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Abstract. In this paper we propose a new and highly tractable structural approach to spot price
modeling and derivative pricing in electricity markets, thus extending the growing branch of liter-

ature which describes power price dynamics via its primary supply and demand factors. Using a

bid stack approach, our model translates the demand for power and the prices of fuels, used in the
power generation process, into spot prices for electricity. We capture both the heavy-tailed nature

of spot prices and the complex dependence structure between power and its underlying factors (fuel

prices and demand), while retaining simple and commonly used assumptions on the distributions
of these factors. Moreover, the derived spot price process then leads to closed form formulae for

forward contracts on electricity and for dark and spark spread options, which are widely used for

the valuation of power plants. As the stack structure and merit order dynamics are embedded into
the model and fuel forward prices are inputs into the formulae, we capture a much richer and more

realistic dependence structure than can be achieved through classical reduced-form price models.
We illustrate this advantage through several comparisons with other common models for spread

option pricing such as Margrabe’s formula and a simple cointegration approach to power and fuels.

1. Introduction

Since the onset of electricity market deregulation in the 1990s, the modeling of prices in these markets
has become an important topic of research both in academia and industry. The valuation of both
physical assets and financial contracts requires a sophisticated model to capture the unusual features
of the market. Key challenges include prominent periodicities and mean-reversion at various time
scales, the sudden and erratic spikes that are most striking in historic spot price data, and the strong
relationship between the prices of electricity and the commodities that are used for its production
(see Figure ?? for sample daily historical spot prices). While most of these features stem from the
non-storability of electricity and the resulting matching of supply and demand at all times, much
literature in the area has either ignored or oversimplified these links with underlying supply and
demand considerations, primarily in the interest of mathematical simplicity and the availability of
convenient closed-form expressions derivative prices. In this work, we aim to exploit the well-known
relationships between power price and its primary drivers and yet maintain the advantage of closed-
form expressions for spot, forward and option prices.

The existing literature on electricity price modeling can be approximately divided into three cate-
gories. The first one models the dynamics of the electricity forward curve directly (c.f. [?] and [?]).
In this setting, spot prices are treated as forwards with instantaneous delivery but are not a focus
of the approach. Furthermore, forward curve models typical ignore fuel prices, or introduce them
as exogenous correlated processes, and are hence not successful at capturing the important afore
mentioned dependence structure between fuels and electricity. The second category, which we refer
to as reduced-form spot price models, is closest to the paradigm of thought in equity markets, the
geometric Brownian motion model for the evolution of stock prices. In this case, the starting point
is an exogenously specified stochastic process for the electricity spot price for which many variations
have been proposed (c.f. [?], [?], [?], [?], [?], [?], [?], [?]). Derivatives are then valued under an
equivalent martingale measure, the pricing measure. Like the direct modeling of the forward curve,
this approach also suffers from the inability to capture the intricate relationships between fuel and
electricity prices described in this paper. Further, spikes are usually only obtained through the inclu-
sion of jump processes or regime switches, which provide little insight into the causes that underly
these sudden price swings.
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The structural approach to electricity price modeling stems from the seminal work by Barlow (c.f.
[?]). We use the adjective structural to describe models, which — to varying degrees of detail and
complexity — explicitly construct the supply curve in electricity markets (commonly known as the
bid stack due to the price-setting auction)1. The market price is then obtained under the equilibrium
assumption that demand and supply have to match. In Barlow’s work the bid stack is simply an
exogenously specified parametric function, which is evaluated at a random demand level. Later works
have refined the modeling of the bid curve and taken into account its dependency generating capacity
available (c.f. [?], [?], [?], [?], [?]), as well as fuel prices (c.f. [?], [?], [?], [?], [?]) and / or the cost
of carbon emissions (c.f. [?], [?]). The raison d’être of all structural models is very clear. If the bid
curve is chosen appropriately, then observed stylized facts of historic data — including the occurrence
of sudden spikes — can be well matched. Moreover, because price formation is explained using
fundamental variables and costs of production, these models offer insight into the causal relationships
in the market; for example, price spikes are observed to coincide with states of high very demand or
low capacity; similarly, at times of low demand, power prices are correlated more closely with fuel
prices of cheaper technologies, while at times of high demand, more expensive fuels tend to set the
power price. As a direct consequence, this class of models also performs best at capturing the varied
dependencies between electricity, fuel prices, demand and capacity.

The model we propose falls into the category of structural models. For the purpose of parametrization
of the bid stack, several authors have chosen an exponential function of demand (c.f. [?],[?]), while
others have stressed the need for a ‘heat rate function’ multiplicative in the fuel price (c.f. [?]). We
build on both of these concepts. We extend the analysis to two or more fuels, allowing for switch in the
merit order. Capturing the delicate interplay between demand, capacity, and multiple fuel prices is a
challenging undertaking, which is addressed by very few authors, particularly in a derivative pricing
framework. In [?], Coulon and Howison construct the stack by approximating the distribution of the
clusters of bids from each technology, but their approach relies heavily on numerical methods when it
comes to derivative pricing. In [?], Aid et al simplify the stack construction by allowing only one heat
rate (generator efficiency) per fuel type, a significant oversimplification of spot price dynamics for
mathematical convenience. In [?], this work is extended to improve spot price dynamics and capture
spikes, but at the expense of a static merit order, ruling out, among other things, the possibility that
coal and gas to change positions in the stack in the future. The substantial drop in US natural gas
prices in recent years due to shale gas discoveries provides a good example of the need to account for
both future merit order changes and the overlap of bids from different technologies, particularly for
longer term problems like plant valuation.

Our work extends the current status quo by providing closed-form formulae for the prices of a number
of derivative products in a market driven by more than one underlying fuel and a variety of efficiencies.
In particular, under only mild assumptions on the distribution under the pricing measure of the
terminal value of the processes representing electricity demand and fuels, we obtain explicit formulae
for spot prices, forwards and spark and dark spread options. This is computationally more efficient
than the semi-closed form results obtained in [?] and [?]. Our formulae also capture very clearly the
dependency of electricity derivatives upon the prices of forward contracts written on the fuels that
are used in the production process. Our model of the bid stack allows the merit order, the ordering
according to which fuels are arranged in the stack, to be dynamic: each fuel can become on the margin
and set the market price of electricity. Alternatively several fuels can jointly set the price: Monitoring
Analytics publishes hourly data on the types of fuels at the margin in PJM. Collecting this data from
the period 2004-2010 reveals that the electricity price was fully set by a single technology (only one
marginal fuel) in only 16.1% of the hours in this period. For the year 2010 alone, the number drops to
less than 5%. This is different to [?], where the merit order is assumed to be static and only one fuel
is allowed to be at the margin. While retaining mathematical tractability, our model of the bid stack
adheres to many of the true features of the bid stack structure, and reproduces observed correlations
and price dynamics, .

§?? reviews the price formation mechanism in power markets and - in a very general setting - the
definition of the spot price as the equilibrium between demand and supply. We introduce the explicit
form of the bid stack in §?? where we obtain our first closed form formulae. §?? is dedicated to

1We exclude here any discussion of other categories of models which are much less suitable to derivative pricing.
These include unit commitment models which require large optimizations and/or very detailed market knowledge, as

well as models of strategy bidding (c.f. [?]) and other equilibrium approaches (c.f. [?]).
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forward contracts and in §?? we present our spread option analysis. §?? presents a simple extension
of the model, which allows us to realistically capture spikes and §?? compares the results produced
by our model to alternative approaches in the literature.

2. Structural approach to electricity pricing

In the following we work on a complete probability space (Ω,F ,P). For a fixed time horizon
T ∈ R+, we define the (n + 1)-dimensional standard Wiener process2 (W 0

t ,Wt)t∈[0,T ], where W :=

(W 1, . . . ,Wn). Let F0 := (F0
t ) denote the filtration generated by W 0 and FW := (FWt ) the filtration

generated by W. Further, we define the market filtration F := F0 ∨ FW . All relationships between
random variables are to be understood in the almost surely sense.

2.1. Price Setting in Electricity Markets. We consider a market in which individual firms gen-
erate electricity. All firms submit day-ahead bids to a central market administrator, whose task is to
allocate the production of electricity amongst them. Each firm’s bids take the form of price-quantity
pairs representing an amount of electricity the firm is willing to produce, and the price at which the
firm is willing to sell it3. Firms differ in their characteristics such as their production and operation
costs and their profit margins. Consequently, also the collection of bids submitted to the market ad-
ministrator is expected to exhibit significant variation. An important part is therefore played by the
merit order, a rule by which cheaper production units are called upon before more expensive ones in
the electricity generation process. This ultimately guarantees that electricity is supplied at the lowest
possible price. This assumption is in fact the result of price formation in a competitive equilibrium
model. In the form we described, it is a simplification of the complicated unit commitment problem
typically solved by optimization in order to satisfy various operational constraints of generators, as
well as transmission constraints. Details vary from market to market and we do not address these
issues here.
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Figure 1. Daily average real time peak prices (left) and a pair of sample bid stacks (right)
for the PJM market in the North East US.

