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Abstract. The purpose of the paper is to present a new pricing method for clean spread options, and to illustrate

its main features on a set of numerical examples produced by a dedicated computer code. The novelty of the
approach is embedded in the use of structural models as opposed to reduced-form models which fail to capture

properly the fundamental dependencies between the economic factors entering the production process.

1. Introduction

Spread options are most often used in the commodity and energy markets to encapsulate the profitability of a
production process by comparing the price of a refined product to the costs of production including, but not
limited to, the prices of the inputs to the production process. When the output commodity is electric power, such
spread options are called spark spreads when the electricity is produced from natural gas, and dark spreads when
the electricity is produced from coal. Both processes are the sources of GreenHouse Gas (GHG) emissions, in higher
quantities for the latter than the former. In this paper we concentrate on the production of electricity and CO2

emissions and the resulting dependence structure between prices.

Market mechanisms aimed at controlling CO2 emissions have been implemented throughout the world, and whether
they are mandatory or voluntary, cap-and-trade schemes have helped to put a price on carbon in the US and in
Europe. In the academic literature, equilibrium models have been used to show what practitioners have known all
along, namely that the price put on CO2 by the regulation should be included in the costs of production to set
the price of electricity. (cf. [Carmona et al., 2010]) Strings of spark spread options (options on the spread between
the price of 1MWh of electricity and the cost of the amount of natural gas needed to produce such a MWh) with
maturities covering a given period are most frequently used to value the optionality of a gas power plant which
can be run when it is profitable to do so (namely when the price of electricity is greater than the cost of producing
it), and shut down otherwise. In a nutshell, if an economic agent takes control on day t, of a gas power plant
for a period [T1, T2], then for every day τ ∈ [T1, T2] of this period, he or she can decide to run the power plant
when Pτ > hgS

g
τ + K and book a profit Pτ − hgS

g
τ − K for each unit of power produced, and shut the plant

down if Pτ ≤ hgS
g
τ +K. Moreover, ignoring constraints such as ramp-up rates and start-up costs, this scheduling

is automatically induced when generators bid at the level of their production costs in the day-ahead auction for
power. Here Pτ denotes the price at which one unit (1 MWh) of power can be sold on day τ , Sgτ the price of one
unit of natural gas (typically one MMBtu), hg the efficiency or heat rate of the plant (i.e. the number of units of
natural gas needed to produce one unit of electricity) and K the daily (fixed) costs of operations and maintenance
of the plant. So in this somewhat oversimplified analysis of the optionality of the plant, the value at time t of
the control of the plant operation on day τ can be expressed as e−r(τ−t)E[(Pτ − hgSgτ −K)+|Ft] where as usual,
the exponent + stands for the positive part, i.e. x+ = x when x ≥ 0 and x+ = 0 otherwise, r for the constant
interest rate used as discount factor to compute present values of future cash flows, and Ft denotes the information
available on day t when the conditional expectation is actually computed. So the operational control (for example
as afforded by a tolling contract) of the plant over the period [T1, T2] could be valued on day t as

V PPt =

T2∑

τ=T1

e−r(τ−t)E[(Pτ − hgSgτ −K)+|Ft].

This rather simplistic way of valuing a power generation asset in the spirit of the theory of real options, had far-
reaching implications in the developments of the energy markets, and is the main reason why spread options are
of the utmost importance. However, such a valuation procedure is flawed in the presence of emission regulation
as the costs of production have to include the costs specific to the regulation. To be more specific, the day-τ
potential profit (Pτ − hgSgτ −K)+ of the spark spread has to be modified to (Pτ − hgSgτ − egAτ −K)+ in order
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to accommodate the cost of the regulation. Here Aτ is the price of one allowance certificate worth one ton of CO2

equivalent, and eg is the emission coefficient of the plant, namely the number of tons of CO2 emitted by the plant
during the production of one unit of electricity. Such a spread is often called a clean spread to emphasize the fact
the externality is being paid for, and the real option approach to power plant valuation leads to the following clean
price

V CPPt =

T2∑

τ=T1

e−r(τ−t)E[(Pτ − hgSgτ − egAτ −K)+|Ft]

for the control of the plant over the period [T1, T2] in the presence of the regulation.

In order to price such cross-commodity derivatives, a joint model is clearly required for fuel prices, electricity
prices and carbon allowance prices. Various studies have analyzed the strong links between these price series
(cf. [De Jong and Schneider, 2009, Koenig, 2011]). Many reduced-form price models have been proposed for elec-
tricity (cf. [Benth et al., 2008, Eydeland and Wolyniec, 2003] for examples) with a focus on capturing its styl-
ized features such as seasonality, high volatility, spikes, mean-reversion and fuel price correlation. On the other
hand, many authors have argued that these same features are better captured via a structural approach, mod-
elling the dynamics of underlying factors such as demand (load), capacity and fuel prices (early examples include
[Barlow, 2002, Cartea and Villaplana, 2008, Pirrong and Jermakyan, 2008, Coulon and Howison, 2009]).

Similarly, for carbon emission allowances, exogenously specified processes that model prices directly have been
proposed by some (cf. [Carmona and Hinz, 2011]). Others have instead treated the emissions process as the
exogenously specified underlying factor; in this case the allowance certificate becomes a derivative on cumulative
emissions (cf. [Seifert et al., 2008, Chesney and Taschini, 2012]). However, these models do not take into account
the important feedback from the allowance price to the rate at which emissions are produced in the electricity sector
— a feature, which is crucial for the justification of any implementation of a cap-and-trade scheme. In a discrete-
time framework this feedback mechanism has been addressed, for example in [Coulon, 2009, Carmona et al., 2010].
In continuous-time the problem has been treated in [Carmona et al., 2012b] and [Howison and Schwarz, 2012],
whereby the former models the accumulation of emissions as a function of an exogenously specified electricity price
process, while the latter uses the bid-stack mechanism to infer the emissions rate.

The literature on spread options is extensive. In industry, Margrabe’s classical spread option formula (cf. [Margrabe, 1978])
is still widely used, and has been extended by various authors (see [Carmona and Durrleman, 2003] for an overview)
including to the three commodity case, as required for the pricing of clean spreads (cf. [Alos et al., 2011]).
[Carmona and Sun, 2012] analyse the pricing of two-asset spread options in a multiscale stochastic volatility model.
For electricity markets, pricing formulae for dirty spreads based on structural models have been proposed in
[Carmona et al., 2012a], in which a closed-form formula is derived in the case of K = 0, and in [Aı̈d et al., 2012],
in which semi-closed form formulae are derived for K 6= 0 at the expense of a fixed merit order.

The original contributions of the paper are twofold. First, we express the value of clean spread options in a formula-
tion where demand for power and fuel prices are the only factors whose stochastic dynamics are given exogenously,
and where the prices of power and emission allowances are derived from a bid-stack based structural model and
a forward backward stochastic differential system respectively. The second contribution is the development of a
numerical code for the computation of the solution of the pricing problem. First we solve a 4+1 dimensional
semilinear partial differential equation to compute the price of an emission allowance, and then we use Monte Carlo
techniques to compute the price of the spread option. These computational tools are used to produce the numerical
results of case studies presented in §6 of the paper for the purpose of illustrating the impact of a carbon regulation
on the price of spread options. In this section we first compare the price of spark and dark spread options in two
different markets, one with no emissions regulation in place and the other governed by an increasingly strict cap-
and-trade system. Second, we analyze the impact that different merit order scenarios have on the option prices.
Third, we demonstrate the difference between the structural and the reduced-form approach by comparing the
option prices produced by our model with those produced by two key candidate reduced-form models. Fourth and
last, we contrast two competing policy instruments: cap-and-trade, represented by the model we propose, and a
fixed carbon tax.

2. The Bid Stack: Price Setting in Electricity Markets

In order to capture the dependency of electricity price on production costs and fundamental factors in a realistic
manner, we use a structural model in the spirit of those reviewed in the recent survey of [Carmona and Coulon, 2012].
The premises of structural models for electricity prices depend upon an explicit construction of the supply curve.
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Since electricity is sold at its marginal cost, the electricity spot price is given by evaluation of the supply function
for the appropriate values of factors used to describe the costs of production in the model.

In practice, electricity producers submit day-ahead bids to a central market operator, whose task it is to allocate
the production of electricity amongst them. Typically, firms’ bids have the form of price-quantity pairs, with each
pair comprising the amount of electricity the firm is willing to produce, and the price at which the firm is willing
to sell this quantity. Given the large number of generators in most markets, it is common in structural models
to approximate the resulting step function of market bids by a continuous increasing curve. Firms’ bid levels are
determined by their costs of production. An important feature of our model, distinguishing it from most of the
commonly used structural models is to include, as part of the production costs, the costs incurred because of the
existence of an emissions regulation.

We assume that, when deciding which firms to call upon to produce electricity, the market operator adheres to the
merit order, a rule by which cheaper production units are called upon before more expensive ones. For simplicity,
operational and transmission constraints are not considered.

Assumption 1. The market operator arranges bids according to the merit order, in increasing order of production
costs.

The map resulting from ordering market supply in increasing order of electricity costs of production is what is
called the bid stack. As it is one of the important building blocks of our model, we define it in a formal way for
later convenience.

Definition 1. The bid stack is given by a measurable function

b : [0, x̄]× R× Rn 3 (x, a, s) ↪→ b(x, a, s) ∈ R,

with the property that for each fixed (a, s) ∈ R× Rn, the function [0, x̄] 3 x ↪→ b(x, a, s) is strictly increasing.

In this definition, x̄ ∈ R++ represents the market capacity (measured in MWh) and the variable x the supply of
electricity. The integer n ∈ N \ {0} gives the number of economic factors (typically the prices in e of the fuels
used in the production of electricity), and s ∈ Rn the numeric values of these factors. Here and throughout the
rest of the paper the cost of carbon emissions (measured in e per metric ton of CO2) is denoted by a. So for
a given allowance price, say a, and fuel prices, say s, the market is able to supply x units of electricity at price
level b = b(x, a, s) (measured in e per MWh). In other words, b(x, a, s) represents the bid level of the marginal
production unit in the event that demand equals x.

The choice of a function b which captures the subtle dependence of the electricity price upon the level of supply
and the production costs, is far from trivial, and different approaches have been considered in the literature, as
reviewed recently by [Carmona and Coulon, 2012]. In §5.1 we extend the model proposed in [Carmona et al., 2012a]
to include the cost of carbon as part of the variable costs driving bid levels.

