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Abstract

The multivariate lognormal model is a basic pricing model for derivatives with multiple un-
derlying processes, for example, spread options. However, the market observation of implied cor-
relation skew examplifies how inaccurate the constant correlation assumption in the multivariate
lognormal model can be. In this paper, we study alternative modeling approaches that generate
implied correlation skews while at the same time maintain practical tractability. First, we pro-
pose a multiscale stochastic volatility model, and derive asymptotic formulas for option valuation
and implied correlation. The model is a two-dimensional extension of the multiscale stochastic
volatility model proposed in [20] which was tested on single underlying options. To obtain option
valuations, we only need to calibrate a set of special parameters, and we propose a calibration
procedure using option prices on individual underlying assets. From our simulated results, the
multiscale stochastic volatility model generates implied correlation skews, and the asymptotic for-
mulas are easy and fast to implement. However, in the multiscale stochastic volatility model, the
stochastic volatilities introduce non-tradable sources of risk, and the market is no longer complete.
Alternatively, we propose a local correlation model, which assumes the instantaneous correlation
to be a deterministic function of time and the underlying prices. This model can be viewed as
a two-dimensional extension of Dupire’s local volatility model. The local correlation approach
preserves the completeness of the market and low dimensionality of uncertainty.
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1 Introduction

Spread options are the simplest example of multi-underlying derivatives. It is a contract written on
the difference between two underlying interests. If we denote the values of the two underlying interests
at time t by Xt and Yt, the payoff of a spread option at maturity T is (XT −M × YT −K)+, where
M and K are the ratio and strike of the option, and the function x+ is defined as x+ = max(x, 0).
In other words, the buyer of the spread option has the right to buy the spread XT −M × YT at the
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prespecified price K at maturity T . In a Markovian set-up, the price C at time t of the spread option
with date of maturity T is given by the risk-neutral conditional expectation

C(x, y, t;T,M,K) = e−r(T−t)EQ[(XT −M × YT −K)+|Xt = x, Yt = y] . (1)

More generally, if we denote the payoff at maturity by h(XT , YT ), then the price of any European
payoff multi-asset option is

C(x, y, t;T ) = e−r(T−t)EQ[h(XT , YT )|Xt = x, Yt = y] . (2)

Spread options can be used for speculation, risk hedging, or even physical asset valuation. They
are traded in many markets, such as the commodity markets, the currency and foreign exchange
markets and the fixed-income markets, sometimes on exchanges, but most often as over-the-counter
transactions. For example, the spark spread option is a spread between natural gas and electric power.
The underlying is

St = Pt −HeffGt , (3)

where Pt and Gt denote futures prices of power and gas, and Heff is the heat rate, or efficiency ratio,
of a typical gas fired power plant. It provides a proxy for the cost of converting natural gas into
electricit. In this paper, the analysis will mainly focus on the spark spread option, but the methods
can be easily used for other spreads.

The multivariate lognormal model, as a generalization of the Samuelson [36] lognormal model, is
a basic model for spread option valuation. The model assumes that the risk-neutral dynamics of Xt

and Yt are given by geometric Brownian motions{
dXt = Xt[rdt+ σ1dWX(t)]

dYt = Yt[rdt+ σ2dWY (t)]
(4)

where WX andWY are standard Brownian motions with correlation ρ.
The price of a spread option with strike K = 0, maturity T and payoff (XT − YT )+ under model

(4) is given by Margrabe’s formula [38]. For non-zero strikes, there is no closed form valuation formula
under the multivariate lognormal model (4), and one needs to rely on approximations and numerical
procedures. For example, Kirk suggested an approximation formula in [24] which provides a good
approximation of spread option prices when the strike K is not far from zero. When the strike is
large, Bjerksund and Stensland extended Kirk’s idea and propose a more accurate, though more
involved, closed form approximation for spread option price in [6]. Carmona and Durrleman [9] [10]
developed sophisticated price bounds for spread option prices which produced accurate estimates to
the true option value. Dempster and Hong [15] proposed an efficient numerical method using the fast
Fourier transform [12].

The multivariate lognormal model (4) assumes constant correlation between the Brownian mo-
tions which drive the two underlying interests. However, past research results provide evidence that
correlations change over time [8] [28], and there is a large correlation risk premium [16]. Return
correlations increase when prices decrease, and often peak during financial crises. Roll [35] provides
an analysis of the 1987 crash and Jorion [23] analyzes the Long Term Capital Management (LTCM)
crisis, highlighting the role of correlation changes during these periods of crises.

In the spread option market, the observation of implied correlation skew examplifies the inaccuracy
of the constant correlation assumption. Implied correlations are defined similarly to implied volatil-
ities, as the levels of correlation we need to input in a basic pricer in order to recover the market
spread option prices. The basic pricing model is usually the multivariate lognormal model (4), and
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the pricer can be chosen to be given by one of the approximation methods reviewed earlier, e.g. Kirk’s
formula [24]. Other parameters of the basic pricer, such as the volatilities of the two underlying assets,
are fixed at pre-set levels which fit market conditions. The implied correlation is defined as a function
of the ratio M and the strike K and as such, can be visualized as a two-dimensional surface. Prac-
titioners observe implied correlation skews when both M and K change, especially M which for the
spark spread options can be interpreted as the converting efficiency ratio of a power plant. Blakey and
Scheule perform a nonparametric analysis of the implied correlation skew in [7]. The observation of an
implied correlation skew indicates that tail distributions are not captured properly in the multivariate
lognormal framework. Other models are needed in order to value spread options consistently with the
implied correlation skew.

The fact that the multivariate lognormal model is inappropriate has been noted by many re-
searchers. Instead of using a constant correlation, an alternative approach is to extract correlation in-
formation from historical data and market prices. When pricing new spreads or other multi-underlying
options, the correlation in the multivariate lognormal model is modified according to the historical
calibration and new prices are generated. For example, Cont and Deguest [13] suggested a statistical
approach to extract an implied correlation matrix from index option prices. Cotter [14] proposed to
calculate implied correlation from value at risk (VaR). Shevchenko [37] derived implied correlation
formulas for foreign exchange rates. However, calibration from market prices can be extremely un-
stable in pricing and hedging. The idea that past observations provide a reasonable representation of
the future is problematic.

Another approach is to rely on new models for the underlying assets. Ma [26] [27], Fonseca,
Grasselli and Tebaldi [19] and others proposed stochastic correlation models for option pricing. The
authors of [19] argue that their model generates implied correlation skew for the ”best-of” basket
option. Fengler, Herwatz, Menn and Werner [18] showed that their model explains the index volatility
skew. Alexander and Scourse [4] proposed a bivariate normal mixture model for the underlying assets
at maturity. Benth and Kettler [5] modeled the two underlying asset prices with bivariate non-
Gaussian autoregressive processes, and assumed the innovations are correlated by a non-symmetric
copula. However, these models either fail to explain the implied correlation skew for spread options, or
do not assume evolutionary dynamics of the two underlying assets. Without dynamics, these models
can not be used to price path-depend spread derivatives.

In this paper, we develop a two factor multiscale stochastic volatility model, and use asymptotic
methods to approximate the spread option valuationes and calculate the implied correlation. Our
model is a plain generalization of a model introduced by Fouque, Papanicolaou, Sircar and Solna in [20],
and tested on single underlying options. Our stochastic volatility model allows more flexibility than the
multivariate lognormal model, and the asymptotic formulas we derive guarantee fast implementation
and tractability. We show this model generates the desired implied correlation structure, and illustrate
how to control the implied correlation structure by calibrating the parameters.

In practice, spread options are not as liquid as options on individual underlying assets. If we
calibrate our model to spread option prices and market implied correlation, the result will be unstable
and involve too much noise. We propose an alternative approach and discuss how to calibrate the
model to the prices of options on the two underlying assets. As a result, the implied volatilities of the
two underlying assets and the implied correlation of the spread options are ”coupled”. This approach
guarantees that the valuation of spread options are consistent with market information for individual
options.

Our two factor multiscale stochastic volatility model enriches the multivariate lognormal model
to create an implied correlation skew. However, in the multiscale stochastic volatility model, the
stochastic volatilities introduce non-tradable source of risk, and the market is no longer complete.
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Motivated by Dupire’s local volatility approach [17], we propose in the second part of the paper, a
local correlation theory for spread option modeling. We assume that the instantaneous correlation is a
deterministic local correlation function of time and the underlying prices. The local correlation func-
tion is calibrated to derivatives and transformations of the spread option prices. The local correlation
approach preserves the completeness of the market and low dimensionality of uncertainty.

We close the introduction with an outline of the paper. Section 2 introduces the two factor
multiscale stochastic volatility model, and derives an asymptotic formula for spread option valuation.
The formula provides approximations for the prices of European options with payoffs depending upon
two underlying assets. A theoretical result is proved regarding the accuracy of the formula. A
delta hedging experiment is performed, and comparisons with the multivariate lognormal model are
provided. In Section 3, we derive an asymptotic formula for the implied correlation. We analyze
the implied correlation surface generated by the multiscale stochastic volatility model and study its
dependence upon and sensitivity with respect to the input parameters. Section 3 also discusses the
details of the coupling smiles procedure, which is the calibration of implied correlations and spread
option prices to the prices of options on the two underlying assets. Numerical tests are performed
with market power and natural gas data. The use of the calibrated model is demonstrated on an
example of the real option approach to power plant valuation.

Section 4 introduces the local correlation theory, and derives formulas of the local correlation
function involving transformations of the spread option price surface. The calibrated local correlation
and the underlying processes are used to price exotic and path-dependent derivatives. A numerical
example is provided in which the calibrated model is used to price a capped variance swap on the
spread.

2 Two Factor Multiscale Stochastic Volatility Model

In this section, we introduce a two factor multiscale stochastic volatility model for the two un-
derlying processes, and derive an asymptotic pricing formula for spread options. We also provide
theoretical and numerical evidence for the accuracy of the formula.

2.1 Model Setup

First, we present the various component of a two factor multiscale stochastic volatility model. We
explain the rationale behind the model, and analyze how the dependence between the two underlying
assets is incorporated in the model. We also discuss the change of measure from the physical measure
to a risk neutral pricing measure. The results will be used to price European derivatives written on
the two underlying assets.

2.1.1 Model under the Physical Measure

We assume that the dynamics of the two underlying prices Xt and Yt are given by the stochastic
differential equations

dXt = µ1Xtdt+ σXt XtdW
(X)
t ,

dYt = µ2Ytdt+ σYt YtdW
(Y )
t ,

(5)

where σXt and σYt are adapted stochastic processes which will be described below. When σXt and σYt
are constants, the model reduces to the classic multivariate lognormal model reviewed in Section 1.