Assumption 1. The market administrator arranges bids according to the merit order and hence in
increasing order of costs of production.

2Throughout the paper, whenever a stochastic process is defined for t ∈ [0, T ], we will drop the subscript and simply
use the bracket notation.

3Alternatively, firms may, in some markets, submit continuous bid curves, which map an amount of electricity to

the price at which it is offered. For our purposes this distinction will however not be relevant.
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We refer to the resulting mapping from the total supply of electricity and the factors that influence
the bid levels to the price of the marginal unit as the market bid stack and assume that it can be
represented by a measurable, function

b : [0, ξ̄]× Rn 3 (ξ, x) ↪→ b(ξ, x) ∈ R.
which will be assumed to be strictly increasing in its first variable. Here, ξ̄ ∈ R+ represents the
combined capacity of all generators in the market, henceforth the market capacity (measured in
MW), and x ∈ Rn represents factors whose values are available to the firms when making their bids.

Demand for electricity is assumed to be price-inelastic and given exogenously by an F0
t -adapted

process (Dt) (measured in MW). The market responds to this demand by generating electricity. It
supplies an amount ξt ∈ (0, ξ̄]. We choose the interval to be half open, as it does not make sense
to define a price for zero supply. We assume that the market is in equilibrium with respect to the
supply of and demand for electricity; i.e.

(1) Dt = ξt, for t ∈ [0, T ].

This implies that Dt ∈ (0, ξ̄] for t ∈ [0, T ] and (ξt) is F0
t -adapted.

The market price of electricity (Pt) is now defined as the price at which the last unit that is needed
to satisfy demand sells its electricity; i.e. using (??),

(2) Pt := b(Dt, ·), for t ∈ [0, T ].

We emphasize the different roles played by the first (i.e. the demand) and all subsequent (i.e. factors
influencing the bid levels) variables of the bid stack function b. Due to the inelasticity assumption,
the level of demand fully determines the quantity of electricity that is being generated; all subsequent
variables merely impact the merit order arrangement of the bids.

Remark 1. The price setting mechanism described above directly applies to day-ahead spot prices set
by uniform auctions. However, we believe that it still offers a good approximation to the relationships
driving real-time prices as well.

Figure ?? shows a sample of two bid stacks constructed from publicly available historical bid data
from the PJM market in the US. One striking feature to notice is the difference between the flatness
of the stack near zero and its steepness near 70,000 MW, clearly responsible for the heavy-tailed and
spikey prices observed in the data. Secondly, note the change in curve between February and March
2003, a period which witnessed rapid natural gas price increases. While the bids shift upwards, this
shift is confined to the upper part of the curve where gas typically features, while the lower portion
remained unchanged.

2.2. Mathematical Model of the Bid Stack. From the previous subsection, it is clear that the
price of electricity in a structural model like the one we are proposing depends critically on the
construction of the function b. Before we explain how this is done in the current setting, we make
the following assumption about the formation of firms’ bids.

Assumption 2. Bids are driven by costs. In particular,

(A2.1) costs depend on fuel prices and firm-specific characteristics only;
(A2.2) firms’ marginal costs are strictly increasing.

Remark 2. Although bids are not required to follow fuel costs, evidence in recent studies (c.f. [?])
suggests that this relationship is very strong, and that strategic bidding is often either limited, or
does not substantially weaken fuel price dependence in the dynamics of bids.

Different generators use different technologies. Therefore, production costs are linked to different
fuel prices (e.g. coal, natural gas, lignite, oil, etc.). Furthermore, within each fuel class, the cost of
production may vary significantly, for example as old generators may have a higher heat rate (lower
efficiency) than new units.

It is not our aim to provide a mathematical model that explains how to aggregate individual bids or
captures strategic bidding. We group together generators that use the same fuel type and assume
the resulting bid curve to be exogenously given and to satisfy Assumption ??. Our strategy then is
to apply the merit order to this collection of bid curves in order to construct the market bid stack.
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The advantage of this approach is that it allows us to capture in a very tractable way the influence
of fuel prices on the merit order.

Let I denote the index set of all fuel types (we assume there are n of them) that are being used in
the market to generate electricity. With each i ∈ I we associate an FWt -adapted fuel price process
(Sit) and we define the fuel bid curve for fuel i to be a measurable function

bi : (0, ξ̄i]× R 3 (ξ, s) ↪→ bi(ξ, s) ∈ R,

where the argument ξ represents the amount of electricity supplied by generators utilizing fuel type
i, s a possible value of the price Sit , and ξ̄i ∈ R+ the aggregate capacity of all the generators utilizing
fuel type i. We assume that bi is strictly increasing in its first argument. Further, also for i ∈ I, let
the Ft-adapted process . It follows that ∑

i∈I
ξ̄i = ξ̄

and

Dt =
∑
i∈I

ξit, for t ∈ [0, T ].

These definitions allow us to deduce P it , the time t bid level at which the collection of generators that
uses fuel type i is willing to sell the amount of electricity ξit; i.e.

P it := bi
(
ξit, S

i
t

)
, for t ∈ [0, T ].

Note in particular that because bi was assumed to be strictly increasing in its first argument the bid
levels satisfy Assumption ??.

In order to simplify the notation below, for i ∈ I, and for each s ∈ R we denote by bi( · , s)−1 the
generalized (right continuous) inverse of the function ξ ↪→ bi(ξ, s). Recall, that it is defined as

bi( · , s)−1(p) = ξ̄i ∧ inf{ξ ∈ (0, ξ̄i]; bi(ξ, s) > p}

where we use the standard convention inf ∅ = +∞. Using the notations

bi(s) := bi(0, s) and b̄i(s) := bi(ξ̄
i, s)

and writing b̂−1
i (p, s) = bi( · , s)−1(p) to ease the notation, we see that b−1

i (p, s) = 0 if p ∈ (−∞, bi(s)),
b−1
i (p, s) = ξ̄i if p ∈ [b̄i(s),∞), and b−1

i (p, s) ∈ [0, ξ̄i] if p ∈ [bi(s), b̄i(s)). For fuel i ∈ I at price Sit = s,
electricity prices below bi(s) no capacity from the ith technology will be available. Similarly, once all
resources from a technology are exhausted, increases in the electricity price will not lead to further

production units being brought online. So defined, the inverse function b̂−1
i maps a given price of

electricity and the price of fuel i to the amount of electricity supplied by generators relying on this
fuel type.

Proposition 1. For a given vector (Dt,St), where St := (S1
t , . . . , S

n
t ), the market price of electricity

(Pt) is determined for t ∈ [0, T ] by:

(3) Pt = inf

{
p ∈ R :

∑
i∈I

b̂−1
i

(
p, Sit

)
= Dt

}
.

Proof. By the definition of b̂−1
i , the functionb̃−1 defined by:

b̃−1(p, s1, · · · , sn) :=
∑
i∈I

b̂−1
i (p, si),

is when the prices of all the fuels are fixed, a non-decreasing map taking the electricity price to the
corresponding amount of electricity generated by the market. As in the case of one fixed fuel price,
for each fixed set of fuel prices, say s = (s1, · · · , sn), we define the bidstack function ξ ↪→ b(ξ, s) as the

generalized (right continuous) inverse of the function ξ ↪→ b̃−1(p, s1, · · · , sn) defined above, namely
the function

(4) b(ξ, s) := inf{p ∈ R :
∑
i∈I

b̂−1
i

(
p, Si

)
> ξ}, for (ξ, s) ∈

[
0, ξ̄
]
× Rn.

The desired result follows from the definition of the market price of electricity in (??). �
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2.3. Defining a Pricing Measure in the Structural Setting. The results presented in this paper
do not depend on a particular model for the evolution of the demand for electricity and the prices
of fuels. In particular, the concrete bid stack model for the electricity spot price introduced in §??
is simply a deterministic function of the exogenously given factors under the real world measure P.
However, for the pricing of derivatives in §?? and §?? we need to define a pricing measure Q and
the distribution of the random factors at maturity under this new measure will be important for the
results that we obtain later.

For an Ft-adapted process θt, where θt := (θ0
t , θ

1
t , . . . , θ

n
t ), a measure Q ∼ P is characterized by the

Radon-Nikodym derivative

(5)
dQ
dP

:= exp

(
−
∫ T

0

θu · dWu −
1

2

∫ T

0

|θu|2 du

)
,

where we assume that (θt) satisfies the so-called Novikov condition

E

[
exp

(
1

2

∫ T

0

|θu|2 du

)]
<∞.

We identify (θ0
t ) with the market price of demand risk and (θit), i ∈ I, with the market price of risk

for fuel i.

We choose to avoid the difficulties of estimating the market price of risk in the most appropriate way
(see for example [?] for several possibilities) and instead make the following assumption.

Assumption 3. The market chooses a pricing measure Q ∼ P, such that

Q ∈ {Q ∼ P : all discounted prices of traded assets are local Q-martingales} .