3. Risk-Neutral Pricing of Allowance Certificates

As the inclusion of the cost of emission regulation in the valuation of spread options is the main thrust of
the paper, we explain how emission allowances are priced in our model. The model we introduce is close to
[Howison and Schwarz, 2012]. However we extend the results found therein to allow the equilibrium bids of gener-
ators to be stochastic and driven by fuel prices, a generalization that is vital for our purpose.

We suppose that carbon emissions in the economy are subject to cap-and-trade regulation structured as follows:
at the end of the compliance period, each registered firm needs to offset its cumulative emissions with emission
allowances or incur a penalty for each excess ton of CO2 not covered by a redeemed allowance certificate. Initially,
firms acquire allowance certificates through free allocation, e.g. through National Allocation Plans (NAP) like in
the initial phase of the European Union (EU) Emissions Trading Scheme (ETS), or by purchasing them at auctions
like in the Regional Greenhouse Gas Initiative (RGGI) in the North East of the US. Allowances change hands
throughout the compliance period. Typically, a firm which thinks that its initial endowment will not suffice to
cover its emissions will buy allowances, while firms expecting a surplus will sell them. Adding to these naturals,
speculators enter the market providing liquidity. Allowances are typically traded in the form of forward contracts
and options. In this paper, we denote by At the spot price of an allowance certificate maturing at the end of the
compliance period. Because their cost of carry is negligible, we treat them as financial products liquidly traded in
a market without frictions, and in which long and short positions can be taken.
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In a competitive equilibrium, the level of cumulative emissions relative to the cap (i.e. the number of allowance
certificates issued by the regulation authority) determines whether — at the end of the compliance period — firms
will be subjected to a penalty payment and create a demand for allowance certificates. See [Carmona et al., 2010]
for details. For this reason, allowance certificates should be regarded as derivatives on the emissions accumulated
throughout the trading period. This type of option written on a non-tradable underlying interest is rather frequent
in the energy markets: temperature options are a case in point.

3.1. The Market Emissions Rate. As evidenced by the above discussion, the rate at which CO2 is emitted
in the atmosphere as a result of electricity production has to be another important building block of our model.
Clearly at any given time, this rate is a function of the amount of electricity produced and because of their impact
on the merit order, the variable costs of production, including fuel prices, and notably, the carbon allowance price
itself.

Definition 2. The market emissions rate is given by a bounded function

µe : [0, x̄]× R× Rn 3 (x, a, s) ↪→ µe(x, a, s) ∈ R+,

which is Lipschitz continuous in its three variables, strictly increasing in x when a and s are held fixed, and strictly
decreasing in a when x and s are fixed.

With the definition above, for a given level of electricity supply and for given allowance and fuel prices, µe =
µe(x, a, s) represents the rate at which the market emits, measured in tons of CO2 per hour. Cumulative emissions
are then computed by integrating the market emissions rate over time. The monotonicity property in x makes
sense since any increase in supply can only increase the emissions rate. Similarly, as the cost of carbon increases the
variable costs (and hence the bids) of pollution intensive generators increase by more than those of environmentally
friendlier ones. Dirtier technologies become relatively more expensive and are likely to be scheduled further down
in the merit order. As a result cleaner technologies are brought online earlier, hence the monotonicity in a.

In §5.2 we propose a specific functional form for µe consistent with the bid stack model introduced in §5.1.

3.2. The Pricing Problem. We shall use the following notation. For a fixed time horizon T ∈ R+, let (W 0
t ,Wt)t∈[0,T ]

be a (n+ 1)-dimensional standard Wiener process on a probability space (Ω,F ,P), F0 := (F0
t ) the filtration gener-

ated by W 0, FW := (FWt ) the filtration generated by W , and F := F0∨FW the market filtration. All relationships
between random variables are to be understood in the almost surely sense.

Consumers’ demand for electricity is given by an F0
t -adapted stochastic process (Dt). In response to this demand

producers supply electricity, and we assume that demand and supply are always in equilibrium, so that at any
time t ∈ [0, T ] an amount Dt of electricity is supplied. The prices of fuels are observed FWt -adapted stochastic
processes (St)t∈[0,T ], where St := (S1

t , . . . , S
n
t ). If the price of an allowance certificate at time t, say At, becomes

available, as we will see in §3.3, (At)T∈[0,T ] will be constructed as a Ft-adapted stochastic process solving a Forward
Backward Stochastic Differential Equation (FBSDE). The rate of emission µe(Dt, At, St) can then be evaluated
and the cumulative emissions computed by integration over time, resulting in a Ft-adapted process (Et)t∈[0,T ].

In order to avoid the difficulties of estimating the market price of risk (see for example [Eydeland and Wolyniec, 2003]
for a discussion of some possible ways to approach this thorny issue), we choose to specify the dynamics of the
processes (Dt)t∈[0,T ] and (St)t∈[0,T ] under a risk neutral measure Q ∼ P chosen by the market for pricing purposes.

3.3. An FBSDE for the Allowance Price. We assume that at time t = 0, demand for electricity is known.
Thereafter, it evolves according to an Itô diffusion. Specifically, for t ∈ [0, T ], demand for electricity Dt is the
unique strong solution of a stochastic differential equation of the form

(1) dDt = µd(t,Dt)dt+ σd(Dt)dW̃
0
t , D0 = d0 ∈ (0, x̄),

where (W̃t) is an Ft-adapted Q-Brownian motion. The time dependence of the drift allows us to capture the
seasonality observed in electricity demand.

Similarly to demand, the prices of the fuels used in the production processes satisfy a system of stochastic differential
equations written in a vector form as follows:

(2) dSt = µs(St)dt+ σs(St)dW̃t, S0 = s0 ∈ Rn, t ∈ [0, T ].

Cumulative emissions are measured from the beginning of the compliance period when time t = 0, so that E0 = 0.
Subsequently, they are determined by integrating over the market emissions rate µe introduced in Definition 2. So
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assuming that the price At of an allowance certificate is knwon, the cumulative emissions process is represented by
a bounded variation process; i.e. for t ∈ [0, T ],

(3) dEt = µe(Dt, At, St)dt, E0 = 0.

Note that with this definition the process (Et) is non-decreasing, which makes intuitive sense considering that it
represents a cumulative quantity.

To complete the formulation of the pricing model, it remains to characterize the allowance certificate price process
(At)t∈[0,T ]. If our model is to apply to a one compliance period scheme, in a competitive equilibrium, at the end
of the compliance period t = T , its value is given by a deterministic function of the cumulative emissions:

(4) AT = φ(ET ),

where φ : R ↪→ R is bounded, measurable and non-decreasing. Usually φ(·) := πI[Γ,∞)(·), where π ∈ R+ denotes the
penalty paid in the event of non-compliance and Γ ∈ R+ the cap chosen by the regulator as the aggregate allocation
of certificates. See [Carmona et al., 2010] for details. Since the discounted allowance price is a martingale under
Q, it is equal to the conditional expectation of its terminal value, i.e.

(5) At = exp (r(T − t))EQ [φ(ET )| Ft] , for t ∈ [0, T ],

which implies in particular that the allowance price process (At) is bounded. Since the filtration (Ft) is being gener-
ated by the Wiener processes, it is a consequence of the Martingale Representation Theorem (cf. [Karatzas and Shreve, 1999])

that the allowance price can be represented as an Itô integral with respect to the Brownian motion (W̃ 0
t , W̃t). It

follows that

(6) dAt = rAtdt+ Z0
t dW̃ 0

t + Zt · dW̃t, for t ∈ [0, T ]

for some Ft-adapted square integrable process (Z0
t , Zt).

Combining equations (1), (2), (3), (4) and (6), the pricing problem can be reformulated as the solution of the
FBSDE

(7)





dDt = µd(t,Dt)dt+ σd(Dt)dW̃
0
t , D0 = d0 ∈ (0, x̄),

dSt = µs(St)dt+ σs(St)dW̃t, S0 = s0 ∈ Rn,
dEt = µe(Dt, At, St)dt, E0 = 0,

dAt = rAtdt+ Z0
t dW̃ 0

t + Zt · dW̃t, AT = φ(ET ).

Notice that the first two equations are standard stochastic differential equations (in the forward direction of time)
which do not depend upon the cumulative emissions and the allowance price. We will choose their coefficients so
that existence and uniqueness of solutions hold. To be more specific we make the following assumptions on the
coefficients of (7):

Assumption 2. The functions µd : [0, T ] × [0, x̄] ↪→ R, σd : [0, x̄] ↪→ R, µs : Rn ↪→ Rn, σs : Rn ↪→ Rn × Rn are
such that the first two equations in (7) have a unique strong solution.

3.4. Existence of a Solution to the Allowance Pricing Problem.

Theorem 1. We assume that Assumption 2 holds and that µe is Lipshitz with respect to the variable a uniformly
in x and s, and that µe(x, 0, s) is uniformly bounded in x and s. Then if φ is bounded and Lipschitz, the FBSDE
(7) has a unique square integrable solution.

Proof. Assumption 2 being satisfied, and the first two equations of (7) being decoupled from the remaining ones,
there exist adapted processes (Dt) and (St) with values in [0, x̄] and Rn respectively, unique strong solutions of
the first two equations of (7). Once these two processes are constructed, we can plug their values into the last
two equations of (7), and treat the resulting equations as an FBSDE with random coefficients. Existence and
uniqueness hold because of Theorem 7.1 of [Ma et al., 2011] 1. Strictly speaking this result is only proved for one-
dimensional processes. In the present situation, while Et and At are indeed one-dimensional, the Wiener process
is (n + 1)-dimensional and we cannot apply directly Theorem 7.1 of [Ma et al., 2011]. However, a close look at
the proof of this result shows that what is really needed is to prove the well-posedness of the characteristic BSDE,
and the boundedness of its solution and the solutions of the dominating Ordinary Differential Equations (ODE).
In the present situation, these equations are rather simple due to the fact that Et has bounded variation, and as a
consequence, its volatility vanishes. The two dominating ODEs can be solved explicitly and one can check that the

1We would like to thank Francois Delarue for suggesting this strategy and the use of [Ma et al., 2011] in the present set-up.
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solutions are bounded by inspection. Moreover, the function φ for the terminal condition being uniformly Lipschitz,
the characteristic BSDE is one-dimensional, though driven by a multi-dimensional Brownian motion, its terminal
condition is bounded, and Kobylanski’s comparison results (see the original contribution [Kobylanski, 2000]) can
be used to conclude the proof. �

The above existence result is proven for a terminal condition given by a smooth function φ. As already mentioned
earlier, single compliance period equilibrium models most often require that the function φ take two values, and
the terminal condition φ(ET ) equal the penalty when the regulatory cap is exceeded, i.e. when ET > Γ, and zero
when ET < Γ. [Carmona and Delarue, 2012] proved that a weaker form of existence and uniqueness of a solution
to the FBSDE still holds when φ is discontinuous (in particular when φ is an indicator function). Given that the
decoupling field constructed in [Ma et al., 2011] is uniformly Lipschitz, we conjecture that a proof in the spirit of
the one given in [Carmona and Delarue, 2012] should work here and provide this weaker form of existence and
uniqueness. However, Carmona and Delarue also proved that under a strict monotonicity assumption on µe (which
should hold in our case for intuitive reasons), the aggregate emissions were equal with positive probability to the
cap at the end of the compliance period, and the terminal condition could not be prescribed for all the scenarios.
We suspect that in the present situation, the cumulative emissions equal the cap (i.e. ET = Γ) for a set of scenarios
of positive probability, and the terminal price of an allowance AT cannot be prescribed in advance on this set of
scenarios.