Spread Options, Implied Correlation and Local Correlation 5

W
(X)
t and W

(Y )
t are standard Brownian motions, and their correlation is given by

d < W
(X)
t ,W

(Y )
t >= ρdt , (6)

where |ρ| < 1. As we discussed in Section 1, the two underlying assets for the spread options are
expected to be highly correlated. Natural gas is one of the major fuels used for power generation, so
the price of natural gas is bound to have a strong impact on the price of electric power. To model
the correlation between the two underlying processes, we assume the stochastic volatilities σXt and
σYt are driven by common factors. Motivated by [20], we choose factors Zt and Vt to capture fast and
slow scale volatilities respectively.

Fast scale volatility factor
The first factor Zt driving the volatility is assumed to be fast mean-reverting. This is motivated

by empirical observations that energy prices have random spikes as a result of supply shortage or
demand-supply imbalance. After a rapid increase, the price usually comes back to a regular level in
a short period of time. This behavior motivates the introduction of the first volatility factor as a fast
mean-reverting diffusion process. It is chosen to be a CIR process.

dZt =
1

ε
(m− Zt)dt+

ν
√

2√
ε

√
ZtdW

(Z)
t . (7)

The mean reverting rate is 1/ε where ε > 0 is a small parameter which corresponds to the fast
time scale of the process. As in the original work for Fouque, Papanicolaou and Sircar, we choose
the parametrization of the dynamics of Z so that the invariant distribution is independent of ε. It

is a Gamma distribution with shape parameter m/ν2 and scale parameter ν2. W
(Z)
t is a standard

Brownian motion correlated with the Brownian motions W
(X)
t and W

(Y )
t .

Slow scale volatility factor
For some assets, the fast mean-reverting process is not enough to explain some long term trends in

the volatilities. For this purpose, we need a second slow-varying factor Vt whose dynamics are chosen
as

dVt = δc(Vt)dt+
√
δg(Vt)dW

(V )
t , (8)

where δ is a small parameter. The motivation for the choice of such an equation is that Vt is a time
change t→ δt of a regular diffusion process

dṼt = c(Ṽt)dt+ g(Ṽt)dWt . (9)

We assume that the functions c and g are smooth and at most linearly growing at infinity. W
(V )
t is a

standard Brownian motion correlated with the other Brownian motions in the model.

Volatility processes
We assume that the volatility processes σXt and σYt are of the form:

σXt = f(Zt)f1(Vt) and σYt = f(Zt)f2(Vt), (10)

where the functions f , f1 and f2 are positive, bounded and bounded away from zero. f1 and f2 are
assumed to be smooth and f to be integrable with respect to the invariant distribution of Zt.
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To summarize, our two factor multi-scale stochastic volatility model is defined by the following
stochastic differential system for the underlying price processes Xt, Yt and the volatility factors Zt, Vt

dXt = µ1Xtdt+Xtf(Zt)f1(Vt)dW
(X)
t ,

dYt = µ2Ytdt+ Ytf(Zt)f2(Vt)dW
(Y )
t ,

dZt = 1
ε (m− Zt)dt+ ν

√
2√
ε

√
ZtdW

(Z)
t ,

dVt = δc(Vt)dt+
√
δg(Vt)dW

(V )
t .

(11)

Moreover, the 4-dimensional Brownian motion Wt = (W
(X)
t ,W

(Y )
t ,W

(Z)
t ,W

(V )
t ) can be written as

a linear transformation of a standard 4-dimensional Brownian motion W0
t with independent compo-

nents:

Wt =


1 0 0 0

ρ
√

1− ρ2 0 0

ρ11 ρ̃21

√
1− ρ211 − ρ̃21

2
0

ρ12 ρ̃22 ρ̃0

√
1− ρ212 − ρ̃22

2 − ρ̃02

W0
t . (12)

The constants satisfy |ρ| < 1, |ρ11| < 1,|ρ12| < 1. Also, we assume ρ211+ρ̃21
2
< 1 and ρ2+ρ̃22

2
+ρ̃0

2 < 1.

The correlation between W (Y ) and W (Z) is given by ρ21 = ρρ11+ρ̃21
√

1− ρ2. The correlation between

W (Y ) and W (V ) is given by ρ22 = ρρ12 + ρ̃22
√

1− ρ2. The correlation between W (V ) and W (Z) is

given by ρ0 = ρ11ρ12 + ρ̃21ρ̃22 + ρ̃0

√
1− ρ211 − ρ̃21

2
.

2.1.2 Model under a Risk-neutral Measure

In order to price derivatives, we need to change measure from the physical measure P to a risk-
neutral pricing measure Q. Our market model is incomplete, and the choice of the risk-neutral pricing
measure is fully determined by the market price of volatility risk, which is a function that reflects the
risk preferences of agents in the market.

In the multiscale stochastic volatility model, we introduce a combined market price of volatility
risk defined by Λ(z, v) and Γ(z, v) which we assume to be smooth and bounded functions of z and v.
The corresponding risk-neutral measure Q is defined by

dQ
dP
|Ft = exp

(
−
∫ t

0

asdW0
t −

1

2

∫ t

0

a′sasds
)
, (13)
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where

at =


µ1−r

f(Zt)f1(Vt)
1√
1−ρ2

( µ2−r
f(Zt)f2(Vt)

− ρ µ1−r
f(Zt)f1(Vt)

)

γ(Zt, Vt)
ξ(Zt, Vt)

 ,

γ(z, v) =
1√

1− ρ211 − ρ̃21
2

{
Λ(z, v)− ρ11

µ1 − r
f(z)f1(v)

− ρ̃21√
1− ρ2

[ µ2 − r
f(z)f2(v)

− ρ µ1 − r
f(z)f1(v)

]}
,

ξ(z, v) =
1√

1− ρ212 − ρ̃22
2 − ρ̃02

{
Γ(z, v)− ρ12

µ1 − r
f(z)f1(v)

− ρ̃22√
1− ρ2

[ µ2 − r
f(z)f2(v)

− ρ µ1 − r
f(z)f1(v)

]
− ρ̃0γ(z, v)

}
.

(14)

Notice that at is well-defined since we assume f , f1 and f2 to be positive, bounded and bounded
away from zero. The functions γ(z, v) and ξ(z, v) in the change of measure are determined by the
market price of volatility risk functions Λ(z, v) and Γ(z, v). By Girsanov theorem [29], the process
W0∗

t defined as

W0∗
t = W0

t +

∫ t

0

asds (15)

is a standard 4-dimensional Brownian motion under the new measure Q. The model under Q can be
written as 

dXt = rXtdt+Xtf(Zt)f1(Vt)dW
(X)∗
t ,

dYt = rYtdt+ Ytf(Zt)f2(Vt)dW
(Y )∗
t ,

dZt = [ 1ε (m− Zt)− ν
√
2√
ε

√
ZtΛ(Zt, Vt)]dt+ ν

√
2√
ε

√
ZtdW

(Z)∗
t ,

dVt = [δc(Vt)−
√
δg(Vt)Γ(Zt, Vt)]dt+

√
δg(Vt)dW

(V )∗
t ,

(16)

where the relationship between W0∗
t and W∗

t = (W
(X)∗
t ,W

(Y )∗
t ,W

(Z)∗
t ,W

(V )∗
t ) is the same as in (12).

For any European option with maturity T and payoff function h(x, y), the option price at time
t < T can be calculated by risk-neutral expectation

Cε,δ(x, y, z, v, t) = e−r(T−t)EQ[h(XT , YT )|Xt = x, Yt = y, Zt = z, Vt = v] . (17)

The option price depends on the values (x, y, z, v) of the four components of the model at time t, and
also the present time t. It also depends on the parameters of the model (ε, δ, ρ, ρ11, ρ12, ρ21, ρ22, ρ0), the
risk-free rate r and the functions (f, f1, f2, c, g,Λ,Γ). Calibration of these functions is extremely com-
plicated and unstable. We will show in our asymptotic analysis that the option price only depends upon
a few special parameters. These special parameters are explicit functions of (ε, δ, f, f1, f2, c, g,Λ,Γ),
which can be calibrated to market data. Details are given in Section 3.

2.2 Asymptotic Analysis of Spread Option Prices

In this part, we derive spread option price asymptotics based on the scheme introduced in [20].
The final result is given in (68) and (71).
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Applying the multi-dimensional Feynman-Kac formula, the spread option price Cε,δ solves the
following partial differential equation

1

2
x2f2(z)f21 (v)Cxx +

1

2
y2f2(z)f22 (v)Cyy +

ν2

ε
zCzz +

1

2
δg2(v)Cvv

+ ρxyf2(z)f1(v)f2(v)Cxy + ρ11
ν
√

2√
ε
x
√
zf(z)f1(v)Cxz + ρ21

ν
√

2√
ε
y
√
zf(z)f2(v)Cyz

+ ρ12x
√
δg(v)f(z)f1(v)Cxv + ρ22y

√
δg(v)f(z)f2(v)Cyv + ρ0

√
δ

ε
ν
√

2
√
zg(v)Czv

+ [
1

ε
(m− z)− ν

√
2√
ε

√
zΛ(z, v)]Cz + [δc(v)−

√
δg(v)Γ(z, v)]Cv + rxCx + ryCy

− rC + Ct = 0

(18)

with the terminal condition
Cε,δ(x, y, z, v, T ) = h(x, y) . (19)

For now, we only assume the payoff function h(x, y) to be smooth and growing at most linearly so
that the option price and its derivatives exist. We denote by Lε,δCε,δ the left hand side of the above
equation. The operator Lε,δ can be split into different powers of the small parameters (ε, δ). The
decomposition is

Lε,δ =
1

ε
L0 +

1√
ε
L1 + L2 +

√
δM1 + δM2 +

√
δ

ε
M3 , (20)

where the operators appearing in the right hand side are defined by:

L0 =(m− z) ∂
∂z

+ ν2z
∂2

∂2z
,

L1 =ν
√

2[ρ11x
√
zf(z)f1(v)

∂2

∂x∂z
+ ρ21y

√
zf(z)f2(v)

∂2

∂y∂z
−
√
zΛ(z, v)

∂

∂z
] ,

L2 =
∂

∂t
+

1

2
x2f2(z)f21 (v)

∂2

∂2x
+

1

2
y2f2(z)f22 (v)

∂2

∂2y

+ ρxyf2(z)f1(v)f2(v)
∂2

∂x∂y
+ r(x

∂

∂x
+ y

∂

∂y
− 1) ,

M1 =− g(v)Γ(z, v)
∂

∂v
+ ρ12xg(v)f(z)f1(v)

∂2

∂x∂v
+ ρ22yg(v)f(z)f2(v)

∂2

∂y∂v
,

M2 =c(v)
∂

∂v
+

1

2
g2(v)

∂2

∂v2
,

M3 =ν
√

2ρ0
√
zg(v)

∂2

∂z∂v
.