Note that we are not making any assumption regarding market completeness here. Because of the
non-storability condition, certainly electricity cannot be considered a traded asset. Further, there
are different approaches to modeling fuel prices; they may be treated as traded assets (hence local
martingales under Q) or - more realistically - assumed to exhibit mean reversion under the pricing
measure. Either way, demand is a fundamental factor and the noise (W 0

t ) associated with it means
that the joined market of fuels and electricity is bound to be incomplete. For the results presented
in this paper it does not matter, since all derivative products that we set out to value later on in the
paper (forward contracts and spread options) are clearly traded assets and covered by Assumption
??.

3. Exponential Bid Stack Model

Equation (??) in general cannot be solved explicitly. The reason for this is that any explicit solution
essentially requires the inversion of the sum of inverses of individual fuel bid curves.

We now propose a specific form for the individual fuel bid curves, which allows us to obtain a closed
form solution for the market bid stack b. Here and throughout the rest of the paper, for i ∈ I, we
define bi to be explicitly given by

(6) bi(ξ, s) := s exp(ki +miξ), for (ξ, s) ∈ [0, ξ̄i]× R+,

where ki and mi are constants and mi is strictly positive. Note that bi clearly satisfies (??) and since
it is strictly increasing on its domain of definition it also satisfies (??).

We want to briefly comment on our choice of bi in comparison to three models already considered in
the literature on the subject. First, if we excluded the dependency on ξ in the above definition of the
fuel bid curves, i.e. if mi = 0, then the model we propose collapses to the one introduced by Aid et al.
(c.f. [?]), who work with a step function market bid stack. In other words, mi = 0 in their approach.
Second, our approach is related to the one suggested by Pirrong and Jermakyan (c.f. [?]), who also
propose a market bid stack multiplicative in fuel price, but do not specify a parametric form for the
function that multiplies the fuel price; i.e. the bid stack’s dependency on the variable ξ. Further, they
restrict their attention to a one fuel market. Third, compared to the work of Coulon and Howison (c.f.
[?]), our explicit choice for the bid curves bi allows us to avoid the numerical computation inherent in
their approach and thus to save computation time. Note that the exponential functional form can be
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thought of in terms of clusters of bids like in [?] if each of these clusters is assumed to be distributed
as the exponential of a uniform random variable.

For observed (Dt,St), let us define the sets M,C ⊆ I by

M := {i ∈ I : generators using fuel i are partially used}

and

C :=
{
i ∈ I : the entire capacity ξ̄i of generators using fuel i is used

}
.

A possible procedure for establishing the members of M and C is to order all the values of bi and b̄i
and determine the corresponding cumulative amounts of electricity that are supplied at these prices.
Then find where demand lies in this ordering.

With the above definition of M and C we arrive at the following corollary to Proposition ??.

Corollary 1. For bi of exponential form, as defined in (??), the market price of electricity is given
explicitly by the left continuous version of

(7) Pt =

(∏
i∈M

(
Sit
)αi

)
exp

{
β + γ

(
Dt −

∑
i∈C

ξ̄i

)}
, for t ∈ [0, T ],

where

αi :=
1

ζ

 ∏
j∈M,j 6=i

mj

 , β :=
1

ζ

∑
l∈M

kl
∏

j∈M,j 6=l

mj

 ,

γ :=
1

ζ

∏
j∈M

mj

 and ζ :=
∑
l∈M

∏
j∈M,j 6=l

mj .

Proof. At any time t ∈ [0, T ] the electricity price depends on the composition of the sets M and C;
i.e. the current set of marginal and fully utilized fuel types.

For i ∈M , b̂−1
i = b−1

i , for i ∈ C, b̂−1
i = ξ̄i and for i ∈ I \ {M ∪ C}, b̂−1

i = 0. Therefore, we replace I

in (??) with M and take
∑
i∈C ξ̄

i to the right hand side of the equality. Notice that
∑
i∈M b̂−1

i can
now be inverted and that the inversion yields (??).

In order to choose the cheapest electricity price at points of discontinuity of b (as required by the
infimum in (??)), we consider the left continuous version of (Pt). �

0 q3 q2 q1

Supply (MW)

Pr
ic

e 
(E

ur
o/

M
W

h)

 

 

b1
b2
b3

(a) Fuel bid curves bi.

0 q1+q2 q
Supply (MW)

Pr
ic

e 
(E

ur
o/

M
W

h)

(b) Market bid stack b.

Figure 2. A schematic of individual fuel bid curves and the resulting market bid stack for
I := {1, 2, 3}, q := ξ̄.
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It is clear from equation (??) that the number of possible expressions for the electricity price is fully
determined by the different configurations the sets M and C can take. In fact, fluctuations in demand
and fuel prices can lead to

(8)

n∑
i=1

(
n
i

)n−i∑
j=0

(
n− i
j

)
distinct cases for (??). Nonetheless, the market bid stack is always a piece-wise exponential function
of demand with constantly evolving shape as fuel prices move. This captures the complex dependency
that exists between power and other energy prices.

3.1. The Case of Two Fuels. For the remainder of the paper, we restrict our attention to the case
of a two-fuel market, consisting of coal and natural gas generators. Our results can in principle be
extended to the general case of n > 2 fuels. However, the level of complexity of the formulas increases
rapidly, as evidenced by the number of possible expressions given in (??). We also choose to omit the
analysis of the one fuel case, which leads to far simpler expressions throughout, but cannot lead to
merit order changes. From now on, we set I := {c, g} and carry over all notation introduced in §??
and §??.

From (??) we know that there are five possible expressions for the electricity spot price. We list them
in Table ??. Note that fixing Dt reduces this list to three, each of which — depending on the state of
St — can set the electricity price. A similar reduction to three expressions occurs by fixing St. We
exploit this property to write formula (??) explicitly in the current two-fuel setting. To simplify the

Pt, for t ∈ [0, T ] Criterion
Composition of
M C

Sct exp (kc +mcDt) bc (Dt, S
c
t ) ≤ bg (Sgt ) {c} {∅}

Sgt exp (kg +mgDt) bg (Dt, S
g
t ) ≤ bc (Sct ) {g} {∅}

Sct exp
(
kc +mc

(
Dt − ξ̄g

))
bc
(
Dt − ξ̄g, Sct

)
> b̄g (Sgt ) {c} {g}

Sgt exp
(
kg +mg

(
Dt − ξ̄c

))
bg
(
Dt − ξ̄c, Sgt

)
> b̄c (Sct ) {g} {c}

(Sct )
αc (Sgt )

αg exp (β + γDt) otherwise {c, g} {∅}
Table 1. Distinct cases for the electricity price (??) in the two fuel case.

presentation in the text below, we define

bcg (ξ,S) := (Sc)
αc (Sg)

αg exp (β + γξ) , for (ξ,S) ∈ R3
+,

where αc, αg, β and γ are defined in Corollary ?? and simplify for two fuels to

αc =
mg

mc +mg
, αg = 1− αc =

mc

mc +mg
, β =

kcmg + kgmc

mc +mg
, γ =

mcmg

mc +mg

Further, we set:

i− := argmin{ξ̄c, ξ̄g} and i+ := argmax{ξ̄c, ξ̄g}.

Corollary 2. With I := {c, g}, formula (??) can be written explicitly and, for t ∈ [0, T ], the electricity
spot price is given by

Pt = blow (Dt,St) I(0,ξ̄i](Dt) + bmid (Dt,St) I(ξ̄i,ξ̄j](Dt) + bhigh (Dt,St) I(ξ̄j ,ξ̄](Dt),

where, for (ξ,S) ∈ R2
+:

blow (ξ,S) := bc (ξ, Sc) I{bc(ξ,Sc)<bg(Sg)} + bg (ξ, Sg) I{bg(ξ,Sg)<bc(Sc)}
+ bcg (ξ,S) I{bc(ξ,Sc)≥bg(Sg),bg(ξ,Sg)≥bc(Sc)},

bmid (ξ,S) := bi+
(
ξ, Si+

)
I{
bi+ (ξ,Sj)<bi−(Si−)

} + bi+
(
ξ − ξ̄i− , Si+

)
I{bi+(ξ−ξ̄i+ ,Si+)>b̄i−(Si−)}

+ bcg (ξ,S) I{
bi+(ξ,Si+)≥bi−(Si−),bi+(ξ−ξ̄i− ,Si+)≤b̄i−(Si−)

},
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bhigh (ξ,S) := bc
(
ξ − ξ̄g, Sc

)
I{bc(ξ−ξ̄g,Sc)>b̄g(Sg)} + bg

(
ξ − ξ̄c, Sg

)
I{bg(ξ−ξ̄c,Sg)>b̄c(Sc)}

+ bcg (ξ,S) I{bc(ξ−ξ̄g,Sc)≤b̄g(Sg),bg(ξ−ξ̄c,Sg)≤b̄c(Sc)}.