4. Valuing Clean Spread Options

In this section we consider the problem of spread option pricing as described in the introduction. Whether the goal
is to value a physical asset or risk manage financial positions, one needs to compute the price of a European call
option on the difference between the price of electricity and the costs of production for a particular power plant.
The costs that we take into account are the fixed operation and maintenance costs, the cost of the fuel needed to
generate one MWh of electricity and the cost of the ensuing emissions. Letting the Ft-adapted process (Pt) denote
the spot price of electricity, and recasting the informal discussion of the introduction with the notation we chose
to allow for several input fuels, a clean spread option with maturity τ ∈ [0, T ] is characterized by the payoff

(Pτ − hvSvτ − evAτ −K)
+
,

where K represents the value of the fixed operation and maintenance costs, hv ∈ R++ and ev ∈ R++ denote the
specific heat and emissions rates of the power plant under consideration, and Sv ∈ {S1, . . . , Sn} is the price at time
τ of the fuel used in the production of electricity. In the special case when Sv is the price of coal (gas) the option
is known as a clean dark (spark) spread option.

Since we are pricing by expectation, the value V vt of the clean spread is given by the conditional expectation under
the pricing measure of the discounted payoff; i.e.

V vt = exp(−r(τ − t))EQ
[
(Pτ − hvSvτ − evAτ −K)

+ |Ft
]
, for t ∈ [0, τ ].

5. A Concrete Two-Fuel Model

We now turn to the special case of two fuels, coal and gas.

5.1. The Bid Stack. Our bid stack model is a slight variation on the one we proposed in [Carmona et al., 2012a].
Here we extend to include the cost of emissions as part of the variable costs driving firms’ bids.

We assume that the coal and gas generators have aggregate capacities x̄c and x̄g respectively, so that the market
capacity is x̄ = x̄c + x̄g, and their bid levels are given by linear functions of the allowance price and the price of the
fuel used for the generation of electricity. We denote these bid functions by bc and bg respectively. The coefficients
appearing in these linear functions correspond to the marginal emissions rate (measured in ton equivalent of CO2

per MWh) and the heat rate (measured in MMBtu per MWh) of the technology in question. Specifically, for
i ∈ {c, g}, we assume that

(8) bi(x, a, s) := ei(x)a+ hi(x)s, for (x, a, s) ∈ [0, x̄i]× R× R,
where the marginal emissions rate ei and the heat rate hi are given by

ei(x) := êi exp (mix)

hi(x) := ĥi exp (mix)
, for x ∈ [0, x̄i].
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Here êi, ĥi, mi are strictly positive constants. We allow the marginal emissions rate and the heat rate of each
technology to vary to reflect differences in efficiencies within the fleet of coal and gas generators. Since less efficient
plants with higher heat rates have correspondingly higher emissions rates, it is a reasonable approximation to
assume that for each technology the ratio hi/ei is fixed.

Proposition 1. With bc and bg as above and I = {c, g}, the market bid stack b is given by

b(x, a, s) =





(
êia+ ĥisi

)
exp (mix) , if bi(x, a, si) ≤ bj(0, a, sj) for i, j ∈ I, i 6= j,(

êia+ ĥisi

)
exp (mi(x− x̄j)) , if bi(x− x̄j , a, si) > bj(0, a, sj) for i, j ∈ I, i 6= j,

∏
i∈I

(
êia+ ĥisi

)βi
exp (γx) , otherwise

for (x, a, s) ∈ [0, x̄]× R× R2, where βi =
mM\{i}
mc+mg

and γ =
mcmg
mc+mg

.

Proof. The proof is a straightforward extension of Corollary 1 in [Carmona et al., 2012a]. �

5.2. The Emissions Stack. In order to determine the rate at which the market emits we need to know which
generators are supplying electricity at any time. By the merit order assumption the market operator calls upon firms
in increasing order of their bid levels. Therefore, given electricity, allowance and fuel prices (p, a, s) ∈ R×R×R2,
for i ∈ {c, g}, the set of active generators of fuel type i is given by {x ∈ [0, x̄i] : bi(x, a, s) ≤ p}.
Proposition 2. Assuming that the market bid stack is of the form specified in Proposition 1, the market emissions
rate µe is given by

(9) µe(x, a, s) :=
êg
mg

(
exp

(
mg b̂

−1
g (b(x, a, s), a, sg)

)
− 1
)

+
êc
mc

(
exp

(
mcb̂

−1
c (b(x, a, s), a, sc)

)
− 1
)

for (x, a, s) ∈ [0, x̄]× R× R2, where for i ∈ {c, g} we define

b̂−1
i (p, a, si) := 0 ∨

(
x̄i ∧

1

mi
log

(
p

êia+ ĥisi

))
,

for (p, a, s) ∈ R× R× R2.

Proof. The market emissions rate follows from integrating the marginal emissions rate ei for each technology over
the corresponding set of active generators and then summing the two. Given the monotonicity of bi in x and its

range [0, x̄i], the function b̂−1
i describes the quantity of electricity supplied by fuel i ∈ {c, g}, and hence the required

upper limit of integration. �

5.3. Specifying the Exogenous Stochastic Factors.

The Demand Process. We posit that under Q, the process (Dt) satisfies for t ∈ [0, T ] the stochastic differential
equation

dDt = −η
(
Dt − D̄(t)

)
dt+

√
2ησ̂Dt (x̄−Dt)dW̃t, D0 = d0 ∈ (0, x̄),

where [0, T ] 3 t ↪→ D̄(t) ∈ (0, x̄) is a deterministic function giving the level of mean reversion of the demande and
η, σ̂ ∈ R++ are constants. With this definition (Dt) is a Jacobi diffusion process; it has a linear, mean-reverting
drift component and degenerates on the boundary. Moreover, subject to min(D̄(t), x̄−D̄(t)) ≥ x̄σ̂, for t ∈ [0, T ], the
process remains within the interval (0, x̄) at all times (cf. [Forman and Sørensen, 2008]). To capture the seasonal
character of demand, we choose a function D̄(t) of the form:

D̄(t) := ϕ0 + ϕ1 sin(2πϑt),

where the coefficients will be chosen below.

The Fuel Price Processes. We assume that the prices of coal (Sct ) and gas (Sgt ) follow correlated exponential OU
processes under the measure Q; i.e., for i ∈ {c, g} and t ∈ [0, T ],

dSit = −ηi
(

logSit − s̄i −
σ̂2
i

2ηi

)
Sitdt+ σ̂iS

i
tdW̃

i
t , Si0 = si0 ∈ R++,

where d 〈W c,W g〉t = ρdt.
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ĥc êc mc x̄c ĥg êg mg x̄g x̄
3 0.9 0.00005 12000 7 0.4 0.00003 18000 30000

Table 1. Parameters relating to the bid stack and the emissions stack.

η ϕ0 ϕ1 ϑ σ̂ d0

50 21000 3000 1 0.1 21000

Table 2. Parameters relating to the demand process.

ηc s̄c σ̂c sc0 ηg s̄g σ̂g sg0 ρ
1.5 2 0.5 exp(2) 1.5 2 0.5 exp(2) 0.3

Table 3. Parameters relating to the fuel price processes.

π Γ T r
100 1.4e+08 1 0.05

Table 4. Parameters relating to the cap-and-trade scheme.

6. Numerical Analysis

We now turn to the detailed analysis of the model we propose. For this purpose we consider a number of case
studies in §6.2 to §6.5. To produce the following results we used the numerical schemes explained in Appendix A
and Appendix B.

6.1. Choice of Parameters. The tables in this section summarise the parameters used for the numerical analysis
of our model that follows below. We refer to the parameters specified in Tables 1 - 5 as the ‘base case’ and indicate
whenever we depart from this choice. Note that our parameter choices do not correspond to a particular electricity
market, but that all values are within a realistic realm.

Table 1 summarises the parameters specifying the bid curves. We consider a medium sized electricity market served
by coal and gas generators and with gas being the dominant technology. For the marginal emission rates, Table
1 implies that ec ∈ [0.9, 1.64] and eg ∈ [0.4, 0.69] (both measured in tCO2 per MWh), so that all gas plants are
‘cleaner’ than all coal plants. For the heat rates, we observe that hc ∈ [3, 5.5] and hg ∈ [7, 12] (both measured in
MMBtu per MWh). Using (9) now with Dt = x̄, for 0 ≤ t ≤ T , and the assumption that there are 8760 production
hours in the year, we find, denoting the the maximum cumulative emissions by ē, that ē = 2.13e+ 08.

Table 2 contains the parameters for the demand process (Dt). We model periodicities on an annual and a weekly
time scale and the chosen rate of mean reversion assumes that demand reverts to its (time dependent) mean over
the course of one week.

In Table 3 we summarise the parameters that specify the behavior of the prices of coal and gas. Both are chosen
to be slowly mean-reverting, at least in comparison to demand. To ease analysis, we assume that all parameters
are identical for the two fuels, including mean price levels, both measured in MMBtu.

Table 4 defines the cap-and-trade scheme that we assume to be in place. The duration of the compliance period
T is measured in years and we set the cap at 70% of the upper bound ē for the cumulative emissions, in order to
incentivise a reduction in emissions. This choice of parameters results in A0 being approximately equal to π/2,
a value for which there is significant initial overlap between gas and coal bids in the stack. Furthermore, the
parameters imply a bid stack structure such that at mean levels of coal and gas prices, At = 0 pushes all coal bids
below gas bids, while for At = π almost all coal bids are above all gas bids.