(21)

In the following discussion, we consider an expansion of Cε,δ in powers of
√
δ:

Cε,δ = Cε0 +
√
δDε

1 + δDε
2 + · · · . (22)

For the purpose of identification, we plug in the expansion (22) into (18) and separate terms of different
orders of

√
δ. This gives the following equations for Cε0(

1

ε
L0 +

1√
ε
L1 + L2

)
Cε0 = 0 ,

Cε0(x, y, z, v, T ) = h(x, y) ,

(23)
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and for Dε
1 (

1

ε
L0 +

1√
ε
L1 + L2

)
Dε

1 = −

(
M1 +

√
1

ε
M3

)
Cε0 ,

Dε
1(x, y, z, v, T ) = 0 .

(24)

Cε0 and Dε
1 in the approximation (22) are the solution of (23) and (24). In the following discussion,

we expand Cε0 and Dε
1 in powers of

√
ε, and calculate the coefficients of the different terms of the

expansions.

2.2.1 Asymptotics for Cε0

To solve for the asymptotics of Cε0, we consider an expansion of Cε0 in powers of
√
ε.

Cε0 = C0 +
√
εC1 + εC2 + ε

3
2C3 + · · · . (25)

We plug (25) into (23) and separate the terms of different orders. The equations resulting from the
identification of the first few leading terms are

L0C0 = 0 , (26)

L1C0 + L0C1 = 0 , (27)

L2C0 + L1C1 + L0C2 = 0 , (28)

L2C1 + L1C2 + L0C3 = 0 , (29)

with the terminal conditions

C0(x, y, z, v, T ) = h(x, y) , (30)

C1(x, y, z, v, T ) = 0 . (31)

Solution for C0

Equations (26) is an ordinary differential equation in z. Every term in (27) has derivative with
respect to z. Since the terminal conditions for C0 and C1 are independent of z, we derive that the
solutions of (26) and (27) are constant in z, that is C0 = C0(x, y, v, t) and C1 = C1(x, y, v, t). As a
result, we have L1C1 = 0 and (28) becomes

L2C0 + L0C2 = 0 . (32)

We define the bracket notation here to stand for integration with respect to the invariant distribution
of the CIR process with infinitesimal generator L0. In other words, it is the integration with respect
to the Gamma distribution G(m/ν2, ν) with shape parameter m/ν2 and scale parameter ν2. For any
function integrable with respect to this distribution, the bracket notation is defined as

< g(z) >=

∫
g(z)G(dz) . (33)

We treat (32) as a Possion equation for L0 so that L0C2 = −L2C0. In order to have a solution, L2C0

must be in the kernel of the operator L0, or equivalently, < L2C0 >= 0. Recall that C0 is independent
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of z, and L2 does not contain partial derivatives in z, we can write < L2C0 > as < L2 > C0, where
the operator < L2 > is defined as

< L2 >=
∂

∂t
+

1

2
f21 (v)x2 < f2(z) >

∂2

∂2x
+

1

2
f22 (v)y2 < f2(z) >

∂2

∂2y

+ ρf1(v)f2(v)xy < f2(z) >
∂2

∂x∂y
+ r(x

∂

∂x
+ y

∂

∂y
− 1) .

(34)

This is the operator for the multivariate lognormal model (4) with the volatilities
√
< f2(z) >f1(v)

and
√
< f2(z) >f2(v), and correlation ρ.

In the following discussion, we define in the same way the ”bracket operation” of operators which
do not have partial differentials with respect to z.

From the discussion above, C0 must solve the following partial differential equation:

< L2 > C0 = 0 ,

C0(x, y, v, T ) = h(x, y) .
(35)

In other word, C0 is the price function of options with a multivariate lognormal underlying model (4)
where the volatilities of the two underlying processes are depending on v, namely σ2

1(v) =< f2(z) >
f21 (v), σ2

2(v) =< f2(z) > f22 (v), and the correlation is ρ. Again, the bracket notation stands for
integration with respect to the invariant distribution of the CIR process with infinitesimal generator
L0. Notice that the option price depends on the initial value of v in this model.

C0 = C0(x, y, t;σ1(v), σ2(v), ρ) . (36)

Solution for C1

We rewrite equation (29) as a Poisson equation for the operator L0:

L0C3 = −L1C2 − L2C1 . (37)

Take the bracket operation on both sides of (37), and recall that C1 is independent of z. We have

< L2 > C1 = − < L1C2 > . (38)

To solve for C1, we first need to solve for C2. From equation (32) with the fact < L2C0 >= 0, we
have

L0C2 = −L2C0 = −(L2C0− < L2C0 >) . (39)

Because L0 is invertible on the space orthogonal to the constant functions, and C0 is independent of
z, we have

C2 = −L−10 (L2− < L2 >)C0 . (40)

Therefore, for C1, we choose

< L2 > C1 = − < L1C2 >

=< L1L−10 (L2− < L2 >) > C0 = AC0 .
(41)
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To calculate A, let us assume that φ(z) solves the ordinary differential equation

L0φ(z) = f2(z)− < f2(z) > (42)

with < φ(z) >= 0, so that L−10 (f2(z)− < f2(z) >) = φ(z). Then we have:

L−10 (L2− < L2 >) = φ(z)
[1
2
x2f21 (v)

∂2

∂x2
+

1

2
y2f22 (v)

∂2

∂y2
+ ρxyf1(v)f2(v)

∂2

∂x∂y

]
, (43)

and consequently

A = ν
√

2
{
<
√
zf(z)φ′(z) >

(
ρ11f1(v)x

∂

∂x
+ ρ21f2(v)y

∂

∂y

)
− <

√
zΛ(z, v)φ′(z) >

}
×
[1
2
f21 (v)x2

∂2

∂x2
+

1

2
f22 (v)y2

∂2

∂y2
+ ρf1(v)f2(v)xy

∂2

∂x∂y

]
.

(44)

From the discussion above, C1 solves the equation

< L2 > C1 = AC0 (45)

with the terminal condition
C1(x, y, v, T ) = 0 . (46)

Next, we show that the solution to (45) is given by

C1 = −(T − t)AC0 . (47)

Clearly such a C1 satisfies the terminal condition (46). To prove the fact that (47) solves (45), we use
the property:

(xk
dk

dxk
)(xl

dl

dxl
) = (xl

dl

dxl
)(xk

dk

dxk
) . (48)

which holds for all integer k and l and can be proved by a simple induction argument after changing
variable to ξ = log x. Using (48), we see that the operators < L2 > and A commute. Moreover

< L2 >
[
− (T − t)AC0

]
= AC0 − (T − t)A < L2 > C0 = AC0, (49)

proving that (47) is the solution for C1.

Finally, the approximation of Cε0 is given by:

Cε0 ≈ C0 +
√
εC1 = C0 −

√
ε(T − t)AC0 . (50)

2.2.2 Asymptotics for Dε
1

Similarly, we expand Dε
1 in powers of

√
ε:

Dε
1 = D1 +

√
εD2 + εD3 + ε

3
2D4 + · · · . (51)

Inserting the expansion (51) into equation (24) and separating the terms of different orders, we get

L0D1 = 0 , (52)

L0D2 + L1D1 = −M3C0 , (53)

L0D3 + L1D2 + L2D1 = −M1C0 −M3C1 , (54)

L0D4 + L1D3 + L2D2 = −M1C1 −M3C2 , (55)
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with the terminal conditions

D1(x, y, z, v, T ) = 0 , (56)

D2(x, y, z, v, T ) = 0 . (57)

As we argued for C0 and C1, D1 is independent of z from (52) and the zero terminal condition (56).
In (53), since M3C0 = 0 and L1D1 = 0, we derive

L0D2 = 0 . (58)

As a result from the above equation and the zero terminal condition (57), D2 is independent of z . In
(54), we have M3C1 = 0 and L1D2 = 0, and (54) becomes

L0D3 + L2D1 = −M1C0 . (59)

Solution for D1

We rewrite (59) as a Poisson equation of L0 and take the bracket operation on both sides . Since
D1 is independent of z, we derive the partial differential equation for D1

< L2 > D1 = − <M1 > C0 ,

D1(x, y, v, T ) = 0 .
(60)

We claim that the solution D1 of (60) is

D1 =
T − t

2
<M1 > C0 , (61)

and we derive the proof as followed. Denote

<M1 > =
[
− g(v) < Γ(z, v) > +ρ12g(v)f1(v) < f(z) > x

∂

∂x

+ ρ22g(v)f2(v) < f(z) > y
∂

∂y

] ∂
∂v

= M1
∂

∂v
,

(62)

where

M1 = −g(v) < Γ(z, v) > +ρ12g(v)f1(v) < f(z) > x
∂

∂x
+ ρ22g(v)f2(v) < f(z) > y

∂

∂y
. (63)

Plug in (61) into (60) and we have

< L2 >
T − t

2
<M1 > C0 =< L2 >

[T − t
2

(M1
∂

∂v
)C0

]
. (64)

As proved by Reiss and Wystup [33], for any European claims in the multivariate lognormal model
given by (4) with X0 = x and Y0 = y, gamma and vega follow the relationship

σ1
∂C

∂σ1
= σ2

1x
2(T − t)∂

2C

∂x2
+ ρσ1σ2xy(T − t) ∂

2C

∂x∂y
,

σ2
∂C

∂σ2
= σ2

2y
2(T − t)∂

2C

∂y2
+ ρσ1σ2xy(T − t) ∂

2C

∂x∂y
.

(65)
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Using formula (65) we get

∂

∂v
C0 = ∂C0

∂σ1
σ′1(v) + ∂C0

∂σ2
σ′2(v)

= (T − t)
{
σ1(v)σ′1(v)x2

∂2C0

∂x2
+ σ2(v)σ′2(v)y2

∂2C0

∂y2

+ [σ1(v)σ′2(v) + σ2(v)σ′1(v)]xy
∂2C0

∂x∂y
.

