverty.
In contrast to auctioning, it gives good control of both quantities because these are reduced at
their source, by reducing the factor by which emissions are priced into goods whose production
causes pollution. Secondly they can incorporate a tax together with a cap-and-trade scheme, only
embedding the emission tax (and not the allowance price) in prices of goods whose production
causes the externality.

Appendix A: Costs of Cap-and-Trade Schemes

For the sake of completeness, we review the definitions of the various costs resulting from a cap-
and-trade regulation.

A.1. Reduction Costs

For any equilibrium production schedule ξ∗ ∈ U , we define the reduction costs RC as the random
variable given by the difference between the production costs under this production schedule and
the production costs incurred in the same random scenarios had we used the Business As Usual
(BAU) equilibrium production schedule ξ† ∈ U instead:

RC =
∑
i,j,k

T−1∑
t=0

(ξ∗i,j,kt − ξ†i,j,kt )Ci,j,k
t . (43)

Notice that as defined, the reduction costs do not depend upon the trading strategies of the
individual firms in the emissions market.

A.2. Consumer Costs

As for the reduction costs, in order to define the consumer costs we compare the results of the
cap-and-trade scheme to a BAU equilibrium. If ξ† is a BAU equilibrium production strategy, the
lowest BAU price Ŝkt for good k is given by:

S†kt := max
i∈I,j∈Ji,k

Ci,j,k
t 1{ξ†i,j,kt >0}. (44)

So if we denote by S∗ the lowest possible equilibrium prices in our cap-and-trade scheme, the
markets overall consumer costs are defined as

CC =
T−1∑
t=0

∑
k∈K

(S∗kt −S
†k
t )Dk

t . (45)
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A.3. Windfall Profits

If ξ∗ is an optimal production strategy associated with the equilibrium (A∗, S∗), we define the
target price Ŝkt of good k as:

Ŝkt := max
i∈I,j∈Ji,k

Ci,j,k
t 1{ξ∗i,j,kt >0}. (46)

This price is the marginal cost under the optimal production schedule without taking into account
the cost of pollution. We then define the windfall profits of firm i as:

T−1∑
t=0

∑
(j,k)∈Mi

(S∗kt − Ŝkt )ξ∗i,j,kt ,

and the overall windfall profits as

WP =
T−1∑
t=0

∑
k∈K

(S∗kt − Ŝkt )Dk
t . (47)

These windfall profits measure the profits from the production of goods in excess over what the
profits would have been, had the same production schedule been used and the prices did not include
the costs of pollution.

Appendix B: Case Study: the Korean Electricity Market

We ran numerical experiments with data from the Korean electricity market which is based on an
isolated grid, so that we can study the impact of the introduction of an emission regulation without
having to take into account emission leakage across boarders. For the sake of convenience, we
model electricity demand and fuel switch cost as continuous processes (D(t))t∈[0,T ] and (F (t))t∈[0,T ]

with a time unit equal to one year. By sampling at a daily rate, we obtain discrete-time versions
of the processes on which the numerical computations are performed. We explain below how the
parameters for (D(t))t∈[0,T ] and (F (t))t∈[0,T ] are estimated by linear regression.

B.1. Demand Process

The continuous–time demand process is modeled by

D(t) = min{(PD(t) +XD(t))
+
, κn +κc +κg} t∈ [0, T ]

where κn, κc and κg are the production capacities from nuclear, coal and natural gas power plants
respectively, and where the deterministic part

PD(t) = aD + bDt+
6∑
j=0

cj cos(2πϕjt+ lj) t∈ [0, T ] (48)

accounts for a linear trend superimposed onto seasonal and weekly demand fluctuations. The
stochastic part (X(t))t∈[0,T ] is modeled by an Ornstein-Uhlenbeck process satisfying

dXD(t) = γD(αD−XD(t))dt+σDdW (t) (49)

with parameters γD, αD, σD ∈R. The estimation of the parameters is based on historical load data
for the time period April 2005 - April 2008 available on the website of the Korean Power Exchange.
The parameters of the process were identified in two steps. First the deterministic harmonics in
(48) are identified from peaks in the Fourier transform. Secondly, after removing the deterministic
part (PD(t))t∈[0,T ] (red line in Figure B.3) the residual component (XD(t))t∈[0,T ] is estimated by the
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standard linear regression described in Subsection B.3. The resulting parameters for the stochastic
part are