Proof. The expressions for blow, bmid, bhigh are obtained from (??) by fixing Dt in the intervals (0, ξ̄i],
(ξ̄i, ξ̄j ], (ξ̄i, ξ̄] respectively and considering the different scenarios for M and C. �
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Figure 3. Illustration of the dependence of the power spot price on fuel spot prices for three
characteristic values of demand

Figure ?? illustrates the typical dependence structure (for ξ̄c > ξ̄g) between electricity price and
fuel price for each of the demand regimes characterized by Corollary ??. Figures (b)-(d) show a
two-dimensional surface plotting Pt against Sct and Sgt , while (a) plots a representative demand level
for all three regimes but with coal fixed. In all cases electricity is non-decreasing in fuel price, and is
only constant against Sit if fuel i is not at the margin (i.e., i /∈ M). The quadrilateral in the middle
of (a) represents the region of gas-coal overlap, the last row of Table??. In each demand regimes,
Figure (a) demonstrates that by increasing gas price from low to high, we move from a region of one
fuel at the margin (with Pt linear the marginal fuel), to the overlap region (with Pt non-linear in
both fuels) to one fuel at the margin again. Since i+ = c here, coal is marginal both before and after
the overlap region in this case.

Figure ?? provides a pair of sample simulated paths generated by the stack model for an arbitrary
choice of stack parameters. In the left graph we set mc,mg > 0 as required, while in the right graph
we let these both approach zero, to compare with the case of a step function bid stack. Clearly a
step function stack with only two steps produces unrealistic power spot price dynamics, while the
two-fuel exponential stack model leads to reasonable simulations. Note that here both coal and gas
have been taken to be exponential Ornstein-Uhlenbeck (OU) processes, and demand an OU process
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Figure 4. Simulation of the power price for typical parameters.

truncated at 0 and ξ̄. However the choice of model for these factors is irrelevant at this stage, as we
are emphasizing here the consequence of our choice for the bid stack itself.

4. Forward Contracts

We now turn to the analysis of forward contracts in our structural framework. For the sake of
simplicity, we ignore delivery periods and suggest that T be considered as a representative date in a
typical monthly delivery period. The reader interested in finding out how to handle delivery over a
fixed time period is referred to [?]. For the purpose of the present discussion, a forward contract with
maturity T is defined by the payoff

PT − F pt (T ),

where F pt (T ) is the delivery price agreed at the initial date t, and paid by the holder of the long
position at maturity. Simple arbitrage arguments (c.f. [?]) imply that

F pt (T ) = EQ [PT |Ft] .
The result of Corollary ?? shows that the payoff of the forward is a function of demand and fuels, so
that the electricity forward contract appears as a derivative on fuel prices and demand.

4.1. Closed Form Expressions for Forward Prices. For the explicit calculation of forward prices
the following result will be useful. Let ϕ1 denote the density of the standard univariate Gaussian
distribution, and Φ1(·) and Φ2(·, ·; ρ) the cumulative distribution functions of the univariate and
bivariate (with correlation ρ) standard Gaussian distributions respectively.

Lemma 1. The following relationship holds between ϕ1, Φ1 and Φ2:

(9)

∫ a

−∞
exp (l1 + q1x)ϕ1(x)Φ1(l2 + q2x) dx = exp

(
l1 +

q2
1

2

)
Φ2

(
v − q1,

l2 + q1q2√
1 + q2

2

;
−q2√
1 + q2

2

)
,

where l1, l2, q1, q2 ∈ R and a ∈ R ∪ {∞}.

Proof. In equation (??) combine the explicit exponential term with the one contained in ϕ1 and
complete the square. Then, define the change of variable (x, y)→ (z, w) by

x = z + q1,

y = w
√

1 + q2
2 + q2(x− q1).

The determinant of the Jacobian matrix J associated with this transformation is given by |J | =√
1 + q2

2 . Performing the change of variable immediately leads to the right hand side of (??). �

For the main result in this section we denote by F it (T ), i ∈ I, the delivery price of a forward contract
on fuel i with maturity T and write Ft(T ) := (F ct (T ), F gt (T )).
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Proposition 2. Given I = {c, g}, if, under Q, the random variables (log(ScT ), log(SgT )) are jointly
Gaussian with mean (µc, µg), variance (σ2

c , σ
2
g) and correlation ρ, then for t ∈ [0, T ], the delivery

price of a forward contract on electricity is given by:

(10) F pt (T ) =

∫ ξ̄i−

0

flow (D,Ft(T ))φd(D) dD

+

∫ ξ̄i+

ξ̄i−
fmid (D,Ft(T ))φd(D) dD +

∫ ξ̄

ξ̄i+
fhigh (D,Ft(T ))φd(D) dD,

where φd denotes the density of the random variable DT and

flow (ξ,F) =
∑
i∈I

bi
(
ξ, F i

)
Φ1 (Ri(ξ, 0)/σ)

+ bcg(ξ,F) exp
(
−αcαgσ2/2

) [
1−

∑
i∈I

Φ1 (Ri(ξ, 0)/σ + αjσ)

]
,

fmid (ξ,F) = bi+
(
ξ − ξ̄i− , F i+

)
Φ1

(
−Ri+

(
ξ − ξ̄i− , ξ̄i−

)
/σ
)

+ bi+
(
ξ, F i+

)
Φ1

(
Ri+(ξ, 0)/σ

)
+ bcg(ξ,F) exp

(
−αcαgσ2/2

) [
Φ1

(
Ri+

(
ξ − ξ̄i− , ξ̄i−

)
/σ + αi−σ

)
− Φ1

(
Ri+ (ξ, 0) /σ + αi−σ

)]
,

fhigh (ξ,F) =
∑
i∈I

bi
(
ξ − ξ̄j , F i

)
Φ1

(
−Ri

(
ξ − ξ̄j , ξ̄j

)
/σ
)

+ bcg(ξ,F) exp
(
−αcαgσ2/2

) [
−1 +

∑
i∈I

Φ1

(
Ri
(
ξ − ξ̄j , ξ̄j

)
/σ + αjσ

)]
,

where j = I \ {i} and

σ2 := σ2
c − 2ρσcσg + σ2

g ,

Ri (ξi, ξj) := kj +mjξj − ki −miξi + log
(
F jt

)
− log

(
F it
)
− 1

2
σ2.

The constants αc, αg, β, γ are as defined in Corollary ??.

Proof. By iterated conditioning, for t ∈ [0, T ], the price of the electricity forward F pt (T ) is given by

(11) F pt (T ) := EQ [PT | Ft] = EQ [EQ [b(DT ,ST )| F0
T ∨ FWt

]∣∣Ft] .
The outer expectation can be written as the sum of three integrals corresponding to the events
{DT ∈ [0, ξ̄i− ]}, {DT ∈ [ξ̄i− , ξ̄i+ ]} and {DT ∈ [ξ̄i+ , 0]} respectively. We consider the first case and
derive the flow term. The other cases corresponding to fmid and fhigh are proven similarly.

From Corollary ?? we know that on the interval under consideration b = blow. This expression for
PT is easily written in terms of independent standard Gaussian variables Z := (Z1, Z2) by using the
identity (

log (ScT )
log (SgT )

)
=

(
µc
µg

)
+

(
σ2
c ρσcσg

ρσcσg σ2
g

)(
Z1

Z2

)
.

With the definition d̂ := EQ[DT |F0
T ], the inner expectation can now be written in integral form as

E
[
b̃low

(
d̂,Z

)]
= Ic + Ig + Icg,

where b̃low(ξ,Z) := blow(ξ,S) and the expectation is computed with respect to the law of Z. For
example, after completing the square in z1,

Ic =

∫ ∞
−∞

exp (l1 + q1z2)φ1(z2)Φ1(l2 + q2z2) dz2,
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with

l1 := µc + kc +mcd̂+
σ4
c

2
,

l2 := −σ2
c −

µc + kc +mcd̂+ µg
σc(σc − ρσg)

,

q1 := ρσcσg,

q2 :=
σg(σg − ρσc)
σc(σc − ρσg)

.

Lemma ?? now applies with a =∞. Similarly, Ig and Icg are computed.

Using standard results we identify terms in Ic, Ig and Icg with the prices of forward contracts on
fuels. For i ∈ I,

(12) F it (T ) = EQ [SiT ∣∣Ft] = exp

(
µi +

1

2
(σi)

2

)
, for t ∈ [0, T ].

Substituting the resulting expression for the inner expectation in the first of the three integrals over
demand corresponding to the outer expectation in (??) yields the first term in the Proposition. �

Remark 3. The assumption of lognormal fuel prices in Proposition ?? is a very common and natural
choice for modeling energy (non-power) prices. The Geometric Brownian Motion modles including
constant convenience yield, the classical exponential Ornstein-Uhlenbeck model of Schwartz [?], and
the two-factor Schwartz-Smith model [?] all satisfy the lognormality assumption.

The above result does not depend upon any assumption on the distribution of the demand at matu-
rity, and as a result, it can easily be computed numerically for any distribution. In markets where
reasonably reliable load forecasts exist, one may consider demand to be a deterministic function,
in which case the integrals appearing in formula (??) are not needed and the value of the forward
contract becomes explicit. Another convenient special case, which allows us to obtain closed form
formulae, is that of a Gaussian distribution truncated at zero and ξ̄.