As a result, (64) equals

< L2 >
T − t

2
<M1 > C0 = < L2 > {

(T − t)2

2
M1[σ1(v)σ′1(v)x2

∂2C0

∂x2
+ σ2(v)σ′2(v)y2

∂2C0

∂y2

+ (σ1(v)σ′2(v) + σ2(v)σ′1(v))xy
∂2C0

∂x∂y
}

=− (T − t)M1[σ1(v)σ′1(v)x2
∂2C0

∂x2
+ σ2(v)σ′2(v)y2

∂2C0

∂y2

+ (σ1(v)σ′2(v) + σ2(v)σ′1(v))xy
∂2C0

∂x∂y
]

+
(T − t)2

2
< L2 > M1[σ1(v)σ′1(v)x2

∂2C0

∂x2
+ σ2(v)σ′2(v)y2

∂2C0

∂y2

+ (σ1(v)σ′2(v) + σ2(v)σ′1(v))xy
∂2C0

∂x∂y
] .

(66)

Using again (48), we see that the operator < L2 > commutes with xk∂k/∂xk. Also, since < L2 >
C0 = 0, the second term after the last equal sign of (66) vanishes

< L2 >
T − t

2
<M1 > C0 =− (T − t)M1[σ1(v)σ′1(v)x2

∂2C0

∂x2
+ σ2(v)σ′2(v)y2

∂2C0

∂y2

+ (σ1(v)σ′2(v) + σ2(v)σ′1(v))xy
∂2C0

∂x∂y
]

=− <M1 > C0 .

(67)

This proves that (61) is a solution for D1.

2.2.3 Option Price Approximation Formula

With the calculations above, the spread option price is approximated by:

Cε,δ ≈ C0 +
√
εC1 +

√
δD1

= C0 + (T − t)[−
√
εA+

√
δ

2
<M1 >]C0 ,

(68)

where A is defined by (44). To analyze the properties of this price approximation and its relationship
to individual option prices, we introduce the following parameters. The first and second groups are
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related to the volatility functions of Xt and Yt:

σ1,2(v) =
√
< f2(z) > f21,2(v)

P
(0)
1,2 (v) =

√
δ

2
g(v) < Γ(z, v) > σ1,2(v)σ′1,2(v) ,

P
(1)
1,2 (v) = −

√
δ

2
ρ12,22g(v) < f(z) > f1,2(v)σ1,2(v)σ′1,2(v) ,

P
(2)
1,2 (v) = −

√
ε√
2
ν <
√
zΛ(z, v)φ′(z) > f21,2(v) ,

P
(3)
1,2 (v) =

√
ε√
2
νρ11,21 <

√
zf(z)φ′(z) > f31,2(v) .

(69)

The third group comes from the cross-terms:

P (0)(v) = −
√
δ

2
ρ12g(v) < f(z) > f1(v)σ2(v)σ′2(v) ,

P (1)(v) = −
√
δ

2
ρ22g(v) < f(z) > f2(v)σ1(v)σ′1(v) ,

P (2)(v) = −
√

2
√
ενρ <

√
zΛ(z, v)φ′(z) > f1(v)f2(v) ,

P (3)(v) =

√
ε√
2
νρ11 <

√
zf(z)φ′(z) > f1(v)f22 (v) ,

P (4)(v) =

√
ε√
2
νρ21 <

√
zf(z)φ′(z) > f2(v)f21 (v) ,

P (5)(v) =
√

2
√
ενρρ11 <

√
zf(z)φ′(z) > f2(v)f21 (v) ,

P (6)(v) =
√

2
√
ενρρ21 <

√
zf(z)φ′(z) > f1(v)f22 (v) .

(70)

Then the option price approximation can be rewritten as

Cε,δ = C0 − (T − t)
{ 1

σ1(v)

[
P

(0)
1

∂

∂σ1
+ P

(1)
1 x

∂2

∂x∂σ1
+ P (1)y

∂2

∂y∂σ1

]
+

1

σ2(v)

[
P

(0)
2

∂

∂σ2
+ P

(1)
2 y

∂2

∂y∂σ2
+ P (0)x

∂2

∂x∂σ2

]
+
[
P

(2)
1 x2

∂2

∂x2
+ P

(3)
1 x

∂

∂x
x2

∂2

∂x2

+ P
(2)
2 y2

∂2

∂y2
+ P

(3)
2 y

∂

∂y
y2

∂2

∂y2

+ P (3)x
∂

∂x
y2

∂2

∂y2
+ P (4)y

∂

∂y
x2

∂2

∂x2

+ P (2)xy
∂2

∂x∂y
+ P (5)x

∂

∂x
xy

∂2

∂x∂y
+ P (6)y

∂

∂y
xy

∂2

∂x∂y

]}
C0 .

(71)
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As we will show later, the parameters in (69) are calibrated to the marginal option prices. The
parameters in (70) can be calculated from (69) and the parameter ρ. They satisfy the equations

P (0) = P
(1)
1

P
(0)
2

P
(0)
1

, P (1) = P
(1)
2

P
(0)
1

P
(0)
2

, P (2) = 2ρ

√
P

(2)
1 P

(2)
2 ,

P (3) = P
(3)
1 [

σ2

σ1
]2 , P (4) = P

(3)
2 [

σ1

σ2
]2 , P (5) = 2ρP

(3)
1 [

σ2

σ1
] , P (6) = 2ρP

(3)
2 [

σ1

σ2
] .

(72)

As a result, the asymptotic formula for Cε,δ depends only on the parameters related to the volatility

functions of Xt and Yt: (σ1, P
(0)
1 , P

(1)
1 , P

(2)
1 , P

(3)
1 ), (σ2, P

(0)
2 , P

(1)
2 , P

(2)
2 , P

(3)
2 ) and the Brownian motion

correlation ρ. When we calibrate the multiscale stochastic volatility model, instead of calibrating the
functions (f, f1, f2, c, g,Λ,Γ) and the model parameters (ε, δ, ρ, ρ11, ρ12, ρ21, ρ22, ρ0), we only need to
determine the seven P (j) parameters and ρ. This greatly reduces the complexity of the calibration
and increases the efficiency of the model.

2.3 Accuracy of the Option Price Approximation

So far we have derived an asymptotic pricing formula for European options. Next, we study the
accuracy of this approximation in the case of smooth and bounded option payoffs.

Theorem 2.1. We assume that the following properties hold:

1. there exists a unique solution (X,Y, Z, V ) for the system of stochastic differential equations (11)
under the physical measure and fixed ε, δ;

2. there exists a unique solution (X,Y, Z, V ) for the system of stochastic differential equations (16)
under the risk-neutral measure and fixed ε, δ;

3. the market prices of volatility risk Λ and Γ are bounded;

4. the parameters satisfy m > ν2. ;

5. the functions c(v) and g(v) are smooth and at most linearly growing at infinity;

6. φ(z), ϕ(z), ψ(z, v), λ(z) and ζ(z, v) as unique solutions of the following ordinary differential
equations are at most polynomially growing in (z, v)

L0φ(z) = f2(z)− < f2(z) > ,

< φ(z) >= 0 ,
(73)

L0ϕ(z) = f(z)− < f(z) > ,

< ϕ(z) >= 0 ,
(74)

L0ψ(z, v) = Γ(z, v)− < Γ(z, v) > ,

< ψ(z, v) >= 0 ,
(75)

L0λ(z) =
√
zf(z)φ′(z)− <

√
zf(z)φ′(z) > ,

< λ(z) >= 0 ,
(76)

L0ζ(z, v) =
√
zΛ(z, v)φ′(z)− <

√
zΛ(z, v)φ′(z) > ,

< ζ(z, v) >= 0;
(77)
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7. the volatility functions f , f1 and f2 are positive, bounded and bounded away from zero. The
payoff h(x, y) and its derivatives are smooth and bounded such that the option price C0 under
the multivariate lognormal model

C0 = C0(x, y, v, t;σ1(v), σ2(v), ρ) , (78)

where
σ2
1(v) =< f2(z) > f21 (v), σ2

2(v) =< f2(z) > f22 (v) , (79)

and all the derivatives xkyj ∂j+k+l

∂xk∂yj∂vl
C0 for different t are uniformly bounded in (x, y, v);

8. ε ≤ 1 and δ ≤ 1.

Then for fixed (x, y, z, v, t), there exists a constant c > 0 such that

| Cε,δ − C̃ε,δ |≤ c(ε+ δ +
√
εδ) . (80)

The proof of Theorem 2.1 follows the same line as the corresponding result proven in [20], so we
shall omit the details here. Theorem 2.1 quantifies the accuracy of the price approximation when
the payoff function h(x, y) is bounded and smooth. For the piecewise smooth payoffs (call option
on spreads for example), we will illustrate the accuracy of the pricing formula with a delta hedging
experiment in the next section.

2.4 Delta Hedging Experiment

Delta hedging is a procedure that is widely used by derivative investors to reduce a portfolio’s
exposure to underling price movements. In option trading, the deltas are the sensitivity of the value
of an option to changes in the values of the underlying assets. The investors calculate the portfolio’s
deltas and then add an offsetting position in the underling assets to make the portfolio’s delta zero,
or delta neutral. Delta hedging experiments are efficient ways to test the accuracy of option pricing
formulas. The idea is to simulate sample paths of the underlying prices, and calculate the delta-hedged
portfolios along each path. The option price and hedging ratio is calculated with the option pricing
formula. If the formula is accurate, the profit and loss from trading the delta-hedged portfolio along
each path should be small and centered around zero.

In the first simulation, we assume that the historical dynamics of the underlying asset prices are
given by the following specific form of our multiscale stochastic volatility model:

dXt = µ1Xtdt+Xt

√
ZtVtdW

(X)∗
t ,

dYt = µ2Ytdt+ Yt
√
ZtVtdW

(Y )∗
t ,

dZt =
1

ε
(m− Zt)dt+

ν
√

2√
ε

√
ZtdW

(Z)
t ,

dVt =
√
δVtdW

(V )∗
t .

(81)

The slow scale stochastic volatility Vt is chosen to be a geometric Brownian motion. This choice
is motivated by the popularity of the SABR model [30]. The volatility function is the square root
function, which is the same as in the Heston model [22]. Correlations between Brownian motions are
defined in (12).
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Numerical values of the parameters are chosen as x = 50, y = 5, µ1 = 0.1, µ2 = 0.1, z = 0.5, v =
0.5, ε = 1, δ = 1, m = 0.5, ν = 0.1, ρ = 0.5, ρ11 = 0.3, ρ12 = 0.3, ρ21 = 0.2, ρ22 = 0.2, ρ0 =
0.1, M = 10, K = 0, T = 1, r = 0.