Finally, in Table 5 we specify the four spread option contracts used in the base case scenario to represent high
and low efficiency coal plants, and high and low efficency gas plants. (Note that low efficiency means dirtier and
corresponds to high hv and ev and vice versa.)
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High Eff. Coal Low Eff. Coal High Eff. Gas Low Eff. Gas
hc ec hc ec hg eg hg eg
3.5 1.05 5.0 1.5 7.5 0.43 11.5 0.66

Table 5. Parameters relating to the spread options.

We now consider a series of case studies to investigate various features of the model’s results in turn. As the model
captures many different factors and effects, this allows us to isolate some of the most important implications. In
Case Study I, we investigate the impact on coal and gas plants of different efficiencies of creating an increasingly
strict carbon emissions market. In Case Study II, we assess the impact on these plants of changes in initial fuel
prices. In Case Study III, we compare spread option prices in our model with two simple reduced-form approaches
for At, which allows us to better understand the role of key model features such as bid stack driven abatement.
Finally in Case Study IV, we consider the overall impact of cap-and-trade markets in the electricity sector, by
comparing with a well-known alternative, a fixed carbon tax.

6.2. Case Study I: Impact of the Emissions Market. The first effect that we are interested in studying in
the model is the impact of the cap-and-trade market on clean spread option prices, for increasingly strict levels
of the cap Γ. At one extreme (when the cap is so generous that At ≈ 0, for all t ∈ [0, T ]), results correspond to
the case of a market without a cap and trade system, while at the other extreme (when the cap is so strict that
At ≈ π exp(−r(T − t)), for all t ∈ [0, T ]), there is essentially a very high carbon tax which tends to push most
coal generators above gas generators in the stack. It is intuitively clear that higher carbon prices typically lead to
higher spark spread option prices and lower dark spread option prices, thus favouring gas plants over coal plants,
but the relationships can be more involved as they vary between low efficiency and high efficiency plants.

In Figure 1, we compare spread option prices corresponding to different efficiency generators (i.e., to different
hv, ev in the spread payoff) as a function of maturity τ . ‘High’ and ‘low’ efficiency plant indicates values of hv, ev
chosen to be near the lowest and highest respectively in the stack, as given by Table 5. Within each of the four
subplots, the five lines correspond to five different values of the cap Γ, ranging from very lenient to very strict. We
immediately observe in Figure 1 the seasonality in spread prices caused by the seasonality in power demand. This
is most striking for the low efficiency cases (high hv, ev), as such plants would rarely be used in shoulder months,
particularly in the case of gas. For low efficiency plants, the relationship with cap level (and corresponding initial
allowance price) is as one would expect: a stricter cap greatly increases the value of gas plants and greatly decreases
the value of the dirtier coal plants. This is also true for high efficiency gas plants, although the price difference (in
percentage terms) for different Γ is less, since these are effectively ‘in-the-money’ options, unlike those discussed
above. However, the analysis becomes more complicated for high efficiency coal plants, which tend to be chosen to
run in most market conditions, irrespective of emissions markets. Interestingly, we find that for these options the
relationship with Γ (and hence A0) can be non-monotonic under certain conditions, particularly for high levels of
demand, when the price is set near the very top of the stack. In such cases a stricter cap provides extra benefit
for the cleaner coal plants via higher power prices (typically set by the dirtier coal plants on the margin) which
outweighs the disadvantage of coal plants being replaced by gas plants in the merit order.

6.3. Case Study II: Impact of Fuel Price Changes. Notice that in Table 3, the initial conditions of both gas
and coal have been set to be equal to their long term median levels. We now consider the case that gas price sg0 is
either above or below its long term level, thus inducing a change in the initial merit order. Given the record low
prices of under $2 recently witnessed in the US natural gas market (due primarily to shale gas discoveries), it is
natural to ask how such fuel price variations affect our spread option results. Note however that since ηc = ηg = 1.5
(implying a typical mean reversion time of 8 months), by the end of the trading period, the simulated fuel price
distributions will again be centred near their mean reversion levels. Thus in this case study, we capture a temporary,
not permanent, shift in fuel prices.

In Figure 2, we plot the value of coal and gas power plants, as given by the sum of spread options of all maturities
τ ∈ [0, T ]. In the first plot, we consider high efficiency (low hv and ev) plants, while in the second we consider
low efficiencies. The former are much more likely to operate each day and to generate profits, and are hence much
more valuable than the latter. However, they also show different relationships with sg0, as illustrated for several
different cap levels Γ (like in Case Study I above) which correspond to high, low or medium (base case) values of
A0. Firstly, for low efficiency plants (right plot), we observe that gas plant value is typically decreasing in sg0, as we
expect, since higher gas prices tend to push the bids from gas above those from coal, meaning there is less chance
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Figure 1. Cap strictness analysis for high efficiency coal (top left), low efficiency coal (top right),
high efficiency gas (bottom left) and low efficiency gas (bottom right): Spark and dark spread
option values plotted against maturity, for varying levels of the cap Γ. Note that the five equally-
spaced cap values from 2e+ 08 to 1.2e+ 08 tons of CO2 imply initial allowance prices of $5, $28,
$52, $80, and $94.
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Figure 2. Power Plant Value (sum of spreads over τ) versus sg0 for high efficiency (left) and low
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‘Low A’ to Γ = 1.8e+ 08, with corresponding values A0 = 94, A0 = 52, A0 = 5
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σa ρac ρag σe ρec ρeg
0.6 -0.2 0.4 0.006 -0.2 0.2

Table 6. Parameters for reduced-form comparisons, treating At and Et as GBMs.

that the gas plant will be used for electricity generation. Similarly, coal plant values are typically increasing in sc0,
as more coal plants will be used.2 Note however, that for some cases, the curves flatten out, as no more merit order
changes are possible. This is particularly true for the coal plant when A0 is very high (and hence once gas drops
below a certain point, the coal plant is almost certainly going to remain more expensive than all gas plants) and
for the gas plant when A0 is very low (and hence once coal increases above a certain point, the gas plant is almost
certainly going to remain more expensive than all coal plants).

We now turn our attention to the high efficiency case (left plot), meaning the relatively cheap and clean plants for
each technology. As expected, coal benefits from low values of A0 (ie, a lenient cap) and gas from high values of
A0 (ie, a strict cap). On the other hand, the relationship with sg0 is now increasing for almost all six cases plotted
except that of a gas plant with high A0. While it may seem surprising that for low or medium values of A0, the gas
plant value increase with sg0, this is quite intuitive when one considers that the range of bids from gas generators
widens as sg0 increases, implying that the efficient plants can make a larger profit when the inefficient plants set
the power price. Indeed, as demand is quite high on average, and gas is 60 percent of the market, it is likely that
these efficient gas plants will almost always be ‘in-the-money’ even if coal is lower in the stack. Only in the case
that coal is typically above gas and now marginal (i.e. the high A0 case) is the value of the gas plant decreasing in
sg0 since the plant’s profit margins shrink as gas and coal bids converge.

6.4. Case Study III: Comparison with Reduced-Form. The second analysis we consider is to compare the
results of our structural model for the allowance price, with two other simpler models, both of which belong
to the class of ‘reduced-form’ models. The first of these treats the allowance price itself as a simple Geometric
Brownian Motion (with drift r under Q), and hence Aτ is lognormal at spread maturity, like Scτ and Sgτ . The
second comparison treats the emissions process as a Geometric Brownian Motion (GBM), and retains the digital
terminal condition AT = πI{ET>Γ}. As the drift of (Et) is then simply a constant (chosen to match the initial
value A0 in the full model), there is no feedback from (At) on (Et), or in other words, no abatement induced by
the allowance price. For any time t, At is then given in closed-form by a formula resembling the Black-Scholes
digital option price. In order to fully specify the reduced-form models, we need to choose volatility parameters σa
and σe for each of the GBMs, as well as correlations ρac, ρag and ρec, ρeg with the Brownian Motions driving the
other exogenous factors, coal and gas prices. All of these parameters are chosen to approximately match the levels
of volatility and correlation produced by simulations in the full structural model, and are given in Table 6. Finally,
note that in all three models we compare, the power price is given by the same bid stack function as usual, so our
aim is to isolate and evaluate the effect of our more sophisticated framework for the allowance price, in comparison
to simpler approaches. The cap throughout is Γ = 1.4e+ 08, the base case.

Figure 3 reveals that the difference between the reduced form models and the full structural model is relatively
small for high efficiency gas and coal plants which are typically ‘in-the-money’. In contrast a larger gap appears
for low efficiency cases, where the reduced form models significantly overprice spread options relative to the stack
model. In particular, the case of lognormal emissions produces much higher prices, especially for dark spreads.
The intuition is as follows. In the full model, the bid stack structure automatically leads to lower emissions when
the allowance price is high, and higher emissions when the allowance price is low, producing a mean-reversion-like
effect on the cumulative emissions, keeping the process moving roughly towards the cap, with the final outcome
(compliance or not) in many simulations only becoming clear very close to maturity. In contrast, if Et is a GBM,
much of the uncertainty is often resolved early in the trading period, with At then sticking near zero or π for much
of the period. In such cases, there is a much larger benefit for deep OTM options (low efficiency plants), for which
the tails of the allowance price distribution provide great value either for coal (when the price is near zero) or
for gas (when the price is near the penalty). We observe that in some of the subplots (particularly low efficiency
coal), this extra benefit is indeed realized in the full model, but only very near the end of the trading period when
the volatility of (At) spikes, and the process either rises or falls sharply. In contrast, for the other reduced-form
model with lognormal (At), the volatility of the allowance price is constant throughout and At never moves rapidly
towards zero or the penalty. However, the overall link with fuel and power prices is much weaker when simply

2In this plot, the cases ‘coal - low A’ and ‘gas - high A’ are not included as their values are much greater and hence cannot be shown

conveniently on the same axis.
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Figure 3. Model comparison against reduced-form: Spark and dark spread option values for
varying heat rates, emissions rates and maturities.

using correlated Brownian Motions, which serves to widen the spread distribution in most cases relative to the full
structural model. This result is somewhat similar to the observation in [Carmona et al., 2012a] that a stack model
generally produces lower spread option prices than Margrabe’s formula for correlated lognormals.