To simplify the notation we introduce the following shorthand notation for linear combinations of
Gaussian distribution functions:

Φ2×1
2

([
x1

x2

]
, y; ρ

)
:= Φ2(x1, y; ρ)− Φ2(x2, y; ρ).

Corollary 3. In addition to the assumptions in Proposition ?? let demand at maturity satisfy

DT = max
(
0,min

(
ξ̄, X

))
,

where X ∼ N(µd, σ
2
d) is independent of Z. Then for t ∈ [0, T ], the delivery price of a forward contract

is given explicitly by

F pt (T ) = Φ

(
−µd
σd

)∑
i∈I

bi
(
0, F it

)
Φ

(
Ri(0, 0)

σ

)
+ Φ

(
µd − ξ̄
σd

)∑
i∈I

bi
(
ξ̄i, F it

)
Φ

(
−Ri

(
ξ̄i, ξ̄i

)
σ

)

+
∑
i∈I

bi
(
µd, F

i
t

)
exp

(
m2
iσ

2
d

2

)
Φ2×1

2

([
ξ̄i−µd

σd
−miσd

−µd

σd
−miσd

]
,
Ri(µd, 0)−m2

iσ
2
d

σi,d
;
miσd
σi,d

)

+
∑
i∈I

bi
(
µd − ξ̄j , F it

)
exp

(
m2
iσ

2
d

2

)
Φ2×1

2

([
ξ̄−µd

σd
−miσd

ξ̄j−µd

σd
−miσd

]
,
−Ri

(
µd − ξ̄j , ξ̄j

)
+m2

iσ
2
d

σi,d
;
−miσd
σi,d

)

+ bcg(µd,Ft) exp (η)

{
−
∑
i∈I

Φ2×1
2

([
ξ̄i−µd

σd
− γσd

−µd

σd
− γσd

]
,
Ri(µd, 0) + αjσ

2 − γmiσ
2
d

σi,d
;
miσd
σi,d

)

+
∑
i∈I

Φ2×1
2

([
ξ̄−µd

σd
− γσd

ξ̄j−µd

σd
− γσd

]
,
Ri
(
µd − ξ̄j , ξ̄j

)
+ αjσ

2 + γmiσ
2
d

σi,d
;
−miσd
σi,d

)}
,
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where j = I \ {i} and

σ2
i,d := m2

iσ
2
d + σ2,

η :=
γ2σ2

d − αcαgσ2

2
.

Proof. The proof again relies on Lemma ?? this time with a < ∞. Each of the terms in flow, fmed

or fhigh turns into the difference between two bivariate Gaussian cdf’s, after integrate over demand.
Then various terms can be combined to simplify to the result above.
TODO: The proof of this Corollary as well as the ones for the results on spreads in the next section
are all similar to the proof of Proposition ??. We need to decide how to present them in a concise
yet clear way. We could possibly show the calculation details for one term, similarly to the proof of
Proposition 2. �

Remark 4. It is interesting to note that maximum capacity ξ̄i for each fuel enters linearly inside
the bivariate Gaussian c.d.f.’s and exponentially outside the c.d.f.’s in each of the terms of Corollary
??. This suggests that an extension to the case of stochastic capacity is possible if ξ̄i is independent
and Gaussian (truncated at 0). The procedure for calculating this expectation would be similar to
the expectation taken over demand above, but result in trivariate Gaussians. On the other hand, if
capacity from all fuels is closely correlated then the need for this addition complication is low, since
instead a corresponding higher demand volatility σd would have a similar effect.

4.2. Correlation Between Electricity and Fuel Forwards. The PJM market in the US has a
similar capacity from coal and gas generators. Moreover, historically, these are the two fuel types
which are most likely to be at the margin and to set the price. Therefore, the region provides a suitable
case study for analyzing the dependence structure suggested by our model. In Figure ?? we observe
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Figure 5. Comparison of power, gas and coal futures prices for two delivery dates.

the historical co-movement of forward (futures) prices in the PJM electricity market (both peak and
off-peak), Henry Hub natural gas (scaled up by a factor of 10) and Central Appalachian coal market.
We fix maturities December 2009 and December 2011, and plot the movement in futures prices over
the two years just prior to maturity. The first figure covers the period 2007-09, characterized by a
peak during the summer of 2008, when almost all commodities set new record highs. Gas, coal and
power all moved fairly similarly during this two-year period, though the correlation between power
and gas forward prices is most striking. The second figure shows the period 2009-2011, during which,
due to shale gas discoveries, gas prices declined steadily over 2010, while coal prices held steady and
even increased somewhat. As a result, this period is more revealing, as it corresponds to a time when
gas bids merged increasingly with coal bids in the power market merit order. Historically, gas has
been higher than coal in the merit order, but recently we have seen an increasing amount of overlap
in the stack, as is suggested by the price movements shown.

Our bid stack model implies that the level of power prices should have been impacted both by the
strengthening coal price and the falling gas price, leading to a relatively flat power price trajectory.
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This is precisely what Figure ?? reveals, with very stable forward power prices during 2010-2011.
The close correlation with gas is still visible, but power prices did not fall as much as gas, as they
were supported by the price of coal. Finally, we can also see that the spread between peak and off-
peak forwards for Dec 2011 delivery has narrowed somewhat, as we would also expect when there is
more overlap between coal and gas bids in the stack. This subtle change in price dynamics is crucial
for many companies exposed to multi-commodity risk, and is one which is very difficult to capture
in a typical reduced-form approach, or indeed in a stack model without a flexible merit order and
overlapping fuel types.

5. Spread Options

This section deals with the pricing of spread options in the structural setting presented above. We
are concerned with spread options whose payoff is defined to be the difference between the market
price of electricity and the cost of the amount of fuel needed by a particular power plant to generate
one unit of electricity. If coal is the fuel that features in the payoff the resulting option is known as a
dark spread, if it is gas the contract is called a spark spread. Denoting by hc, hg ∈ R++ the heat rate
of coal and gas, dark and spark spread options with maturity T are defined by the payoffs

(PT − hcScT )
+

and (PT − hgSgT )
+
,

respectively. We only consider the dark spread but point out that if one interchanges the subscripts c
and g in all results derived in this section they apply to the spark spread case. Further, since spread
options are typically traded to hedge physical assets (generating units) the heat rates that feature in
the option payoff are usually in line with the efficiency of power plants in the market. Our bid stack
model implies a range of heat rates for coal generators. This imposes a restriction on hc; specifically

(13) exp (kc) ≤ hc ≤ exp
(
kc +mcξ̄

c
)
.

Then, as usually, the value (Vt) of a dark spread is obtained as the discounted conditional expectation
under the pricing measure; i.e.

Vt = e−r(T−t)EQ [PT − hcScT | Ft] ,

which thanks to Corollary ?? is understood to be a derivative written on demand and fuels.

5.1. Closed Form Expressions for Spread Option Prices. The results derived in this section
mirror the ones in Section ?? derived for the forward contract. First, conditioning on demand, we
obtain an explicit formula for the price of the spread. Secondly, it is shown that this result can be
extended to give a closed form formula in the case of truncated Gaussian demand.

We keep our earlier notation denoting by i+ and i− the dominant and the subordinate technology
and define

ξh :=
log hc − kc

mc
,

where 0 ≤ ξh ≤ ξ̄c. By its definition, ξh represents the amount of electricity that can be supplied
from coal generators whose heat rate is smaller than or equal to hc.

Proposition 3. Given I = {c, g}, if, under Q, the random variables (log(ScT ), log(SgT )) are jointly
Gaussian distributed with mean (µc, µg), variance (σ2

c , σ
2
g) and correlation ρ, then , for t ∈ [0, T ], the
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price of dark spread with maturity T is given by

(14)

Vt = e−r(T−t)

{∫ min(ξ̄g,ξh)

0

vlow,2 (D,Ft(T ))φd(D) dD +

∫ ξ̄i−

min(ξ̄g,ξh)
vlow,1 (D,Ft(T ))φd(D) dD

+

∫ max(ξ̄g,ξh)

ξ̄i−
vmid,3 (D,Ft(T ))φd(D) dD +

∫ min(ξ̄g+ξh,ξ̄c)

max(ξ̄g,ξh)
vmid,2,i+ (D,Ft(T ))φd(D) dD

+

∫ ξ̄i+

min(ξ̄g+ξh,ξ̄c)
vmid,1 (D,Ft(T ))φd(D) dD +

∫ max(ξ̄c,ξ̄g+ξh)

ξ̄i+
vhigh,2 (D,Ft(T ))φd(D) dD

+

∫ ξ̄

max(ξ̄c,ξ̄g+ξh)
vhigh,1 (D,Ft(T ))φd(D) dD

}

Proof. TODO: Need to decide how to present this and how much detail to include. For example,
more details about why the regions split into various terms (more than for forwards), with possible
plots to aid in understanding. However, we also want to keep things compact. As in the proof of
Proposition ??, by iterated conditioning, for t ∈ [0, T ], the price of the dark spread Vt is given by

Vt := e−r(T−t)EQ [PT − hcScT | Ft] = EQ [EQ [b(DT ,ST )− hcScT | F0
T ∨ FWt

]
Ft
]
.