We use the model above to generate 2000 sample paths of the process Xt and Yt of the underlying
assets. For each path, we sell one spread option. The portfolio is delta-hedged with both the multi-
scale stochastic volatility model and the multivariate lognormal model. The pricing formula for the
multiscale stochastic volatility model is given in (68). The multivariate lognormal model is priced by
Kirk’s formula [24]. The final profit and loss (P&L for short) of each path is collected for the two
models.

Figure 1 gives the histograms of theP&L for the two pricing models. When hedged by the multiscale
stochastic volatility model, the distribution of the P&L is slim and centered around zero compared
with the multivariate lognormal model.

To quantify the difference between the two models, we calculate the the P&L ratio of the two
portfolios defined as the ratio of the payoff over the option price. The mean and variance of the the
P&L ratios are listed in Table 1. The the P&L ratio is on average 2.4% when hedged by the multiscale
stochastic volatility model, compared with 18.3% for the multivariate lognormal model. The statistics
prove again the accuracy of the formula (68). However, the risk is not completely eliminated. This is
because under a stochastic volatility model, a delta-hedged portfolio is still exposed to volatility risk
and other types of risk.

Table 1: Profit and loss ratio statistics for the simulation experiment with the true dynamics of the
multiscale stochastic volatility model

Mean Variance

Multiscale Stochastic
Volatility Model 0.0240 0.1416

Multivariate Lognormal model 0.1834 0.1431
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Figure 1: the P&L of delta hedging using ratios computed with the multiscale stochastic volatility
model (left pane) and the multivariate lognormal model (right pane) when the true dynamics of the
underlying assets are given by the multiscale stochastic volatility model

For the sake of fairness, we also report the results of a second simulation in which the historical
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dynamics are assumed to be the multivariate lognormal model (4) with parameters x = 50, y =
5, µ1 = 0.1, µ2 = 0.1, σ1 = 0.5, σ2 = 0.5, ρ = 0.5, M = 10, K = 0, T = 1, r = 0.

Again, we use Monte Carlo simulation to generate 2000 sample paths of Xt and Yt. For each
path, we sell one spread option. The portfolio is delta-hedged with both the multiscale stochastic
volatility model and the multivariate lognormal model. The final the P&L of each path is collected
for the two models. The histograms of the the P&L are given by Figure 2. As expected, when hedged
by the multivariate lognormal model, the profit and loss ratio mean is reduced to 2.1%. However,
when hedged by a multiscale stochastic volatility model, the ratio mean is only 7.8%. This result
is satisfactory compared with the 18.3% average profit and loss when hedging with the multivariate
lognormal model in the first simulation.

Our numerical experiment shows the accuracy of the asymptotic formula (68) for option valuation
under the multiscale stochastic volatility model. The delta-hedging performance of the multiscale
stochastic volatility model is consistent when the underlying processes are given by different models.

Table 2: the P&L ratio statistics for the simulation experiment with the true dynamics of the multi-
variate lognormal model

Mean Variance

Multiscale Stochastic
Volatility Model 0.07770 0.1051

Multivariate Lognormal model 0.0209 0.0527
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Figure 2: the P&L of delta hedging using ratios computed with the multiscale stochastic volatility
model (left pane) and the multivariate lognormal model (right pane) when the true dynamics of the
underlying assets are given by the multivariate lognormal model

3 Implied Correlation and Calibration

In Section 2, we discussed the setup of our two factor multiscale stochastic volatility model and
derived an asymptotic pricing formula for European options. In this section, we derive a corresponding
asymptotic formula for the implied correlation of the spread options. We also discuss the calibration
of the model to real data.
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3.1 Asymptotics for Implied Correlation

Recall that the implied correlation of a spread option is the level of correlation we need to put
into a basic pricer to generate the market price of the option. We assume the option to be the spread
option with payoff h(x, y) = (x−My−K)+. We also assume the basic pricer to be any spread option
pricer under the multivariate lognormal model (4), which is also the function C0 in our approximation.
The implied correlation is the value Iε,δ such that

Cε,δ = C0(x, y, t;σ1(v), σ2(v), Iε,δ) . (82)

When the strike K is zero, the spread option price C0 is given by Margrabe’s formula [38], and C0

is monotonically decreasing in the correlation Iε,δ. As a result, a unique implied correlation can be
extracted from the above equation.

When the strike is not zero, there is no closed form spread option valuation formula under the
multivariate lognormal model. The monotonicity depends on the choice of the approximation pricer. In
general, we expect that the spread option pricer remains monotonically decreasing in the correlation.
Kirk’s formula [24] is a case in point. The intuition is that when the correlation is large, the two
underlying asset prices tend to move in the same direction, the spread is lower and thus the value of
the option decreases. As a result, a unique implied correlation Iε,δ can be solved from (82).

Our strategy is to expand Iε,δ in powers of ε and δ:

Iε,δ = I0 +
√
εI1 +

√
δI2 + · · · . (83)

Inserting (83) into equation (82), we develop the resulting expression using Taylor’s formula

Cε,δ = C0(x, y, t; I0 +
√
εI1 +

√
δI2)

= C0(x, y, t; I0) + (
√
εI1 +

√
δI2)

∂C0

∂ρ
.

(84)

Comparing with equation (71) to identify the various terms, we find I0 = ρ and

I1
∂C0

∂ρ
= −(T − t)

{ 1

σ1(v)

[
P

(0)
1

∂

∂σ1
+ P

(1)
1 x

∂2

∂x∂σ1
+ P (1)y

∂2

∂y∂σ1

]
+

1

σ2(v)

[
P

(0)
2

∂

∂σ2
+ P

(1)
2 y

∂2

∂y∂σ2
+ P (0)x

∂2

∂x∂σ2

]}
C0 ,

I2
∂C0

∂ρ
= −(T − t)

[
P

(2)
1 x2

∂2

∂x2
+ P

(3)
1 x

∂

∂x
x2

∂2

∂x2

+ P
(2)
2 y2

∂2

∂y2
+ P

(3)
2 y

∂

∂y
y2

∂2

∂y2
+ P (3)x

∂

∂x
y2

∂2

∂y2
+ P (4)y

∂

∂y
x2

∂2

∂x2

+ P (2)xy
∂2

∂x∂y
+ P (5)x

∂

∂x
xy

∂2

∂x∂y
+ P (6)y

∂

∂y
xy

∂2

∂x∂y

]
C0 .

(85)

We choose to approximate the implied correlation by

Iε,δ ≈ ρ+
√
εI1 +

√
δI2 . (86)

For any given analytic formula for C0, the implied correlation approximation (86) can be calculated
explicitly. In most cases, formulas giving the partial derivatives are involved. However, when K = 0
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and C0 becomes Margrabe’s formula, the results are relatively simple. The equations below give I1
and I2 in the implied correlation approximation (86) under Margrabe’s formula.

I1 = −T − t
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With (87), the implied correlation asymptotics in (86) can be simplified as

Iε,δ = ρ+ bε + aε
ln( x

My )

T
+ aδ ln(

x

My
) + bδT , (88)

where
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As we will show later, (σ1, P
(0)
1 , P

(1)
1 , P

(2)
1 , P

(3)
1 ) and (σ2, P

(0)
2 , P

(1)
2 , P

(2)
2 , P

(3)
2 ) are calibrated to indi-

vidual implied volatility curves. ρ is the additional input for the joint model that allows extra flexibility
in the implied correlation curve. The coefficients (aε, bε, aδ, bδ) are functions of the parameters of the
individual implied volatilities and the Brownian motions correlation ρ.

3.2 Coupling Implied Correlation and Implied Volatilities

Spread option trading volume is usually small while individual options are much more liquid. For
example, in the case of the spark spread option between electric power and natural gas, the volume of
trades reported by financial data providers is rather small and it is practically impossible to calibrate
implied correlations to market spread option data. Alternatively, natural gas options and power
options are much more liquid. To fully utilize market information, we calibrate part of the implied
correlation coefficients to the individual option data of the two underlying assets. In this way, the
valuation of spread options are consistent with market information for individual options.

Assume that the two underlying assets Xt and Yt follow the multiscale stochastic volatility model
(16). Then each individual underlying asset follows the single asset multiscale stochastic volatility

model discussed in [20]. When fitting individual implied volatility curves, the parameters (σ1, P
(0)
1 , P

(1)
1 , P

(2)
1 , P

(3)
1 )
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and (σ2, P
(0)
2 , P

(1)
2 , P

(2)
2 , P

(3)
2 ) can be calibrated. Take Xt as an example. If viewed individually, Xt

follows the risk-neutral model
dXt = rXtdt+Xtf(Zt)f1(Vt)dW

(X)∗
t ,

dZt = [ 1ε (m− Zt)− ν
√
2√
ε

√
ZtΛ(Zt, Vt)]dt+ ν

√
2√
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√
ZtdW

(Z)∗
t ,

dVt = [δc(Vt)−
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δg(Vt)Γ(Zt, Vt)]dt+

√
δg(Vt)dW

(V )∗
t .

(90)

The price of European call options written on this asset are given by the conditional expectations

CX,ε,δ(x, z, v, t;T,M,K) = e−r(T−t)EQ[(XT −K)+|Xt = x, Zt = z, Vt = v] . (91)

According to [20], the option price can be approximated by the following asymptotic formula

CX,ε,δ ≈ C0 − (T − t)
{ 1
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(92)

where the parameters (σ1, P
(0)
1 , P

(1)
1 , P

(2)
1 , P

(3)
1 ) are defined in (69). The implied volatility is then

defined as the value IX such that

CBS(x, t;T,K, IX) = CX,ε,δ . (93)

IX can be approximated by the following asymptotic expansion
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(94)

Since we take forward prices as underlying, we have r = 0. Denote

aε1 = −P
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(95)

Then the implied volatility is approximated by

IX ≈ σ1 + bε1 + aε1
ln(Kx )

T − t
+ aδ1 ln(

K

x
) + bδ1(T − t) . (96)

Similarly, for the options written on Yt, the implied volatility of Yt can be approximated by

IY ≈ σ2 + bε2 + aε2
ln(Kx )

T − t
+ aδ2 ln(

K

x
) + bδ2(T − t) . (97)
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where
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and (σ2, P
(0)
2 , P

(1)
2 , P

(2)
2 , P

(3)
2 ) are defined in (69).