Stochastic Part (XD(t))t∈[0,T ]

γD αD σD
258 0 1.434× 106

those for the affine part of (PD(t))t∈[0,T ] read

Affine Part of (PD(t))t∈[0,T ]

aD bD
971112 56165

and the 7 main oscillations of (PD(t))t∈[0,T ] are given by

Periodic Part of (PD(t))t∈[0,T ]

i= 0 i= 1 i= 2 i= 3 i= 4 i= 5 i= 6
ci 46919 51179 24336 8134 63094 29422 9704
ϕi 1 2 3 4 52.14 104.29 208.57
li 1.17 2.29 −0.31 2.31 1.71 0.27 1.74

Long term periodicities were computed with a yearly periodic Fourier transform while short term
periodicities were computed with a weekly periodic Fourier transform.

B.2. Fuel Switch Price Process

The continuous–time fuel switch process is modeled by

F (t) = aF + bF t+XF (t) t∈ [0, T ]

where the stochastic part (XF (t))t∈[0,T ] is again modeled by an Ornstein-Uhlenbeck process whose
evolution follows the stochastic differential equation

dXF (t) = γF (αF −XF (t))dt+σFdW (t) (50)

with parameters γF , αF , σF ∈R. Here again, (W (t))t∈[0,T ] is a Wiener process.
For the estimation of the parameters of the fuel spread appearing in the fuel switch cost, we

used Asian LNG import prices from Bloomberg, and Asian coal prices from Argus Media Group,
from January 2006 to July 2008. Taking into account expected long term gas and coal prices we
fixed a= 60$ neglecting the recent fuel switch price increase. As for the electricity demand process,
the parameters of the stochastic component (XF (t))t∈[0,T ] were calibrated using the procedure
described in Subsection B.3. We found the parameters:

Fuel Switch Price Process (F (t))t∈[0,T ]

aF bF γF αF σF
33.68 4.81 5.18 0 28.21

B.3. Linear Regression

The parameters γi, αi, σi for i∈ {D,F} of the Ornstein-Uhlenbeck processes (49) and (50) are esti-
mated by a standard linear regression method applied as follows. From the formulas for conditional
mean and variance

E(X(t)|Fs) =X(s)e−γ(t−s) +α(1− e−γ(t−s)) s≤ t

Var(X(t)|Fs) =
σ2

2γ
(1− e−2γ(t−s)) s≤ t
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Figure 8 Scatterplot of (X(t∆), Y (t∆)) calculated by (51) based on historical fuel switch prices for the Korean
electricity market. The straight line depicts the linear regression estimated by least squares.

we obtain the regression

Y (t∆) :=X((t+ 1)∆)−X(t∆) = β0 +β1X(t∆) +β2εt t= 1, . . . , n− 1 (51)

where (εt)
n−1
t=1 are independent, standard Gaussian random variables and β0, β1, β2 are connected

to α,γ,σ by

α=−β0

β1

, γ =− 1

∆
ln(1 +β1), σ=

√
2γβ2

1− e−2γ∆
.

Appendix C: Proof of Theorem 3

In this Section we prove Theorem 3. To this end we show that the existence of equilibrium strategies
(θ∗, ξ∗) for the standard scheme with prices (A∗, S∗) guarantee existence of equilibrium strategies
(θ′∗, ξ∗,ϕ∗) for the hybrid scheme with prices (A∗, S

′∗, P ∗) and vice versa. In fact we can prove this
without knowing the specific form of the equilibrium strategies.

The rationale is as follows: If there exist strategies (θ∗, ξ∗) that are feasible and fulfill conditions
(i)-(iii) of Definition 1 under (A∗, S∗) then the strategies (θ′∗, ξ∗,ϕ∗) related to (θ∗, ξ∗) by

ϕ∗i = Υ(ξ∗)/|I|
θ
′∗i
T = θ∗iT + Λi

0− Λ̃i
0−Γ(ξ∗−i)∧Y i(ξ∗i)−ϕ∗i

θ′∗t = θ∗t for all t= 0, . . . , T − 1

are feasible and fulfill conditions (i)-(iv) of Definition 3 under (A∗, S
′∗, P ∗) and vice versa. Notice

that for the strategies so defined, the number of allowances surrendered for compliance at the end
of the compliance period is the same in both the standard and the hybrid scheme.