Again we write the outer expectation as the sum of integrals corresponding to the different forms the
payoff can take depending on the value of DT . The functional form of b is different for DT lying in
the intervals [0, ξ̄i− ], [ξ̄i− , ξ̄i+ ], [ξ̄i+ , ξ̄]. In addition the functional form of the payoff now depends
on whether DT ≤ ξh or DT ≥ ξh and on the magnitude of ξh relative to ξ̄c and ξ̄g. Therefore,
the first case is subdivided into the intervals [0,min(ξ̄g, ξh)], [min(ξ̄g, ξh), ξ̄i− ]; the second case is
subdivided into [ξ̄i− ,max(ξ̄g, ξh)], [max(ξ̄g, ξh),min(ξ̄g + ξh, ξ̄c)], [min(ξ̄g + ξh, ξ̄c), ξ̄i+ ]; the third
case is subdivided into [ξ̄i+ ,max(ξ̄c, ξ̄g + ξh)], [max(ξ̄c, ξ̄g + ξh), ξ̄].

The integrands v... in (??) are obtained by calculating the inner expectation for each demand regime
listed above, in a similar fashion as in Proposition ??. The results are given in Appendix ??. �

Note that (??) requires seven terms in order to cover all possible values of hc within the range given
by (??), as well as the two cases c = i+ and c = i−. However, only five of the seven terms appear at
once, with only the second or third appearing (depending on hc ≶ exp(kc +mcξ̄

g)) and only the fifth
or sixth (depending on hc ≶ exp(kc + mc(ξ̄

c − ξ̄g))). These conditions can equivalently be written
as ξh ≶ ξ̄g and ξh ≶ ξ̄c − ξ̄g. Notice that if c = i−, we can immediately deduce that ξh < ξ̄g and
ξh > ξ̄c − ξ̄g irrespective of hc, while for c = i+ several cases are possible.

Following the same argument as for forwards earlier, we note that if demand is assumed deterministic,
then the spread option price is given explicitly by choosing the appropriate integrand from Proposition
??. To now obtain a convenient closed-form result for unknown demand, we extend our earlier
notational tool for combining Gaussian cdfs. For any integer n, define

Φ2×n
2

([
x11 x12 · · · x1n

x21 x22 · · · x2n

]
, y; ρ

)
=

n∑
i=1

[Φ2(x1i, y; ρ)− Φ2(x2i, y; ρ)] .

In addition, we introduce the following notation to capture all the relevant limits of integration.
Define the vector a := (a1, . . . , a8) by

(15) a :=
1

σd





0
min

(
ξ̄g, ξh

)
ξ̄i−

max
(
ξ̄g, ξh

)
min

(
ξ̄c, ξ̄g + ξh

)
ξ̄i+

max
(
ξ̄c, ξ̄g + ξh

)
ξ̄


− µd


.

Notice that the components of a are in increasing order and correspond to the limits of integration
in equation (??). In the case that c = i+, all of these values are needed, while the case c = i− is
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somewhat simpler because a3 = a4 and a5 = a6 (since by our assumption on hc, ξ
h < ξ̄c). However,

the result below is valid in both cases as various terms simply drop out in the latter case.

We now observe that all the terms in (??) have the same form as those in Proposition ?? for forwards,
as demand appears linearly inside each Gaussian cdf and in the exponential function outside the cdf’s.
Hence, we can exploit Lemma ?? as before to price spread options in closed form for (truncated)
Gaussian demand, leading to the result below.

Corollary 4. In addition to the assumptions in Proposition ?? let demand at maturity satisfy

DT = max
(
0,min

(
ξ̄, X

))
,

where X ∼ N(µd, σ
2
d) is independent of Z. Then for t ∈ [0, T ], the price of a dark spread is given

explicitly by

Vt = e−r(T−t)

{
Φ (−a8)

∑
i∈I

bi
(
ξ̄i, F it

)
Φ
(
−Ri

(
ξ̄i, ξ̄i

)
/σ
)
− hcF ct (1− Φ1 (a7) + Φ1(a6)− Φ1(a5))

+ bc (µd, F
c
t ) exp

(
m2
cσ

2
d

2

)
Φ2×2

2

([
ξ̄c a3

a4 a2

]
,
Rc(µd, 0)−m2

cσ
2
d

σc,d
;
mcσd
σc,d

)
+ bc

(
µd − ξ̄g, F ct

)
exp

(
m2
cσ

2
d

2

)
Φ2×2

2

([
a8 a6

a7 a5

]
,
−Rc

(
µd − ξ̄g, ξ̄g

)
+m2

cσ
2
d

σc,d
;
−mcσd
σc,d

)

+ bg
(
µd − ξ̄c, F gt

)
exp

(
m2
gσ

2
d

2

)
Φ2×1

2

([
a8

ξ̄c

]
,
−Rg

(
µd − ξ̄c, ξ̄c

)
+m2

gσ
2
d

σg,d
;
−mgσd
σg,d

)

− hcF ct Φ2×3
2

([
a7 a5 a3

a6 a4 a2

]
,
R̃c ((log hc − β − γµd) /αg)

σg,γ
;
−γσd
αgσg,γ

)

+ bcg (µd,Ft) exp (η)

{
Φ2×2

2

([
ξ̄c a3

a4 a2

]
,
−Rc(µd, 0)− αgσ2 + γmcσ

2
d

σc,d
;
−mcσd
σc,d

)
− Φ2×2

2

([
a8 a6

a7 a5

]
,
−Rc

(
µd − ξ̄g, ξ̄g

)
− αgσ2 + γmcσ

2
d

σc,d
;
−mcσd
σc,d

)

+ Φ2×1
2

([
a8

ξ̄c

]
,
Rg
(
µd − ξ̄c, ξ̄c

)
+ αcσ

2 − γmgσ
2
d

σg,d
;
mgσd
σg,d

)

− Φ2×3
2

([
a7 a5 a3

a6 a4 a2

]
,
−R̃c ((logH − β − γ µd)/αg)− αgσ2 − γ2σ2

d/αg
σg,γ

;
γσd
αgσg,γ

)}}
,

where

R̃i(z) := z + log
(
F jt

)
− log

(
F it
)
− 1

2
σ2

σ2
i,γ := γ2σ2

d/α
2
i + σ2

Proof. TODO: Need to decide how to present this. �

6. Extension to Capture Spikes

While the bid stack model introduced in Section 3 may be sufficient for many markets and for many
model applications, we suggest in this section a simple extension to more accurately capture the spot
price density in some cases. In particular, in markets which are prone to dramatic price spikes during
peak hours, or sudden negative prices off-peak, such a modification may prove very beneficial, and
importantly does not impact the availability of closed-form solutions for forwards or spread options.

The extension proposed involves exploiting the fact that there is some positive probability that
demand hits zero or maximum capacity in our model, corresponding to the events {X < 0} and
{X > ξ̄}, where X ∼ N(µd, σ

2
d). Hence, instead of fixing the power price at the endpoints of the

two-fuel stack (truncating demand), we can redefine the price in these cases, using the notion of a
‘spike regime’, and/or a ‘negative price regime’, which can be interpreted as being set by a thin tail
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of bids in these extreme regions. These bids correspond to no particular technology and hence do not
depend on a fuel price. Many variations are possible but we suggest the following structure which
retains the pattern of exponential functions of demand.

(16) Pt :=

 b(0,St)− exp(−mnDt) for Dt < 0
b(Dt,St) for 0 ≤ Dt ≤ ξ̄

b(ξ̄,St) + exp(ms(Dt − ξ̄)) for Dt > ξ̄

where b is the market bid stack for the base model (of Section ??) and mn and ms are constants
which determine how volatile prices are in the additional regimes. Clearly the extended model is still
strictly increasing in demand (with a discontinuity of $1 at the top and bottom of the previous stack).

Remark 5. While it is possible to generate realistic positive spikes even in the base model by choosing
one of the exponential fuel bid curves to be quite steep (large mi), we note that this would be at the
expense of realistically capturing changes in the merit order, by artificially stretching that technology’s
bids. An alternative is to use a three-fuel model where the third bid curve represents spikes (and
hence has no fuel price multiplying the exponential), however we then face a challenge of calculating
many more permutations of the three stack locations, losing some tractability. We instead favour the
above approach, which doesn’t specify a quantity of bids associated with spikes, but simply implies
that wherever the bids from our regular fuels end, a thin layer of extra miscellaneous bids begins.
Note also that the form of this regime (and by analogy the negative spike regime) could be made more
heavy tailed (eg, a power function similar to that of Aid, Campi and Langrené’s scarcity function
in [?] or Barlow’s stack in [?]), but we would then [?] capping the price at some maximum level to
prevent unrealistically large spikes. A steep exponential seems simpler and preferable in our case.