In practice, the implied volatilities of X and Y are fitted to the option prices of the two individual

assets to obtain the coefficients (σ1, P
(0)
1 , P

(1)
1 , P

(2)
1 , P

(3)
1 ) and (σ2, P

(0)
2 , P

(1)
2 , P

(2)
2 , P

(3)
2 ). Then, we

introduce ρ as an additional input for extra flexibility in the implied correlation curve. The calibrated
coefficients are used to calculate the implied correlation of the multi-asset option following (86) and
(85) from which we obtain option pricea. Next, we illustrate the calibration results using power and
natural gas option data and discuss in more details the calibration procedure.

3.3 Implied Volatility and Implied Correlation Calibration

In this section, we discuss the calibration of formula (96) and (97) to market implied volatility
data, and the derivation of the implied correlation curve from the calibrated parameters.

The calibration to implied volatility data follows the method proposed in [20]. For a set of time-
to-maturity Ti, we have implied volatilities IX(Ti,Kij) and IY (Ti,Kij) for different strikes Kij . We
estimate the parameters (aε1, b

ε
1, a

δ
1, b

δ
1) and (aε2, b

ε
2, a

δ
2, b

δ
2) in (96) and (97) with the following steps

(use the calibration for IX as an example)

1. Approximate σ1 by the average implied volatility value.

2. For fixed time-to-maturity Ti, regress the implied volatilities for different strikes (Kij)j on the
corresponding log-moneyness to maturity ratio

(LMMR)ij =
ln(Kij/x)

Ti

following a linear model IX(Ti,Kij) = β(Ti) + α(Ti)(LMMR)ij

3. Regress the coefficients on the time-to-maturity Ti following linear models

α(Ti) = aε1 + aδ1Ti ,

β(Ti) = σ1 + bε1 + bδ1Ti ,

and get estimates of (aε1, b
ε
1, a

δ
1, b

δ
1).

We perform the same procedure for IY , and get estimates of (aε2, b
ε
2, a

δ
2, b

δ
2). Using equations (95) and

(98), we compute the coefficients (P
(0)
1 , P

(1)
1 , P

(2)
1 , P

(3)
1 ) and (P

(0)
2 , P

(1)
2 , P

(2)
2 , P

(3)
2 ).

We illustrate the fitting procedure using power and natural gas option data from the Global
Insight database. The electric power data is from PJM electricity daily settlement prices. PJM
Interconnection is a regional transmission organization that coordinates the movement of wholesale
electricity in all or parts of 13 states in the North East of the US as well as the District of Columbia [1].
The natural gas data is from the Henry Hub (Sabine pipeline) natural gas daily settlement prices.
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Henry Hub is the pricing point for natural gas futures contracts traded on the New York Mercantile
Exchange (NYMEX). It is a point on the natural gas pipeline system in Erath, Louisiana. It is owned
by Sabine Pipe Line LLC [2].

In the commodity market, the underlying asset of an option is not the commodity itself, but rather
a futures contract for that commodity. For example, a November natural gas option will actually be an
option for a November delivery natural gas futures contract. In this sense, the options are on futures
instead of the physical commodity. Futures contracts with a definite maturity date imply physical
delivery throughout the following month. Also, options have a date at which they mature and expire.
For example, a $7.00 November natural gas option is an option to buy or sell one November natural
gas futures contract at $7.00. The option can be exercised by the holder on any business day until
mid-October at which time the option expires. Trading in most options will not be conducted during
the futures contract delivery month.

By definition, the commodity options are more ”American” than the standard European options
which can only be exercised on the maturity date. However, if there is no dividend payment, the
investors holding American-style call options usually do not have any reason to exercise the option
before maturity. This is because the options have non-negative time value and are usually worth more
unexercised. As a result, we can use the standard European option approach to treat the commodity
call options.

Also, when we build implied volatility surfaces, we choose options with the same time-of-maturity,
and different trading dates. We choose power and natural gas options maturing in August 2011, and
traded in April 2010, May 2010, until April 2011. As we explained earlier, these options have the
same underlying - the August 2011 futures contract. The option prices are more correlated than the
options with the same trading date and different maturity time. Figure 3a and Figure 3b give the
implied volatility surfaces calculated from these option prices.

For these two implied volatilities surfaces, we calibrated the coefficients (P
(0)
1 , P

(1)
1 , P

(2)
1 , P

(3)
1 ) and

(P
(0)
2 , P

(1)
2 , P

(2)
2 , P

(3)
2 ) following the procedure discussed earlier. The fitted coefficients are listed in

Table 3. The additional parameter ρ is chosen to be 0.3 for the model.

Table 3: Fitted multivariate stochastic volatility model coefficients

Coefficient from X and Y

σ1 0.3174 σ2 0.3160

P
(0)
1 −0.0658 P

(0)
2 0.0740

P
(1)
1 −0.0034 P

(1)
2 0.0001

P
(2)
1 0.0943 P

(2)
2 −0.0585

P
(3)
1 0.0029 P

(3)
2 −0.0025

Figures 4a and 4b give the implied correlation surfaces calculated from the fitted coefficients.
Figure 4a plots the computed implied correlation surface over the plane of log-moneyness ln

(
x/My)

and time-to-maturity. The strike is fixed at 0 for this plot. The implied correlation is calculated by
(88). For fixed maturity, the implied correlation is affine in the log-moneyness ln

(
x/My

)
. When

the maturity changes, the slope in the log-moneyness becomes more pronounced for short maturities
compared with long maturities. The observation is consistent with the implied correlation formula
(88), in which the coefficient of the log-moneyness is aε/T + aδ. The coefficient increases in absolute
value when T goes to zero. As a result, the slope becomes more pronounced for short maturity.
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Figure 4b plots the computed correlation over the log-moneyness ln
(
x/My) and the strike K.

Time-to-maturity is chosen as 1 year for this plot. When the strike is away from zero, the implied
correlation have slight convexity or concavity in the log-moneyness ln

(
x/My

)
, instead of being affine

in the log-moneyness when K = 0.
From these results, the multiscale stochastic volatility model generates implied correlation skews.

The slope and convexity of the skew are controlled by the parameters (aε, bε, aδ, bδ), the level of
the log-moneyness, the strike and the time-to-maturity. These results are consistent with market
expectations.
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Figure 3: Implied volatility for options on electric power futures maturing in August 2011, and traded
in April 2010, May 2010, until April 2011 (left pane) and for options on natural gas futures maturing
in August 2011, and traded in April 2010, May 2010, until April 2011 (right pane)
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Figure 4: Implied correlation (IC) plotted over time-to-maturity (TTM) and log-moneyness (LM),
with fitted parameters and strike K = 0 (left pane) and plotted over strike (K) and log-moneyness
(LM), with fitted parameters and time-to-maturity TTM = 1 year (right pane)

3.4 Application to Power Plant Valuation

Managing power generation assets is a complicated task. Although for a regulated utility, the
objective is to satisfy its customer demand and minimize cost, we restrict the focus of the energy
service company in our example on profit maximization. Risk managers of power plants need a fast
approximation tool to model the value of their assets, especially if they are the objects of tolling or
leasing contracts. The tool is also useful for investors who need to evaluate the economic feasibility
of investing in power generation assets.

The fuel is one of the primary costs in power generation. To capture the maximum spread between
the profit from generating power and the underlying fuel costs, operators usually dispatch schedules
that are optimized. In a simplified and idealized scenario, the operator of the power plant knows the
daily fuel price and power price, and can choose to switch on or off the generation on a daily basis in
response to market price movements in power and fuel.

Assume the power plant uses only one fuel type, say natural gas, then the daily operation of the
plant over a period from time t = 1 to t = T can be identified with the following payoff

C =

T∑
t=1

e−rtL(t) max{P (t)−H(t)G(t)−X, 0} , (99)

where P refers to the price at which one unit of power can be sold, G to the price at which one unit
of natural gas can be purchased, H is the energy efficiency heat rate of the power generation asset, X
is the fixed costs of operations and management (O&M) of the plant, L is the daily load, and r the
interest rate. Taking expectations on both sides of (99) shows that the expected P&L can be viewed
as a strip of spread options.

From an implied correlation surface, one can calculate the spread option prices accurately. The
advantage of the multiscale stochastic volatility model and the implied correlation approach is to
provide calibration to the marginal option prices and the term structure.
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For numerical purposes, we assume that the power plant can produce up to 1, 000 Megawatt-
hours of electricity everyday when it operates. The plant has a conversion heat rate of 9 Megawatt-
hour/Million BTU. This is largely simplified for a real power plant, but it serves as an illustrative
example. Assume the fixed cost is, and that the O&M are of the order of 500 USD everyday the plant
operates, so that the daily P&L is

max{1000[P (t)− 9G(t)]− 500, 0} . (100)

The current power price is assumed to be 45 Dollar/Megawatt-hour, and the current natural gas
price is assumed to be 5 Dollar/Million BTU. We assume the two underlying asset prices follow the
multiscale stochastic volatility model with parameters and implied correlation surfaces calibrated in
the previous section. The power plant valuation can be calculated as the price of a strip of spread
options with payoff (99).

To analyze the effectiveness of the multiscale stochastic volatility approach, we compare the power
plant valuation result with the traditional multivariate lognormal model. In the lognormal model,
we assume that the volatilities σ1 and σ2 are calibrated as in the previous section, and we assume
that the correlation is the Brownian motion correlation ρ. Recall that with this parametrization, the
lognormal model becomes a special case of model (16), with Zt and Vt being constant.

First, we compare the implied correlation values and spread option prices for different time-to-
maturity under the two models. Figure 5c and Figure 5d shows the implied correlations and prices of
spread options with time-to-maturity from 1 day to 1 year for different value of ρ. In these plots, the
implied correlation curve generated by the multiscale stochastic volatility model has a term structure
compared with the fixed correlation of the multivariate lognormal model. The implied correlation tends
to increase with the time-to-maturity. In other words, the two underlying assets are de-correlated when
the time-to-maturity goes to zero. This structure is consistent with market expectations. When the
time-to-maturity is small, the two underlying assets are impacted by their own randomness, and the
correlation becomes smaller.

The implied correlation curve generated by the multiscale stochastic volatility model can be either
higher or lower than the correlation of the multivariate lognormal model. The relationship depends
on the value of ρ. In Figure 5c, the implied correlation from the multiscale stochastic volatility model
is lower when ρ is small. In Figure 5d, the multiscale stochastic volatility model implied correlation
is higher when ρ is large. In practice, the correlation level of power and natural gas is impacted
by many external factors, temperature being one of them, and it takes different value for different
power markets. We gather that traders determine the value of ρ using price observation and their
understanding of the market.
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Figure 5: Implied correlations and spread option prices under the multiscale stochastic volatility
model (MSV) and the multivariate lognormal model for different time-to-maturity. Parameter chosen
as: ρ = 0.2 (left pane) and ρ = 0.5 (right pane)

Figure 6 displays the power plant valuation for different values of ρ. The higher ρ, the lower the
power plant value. This is because the higher the correlation between natural gas and power, the
more likely are periods of non-profitability.