Feasibility of the above strategies is based on the following Lemma:

Lemma 1. Let A an integrable allowance price process and consider an agent i ∈ I with auction
strategy ϕi such that ϕiAT is integrable. Moreover fix ξ ∈

∏
i∈I U i and assume that the trading

strategies θi and θ
′i are related by

θit = θ
′i
t for all t= 0, . . . , T − 1 (52)

and
Λi

0 + θiT = Λ̃i
0 +ϕi + θ

′i
T + Γ(ξ−i)∧Y i(ξi) (53)

almost surely. Then, (θi, ξi)∈Qi(A) if and only if (θ′i, ξi,ϕi)∈ Q̃ξ−i,i(A,AT).
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Proof of Lemma 1 Since θi and θ′i differ only at time t= T , the equivalence between the inte-
grability of RA

T (θi) and RA
T (θ′i) relies on the equivalence between the integrability of θiTAT and

θ′iTAT . But this is clear from (53) because ϕiAT is integrable and Γ(ξ−i) ∧ Y i(ξi) is bounded.
Considering now the inequality constraint, if we assume that

θiT ≥−Λi
0,

then both the left and right hand sides of (53) are positive which implies that

θ
′i
T ≥−

(
Λ̃i

0 + Γ(ξ−i)∧Y i(ξi) +ϕi
)
.

The converse statement is proven analogously. �
The following lemma shows that if (θ∗, ξ∗) fulfills conditions (i) and (ii) of Definition 1, then it

follows that (θ′∗, ξ∗,ϕ∗) fulfills conditions (i), (ii) and (iii) of Definition 3 and vice versa.

Lemma 2. Let (A,S) be integrable allowance and product price processes. Moreover, suppose that
for all agents i∈ I the strategies (θi, ξi)i∈I ∈Q(A) and (θ

′i, ξi,ϕi)i∈I ∈ Q̃(A,AT) satisfy conditions
(52), (53) and ∑

i∈I

ϕi = Υ(ξ) (54)

almost surely. Then it holds that the couple (θi, ξi)i∈I fulfills conditions (i) and (ii) of Definition 1
if and only if (θ

′i, ξi,ϕi)i∈I fulfill conditions (i) and (iii) of Definition 3.

Proof of Lemma 2 Condition (54) implies that∑
i∈I

ϕi = Υ−
∑
i∈I

(Γ(ξ−i)∧Y i(ξi)).

Summing the left and right hand side of (53) this yields∑
i∈I

Λi
0 +
∑
i∈I

θiT =
∑
i∈I

Λ̃i
0 +
∑
i∈I

Γ(ξ−i)∧Y i(ξi) + Υ−
∑
i∈I

Γ(ξ−i)∧Y i(ξi) +
∑
i∈I

θ
′i
T ,

while (28) implies that ∑
i∈I

θiT =
∑
i∈I

θ
′i
T .

Hence if (θi, ξi)i∈I satisfies condition (i) of Definition 1 then (θ
′i, ξi,ϕi)i∈I fulfills conditions (i) of

Definition 3 and vice versa. If (θi, ξi)i∈I satisfy condition (ii) of Definition 1 then (θ
′i, ξi,ϕi)i∈I

fulfill conditions (iii) of Definition 3 and vice versa. �
Until now we have shown that all the equilibrium conditions but the individual optimality

conditions (condition (iii) of Definition 1 and condition (iv) of Definition 3) are fulfilled. It remains
to prove the following assertion: if (ξ∗, θ∗) fulfills

E[LA
∗,S∗,i(θ∗i, ξ∗i)]−E[LA

∗,S∗,i(θi, ξi)]≥ 0 (55)

for all (θi, ξi)∈Qi(A∗) then (θ′∗, ξ∗,ϕ∗) fulfills

E[HA∗,S
′∗,P∗,ξ∗−i,i(θ

′∗i, ξ∗i,ϕ∗i)]−E[HA∗,S
′∗,P∗,ξ∗−i,i(θi, ξi,ϕi)]≥ 0 (56)

for all (θi, ξi,ϕi)∈ Q̃i(A∗,A∗) and vice versa.
A simple concavity argument gives us lower bounds for which it is easier to prove non-negativity

than for (55) and (56). A family of lower bounds is given in the following lemma:
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Lemma 3. Let (A,S) be integrable price processes and P an auction price. Moreover, fix an agent
i∈ I and suppose that the strategies ξ∗i, ξi ∈ U i and θ∗i, θi, ϕ∗i,ϕi are such that ϕ∗iP , ϕiP , RA