6.5. Case Study IV: Cap-and-Trade vs. Carbon Tax. Finally, we wish to investigate the implications of
the model for cap-and-trade systems, as compared with fixed carbon taxes. This question has been much debated
by policy makers as well as academics, and can be roughly summarized as fixing quantity versus fixing price. In
[Carmona et al., 2010], several different designs for cap-and-trade systems are compared to a carbon tax, using
criteria such as cost to society and windfall profits to power generators. Here we follow a related approach by
analyzing the power sector as a whole, but we build on our previous case studies by using spread option prices as
a starting point. Firstly we observe that the total expected discounted profits of the power sector are equal to the
value of all the power plants implied by the bid stack structure, which in turn equals a portfolio of (or integral over)
sums of spread option prices with varying hv and ev. i.e, for each simulation over the period [0, T ], total profits
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Figure 4. Cap-and-trade vs. carbon tax: Power sector profits versus time for the ‘base case’
(left); Total profits over one year for equally-spaced cap values from 1e+ 08 to 1.95e+ 08 tons of
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(total revenues minus total costs) are3

Total Profits =
∑

τ∈[0,T ]

(
PτDτ −

∫ Dτ

0

b(x,Aτ , Sτ )dx

)

=
∑

τ∈[0,T ]

∫ x̄

0

(Pτ − b(x,Aτ , Sτ ))
+

dx

=
∑

τ∈[0,T ]

(∫ x̄c

0

(Pτ − hc(x)Scτ − ec(x)Aτ )
+

dx+

∫ x̄g

0

(Pτ − hg(x)Sgτ − eg(x)Aτ )
+

dx

)
,

where the second line follows from the fact that the events {Pτ ≥ b(x,Aτ , Sτ )} and {Dτ ≥ x} are equal.

Hence, instead of picking particular coal and gas plants with efficiencies specified by the parameters in Table 5,
we now integrate power plant value over all the efficiencies of plants in the stack, as defined by the parameters in
Table 1. For the case of the carbon tax, we simply force At = A0 exp(rt) for all t ∈ [0, T ], including the exponential
function in order to match the mean of the process in the cap-and-trade model. This is equivalent to setting the
volatility σa equal to zero in the GBM model for the allowance price in Case Study III.

In Figure 4, we first plot the expected total market profits in the base case as a function of time. It is interesting
to observe that two important effects occur, pulling the profits in opposite directions, but varying in strength over
the trading period. In particular, although the profits must be equal at time zero, a gap quickly appears in the
early part of the trading period, with expected profits to power generators significantly higher under a carbon
tax than cap-and-trade. However, as maturity approaches, the gap narrows and the order reverses over the final
days, as cap-and-trade generates higher expected profits. These effects can be understood with a little thought.
Firstly, as A0 = 52 in the base case, the bids of coal and gas begin the period at very similar levels, a state which
generally keeps profits low, since the variance of electricity prices is low and the profit margins of both coal and
gas generators are quite low. As time progresses and fuel prices move, the coal and gas bids will tend to drift apart
in most simulations, for example with gas sometimes moving above coal, say. However, in our structural model for
the cap-and-trade scheme, in such a case the higher emissions will induce a higher allowance price, and in turn a
feedback effect due to the coupling in (7), which acts to keep coal and gas bids closer together. A similar argument
can be made for the case of gas bids tending to move below coal bids but then being counteracted by lower allowance
prices. Again we see that the power market structure induces mean reversion on (Et), which in this scenario (of an
averagely strict cap) corresponds to keeping coal and gas bids close together. On the other hand, under a carbon
tax with fixed (or deterministic) At, there is of course no feedback mechanism (price-sensitive abatement), and

3Note that we do not consider here additional issues such as whether allowances are auctioned or freely allocated to generators.

Instead, we assume that allowances are bought on the market by generators as and when they need them.
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bids tend to wander apart. However, as the end of the trading period approaches, in the cap-and-trade system the
allowance price eventually gets pulled to either zero or π, which will separate the bids in one way or the other,
either leading to very large profits for coal plants (if AT = 0) or for gas plants (if AT = π). This is a similar effect
to that discussed when comparing with a lognormal allowance price in Case Study III, as neither a carbon tax nor
a lognormal allowance price model sees the extra volatility near maturity caused by the terminal condition.

Finally, in the second plot of Figure 4, we consider how these conclusions change if the cap is made stricter or more
lenient. Instead of plotting against maturity, we consider the total profits of the power sector over the entire period
[0, T ]. Firstly, we observe that under both forms of emissions regulation, power sector profits are lowest if the cap
is chosen close to base case, under which the bids from coal and gas generators are more tightly clustered together.
Secondly, it is important to notice that the conclusion in the previous discussion that a carbon tax provides more
profits to the power sector does not hold for all scenarios of the cap. In particular, for either very high or very
low values of the cap, the cap-and-trade scheme provides more profits than a tax. The explanation here is that for
the automatic abatement mechanism in the stack to have its largest impact (keeping bids together, and emissions
heading towards the cap), there needs to be significant uncertainty at time zero as to whether the cap will be
reached. The feedback mechanism of a cap-and-trade system then allows this uncertainty to be prolonged through
the period. On the other hand, for an overly strict or overly lenient cap (or similarly for a merit order which does
not allow for much abatement), the second effect discussed above dominates over the first. In other words, the
terminal condition which guarantees large profits to either coal or gas at maturity begins to take precedence earlier
in the trading period, instead of just before maturity as in the base case. Although in practice there are many other
details to consider when comparing different forms of emissions legislation, our stylized single-period model sheds
some light on the differences between cap-and-trade and carbon tax, as well as the clear importance of choosing an
appropriate cap level.

7. Conclusion

As policy makers debate the future of global carbon emissions legislation, the existing cap-and-trade schemes around
the world have already significantly impacted the dynamics of electricity prices and the valuation of real assets,
such as power plants, particularly under the well-known European Union Emissions Trading Scheme. Together
with the recent volatile behaviour of all energy prices (e.g., gas, coal, oil), the introduction of carbon markets has
increased the risk of changes in the merit order of fuel types, known to be a crucial factor in the price setting
mechanism of electricity markets. In the US, the recent sharp drop in natural gas prices is already causing changes
in the merit order, which would be further magnified by any new emissions regulation. Such considerations are
vital for describing the complex dependence structure between electricity, its input fuels, and emissions allowances,
and thus highly relevant for both market participants and policy makers designing emissions trading schemes. In
this paper, we derived the equilibrium carbon allowance price as the solution of an FBSDE, in which feedback from
allowance price on market emission rates is linked to the electricity stack structure. The resulting model specifies
simultaneously both electricity and allowance price dynamics as a function of fuel prices, demand and accumulated
emissions; in this way, it captures consistently the highly state-dependent correlations between all the energy
prices, which would not be achievable in a typical reduced-form approach. We used a PDE representation for the
solution of the pricing FBSDE and implemented a finite difference scheme to solve for the price of carbon allowances.
Finally we compared our model for allowance prices with other reduced-form approaches and analysed its important
implications on price behaviour, spread option pricing and the valuation of physical assets in electricity markets
covered by emissions regulation. The four case studies illustrated the many important considerations needed to
understand the complex joint dynamics of electricity, emissions and fuels, as well as the additional insight that can
be provided by our structural approach.

Appendix A. Numerical Solution of the FBSDE

A.1. Candidate Pricing PDE. The construction of a solution to the FBSDE 7 was done in Theorem 1 by means
of a decoupling random field u representing the solution in the form At = u(t, Et). The existence of this random field
was derived from the results of [Ma et al., 2011], and given its uniqueness and the Markov nature of FBSDE 7, it is
possible to show that u is in fact a function of Dt and St, so that At is in fact of the form At = α(t,Dt, Et, S

c
t , S

g
t )

for some deterministic function α : [0, T ] × [0, x̄] × R++ × [0, ē] ↪→ [0, π]. Standard arguments in the theory of
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FBSDEs show that this α is a viscosity solution of the semilinear PDE:

Lα+Nα = 0, on UT(10)

α = φ(e), on {t = T} × U,(11)

where U := (0, x̄)× R++ × R++ × (0, ē) and UT := [0, T )× U ; the operators L and N are defined by

L :=
∂

∂t
+

1

2
σd(d)2 ∂

2

∂d2
+

1

2
σc(sc)

2 ∂
2

∂s2
c

+
1

2
σg(sg)

2 ∂
2

∂s2
g

+ µd(t, d)
∂

∂d
+ µc(sc)

∂

∂sc
+ µg(sg)

∂

∂sg
− r·

and N := µe(d, ·, (sc, sg)) ∂∂e . As previously, we specify for our purposes that φ(e) = πI[Γ,∞)(e), for e ∈ R.

With regards to the problem (10) the question arises at which parts of the boundary we need to specify boundary
conditions and, given the original stochastic problem (7), of what form these conditions should be. To answer the
former question we consider the Fichera function f at points of the boundary where one or more of the diffusion
coefficients disappear (cf. [Oleinik and Radkevic, 1973]). Defining n := (nd, nc, ng, ne) to be the inward normal
vector to the boundary, Fichera’s function for the operator (N + L) reads

(12) f(t, d, sc, sg, e) :=

(
µd −

1

2

∂

∂d
σ2
d

)
nd +

(
µc −

1

2

∂

∂sc
σ2
c −

∂

∂sc
ρσcσg

)
nc

+

(
µg −

1

2

∂

∂sg
σ2
g −

∂

∂sg
ρσcσg

)
ng + µene, on ∂UT .

At points of the boundary where f ≥ 0 the direction of information propagation is outward and we do not need
to specify any boundary conditions; at points where f < 0 information is inward flowing and boundary conditions
have to be specified. We evaluate (12) for the choice of coefficients presented in §5.3.

Considering the parts of the boundary corresponding to d = 0 and d = x̄, we find that f ≥ 0 if and only if
min(D̄(t), x̄ − D̄(t)) ≥ x̄σ̂, which is the same condition prescribed in §5.3 to guarantee that the Jacobi diffusion
stays within the interval (0, x̄). At points of the boundary corresponding to e = 0, we find that f ≥ 0 always. On
the part of the boundary on which e = ē, f < 0 except at the point (d, ·, ·, e) = (0, ·, ·, ē), where f = 0, an ambiguity
which could be resolved by smoothing the domain. Similarly, we find that f ≥ 0 on parts of the boundary where
sc = 0 or sg = 0. Therefore, no boundary conditions are necessary except when e = ē, where we prescribe

(13) α = exp(−r(T − t))π, on UT |e=ē.
In addition we need to specify an asymptotic condition for large values of sc and sg. We choose to consider solutions
that, for i ∈ {c, g}, satisfy

(14)
∂α

∂si
∼ 0, on UT |si→∞.