As we discussed earlier, the multivariate lognormal model tends to overestimate the correlation
between power and natural gas when the input ρ is small, and underestimate the correlation when
the input ρ is large. This is confirmed by the power plant valuation plot. The valuation from the
multiscale stochastic volatility model is higher than the valuation from the multivariate lognormal
model when ρ is small, and lower when ρ is large.
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Figure 6: Power plant valuation for different values of ρ under the multiscale stochastic volatility
model (MSV) and the multivariate lognormal model

The heat rate H is a very important characteristic of a power plant. The value of H was fixed at
9 for the pervious calculations. H can have different values depending on the efficiency of the power
plant as well as other factors . The lower the heat rate, the more efficient the power plant, and the
higher its value. For this example, Figure 7 exhibits valuations of the power plants with different
values of the heat rate and the other parameters being held constant.



Spread Options, Implied Correlation and Local Correlation 28

8.5 9.0 9.5 10.0 10.5
Heat Rate

600000

800000

1.!106

1.2!106

Power Plant Valuation

Figure 7: Power plant valuation for different heat rate under the multiscale stochastic volatility model

Remark 3.1. A real power plant has so many optionalities that a simple strip of spread options cannot
account for. In practice, the power market is divided into peak and off-peak hours. For example, if the
operator runs the turbines overnight at a loss (low power prices) and still accumulates enough heat so
he can ramp up the plant to full capacity in peak hours at low cost, he can still make money for the
whole cycle. Conversely, if off-peak power prices are too low, the operator would turn the plant off and
then incur the cost of a cold start to produce during peak hours.

The rationale for valuing a power plant as a strip of spread option assumes the operators know
the power and natural gas prices one day ahead. In reality, the optionality is better captured by an
optimal switching algorithm like in [11].

4 Local Correlation

The multiscale stochastic volatility model introduced earlier enriches the multivariate lognormal
model to create an implied correlation skew. However, the stochastic volatilities carry non-tradable
sources of risk, and the market model is not complete. For options with a single underlying asset,
Dupire [17] introduced a local volatility approach, which assumes that the instantaneous volatility is
a deterministic function of time and the underlying prices . The local volatility approach extends the
Samuelson model, while preserving completeness of the market and one-dimensionality of uncertainty.

Motivated by the success of Dupire’s approach, we establish a local correlation theory for spread
option modeling. We assume that the instantaneous correlation is a deterministic function of time and
the underlying prices, which is called the local correlation. We derive formulas for the local correlation
function involving transformations of the spread option price surface. The calibrated local correlation
model can be used to price exotic and path-dependent derivatives.

4.1 Local Correlation: Existence and Uniqueness

In [21] Gyongy gave the theoretical foundations underpinning Dupire’s approach. He gave sufficient
conditions for an Itô process to have the same one dimensional marginal distributions as a Markov
diffusion whose drift and volatility are given by deterministic functions of time and the process itself.
underlying asset prices. The volatility and correlation functions are determined by conditional ex-
pectations. In the financial arena, this means that the two processes will provide the same European
option prices, hence the relevance to Dupire’s approach.



Spread Options, Implied Correlation and Local Correlation 29

4.2 Local Correlation Formulas

Dupire’s local volatility result states that if the prices of European call options are given by a
function C(K, t) of strike K and time-of-maturity t which is smooth enough, and the underlying
process follows a local volatility model

dSt = St[rdt+ σ(t, St)dW ] , (101)

then the local volatility function σ(t, x) is given by the following formula:

σ2(t,K) =
∂C
∂t + rK ∂C

∂K
1
2K

2 ∂2C
∂K2

. (102)

In this section, we derive a similar relationship between the local correlation function and spread option
prices. We assume that the instantaneous correlation is a function ρ(t, x, y) of the two underlying asset
prices x, y and the time t, and the prices of European call spread options with payoff (Xt−M×Yt−K)+

are given by a function C(M,K, t) of the strike K, ratio M and time-of-maturity t. We derive
the solution for the local correlation function ρ(t, x, y) with the price function C(M,K, t) and other
parameters of the underlying model.

Before we state the main result, we recall the definition of the Radon transform, and derive a few
simple properties which we will need.

Definition 4.1. Let f(x, y) be an integrable continuous function defined on R2. The Radon transform
of f is the function Rf defined by the line integral

Rf(M,K) =

∫ ∞
−∞

f(K +My, y)dy .

The inverse Radon transform exists and is denoted by R−1f(x, y). The inversion formulas can be
found in [3]. The first lemma yields the uniqueness of the inverse Radon transform among continuous
functions. Its proof can be found in [39].

Lemma 4.1. Assume that f is an integrable continuous function defined on R2. If f satisfies
∫
l
fds =

0 for all line l in R2, then f ≡ 0.

Lemma 4.2. Let us assume that X,Y are random variables with a continuous joint density fX,Y ,
denote S = X −M × Y where M is a constant, fS be the density function of S, and g(x, y) be a
continuous function such that the Radon transform of gfX,Y exist. Then for every M and K, we have
the following relationship

R(gfX,Y )(M,K) = fS(K)E[g(X,Y )|S = K] . (103)

Proof. The proof follows a straightforward calculation:

fS(K)E[g(X,Y )|S = K] =fS(K)E[g(MY +K,Y )|S = K]

=

∫
R

g(My +K, y)
fY,S(y,K)

fS(K)
fS(K)dy

=

∫
R

g(My +K, y)fX,Y (My +K, y)dy

=R(gfX,Y )(M,K) .

(104)
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For vanilla call options with one underlying asset, the payoff function is (Xt−K)+ and the critical
point is Xt = K. For spread options, the payoff function is (Xt−M ×Yt−K)+ and the critical region
is the line Xt −M × Yt −K = 0.

Theorem 4.1. Let {Xt, Yt} be the diffusion model given by

dXt = σX(t,Xt, Yt)dWX , dYt = σY (t,Xt, Yt)dWY , d < WX ,WY >= ρtdt, (105)

where ρt is an adapted stochastic correlation process bounded between +1 and −1. Let {X̃t, Ỹt} be the
diffusion model given by

dX̃t = σX(t, X̃t, Ỹt)dW̃X , dỸt = σY (t, X̃t, Ỹt)dW̃Y , d < W̃X , W̃Y >= ρ(t, X̃t, Ỹt)dt, (106)

where ρ(t, x, y) is a measurable function with values in [−1,+1]. We assume that the volatility func-
tions σX(t, x, y) and σY (t, x, y) are positive, continuous, bounded and bounded away from zero, and
that the functions E(ρt|Xt = x, Yt = y) and ρ(t, x, y) are continuous. Also, we assume the joint

densities fXt,Yt of (Xt, Yt) and fX̃t,Ỹt
of (X̃t, Ỹt) exist for all t and are continuous.

Define C and C̃ by:

C(M,K, t) = E[(Xt −M × Yt −K)+], C̃(M,K, t) = E[(X̃t −M × Ỹt −K)+] .

If C(M,K, t) = C̃(M,K, t) for all M,K, t, then ρ(t, x, y) = E(ρt|Xt = x, Yt = y) which can be
expressed in terms of Radon transform and inverse Radon transform of C(M,K, t), σX(t, x, y) and
σY (t, x, y).

Proof. In model (105), St = Xt −M × Yt is a continuous martingale. By Tanaka’s formula, we have

(St −K)+ = (S0 −K)+ +

∫ t

0

I(St > K)dSt +
1

2
LKt , (107)

where LKt is the local time of S at K. See [25] Chapter 8.7 for details. For the spread option price
C(M,K, t), we have

C(M,K, t) = E[(St −K)+] = (S0 −K)+ +
1

2
E(LKt ) , (108)

and
∂C

∂t
=

1

2

∂

∂t
E(LKt ) . (109)

Next, we show
∂

∂t
E(LKt ) = fSt

(K)HSt
(K) , (110)

where

HSt
(K) = E(

d < S >t
dt

|St = K) , (111)

and

d < S >t
dt

= σX(t,Xt, Yt)
2 +M2σY (t,Xt, Yt)

2 − 2MσX(t,Xt, Yt)σY (t,Xt, Yt)ρt . (112)
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Using the occupation time formula for a positive measurable bounded function g(x), we have∫ ∞
−∞

LKt g(K)dK =

∫ t

0

g(St)d < S >t . (113)

Taking expectations on both sides we get:∫ ∞
−∞

E(LKt )g(K)dK = E

∫ t

0

g(St)d < S >t

=

∫ t

0

E(g(St)
d < S >t

dt
)dt

=

∫ t

0

E(g(St)E(
d < S >t

dt
|St))dt

=

∫ t

0

∫ ∞
−∞

g(K)HSt
(K)fSt

(K)dKdt

=

∫ ∞
−∞

g(K)

∫ t

0

HSt(K)fSt(K)dtdK .

(114)

The order of the integrations can be changed since the integrands are positive and bounded. Since g
is an arbitrary positive measurable bounded function, we have

E(LKt ) =

∫ t

0

HSt(K)fSt(K)dt , (115)

for almost every K. Formula (110) follows by taking derivatives on both sides of the equation above
and using the continuity of fSt

HSt
.

From now on, we assume that t fixed. Using formula (110), we have

∂C

∂t
=

1

2

∂

∂t
E(LKt ) =

1

2
fSt

(K)HSt
(K)

=
1

2
fSt

(K)E[σX(t,Xt, Yt)
2 +M2σY (t,Xt, Yt)

2

− 2MσX(t,Xt, Yt)σY (t,Xt, Yt)ρt|Xt −M × Yt = K] .

(116)

Since the σ-field σ(Xt, Yt) generated by Xt and Yt contains the σ-field σ(α1Xt + α2Yt) generated by
the random variable α1Xt + α2Yt for any constants α1 and α2,

∂C

∂t
=

1

2
fSt(K)E

{
E[σ2

X(t,Xt, Yt) +M2σ2
Y (t,Xt, Yt)

− 2MσX(t,Xt, Yt)σY (t,Xt, Yt)ρt|Xt, Yt]|Xt −M × Yt = K
}

=
1

2
fSt(K)E[σ2

X(t,Xt, Yt) +M2σ2
Y (t,Xt, Yt)

− 2MσX(t,Xt, Yt)σY (t,Xt, Yt)E[ρt|Xt, Yt]|Xt −M × Yt = K] .