T (θ∗i)
and RA

T (θi) are integrable and condiser the following linear combinations

ξi(µ) := ξ∗i +µ(ξi− ξ∗i) θi(µ) := θ∗i +µ(θi− θ∗i) ϕi(µ) :=ϕ∗i +µ(ϕi−ϕ∗i)

for 0<µ≤ 1. If in addition Assumption 1 is satisfied, then it holds that

E
[
LA,S,i(θ∗i, ξ∗i)

]
−E

[
LA,S,i(θi, ξi)

]
≥ 1

µ
E
[
LA,S,i(θ∗i, ξ∗i)−LA,S,i(θi(µ), ξi(µ))

]
in case of the standard scheme as well as

E
[
HA,S,P,ξ∗−i,i(θ∗i, ξ∗i,ϕ∗i)

]
−E

[
HA,S,P,ξ∗−i,i(θi, ξi,ϕi)

]
≥ 1

µ
E
[
HA,S,P,ξ∗−i,i(θ∗i, ξ∗i,ϕ∗i)−HA,S,P,ξ∗−i,i(θi(µ), ξi(µ),ϕi(µ))

]
in case of the hybrid scheme.

Proof of Lemma 3 From the concavity of L we conclude for all 0<µ≤ 1 that

E[LA,S,i(θi(µ), ξi(µ))]≥ (1−µ)E[LA,S,i(θ∗i, ξ∗i)] +µE[LA,S,i(θi, ξi)]

which translates into

E[LA,S,i(θi(µ), ξi(µ))]−E[LA,S,i(θ∗i, ξ∗i)]≥ µ
(
E[LA,S,i(θi, ξi)]−E[LA,S,i(θ∗i, ξ∗i)]

)
and proves the assertion. A similar argument holds for the hybrid scheme. �

For each agent i∈ I, the following lemma will help us to express the lower bounds from Lemma
3 for the standard/hybrid scheme in terms of the objective function of the hybrid/standard scheme
and the function U i 3 ξi ↪→KA,ξ−i,i(ξi) defined as

KA,ξ−i,i(ξi) =−Y i(ξi)AT1{Y (D)<Υ}+
(
Y i(ξi)∧Γ(ξ−i)

)
AT

for all processes A and ξ−i. For small perturbations of the equilibrium strategies, this gives a simple
relation between the objective functions in the standard and the hybrid schemes since Lemma 5
shows that the terms originating from K vanish as µ converges to zero.

Lemma 4. Let A,S,S
′

be integrable price processes such that

S
′k
t = Skt − ykE[AT1{Y (D)<Υ}|Ft]1{t≤T−1} (57)

holds almost surely for all k ∈K, t= 0, . . . , T −1 and suppose that P is an integrable auction price.
Moreover fix an agent i ∈ I as well as other agents strategies ξ−i ∈

∏
i′∈I\{i}U i and suppose that

the strategies (θi, ξi)∈Qi(A) and (θ
′i, ξi,ϕi)∈ Q̃ξ−i,i(A,P ) satisfy the conditions (52), (53) as well

as ϕi(P −AT) = 0 almost surely. Then it holds under Assumption 1 that

E
[
HA,S

′
,P,ξ−i,i(θ

′i, ξi,ϕi)
]

=E
[
LA,S,i(θi, ξi)− (Λi

0− Λ̃i
0)AT +KA,ξ−i,i(ξi)

]
.
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Proof of Lemma 4 Due to (52) and (53) it holds that

E
[
HA,S

′
,P,ξ−i,i(θ

′i, ξi,ϕi)

]
=E

[ T−1∑
t=0

∑
(j,k)∈Mi

(S
′k
t −C

i,j,k
t )ξi,j,kt +

T−1∑
t=0

θ
′i
t (At+1−At)− θ

′i
TAT −ϕiP

−π
(

∆i + Πi(ξi)− Λ̃i
0−Γ(ξ−i)∧Y i(ξi)−ϕi− θ

′i
T

)+]
=E

[ T−1∑
t=0

∑
(j,k)∈Mi

(Skt −C
i,j,k
t − 1{t≤T−1}y

kE
[
AT1{Y (D)<Υ}|Ft

]
)ξi,j,kt

+
T−1∑
t=0

θit(At+1−At)− θiTAT − (Λi
0− Λ̃i

0)AT −ϕi(P −AT)

+
(
Γ(ξ−i)∧Y i(ξi)

)
AT−π

(
∆i + Πi(ξi)−Λi

0− θiT
)+
]
.