A.2. An Implicit - Explicit Finite Difference Scheme. We approximate the domain ŪT by a finite grid
spanning [0, T ] × [0, x̄] × [0, s̄c] × [0, s̄g] × [0, ē]. For the discretization we choose mesh widths ∆d, ∆sc, ∆sg, ∆e
and a time step ∆t. The discrete mesh points (tk, dm, sci , sgj , en) are then defined by

tk := k∆t, dm := m∆d,

sci := i∆sc, sgj := j∆sg, en := n∆e.

The finite difference scheme we employ produces approximations αkm,i,j,n, which are assumed to converge to the
true solution α as the mesh width tends to zero.

Since the partial differential equation (10) is posed backwards in time with a terminal condition, we choose a
backward finite difference for the time derivative. In order to achieve better stability properties we make the part
of the scheme relating to the linear operator L implicit; the part relating to the operator N is made explicit in
order to handle the nonlinearity.

In the e-direction we are approximating a conservation law PDE with discontinuous terminal condition. (For an
in depth discussion of numerical schemes for this type of equation see [LeVeque, 1990]) The first derivative in
the s-direction, relating to the nonlinear part of the partial differential equation, is discretised against the drift
direction using a one-sided upwind difference. Because characteristic information is propagating in the direction of
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decreasing e, this one-sided difference is also used to calculate the value of the approximation on the part of the
boundary corresponding to e = 0. At the part of the boundary corresponding to e = ē we apply the condition (13).

In the d-direction the equation is elliptic everywhere except on the boundary, where it degenerates. Therefore,
we expect the convection coefficient to be much larger than the diffusion coefficient near the boundaries. In order
to keep the discrete maximum principle we again use a one-sided upwind difference for the first order derivative.
Thereby we have to pay attention that due to the mean-reverting nature of (Dt) the direction of information
propagation and therefore the upwind direction changes as the sign of µd changes. The same upwind difference is
also used to calulate the value of the approximation at the boundaries d = 0 and d = x̄. To discretize the second
order derivative we use central differences.

The sc and sg-direction are treated similarly to the d-direction. We use one-sided upwind differences for the first
order derivatives, thereby taking care of the boundaries corresponding to sc = 0 and sg = 0. The second order
derivatives are discretized using central differences. At the boundary corresponding to sc = s̄c and sg = s̄g we
apply the asymptotic condition (14) as a boundary condition.

With smooth boundary data, on a smooth domain, the scheme described above can be expected to exhibit first
order convergence. In our setting, we expect the discontinuous terminal condition to have adverse effects on the
convergence rate.

Appendix B. Numerical Calculation of Spread Prices

B.1. Time Discretisation of SDEs. Let (Dk, S
c
k, S

g
k , Ek, Ak) denote the discrete time approximation to the

FBSDE solution (Dt, S
c
t , S

g
t , Et, At) on the time grid 0 < ∆t < 2∆t < . . . < nk∆t = τ . At each time step we

calculate Ak by interpolating the discrete approximation αkm,i,j,n at (Dk, S
c
k, S

g
k , Ek), beginning with the initial

values D0 = d0, S
c
0 = sc0, S

g
0 = sg0, E0 = 0. The approximations (Dk, S

c
k, S

g
k , Ek) are obtained using a simple Euler

scheme (cf. [Glasserman, 2004]). The discretized version of (Dt) is forced to be instantaneously reflecting at the
boundaries Dk = 0 and Dk = x̄; similarly, the discretized versions of (Sct ) and (Sgt ) are made instantaneously
reflecting at Sck = 0 and Sgk = 0.

B.2. Monte Carlo Calculation of Option Prices. Using this discretization we simulate nmc paths and, as
usual, for t ∈ [0, τ), calculate the mean spark spread price V̂t, given by

V̂t := exp(−r(τ − t)) 1

nmc

nmc∑

i=1

(
b(Di

nk
, Sc,ink , S

g,i
nk
, Aink)− hvSg,ink − evAink

)+
,

where the index i refers to the simulation scenario. The corresponding standard error σ̂v is obtained by

σ̂v :=

√√√√ 1

nmc (nmc − 1)

nmc∑

i=1

(
V ink − V̂τ

)2

.

References
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THE VALUATION OF CLEAN SPREAD OPTIONS: LINKING ELECTRICITY, EMISSIONS

AND FUELS

RENÉ CARMONA, MICHAEL COULON, AND DANIEL SCHWARZ

Abstract. The purpose of the paper is to present a new pricing method for clean spread options, and to illustrate

its main features on a set of numerical examples produced by a dedicated computer code. The novelty of the
approach is embedded in the use of structural models as opposed to reduced-form models which fail to capture

properly the fundamental dependencies between the economic factors entering the production process.

1. Introduction

Spread options are most often used in the commodity and energy markets to encapsulate the profitability of a
production process by comparing the price of a refined product to the costs of production including, but not
limited to, the prices of the inputs to the production process. When the output commodity is electric power, such
spread options are called spark spreads when the electricity is produced from natural gas, and dark spreads when
the electricity is produced from coal. Both processes are the sources of GreenHouse Gas (GHG) emissions, in higher
quantities for the latter than the former. In this paper we concentrate on the production of electricity and CO2

emissions and the resulting dependence structure between prices.

Market mechanisms aimed at controlling CO2 emissions have been implemented throughout the world, and whether
they are mandatory or voluntary, cap-and-trade schemes have helped to put a price on carbon in the US and in
Europe. In the academic literature, equilibrium models have been used to show what practitioners have known all
along, namely that the price put on CO2 by the regulation should be included in the costs of production to set
the price of electricity. (cf. [Carmona et al., 2010]) Strings of spark spread options (options on the spread between
the price of 1MWh of electricity and the cost of the amount of natural gas needed to produce such a MWh) with
maturities covering a given period are most frequently used to value the optionality of a gas power plant which
can be run when it is profitable to do so (namely when the price of electricity is greater than the cost of producing
it), and shut down otherwise. In a nutshell, if an economic agent takes control on day t, of a gas power plant
for a period [T1, T2], then for every day τ ∈ [T1, T2] of this period, he or she can decide to run the power plant
when Pτ > hgS

g
τ + K and book a profit Pτ − hgS

g
τ − K for each unit of power produced, and shut the plant

down if Pτ ≤ hgS
g
τ +K. Moreover, ignoring constraints such as ramp-up rates and start-up costs, this scheduling

is automatically induced when generators bid at the level of their production costs in the day-ahead auction for
power. Here Pτ denotes the price at which one unit (1 MWh) of power can be sold on day τ , Sgτ the price of one
unit of natural gas (typically one MMBtu), hg the efficiency or heat rate of the plant (i.e. the number of units of
natural gas needed to produce one unit of electricity) and K the daily (fixed) costs of operations and maintenance
of the plant. So in this somewhat oversimplified analysis of the optionality of the plant, the value at time t of
the control of the plant operation on day τ can be expressed as e−r(τ−t)E[(Pτ − hgSgτ −K)+|Ft] where as usual,
the exponent + stands for the positive part, i.e. x+ = x when x ≥ 0 and x+ = 0 otherwise, r for the constant
interest rate used as discount factor to compute present values of future cash flows, and Ft denotes the information
available on day t when the conditional expectation is actually computed. So the operational control (for example
as afforded by a tolling contract) of the plant over the period [T1, T2] could be valued on day t as

V PPt =

T2∑

τ=T1

e−r(τ−t)E[(Pτ − hgSgτ −K)+|Ft].

This rather simplistic way of valuing a power generation asset in the spirit of the theory of real options, had far-
reaching implications in the developments of the energy markets, and is the main reason why spread options are
of the utmost importance. However, such a valuation procedure is flawed in the presence of emission regulation
as the costs of production have to include the costs specific to the regulation. To be more specific, the day-τ
potential profit (Pτ − hgSgτ −K)+ of the spark spread has to be modified to (Pτ − hgSgτ − egAτ −K)+ in order
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to accommodate the cost of the regulation. Here Aτ is the price of one allowance certificate worth one ton of CO2

equivalent, and eg is the emission coefficient of the plant, namely the number of tons of CO2 emitted by the plant
during the production of one unit of electricity. Such a spread is often called a clean spread to emphasize the fact
the externality is being paid for, and the real option approach to power plant valuation leads to the following clean
price

V CPPt =

T2∑

τ=T1

e−r(τ−t)E[(Pτ − hgSgτ − egAτ −K)+|Ft]

for the control of the plant over the period [T1, T2] in the presence of the regulation.

In order to price such cross-commodity derivatives, a joint model is clearly required for fuel prices, electricity
prices and carbon allowance prices. Various studies have analyzed the strong links between these price series
(cf. [De Jong and Schneider, 2009, Koenig, 2011]). Many reduced-form price models have been proposed for elec-
tricity (cf. [Benth et al., 2008, Eydeland and Wolyniec, 2003] for examples) with a focus on capturing its styl-
ized features such as seasonality, high volatility, spikes, mean-reversion and fuel price correlation. On the other
hand, many authors have argued that these same features are better captured via a structural approach, mod-
elling the dynamics of underlying factors such as demand (load), capacity and fuel prices (early examples include
[Barlow, 2002, Cartea and Villaplana, 2008, Pirrong and Jermakyan, 2008, Coulon and Howison, 2009]).

Similarly, for carbon emission allowances, exogenously specified processes that model prices directly have been
proposed by some (cf. [Carmona and Hinz, 2011]). Others have instead treated the emissions process as the
exogenously specified underlying factor; in this case the allowance certificate becomes a derivative on cumulative
emissions (cf. [Seifert et al., 2008, Chesney and Taschini, 2012]). However, these models do not take into account
the important feedback from the allowance price to the rate at which emissions are produced in the electricity sector
— a feature, which is crucial for the justification of any implementation of a cap-and-trade scheme. In a discrete-
time framework this feedback mechanism has been addressed, for example in [Coulon, 2009, Carmona et al., 2010].
In continuous-time the problem has been treated in [Carmona et al., 2012b] and [Howison and Schwarz, 2012],
whereby the former models the accumulation of emissions as a function of an exogenously specified electricity price
process, while the latter uses the bid-stack mechanism to infer the emissions rate.

The literature on spread options is extensive. In industry, Margrabe’s classical spread option formula (cf. [Margrabe, 1978])
is still widely used, and has been extended by various authors (see [Carmona and Durrleman, 2003] for an overview)
including to the three commodity case, as required for the pricing of clean spreads (cf. [Alos et al., 2011]).
[Carmona and Sun, 2012] analyse the pricing of two-asset spread options in a multiscale stochastic volatility model.
For electricity markets, pricing formulae for dirty spreads based on structural models have been proposed in
[Carmona et al., 2012a], in which a closed-form formula is derived in the case of K = 0, and in [Aı̈d et al., 2012],
in which semi-closed form formulae are derived for K 6= 0 at the expense of a fixed merit order.