(117)

Use Lemma 4.2, we have

∂C

∂t
=

1

2
R
(
σ2
X(t, ·, ·)fXt,Yt(·, ·)

)
(M,K) +

1

2
M2R

(
σ2
Y (t, ·, ·)fXt,Yt(·, ·)

)
(M,K)

−MR
(
σX(t, ·, ·)σY (t, ·, ·)E(ρt|Xt = x, Yt = y)fXt,Yt

(·, ·)
)
(M,K) .

(118)
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The Radon transforms exist since the Radon transform of fXt,Yt(x, y) exist, and the volatility and
correlation functions are bounded. Use again Lemma 4.2 with g ≡ 1, we have

∂2C

∂K2
= fSt

(K) = R(fXt,Yt
)(M,K) . (119)

The steps above apply to the model (106) as well. Without even using the tower property, we have

∂C̃

∂t
=

1

2
R
(
σ2
X(t, ·, ·)fX̃t,Ỹt

(·, ·)
)
(M,K) +

1

2
M2R

(
σ2
Y (t, ·, ·)fX̃t,Ỹt

(·, ·)
)
(M,K)

−MR
(
σX(t, ·, ·)σY (t, ·, ·)ρ(t, ·, ·)fX̃t,Ỹt

(·, ·)
)
(M,K) ,

(120)

and
∂2C̃

∂K2
= R(fX̃t,Ỹt

)(M,K) . (121)

By C = C̃, the uniqueness of the inverse Radon transform, (119) and (121), we have

fXt,Yt
= fX̃T ,ỸT

. (122)

Then, by (118) and (120), we have

ρ(t, x, y) = E(ρt|Xt = x, Yt = y) . (123)

Combining (120) and (121), we can solve for ρ(t, x, y).

As an illustration, we give the local correlation formula for the Bachelier model. In the Bachelier
model, in which the two underlying asset prices are assumed to be Brownian motions. It is a special
case of model (106) with σX(t, x, y) ≡ σ1 and σY (t, x, y) ≡ σ2. The Brownian motions for the two
underlying assets are assumed to be correlated by a local correlation function ρ(t, x, y). So

dXt = σ1dWX , dYt = σ2dWY , d < WX ,WY >= ρ(t,Xt, Yt)dt. (124)

Define C(M,K, t) as the spread option price surface. Combining (120) and (121) with the inverse
Radon transform R−1, the local correlation function is given by the following formula:

ρ(t, x, y) =
R−1

(
∂2C
∂K2 ( σ1

2Mσ2
+ Mσ2

2σ1
)− ∂C

∂t
1

Mσ1σ2

)
R−1

(
∂2C
∂K2

) . (125)

This equation is the analog of Dupire’s equation (102).
The local correlation formula is more involved when the functions σX(t, x, y) and σY (t, x, y) are

not constants. In those model, we need to compute the density function fXt,Yt
(x, y) using

fXt,Yt
= R−1

( ∂2C
∂K2

(·, ·, t)
)
, (126)

and then calculate the value of

R
(
σ2
X(t, ·, ·)fXt,Yt

(·, ·)
)
, R

(
σ2
Y (t, ·, ·)fXt,Yt

(·, ·)
)
. (127)

Then we can invert the local correlation function by (120). The formula is more complicated, but it
is still in closed-form.

In the next section, we perform a numerical test of local correlation calibration, and use the
calibrated result to price a path-dependent derivative.
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4.3 Numerical Example: Capped Variance Swap

With the local correlation function calibrated from spread option prices, we have complete knowl-
edge of the dynamics of the underlying processes, and we can price exotic and path-dependent deriva-
tives by Monte-Carlo methods. In this last subsection, we illustrate the calibration and computation
procedures with a path-dependent derivative, a capped variance swap on a spread.

Capped variance swaps are derivatives on realized variance. In our example, we use the annualized
variance of the spread Xt −MYt as the underlying asset. The realized variance is defined as

I(M ; t0, tN ) =
AF

N

N∑
n=1

[( Stn
Stn−1

− 1
)2]

, (128)

where St = Xt −MYt is the spread between the underlying assets Xt and Yt, AF is an annualization
factor (typically AF = 252), N is the number of fixings during the period t0 to tN and

(
Stn/Stn−1

−1
)

is the arithmetic rate of return. The realized variance is usually defined for the logarithm rate of return,
but since the spread St can be negative, we use the arithmetic rate of return instead.

Capped variance swaps are swap contracts on the realized variance I(M). The present value of
the swap is given by

S(M,K,C) = min(I(M), C)−K , (129)

where K is the strike of the swap, and the cap C is chosen as C = 2.5K in our example.
In this section, we perform a numerical experiment to test the accuracy of the local correlation

calibration procedure. We assume that the underlying assets follow a stochastic correlation model,
we simulate sample paths from the model, and compute the payoffs and prices of the spread options
and capped variance swaps. The spread option prices are used to calibrate the corresponding local
correlation model. Then we compute the prices of capped variance swaps under the calibrated local
correlation model, and compare with the prices calculated under the original stochastic correlation
model.

We assume that the historical dynamics of the two underlying asset prices are given by the following
Bachelier model with stochastic correlation

dXt = σ1dWX , dYt = σ2dWY , d < WX ,WY >= ρtdt. (130)

The stochastic correlation is an adapted process taking values between -1 and +1. As proposed in [27]
and [34], we use the following Jacobi diffusion to model the bounded stochastic correlation ρt:

dρt = κ(ρ∞ − ρt)dt+ α
√

(1− ρt)(1 + ρt)dW , (131)

where W is a standard Brownian motion assumed to be independent of WX and WY , and the constants
satisfy κ > 0, α > 0, −1 < ρ0 < 1 and −1 < ρ∞ < 1. According to [27], under the constraints

α2

κ
− 1 < ρ∞ < 1− α2

κ
, (132)

the stochastic correlation process ρt does not exit the interval [−1,+1].
Our goal is to find a local correlation model

dX̃t = σ1dW̃X , dỸt = σ2dW̃Y , d < W̃X , W̃Y >= ρ(t, X̃t, Ỹt)dt (133)

which generates the same spread option prices as model (130).
The Radon and inverse Radon transforms are widely used in image processing and tomography.

Algorithms have already been implemented in existing numerical softwares. We use the PET pack-
age [31] of R [32] in our calculation. Our numerical experiment follows the steps:
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• First, we discretize the time T into 500 steps, and simulate 10000 paths under model (130). The
number of paths is limited to 10000 since we have to record all the simulated values along each
path. In order to reduce simulation error, we use the underlying asset price as a control variate
when we calculate the spread option price.

• Next, from the spread option price surface, we calibrate the local correlation function ρ(t, x, y)
in model (133) using formula (125) with the inverse Radon transform implemented in the PET
package. We perform a projection pursuit regression of the calculated local correlation values
on the underlying asset prices (x, y) and the time t.

• Last, we simulate 10000 paths under the local correlation model (133) with the fitted local
correlation function. We calculate and compare the capped variance swaps prices from the
sample paths simulated under models (130) and (133). We also study the variances of the
Monte Carlo simulations in order to control their impacts.

The parameters in the experiment are chosen as T = 2, X0 = 40, Y0 = 30, σ1 = 5.0, σ2 =
4.0, ρ0 = 0.3, ρ∞ = 0.3, α = 1, κ = 10.6. Figure 8a shows the simulated capped variance swap price
under the original stochastic correlation model (130) for different strikes K and ratios M (the original
price). Figure 8b shows the capped variance swaps price under the fitted local correlation model (133)
(the fitted price). From these two plots, the fitted price surface has similar curvature as the original
price surface.
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Figure 8: Capped variance swap prices plotted over the ratio M and the strike K, calculated from
the original stochastic correlation model (130) (left pane) and from the fitted local correlation model
(133) (right pane)

In order to study the errors of the simulations, we plot the standard deviations of the capped
variance swap prices calculated from sample paths of models (130) and (133) for different ratios M
and strikes K. The results are in Figures 9a and 9b. The pricing difference between the capped
variance swap prices calculated from the two models mainly results from fitting errors instead of
simulation errors.
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Figure 9: Standard deviation of the capped variance swap prices calculated from the stochastic cor-
relation model (130) plotted over the ratio M and the strike K (left pane) and from the fitted local
correlation model (133) (right pane)

In order to quantify the fitting error, we define the following pricing difference percentage and the
square difference

DIFF =
Original Price− Fitted Price

Original Price
, SD =

√∑(
DIFF

)2
, (134)

where ”Original Price” stands for the capped variance swap prices calculated from the original stochas-
tic correlation model (130), and ”Fitted Price” stands for the prices computed from the fitted local
correlation model (133).

In our experiment, the square difference is calculated as SD = 0.0578. Figure 10 shows the pricing
difference percentage between the original price and fitted price. From these results, we can conclude
tht the local correlation fitting is satisfactory in general. However, the fitted local correlation model
underprices the capped variance swap in some areas. The reason is probably due to some smoothing
effect during the discretization of the inverse Radon transform when we calibrate the local correlation.
The pricing discrepancy can be expected to reduce when the grids of the numerical inverse Radon
transform become finer.

5 Conclusion

The main contributions of this paper are the two-dimensional extensions of popular asset price
models and option pricing theories. These extensions are designed to provide joint models for the
processes underlying spread options in order to generate implied correlation skews.

The first extension is based on a multiscale stochastic volatility model for two dimensional under-
lying processes. The dependence between the two underlying assets is incorporated in the stochastic
volatility factors which are chosen to be the same for the two processes. We derived asymptotic formu-
las for option values and implied correlations. These formulas have two advantages: 1) Instead of fully
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Figure 10: Pricing difference percentage between the capped variance swap prices simulated from the
original stochastic correlation model (130) and the fitted local correlation model (133) plotted over
the ratio M and the strike K

calibrating the whole model, we only need to calibrate a set of special parameters to obtain option
prices. This improves the speed and accuracy of the calibration process. 2) With the asymptotic
formula of the implied correlation, we can control the slope and curvature of the implied correlation
skew by adjusting the parameters.

The second extension is a local correlation model which assumes the instantaneous correlation
to be a deterministic function of time and the underlying prices. The local correlation approach
preserves the completeness of the market and low dimensionality of uncertainty. The local correlation
model can be viewed as a two-dimensional extension of Dupire’s local volatility model. Its numerical
implementation relies on the use of the Radon transform. As an example of the versatility of this
approach, we computed prices of capped variance swaps on spreads.
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