With (26) this reads

E
[ T−1∑
t=0

∑
(j,k)∈Mi

(Skt −C
i,j,k
t )ξi,j,kt +

T−1∑
t=0

θit(At+1−At)− θiTAT − (Λi
0− Λ̃i

0)AT

−ϕi(P −AT)−Y i(ξi)AT1{Y (D)<Υ}+
(
Γ(ξ−i)∧Y i(ξi)

)
AT

−π
(
∆i + Πi(ξi)−Λi

0− θiT
)+
]

=E
[
LA,S,i(θi, ξi)− (Λi

0− Λ̃i
0)AT +KA,ξ−i,i(ξi)

]
which concludes the proof. �

Using the results from Lemma 4 to rewrite the lower bounds from Lemma 3 the terms originating
from K vanish as µ converges to zero. This is shown in the following Lemma.

Lemma 5. Let ξ∗ ∈ U and ξi ∈ U i for some i ∈ I. Moreover assume that Assumption 3 is fulfilled
and define ξi(µ) := ξ∗i+µ(ξi− ξ∗i) for all 0<µ≤ 1. Then taking the limit µ↘ 0 along a countable
set (0,1]∩Q it holds that

lim
µ→0

1

µ
E
[
KA,ξ∗−i,i(ξ∗i)−KA,ξ∗−i,i(ξi(µ))

]
= 0

for all integrable allowance price processes A.

Proof of Lemma 5 Since ξ∗ ∈ U it holds on {Y (D)<Υ} that Y i(ξ∗i)< Γ(ξ∗−i) and hence

lim
µ→0

1

µ

(
Y i(ξ∗i)∧Γ(ξ∗−i)−Y i(ξi(µ))∧Γ(ξ∗−i)

)
= Y i(ξ∗i)−Y i(ξi).

On the other hand it holds on {Y (D)>Υ} that Y i(ξ∗i)> Γ(ξ∗−i) and therefore

lim
µ→0

1

µ

(
Y i(ξ∗i)∧Γ(ξ∗−i)−Y i(ξi(µ))∧Γ(ξ∗−i)

)
= 0.



Carmona and Fehr: Cap-and-Trade Allocation
30 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Since moreover Assumption 3 implies P[{Y (D) = Υ}] = 0 we conclude that

lim
µ→0

1

µ

(
Y i(ξ∗i)∧Γ(ξ∗−i)−Y i(ξi(µ))∧Γ(ξ∗−i)

)
=
(
Y i(ξ∗i)−Y i(ξi)

)
1{Y (D)<Υ} =

1

µ

(
Y i(ξ∗i)−Y i(ξi(µ))

)
1{Y (D)<Υ}

holds almost surely. Hence it follows that

lim
µ→0

1

µ

(
KA,ξ∗−i,i(ξ∗i)−KA,ξ∗−i,i(ξi(µ))

)
= 0

almost surely. Moreover it holds by the triangle inequality for all 0<µ≤ 1 that

1

µ

∣∣∣KA,ξ∗−i,i(ξ∗i)−KA,ξ∗−i,i(ξi(µ))
∣∣∣

≤ 1

µ

∣∣∣(Y i(ξ∗i)−Y i(ξi(µ))
)
AT1{Y (D)<Υ}

∣∣∣+ 1

µ

∣∣∣(Y i(ξ∗i)∧Γ(ξ∗−i)−Y i(ξi(µ))∧Γ(ξ∗−i)
)
AT

∣∣∣
≤ 2

µ

∣∣∣(Y i(ξ∗i)−Y i(ξi(µ))
)
AT

∣∣∣= 2

µ

∣∣∣∑
k∈K

∑
j∈Ji,k

T−1∑
t=0

ykµ(ξ∗i,j,kt − ξi,j,kt )AT

∣∣∣
≤ 2
∣∣∣∑
k∈K

∑
j∈Ji,k

T−1∑
t=0

ykκi,j,kAT

∣∣∣
while AT is integrable by assumption. Hence the assertion follows from dominated convergence.
�
We can now turn to the proof of Theorem 3.
Proof of Theorem 3 Assume first that (A∗, S∗) is an equilibrium of the standard scheme with

strategies (θ∗, ξ∗)∈Q(A∗).
Based on these strategies we define optimal strategies (θ′∗, ξ∗,ϕ∗) for the hybrid scheme, where

for all i∈ I the strategies ϕ∗i and θ
′∗i are given by

ϕ∗i = Υ(ξ∗)/|I| (58)