The original contributions of the paper are twofold. First, we express the value of clean spread options in a formula-
tion where demand for power and fuel prices are the only factors whose stochastic dynamics are given exogenously,
and where the prices of power and emission allowances are derived from a bid-stack based structural model and
a forward backward stochastic differential system respectively. The second contribution is the development of a
numerical code for the computation of the solution of the pricing problem. First we solve a 4+1 dimensional
semilinear partial differential equation to compute the price of an emission allowance, and then we use Monte Carlo
techniques to compute the price of the spread option. These computational tools are used to produce the numerical
results of case studies presented in §6 of the paper for the purpose of illustrating the impact of a carbon regulation
on the price of spread options. In this section we first compare the price of spark and dark spread options in two
different markets, one with no emissions regulation in place and the other governed by an increasingly strict cap-
and-trade system. Second, we analyze the impact that different merit order scenarios have on the option prices.
Third, we demonstrate the difference between the structural and the reduced-form approach by comparing the
option prices produced by our model with those produced by two key candidate reduced-form models. Fourth and
last, we contrast two competing policy instruments: cap-and-trade, represented by the model we propose, and a
fixed carbon tax.

2. The Bid Stack: Price Setting in Electricity Markets

In order to capture the dependency of electricity price on production costs and fundamental factors in a realistic
manner, we use a structural model in the spirit of those reviewed in the recent survey of [Carmona and Coulon, 2012].
The premises of structural models for electricity prices depend upon an explicit construction of the supply curve.
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Since electricity is sold at its marginal cost, the electricity spot price is given by evaluation of the supply function
for the appropriate values of factors used to describe the costs of production in the model.

In practice, electricity producers submit day-ahead bids to a central market operator, whose task it is to allocate
the production of electricity amongst them. Typically, firms’ bids have the form of price-quantity pairs, with each
pair comprising the amount of electricity the firm is willing to produce, and the price at which the firm is willing
to sell this quantity. Given the large number of generators in most markets, it is common in structural models
to approximate the resulting step function of market bids by a continuous increasing curve. Firms’ bid levels are
determined by their costs of production. An important feature of our model, distinguishing it from most of the
commonly used structural models is to include, as part of the production costs, the costs incurred because of the
existence of an emissions regulation.

We assume that, when deciding which firms to call upon to produce electricity, the market operator adheres to the
merit order, a rule by which cheaper production units are called upon before more expensive ones. For simplicity,
operational and transmission constraints are not considered.

Assumption 1. The market operator arranges bids according to the merit order, in increasing order of production
costs.

The map resulting from ordering market supply in increasing order of electricity costs of production is what is
called the bid stack. As it is one of the important building blocks of our model, we define it in a formal way for
later convenience.

Definition 1. The bid stack is given by a measurable function

b : [0, x̄]× R× Rn 3 (x, a, s) ↪→ b(x, a, s) ∈ R,

with the property that for each fixed (a, s) ∈ R× Rn, the function [0, x̄] 3 x ↪→ b(x, a, s) is strictly increasing.

In this definition, x̄ ∈ R++ represents the market capacity (measured in MWh) and the variable x the supply of
electricity. The integer n ∈ N \ {0} gives the number of economic factors (typically the prices in e of the fuels
used in the production of electricity), and s ∈ Rn the numeric values of these factors. Here and throughout the
rest of the paper the cost of carbon emissions (measured in e per metric ton of CO2) is denoted by a. So for
a given allowance price, say a, and fuel prices, say s, the market is able to supply x units of electricity at price
level b = b(x, a, s) (measured in e per MWh). In other words, b(x, a, s) represents the bid level of the marginal
production unit in the event that demand equals x.

The choice of a function b which captures the subtle dependence of the electricity price upon the level of supply
and the production costs, is far from trivial, and different approaches have been considered in the literature, as
reviewed recently by [Carmona and Coulon, 2012]. In §5.1 we extend the model proposed in [Carmona et al., 2012a]
to include the cost of carbon as part of the variable costs driving bid levels.

3. Risk-Neutral Pricing of Allowance Certificates

As the inclusion of the cost of emission regulation in the valuation of spread options is the main thrust of
the paper, we explain how emission allowances are priced in our model. The model we introduce is close to
[Howison and Schwarz, 2012]. However we extend the results found therein to allow the equilibrium bids of gener-
ators to be stochastic and driven by fuel prices, a generalization that is vital for our purpose.

We suppose that carbon emissions in the economy are subject to cap-and-trade regulation structured as follows:
at the end of the compliance period, each registered firm needs to offset its cumulative emissions with emission
allowances or incur a penalty for each excess ton of CO2 not covered by a redeemed allowance certificate. Initially,
firms acquire allowance certificates through free allocation, e.g. through National Allocation Plans (NAP) like in
the initial phase of the European Union (EU) Emissions Trading Scheme (ETS), or by purchasing them at auctions
like in the Regional Greenhouse Gas Initiative (RGGI) in the North East of the US. Allowances change hands
throughout the compliance period. Typically, a firm which thinks that its initial endowment will not suffice to
cover its emissions will buy allowances, while firms expecting a surplus will sell them. Adding to these naturals,
speculators enter the market providing liquidity. Allowances are typically traded in the form of forward contracts
and options. In this paper, we denote by At the spot price of an allowance certificate maturing at the end of the
compliance period. Because their cost of carry is negligible, we treat them as financial products liquidly traded in
a market without frictions, and in which long and short positions can be taken.
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In a competitive equilibrium, the level of cumulative emissions relative to the cap (i.e. the number of allowance
certificates issued by the regulation authority) determines whether — at the end of the compliance period — firms
will be subjected to a penalty payment and create a demand for allowance certificates. See [Carmona et al., 2010]
for details. For this reason, allowance certificates should be regarded as derivatives on the emissions accumulated
throughout the trading period. This type of option written on a non-tradable underlying interest is rather frequent
in the energy markets: temperature options are a case in point.

3.1. The Market Emissions Rate. As evidenced by the above discussion, the rate at which CO2 is emitted
in the atmosphere as a result of electricity production has to be another important building block of our model.
Clearly at any given time, this rate is a function of the amount of electricity produced and because of their impact
on the merit order, the variable costs of production, including fuel prices, and notably, the carbon allowance price
itself.

Definition 2. The market emissions rate is given by a bounded function

µe : [0, x̄]× R× Rn 3 (x, a, s) ↪→ µe(x, a, s) ∈ R+,

which is Lipschitz continuous in its three variables, strictly increasing in x when a and s are held fixed, and strictly
decreasing in a when x and s are fixed.

With the definition above, for a given level of electricity supply and for given allowance and fuel prices, µe =
µe(x, a, s) represents the rate at which the market emits, measured in tons of CO2 per hour. Cumulative emissions
are then computed by integrating the market emissions rate over time. The monotonicity property in x makes
sense since any increase in supply can only increase the emissions rate. Similarly, as the cost of carbon increases the
variable costs (and hence the bids) of pollution intensive generators increase by more than those of environmentally
friendlier ones. Dirtier technologies become relatively more expensive and are likely to be scheduled further down
in the merit order. As a result cleaner technologies are brought online earlier, hence the monotonicity in a.

In §5.2 we propose a specific functional form for µe consistent with the bid stack model introduced in §5.1.

3.2. The Pricing Problem. We shall use the following notation. For a fixed time horizon T ∈ R+, let (W 0
t ,Wt)t∈[0,T ]

be a (n+ 1)-dimensional standard Wiener process on a probability space (Ω,F ,P), F0 := (F0
t ) the filtration gener-

ated by W 0, FW := (FWt ) the filtration generated by W , and F := F0∨FW the market filtration. All relationships
between random variables are to be understood in the almost surely sense.

Consumers’ demand for electricity is given by an F0
t -adapted stochastic process (Dt). In response to this demand

producers supply electricity, and we assume that demand and supply are always in equilibrium, so that at any
time t ∈ [0, T ] an amount Dt of electricity is supplied. The prices of fuels are observed FWt -adapted stochastic
processes (St)t∈[0,T ], where St := (S1

t , . . . , S
n
t ). If the price of an allowance certificate at time t, say At, becomes

available, as we will see in §3.3, (At)T∈[0,T ] will be constructed as a Ft-adapted stochastic process solving a Forward
Backward Stochastic Differential Equation (FBSDE). The rate of emission µe(Dt, At, St) can then be evaluated
and the cumulative emissions computed by integration over time, resulting in a Ft-adapted process (Et)t∈[0,T ].

In order to avoid the difficulties of estimating the market price of risk (see for example [Eydeland and Wolyniec, 2003]
for a discussion of some possible ways to approach this thorny issue), we choose to specify the dynamics of the
processes (Dt)t∈[0,T ] and (St)t∈[0,T ] under a risk neutral measure Q ∼ P chosen by the market for pricing purposes.

3.3. An FBSDE for the Allowance Price. We assume that at time t = 0, demand for electricity is known.
Thereafter, it evolves according to an Itô diffusion. Specifically, for t ∈ [0, T ], demand for electricity Dt is the
unique strong solution of a stochastic differential equation of the form

(1) dDt = µd(t,Dt)dt+ σd(Dt)dW̃
0
t , D0 = d0 ∈ (0, x̄),

where (W̃t) is an Ft-adapted Q-Brownian motion. The time dependence of the drift allows us to capture the
seasonality observed in electricity demand.

Similarly to demand, the prices of the fuels used in the production processes satisfy a system of stochastic differential
equations written in a vector form as follows:

(2) dSt = µs(St)dt+ σs(St)dW̃t, S0 = s0 ∈ Rn, t ∈ [0, T ].

Cumulative emissions are measured from the beginning of the compliance period when time t = 0, so that E0 = 0.
Subsequently, they are determined by integrating over the market emissions rate µe introduced in Definition 2. So
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assuming that the price At of an allowance certificate is knwon, the cumulative emissions process is represented by
a bounded variation process; i.e. for t ∈ [0, T ],

(3) dEt = µe(Dt, At, St)dt, E0 = 0.

Note that with this definition the process (Et) is non-decreasing, which makes intuitive sense considering that it
represents a cumulative quantity.