Under the extended model, forward prices are given by the same expression as in Proposition ?? plus
the following simple terms

exp

(
ms(µd − ξ̄) +

1

2
m2
sσ

2
d

)
Φ1

(
µd − ξ̄
σd

+msσd

)
+ exp

(
mnµd +

1

2
m2
nσ

2
d

)
Φ1

(
−µd
σd
−mnσd

)
,

while spread options require only the addition of the first of these terms.4

TODO: Decide what to do with this section... shorten or lengthen it, move it to somewhere else in
the paper, change the spike model, etc? Add simulations to compare with previous ones? Ideally,
add a quick calibration to PJM, and use these parameter estimates it illustrate the impact of spikes
(instead of arbitrary parameters), then reuse these parameters again for spread pricing in the next
section.

7. Power plant valuation - Numerical Examples

TODO: Clean this section up. In particular, the current version has a bit of an unnatural break
in it, since I changed the parameters after figure 8 (”We continue...”) and reset everything to be
symmetric (coal and gas) for simplicity. Also I added cointegration at this point. I’ll change this to
be symmetric throughout and cointegration included throughout. If we then have a second subsection
using PJM-fitted parameters, then the two sections will make sense. Other changes: possibly look at
varying other parameters as well as initial conditions of fuels. Finally, a few plots comparing prices
of power plants in different models. Possibly could also consider plots of power to fuel correlation in
stack model (using formulas in appendix), to illustrate its state dependent nature.
We now focus on the implications of the two-fuel exponential stack model on spread option prices,
by analyzing the prices given by Corollary ?? for various different parameter choices, as well as fuel
forward curve scenarios. The latter of these is an important consideration since one of the model’s
strengths is its ability to capture the probability of future merit order changes and the resulting impact
on electricity prices. The fuel forward curves reveal crucial information about this probability. For
example, if bids from coal and gas are currently at similar levels but one fuel is in backwardation, while
the other is in contango, the future dynamics of power prices (under Q) should reflect a high chance

4This is due to our assumption on the range of heat rates H, which guarantees that for the spike regime, the option
will always be in the money, while for the negative price regime, it will never be. Of course, if we were to consider put

spread options instead of calls, the second term would be needed instead of the first.
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of the coal and gas bids separating. Hence, long-term spread option pricing benefits substantially
from the ability to simply input the fuel forward prices directly into our formulae, avoiding the need
to estimate a risk premium or calibrate our model for fuels.

An important application of spread options in electricity markets is the valuation of physical power
plants, which can be approximated as a series of spread options on spot power with different maturities
(and if fixed operating costs are low, K = 0 in the spread payoffs is a reasonable approximation). For
comparison purposes, we also consider two other typical approaches to spark and dark spread option
pricing. Firstly, we consider the classical Margrabe formula for spread options, where both electricity
and gas or coal price are assumed to be lognormal. Letting log(PT ) ∼ N(µP , σ

2
P ) and ρp,c or ρp,g the

necessary correlation parameter, the price of a spread option on fuel i, with payoff (PT − hiSiT )+ is

(17) V Marg
t = e−r(T−t)

F pt Φ1

 log
(
Fp

t

hiF i
t

)
+ 1

2σ
2
p,i

σp,i

− hiF itΦ1

 log
(
Fp

t

hiF i
t

)
− 1

2σ
2
p,i

σp,i

 .
where σ2

p,i = σ2
p − 2ρp,iσpσi + σ2

i .

The second alternative model that we consider is a simple cointegration model5, where

Pt = wcS
c
t + wgS

g
t + Yt

for some constant weights (cointegrating vector) wc, wg and some stationary process Yt with a Gauss-
ian distribution N(µy, σ

2
y). This is a rather naive model but one which retains a stronger link between

the levels of electricity and fuels than that implied by Margrabe. However, unlike the stack model,
the relative dependence on coal and gas is fixed initially by wc, wg, instead of dynamically adapting
to fuel price movements (as well as demand). Note also that the spread prices for the cointegration
model are calculated by simulation since no closed-form result is available.

For both Margrabe and the cointegration model, a meaningful comparison requires choosing the
mean and variance appropriately to match that of the stack model. Matching the mean corresponds
to calibrating to the power forward curve produced by the stack model, while matching the variance
for a single maturity T involves choosing either σp or σy appropriately. Alternatively, to match the
variance for all maturities at once, we can assume an exponential OU process for Pt in Margrabe (or
an OU process for Yt in the cointegration model) and find the best fit of mean reversion speed and
volatility to approximately match all maturities.
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Figure 6. Margrabe vs Stack Model: Plots of Spark Spread Prices for different correlation
assumptions and given fuel forward curves

It is to be expected that the stack model predicts lower spread option prices (especially for longer
maturities), since the long-term levels of power and fuel prices are linked together very strongly by the
stack structure, unlike simply correlating lognormals. This is illustrated for a spark spread in the left
plot below of Figure ?? (for arbitrary stack parameters) for different levels of correlation parameter

5COMMENT - cite papers about evidence of correlation
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in each of the models.6 The right plot of Figure ?? shows the case of inputting a given (observed)
forward curve for fuels, instead of taking the model implied curve. If the gas forward curve is in
contango, while coal is in backwardation, then for long maturities, coal will almost always be below
gas in the stack. Hence, a spark spread option has relatively little chance of being in the money
(requires very high demand), lowering the option value. This is a good example of a dependency
which can’t be captured by Margrabe or other reduced-form models, but is automatically captured
by the merit order built into the stack model.

While it is typical that increased correlation ρ between fuels in the stack model will lower spread option
prices, this is not always true. For example, consider the plots of Figure ??. Here ξc = 0.6, ξg = 0.4
and we consider a dark spread option with different values of hc (with T = 1 fixed throughout). The
left plot assumes a high mean demand µd = 0.7 while the right plot considers low mean demand
µd = 0.3. In the first case, increasing correlation reduces price as we expect, but in the second plot
the relationship is reversed for low values of hc. The intuition here is that since demand is low, the
price only gets set by gas if coal bids move above gas, but then the spread option is no longer in the
money. When coal price is low so the spread option is in the money, typically coal is still setting
the power price, so we don’t get much benefit from high gas prices. So negative correlation doesn’t
help much. On the other hand, positive correlation helps reach some higher payoffs in states when
both gas and coal prices rise together (and the exponential form of the stack leads to a higher payoff).
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Figure 7. Margrabe vs Stack Model: Plots of Spark Spread Prices for different correlation
assumptions and demand levels

Another interesting analysis that can be performed is to look at implied correlation ρimpp,i , meaning the
value of ρp,i in Margrabe’s formula which reproduces the stack model price. Note that in each case
we first choose the variance of power in the Margrabe formula to match the variance from the stack
model (using formulas in appendix). As we can predict from Figures ?? and ??, for high (positive)
values of ρ, it may be impossible for Margrabe to reproduce the price, for any ρp,g ∈ [−1, 1]. In such
cases, implied correlation does not exist. However, for negative values of ρ, it typically exists. Figure
?? illustrate the variation in implied correlation as a function of hi, for both spark (left column) and
dark (right column) spread options, using the same parameters as above. The second row shows the
impact of moving from a high demand mean to a low demand mean.

We continue with further examples for that case that gas and coal are treated symmetrically (all
parameters equal). The stack parameters we choose for our base case here are kc = kg = 2,mc =
mg = 1, ξ̄c = ξ̄g = 0.5, while for the fuel process we choose exponential OU with mean level log(10),
(and initial value log(10)), volatility 0.5 and mean reversion speed 1 (and correlation 0 in base case).
The maturity is T = 1. For demand µd = 0.5, σd = 0.2. In the left plot of Figure ??, we investigate
the impact on implied correlation of a dark spread option of varying ξ̄g. Note that it all cases
Margrabe overprices the spread since ρimp > 0, but the difference is much larger with coal is the

6Note that for Margrabe, this parameter ρp,g correlates the power and gas, while for the stack model it’s the coal

to gas correlation parameter ρ. Power is of course not lognormal, but increased correlation between fuels serves to
increase their correlation with power as well through the bid stack function. Hence in both cases, a higher correlation
level typically implies a lower spark spread option price, since it reduces the volatility of the spread. This is always

true for Margrabe, but some exceptions exist for the stack model, as illustrated in the next figure.
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(c) Implied Correlation - Spark (low demand)
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Figure 8. Implied Correlation Plots for different correlation assumptions and demand levels

dominant technology and hence power prices are most closely linked to coal, not gas. The right plot
keeps ξ̄c = ξ̄g = 0.5, but instead varies µd (with σd now 0.12). We see that the implied correlation
has a downward skew if demand is high, suggesting that Margrabe overprices by a larger amount for
lower heat rates hc (or hg). In the case of µd = 0.5 we observe a symmetric frown.
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Figure 9. Implied correlation analysis (plotted against h) for varying ξ̄g and µd

It is also interesting to investigate the implied correlation surface, where we vary both h and T . In
the symmetric case, the result is illustrated in the left plot of Figure ??. If instead we are given
fuel forward curves as inputs, we can obtain a distinctive tilt in the surface for long maturities,
even if everything else is symmetric. In the right plot below we let coal be in contango and gas in
backwardation and plot ρimpp,g for a spark spread.