θ
′∗i
T = θ∗iT + Λi

0− Λ̃i
0−Γ(ξ∗−i)∧Y i(ξ∗i)−ϕ∗i (59)

and θ′∗t = θ∗t for all t= 0, . . . , T−1. Since ϕ∗iAT is integrable and ϕ∗i is almost surely non negative for
all i∈ I we deduce from Lemma 1 that (θ′∗i, ξ∗i,ϕ∗i)∈ Q̃ξ∗−i,i(A∗,A∗T). Further (ϕ∗i)i∈I so defined
fulfills condition (ii) of Definition 3. This together with Lemma 2 implies that (θ

′∗i, ξ∗i,ϕ∗i)i∈I
fulfill conditions (i) and (iii) of Definition 3. To show that (A∗, S

′∗, P ∗) is an equilibrium of the
hybrid scheme it remains to prove that condition (iv) of Definition 3 is satisfied for any (θ

′i, ξi,ϕi)∈
Q̃ξ∗−i,i(A∗,A∗T). To this end we define linear combinations

ξi(µ) := ξ∗i +µ(ξi− ξ∗i) θ′i(µ) := θ∗i +µ(θ′i− θ∗i) ϕi(µ) :=ϕ∗i +µ(ϕi−ϕ∗i).

Based on these strategies we define also a trading strategy θi(µ) for the standard scheme given by

θiT (µ) := −Λi
0 + Λ̃i

0 + Γ(ξ∗−i)∧Y i(ξi(µ)) +ϕi(µ) + θ
′i
T (µ)

and θit(µ) := θ
′i
t (µ) for all t= 0, . . . , T − 1.

Note that since θ∗iT and θ′iT are feasible they satisfy

θ′iT (µ) = (1−µ)θ∗iT +µθ′iT
≥ −Λ̃i

0− (1−µ)(Γ(ξ∗−i)∧Y i(ξ∗i) +ϕ∗i)−µ(Γ(ξ∗−i)∧Y i(ξi) +ϕi).
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Since moreover ξi ↪→ Γ(ξ∗−i)∧Y i(ξi) is concave this implies for all 0≤ µ≤ 1 that

θ′iT (µ)≥−Λ̃i
0−Γ(ξ∗−i)∧Y i(ξi(µ))−ϕi(µ)

meaning that (θ′i(µ), ξi(µ),ϕi(µ)) ∈ Q̃ξ∗−i,i(A∗,A∗T). This together with Lemma 1 implies that
(θi(µ), ξi(µ)) ∈ Qi(A∗). Knowing this we are ready to prove condition (iv) of Definition 3. From
Lemmas 3 and 4 we derive that

E
[
HA∗,S

′∗,P∗,ξ∗−i,i(θ
′∗i, ξ∗i,ϕ∗i)

]
−E

[
HA∗,S

′∗,P∗,ξ∗−i,i(θ
′i, ξi,ϕi)

]
≥ 1

µ
E
[
HA∗,S

′∗,P∗,ξ∗−i,i(θ
′∗i, ξ∗i,ϕ∗i)−HA∗,S

′∗,P∗,ξ∗−i,i(θ
′i(µ), ξi(µ),ϕi(µ))

]
=

1

µ
E
[
LA
∗,S∗,i(θ∗i, ξ∗i) +KA∗,ξ∗−i,i(ξ∗i)−LA

∗,S∗,i(θi(µ), ξi(µ))−KA∗,ξ∗−i,i(ξi(µ))
]

≥ 1

µ
E
[
KA∗,ξ∗−i,i(ξ∗i)−KA∗,ξ∗−i,i(ξi(µ))

]
(60)

for all 0<µ≤ 1, where the last inequality holds due to the optimality of (θ∗i, ξ∗i) for the standard
scheme. Hence we conclude from Lemma 5 that

E
[
HA∗,S

′∗,P∗,ξ∗−i,i(θ
′∗i, ξ∗i,ϕ∗i)