Next, we compare our model’s results with both Margrabe and our simple cointegration model. While
the choice of appropriate weights wc, wg in the cointegration model is in general unclear, in the case
of symmetric coal and gas (and µd = 0.5) we set wc = wg = 1/2 exp(kc + 1/2mcξ̄

c), such that the
power price is centred around the average of the median bid levels of coal and gas. The first row
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Figure 10. Implied correlation surfaces, for symmetric case (left) and for spark spread in
case of coal in contango, gas in backwardation (right)

of plots in Figure ?? shows that for the symmetric base case, the cointegration model as expected
comes much closer than Margrabe to agreeing with the stack model, but it still gives slightly higher
prices for spreads. However, in the lower row of plots in Figure ?? we can see that for the case of
inputting coal forwards in contango and gas in backwardation, the cointegration model sometimes
predicts wildly different spread prices. This is particularly true for the case of a spark spread, where
the high spread payoffs in the stack model occur when the power price is being set by coal alone. The
big weakness of the cointegration approach is that the weights which govern the degree of correlation
with each fuel (and are equal here) are assumed constant and hence cannot reflect future expected
changes in the merit order.

So far all of the plots above have assumed that the both the mean and variance of the power price
distribution used in Margrabe and cointegration comparisons are always matched to future variance
of PT implied by the stack model.7 However, an important consideration is that in practice we
only have history to calibrate each model, and should not be borrowing extra information about the
future from the stack model’s structure when calibrating the other approaches. While it is somewhat
reasonable to match the mean (as this is analogous to matching observed power forwards), matching
the variance fully is less justifiable. Hence, in the following plots, we have calibrated our mean and
variance to the scenario of fuel prices centred on their long-term mean levels (ie, no fuel forward
inputs), but then priced the spread options with different assumptions about observed fuel forwards.
In particular, we return our common example of coal in contango, gas in backwardation (and now
µd = 0.7, σd = 0.12). Figure ?? illustrates the large divergence in variance which occurs in this
scenario, as the stack model’s variance increases more rapidly when the fuel forward curves tend to
separate the coal and gas bids in the future.

For this same example, we next look at the impact on the spread prices themselves in Figure ??.
We notice some significant changes as a result of not matching the mean and variance or power. In
particular, for the spark spread option, the stack model price still prices below Margrabe for shorter
maturities, but eventually begins to price above Margrabe for long maturity, as the impact of the
greater variance of PT begins to dominate.8

Possible conclusion to this section would be something on power plant valuation in particular, where we
sum over the series of spreads for different maturities. (and compare across models again) Emphasise
again the richer dependence structure that can be captured by the stack model.

7COMMENT - Should maybe discuss this earlier and in more detail. One point is that I am matching the variance
for each different correlation value. ie, when correlation is 0.5 in Margrabe, I match with the variance from the case
ρ = 0.5 in the stack, even though these correlations have different meanings (eg, gas or coal to power vs gas to coal).
Maybe a better way?

8COMMENT - It would be nice to bring in a mention somewhere here of the link to Geske’s compound option
model for equities, which predicts something similar to a stochastic vol model with negative correlation (ie, downwards

skew). I feel that there should be an analagous result in our work too.
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(b) Symmetric case plotted against T
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(c) Fuel forward inputs (spark spread)
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(d) Fuel forward inputs (dark spread)

Figure 11. Comparisons with both Margrabe and Cointegration
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Figure 12. Illustration of variance divergence (vs T ) for coal in contango, gas in backwardation
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Figure 13. Spark and dark spread option prices (vs T ) for coal in contango, gas in backwardation
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8. Conclusion

TODO: to be added very soon

Appendix A. Terms in Spread Formula

vlow,1 (ξ,F) = bc (ξ, F c) Φ1 (Rc(ξ, 0)/σ)− hcF cΦ1

(
R̃c (h(ξ)) /σ

)
+ bcg (ξ,F) exp

(
σ2
αcαg

) [
1− Φ1 (Rc(ξ, 0)/σ − αgσ)− Φ1

(
R̃g (h(ξ)) /σ − αcσ

)]
vlow,2 (ξ,F) = 0

vmid,1 (ξ,F) = bi+
(
ξ − ξ̄i− , F i+

)
Φ1

(
−Ri+

(
ξ − ξ̄i− , ξ̄i−

)
/σ
)

+ bi+
(
ξ, F i+

)
Φ1

(
Ri+ (ξ, 0) /σ

)
− hcF c + bcg (ξ,F) exp

(
−αcαgσ

2

2

)
×
[
Φ1

(
Ri+

(
ξ − ξ̄i− , ξ̄i−

)
/σ + αi−σ

)
− Φ1

(
Ri+(ξ, 0)/σ + αi−σ

)]
,

vmid,2,c (ξ,F) = vlow,1 (ξ,F)

vmid,3 (ξ,F) = 0

vmid,2,g (ξ,F) = vhigh,2 (ξ,F)

vhigh,1 (ξ,F) =
∑
i∈F

bi
(
ξ − ξ̄j , F i

)
Φ1

(
−Ri

(
ξ − ξ̄j , ξ̄j

)
/σ
)

− hcF c + bcg (ξ,F) exp

(
−αcαgσ

2

2

)[
−1 +

∑
i∈F

Φ1

(
Ri
(
ξ − ξ̄j , ξ̄j

)
/σ + αjσ

)]
vhigh,2 (ξ,F) = bg(ξ − ξ̄c, F g)Φ1

(
−Rg

(
ξ − ξ̄c, ξ̄c

)
/σ
)
− hcF cΦ1

(
R̃c (h(ξ)) /σ

)
+ bcg (ξ,F) exp

(
−αcαgσ

2

2

)[
Φ1

(
Rg
(
ξ − ξ̄c, ξ̄c

)
/σ − αcσ

)
− Φ1

(
R̃g (h(ξ)) /σ − αcσ

)]
,

where

h(ξ) =
1

αg
(log hc − β − γξ) .

Appendix B. Moments and Covariances

If demand is given by a truncated Gaussian distribution with parameters µz and σz, then for t ∈ [0, T ],
then the p-th moment of PT is given explicitly by

Et[P pT ] = Φ

(
−µd
σd

)∑
i∈F

bpi (0, F
i
t )e

1
2 (p2−p)σ2

i Φ

(
R

(p)
i (0, 0)

σ

)
+Φ

(
µd − ξ̄
σd

)∑
i∈F

bpi (ξ̄
i, F it )Φ

(
−R(p)

i (ξ̄i, ξ̄i)

σ

)

+
∑
i∈F

bpi (µd, F
i
t )e

1
2 (p2−p)σ2

i + 1
2p

2m2
iσ

2
dΦ2×1

2

([
ξ̄i−µd

σd
− pmiσd

−µd

σd
− pmiσd

]
,
R

(p)
i (µd, 0)− pm2

iσ
2
d

σi,d
;
miσd
σi,d

)

+
∑
i∈F

bpi (µd−ξ̄
j , F it )e

1
2 (p2−p)σ2

i + 1
2p

2m2
iσ

2
dΦ2×1

2

([
ξ̄−µd

σd
− pmiσd

ξ̄j−µd

σd
− pmiσd

]
,
−R(p)

i (µd − ξ̄j , ξ̄j) + pm2
iσ

2
d

σi,d
;
−miσd
σi,d

)

+ bpcg(µd,Ft)e
η(p)

{
−
∑
i∈F

Φ2×1
2

([
ξ̄i−µd

σd
− pγσd

−µd

σd
− pγσd

]
,
Ri(µd, 0) + pαjσ

2 − pγmiσ
2
d

σi,d
;
miσd
σi,d

)

+
∑
i∈F

Φ2×1
2

([
ξ̄−µd

σd
− pγσd

ξ̄j−µd

σd
− pγσd

]
,
Ri(µd − ξ̄j , ξ̄j) + pαjσ

2 + pγmiσ
2
d

σi,d
;
−miσd
σi,d

)}
,
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where j = F \ {i} as before and

R
(p)
i (ξi, ξj) := kj +mjξj − ki −miξi + log(F jt )− log(F it )− (p− 1

2
)σ2
i −

1

2
σ2
j + pρσiσj ,

η(p) :=
p2

2

(
γ2σ2

d − αcαgσ2
)
.

A more general formula for Et[P pTC
pc
T G

pg
T ] can be obtained similarly, allowing us to calculate for

example covariances between electricity and fuels. With all notation as above, we obtain:
TODO: Insert the formula here... or if we don’t want this more general formula with p’s (note notation
improvement needed here - could replace with n or k but those are both used earlier too), we could
just but in the case Et[PTCT ] or Et[PTGT ] as needed for covariance. More general usually better but
not sure here.
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