]
−E

[
HA∗,S

′∗,P∗,ξ∗−i,i(θ
′i, ξi,ϕi)

]
≥ lim

µ→0

1

µ
E
[
KA∗,ξ∗−i,i(ξ∗i)−KA∗,ξ∗−i,i(ξi(µ))

]
= 0 (61)

where we take the limit µ↘ 0 along a countable set (0,1]∩Q. This argumentation holds for any
(θ
′i, ξi,ϕi)∈ Q̃ξ∗−i,i(A∗,A∗T) proving condition (iv) of Definition 3.
To prove the converse statement assume that (A∗, S

′∗, P ∗) is an equilibrium of the hybrid scheme
with corresponding strategies (θ

′∗i, ξ∗i,ϕ∗i) ∈ Q̃ξ∗−i,i(A∗, P ∗). For condition (iii) of Definition 3 to
be fulfilled it is necessary that ϕ∗i(P ∗−A∗T) = 0 almost surely for all agents i∈ I.

Based on the optimal strategies in the hybrid scheme we define optimal strategies (θ∗, ξ∗) for the
standard scheme where for all i∈ I the trading strategy θ∗i is given by

θ∗iT := θ
′∗i
T −Λi

0 + Λ̃i
0 + Γ(ξ∗−i)∧Y i(ξ∗i) +ϕ∗i

and θ∗it := θ
′∗i
t for all t= 0, . . . , T − 1 . Since ϕ∗i(P ∗−A∗T) = 0 and (θ

′∗i, ξ∗i,ϕ∗i)∈ Q̃ξ∗−i,i(A∗, P ∗) it
holds that for all that ϕ∗iA∗T is integrable, hence Lemma 1 implies that (θ∗, ξ∗)∈Q(A∗). Moreover
Lemma 2 implies that (θ∗i, ξ∗i)i∈I fulfill conditions (i) and (ii) of Definition 1.

It remains to prove that condition (iii) of the equilibrium definition for standard schemes is
fulfilled. Therefore, we compare the strategy (θ∗, ξ∗) with all other strategies (θi, ξi)∈Qi(A∗) and
i∈ I and define linear combinations by

ξi(µ) := ξ∗i +µ(ξi− ξ∗i)
θi(µ) := θ∗i +µ(θi− θ∗i)
θ
′i
T (µ) := Λi

0− Λ̃i
0−Γ(ξ∗−i)∧Y i(ξi(µ))−ϕ∗i + θiT (µ).

θ
′i
t (µ) := θit(µ) for all t= 0, . . . , T − 1.

Again it holds that (θi(µ), ξi(µ))∈Qi(A∗) and hence (θ′i(µ), ξi(µ),ϕ∗i)∈ Q̃ξ∗−i,i(A∗,A∗T) by Lemma
1. Moreover it holds for any (θi, ξi)∈Qi(A∗) and 0<µ that

E[LA
∗,S∗,i(θ∗i, ξ∗i)]−E[LA

∗,S∗,i(θi, ξi)]
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≥ 1

µ
E[LA

∗,S∗,i(θ∗i, ξ∗i)−LA
∗,S∗,i(θi(µ), ξi(µ))]

=
1

µ
E[(HA∗,S

′∗,P∗,ξ∗−i,i(θ
′∗i, ξ∗i,ϕ∗i)−KA∗,ξ∗−i,i(ξ∗i))

− (HA∗,S
′∗,P∗,ξ∗−i,i(θ

′i(µ), ξi(µ),ϕ∗i)−KA∗,ξ∗−i,i(ξi(µ)))]

≥ 1

µ
E[KA∗,ξ∗−i,i(ξi(µ))−KA∗,ξ∗−i,i(ξ∗i))]

where the first and second equality are consequences of Lemma 3 and 4 respectively. The last
inequality holds due to the optimality of (θ∗i, ξ∗i,ϕ∗i) for the hybrid scheme. Hence taking the limit
µ↘ 0 along a countable set (0,1]∩Q we derive from Lemma 5 that

E[LA
∗,S∗,i(θ∗i, ξ∗i)]−E[LA

∗,S∗,i(θi, ξi)]

≥ lim
µ→0

1

µ
E[KA∗,ξ∗−i,i(ξi(µ))−KA∗,ξ∗−i,i(ξ∗i))] = 0

holds for any (θi, ξi)∈Qi(A∗). This proves condition (iii) of Definition 1 and concludes the proof.
�
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