To complete the formulation of the pricing model, it remains to characterize the allowance certificate price process
(At)t∈[0,T ]. If our model is to apply to a one compliance period scheme, in a competitive equilibrium, at the end
of the compliance period t = T , its value is given by a deterministic function of the cumulative emissions:

(4) AT = φ(ET ),

where φ : R ↪→ R is bounded, measurable and non-decreasing. Usually φ(·) := πI[Γ,∞)(·), where π ∈ R+ denotes the
penalty paid in the event of non-compliance and Γ ∈ R+ the cap chosen by the regulator as the aggregate allocation
of certificates. See [Carmona et al., 2010] for details. Since the discounted allowance price is a martingale under
Q, it is equal to the conditional expectation of its terminal value, i.e.

(5) At = exp (r(T − t))EQ [φ(ET )| Ft] , for t ∈ [0, T ],

which implies in particular that the allowance price process (At) is bounded. Since the filtration (Ft) is being gener-
ated by the Wiener processes, it is a consequence of the Martingale Representation Theorem (cf. [Karatzas and Shreve, 1999])

that the allowance price can be represented as an Itô integral with respect to the Brownian motion (W̃ 0
t , W̃t). It

follows that

(6) dAt = rAtdt+ Z0
t dW̃ 0

t + Zt · dW̃t, for t ∈ [0, T ]

for some Ft-adapted square integrable process (Z0
t , Zt).

Combining equations (1), (2), (3), (4) and (6), the pricing problem can be reformulated as the solution of the
FBSDE

(7)





dDt = µd(t,Dt)dt+ σd(Dt)dW̃
0
t , D0 = d0 ∈ (0, x̄),

dSt = µs(St)dt+ σs(St)dW̃t, S0 = s0 ∈ Rn,
dEt = µe(Dt, At, St)dt, E0 = 0,

dAt = rAtdt+ Z0
t dW̃ 0

t + Zt · dW̃t, AT = φ(ET ).

Notice that the first two equations are standard stochastic differential equations (in the forward direction of time)
which do not depend upon the cumulative emissions and the allowance price. We will choose their coefficients so
that existence and uniqueness of solutions hold. To be more specific we make the following assumptions on the
coefficients of (7):

Assumption 2. The functions µd : [0, T ] × [0, x̄] ↪→ R, σd : [0, x̄] ↪→ R, µs : Rn ↪→ Rn, σs : Rn ↪→ Rn × Rn are
such that the first two equations in (7) have a unique strong solution.

3.4. Existence of a Solution to the Allowance Pricing Problem.

Theorem 1. We assume that Assumption 2 holds and that µe is Lipshitz with respect to the variable a uniformly
in x and s, and that µe(x, 0, s) is uniformly bounded in x and s. Then if φ is bounded and Lipschitz, the FBSDE
(7) has a unique square integrable solution.

Proof. Assumption 2 being satisfied, and the first two equations of (7) being decoupled from the remaining ones,
there exist adapted processes (Dt) and (St) with values in [0, x̄] and Rn respectively, unique strong solutions of
the first two equations of (7). Once these two processes are constructed, we can plug their values into the last
two equations of (7), and treat the resulting equations as an FBSDE with random coefficients. Existence and
uniqueness hold because of Theorem 7.1 of [Ma et al., 2011] 1. Strictly speaking this result is only proved for one-
dimensional processes. In the present situation, while Et and At are indeed one-dimensional, the Wiener process
is (n + 1)-dimensional and we cannot apply directly Theorem 7.1 of [Ma et al., 2011]. However, a close look at
the proof of this result shows that what is really needed is to prove the well-posedness of the characteristic BSDE,
and the boundedness of its solution and the solutions of the dominating Ordinary Differential Equations (ODE).
In the present situation, these equations are rather simple due to the fact that Et has bounded variation, and as a
consequence, its volatility vanishes. The two dominating ODEs can be solved explicitly and one can check that the

1We would like to thank Francois Delarue for suggesting this strategy and the use of [Ma et al., 2011] in the present set-up.
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solutions are bounded by inspection. Moreover, the function φ for the terminal condition being uniformly Lipschitz,
the characteristic BSDE is one-dimensional, though driven by a multi-dimensional Brownian motion, its terminal
condition is bounded, and Kobylanski’s comparison results (see the original contribution [Kobylanski, 2000]) can
be used to conclude the proof. �

The above existence result is proven for a terminal condition given by a smooth function φ. As already mentioned
earlier, single compliance period equilibrium models most often require that the function φ take two values, and
the terminal condition φ(ET ) equal the penalty when the regulatory cap is exceeded, i.e. when ET > Γ, and zero
when ET < Γ. [Carmona and Delarue, 2012] proved that a weaker form of existence and uniqueness of a solution
to the FBSDE still holds when φ is discontinuous (in particular when φ is an indicator function). Given that the
decoupling field constructed in [Ma et al., 2011] is uniformly Lipschitz, we conjecture that a proof in the spirit of
the one given in [Carmona and Delarue, 2012] should work here and provide this weaker form of existence and
uniqueness. However, Carmona and Delarue also proved that under a strict monotonicity assumption on µe (which
should hold in our case for intuitive reasons), the aggregate emissions were equal with positive probability to the
cap at the end of the compliance period, and the terminal condition could not be prescribed for all the scenarios.
We suspect that in the present situation, the cumulative emissions equal the cap (i.e. ET = Γ) for a set of scenarios
of positive probability, and the terminal price of an allowance AT cannot be prescribed in advance on this set of
scenarios.

4. Valuing Clean Spread Options

In this section we consider the problem of spread option pricing as described in the introduction. Whether the goal
is to value a physical asset or risk manage financial positions, one needs to compute the price of a European call
option on the difference between the price of electricity and the costs of production for a particular power plant.
The costs that we take into account are the fixed operation and maintenance costs, the cost of the fuel needed to
generate one MWh of electricity and the cost of the ensuing emissions. Letting the Ft-adapted process (Pt) denote
the spot price of electricity, and recasting the informal discussion of the introduction with the notation we chose
to allow for several input fuels, a clean spread option with maturity τ ∈ [0, T ] is characterized by the payoff

(Pτ − hvSvτ − evAτ −K)
+
,

where K represents the value of the fixed operation and maintenance costs, hv ∈ R++ and ev ∈ R++ denote the
specific heat and emissions rates of the power plant under consideration, and Sv ∈ {S1, . . . , Sn} is the price at time
τ of the fuel used in the production of electricity. In the special case when Sv is the price of coal (gas) the option
is known as a clean dark (spark) spread option.

Since we are pricing by expectation, the value V vt of the clean spread is given by the conditional expectation under
the pricing measure of the discounted payoff; i.e.

V vt = exp(−r(τ − t))EQ
[
(Pτ − hvSvτ − evAτ −K)

+ |Ft
]
, for t ∈ [0, τ ].

5. A Concrete Two-Fuel Model

We now turn to the special case of two fuels, coal and gas.

5.1. The Bid Stack. Our bid stack model is a slight variation on the one we proposed in [Carmona et al., 2012a].
Here we extend to include the cost of emissions as part of the variable costs driving firms’ bids.

We assume that the coal and gas generators have aggregate capacities x̄c and x̄g respectively, so that the market
capacity is x̄ = x̄c + x̄g, and their bid levels are given by linear functions of the allowance price and the price of the
fuel used for the generation of electricity. We denote these bid functions by bc and bg respectively. The coefficients
appearing in these linear functions correspond to the marginal emissions rate (measured in ton equivalent of CO2

per MWh) and the heat rate (measured in MMBtu per MWh) of the technology in question. Specifically, for
i ∈ {c, g}, we assume that

(8) bi(x, a, s) := ei(x)a+ hi(x)s, for (x, a, s) ∈ [0, x̄i]× R× R,
where the marginal emissions rate ei and the heat rate hi are given by

ei(x) := êi exp (mix)

hi(x) := ĥi exp (mix)
, for x ∈ [0, x̄i].
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Here êi, ĥi, mi are strictly positive constants. We allow the marginal emissions rate and the heat rate of each
technology to vary to reflect differences in efficiencies within the fleet of coal and gas generators. Since less efficient
plants with higher heat rates have correspondingly higher emissions rates, it is a reasonable approximation to
assume that for each technology the ratio hi/ei is fixed.

Proposition 1. With bc and bg as above and I = {c, g}, the market bid stack b is given by

b(x, a, s) =





(
êia+ ĥisi

)
exp (mix) , if bi(x, a, si) ≤ bj(0, a, sj) for i, j ∈ I, i 6= j,(

êia+ ĥisi

)
exp (mi(x− x̄j)) , if bi(x− x̄j , a, si) > bj(0, a, sj) for i, j ∈ I, i 6= j,

∏
i∈I

(
êia+ ĥisi

)βi
exp (γx) , otherwise

for (x, a, s) ∈ [0, x̄]× R× R2, where βi =
mM\{i}
mc+mg

and γ =
mcmg
mc+mg

.

Proof. The proof is a straightforward extension of Corollary 1 in [Carmona et al., 2012a]. �

5.2. The Emissions Stack. In order to determine the rate at which the market emits we need to know which
generators are supplying electricity at any time. By the merit order assumption the market operator calls upon firms
in increasing order of their bid levels. Therefore, given electricity, allowance and fuel prices (p, a, s) ∈ R×R×R2,
for i ∈ {c, g}, the set of active generators of fuel type i is given by {x ∈ [0, x̄i] : bi(x, a, s) ≤ p}.
Proposition 2. Assuming that the market bid stack is of the form specified in Proposition 1, the market emissions
rate µe is given by

(9) µe(x, a, s) :=
êg
mg

(
exp

(
mg b̂

−1
g (b(x, a, s), a, sg)

)
− 1
)

+
êc
mc

(
exp

(
mcb̂

−1
c (b(x, a, s), a, sc)

)
− 1
)

for (x, a, s) ∈ [0, x̄]× R× R2, where for i ∈ {c, g} we define

b̂−1
i (p, a, si) := 0 ∨

(
x̄i ∧

1

mi
log

(
p

êia+ ĥisi

))
,

for (p, a, s) ∈ R× R× R2.

Proof. The market emissions rate follows from integrating the marginal emissions rate ei for each technology over
the corresponding set of active generators and then summing the two. Given the monotonicity of bi in x and its

range [0, x̄i], the function b̂−1
i describes the quantity of electricity supplied by fuel i ∈ {c, g}, and hence the required

upper limit of integration. �

5.3. Specifying the Exogenous Stochastic Factors.

The Demand Process. We posit that under Q, the process (Dt) satisfies for t ∈ [0, T ] the stochastic differential
equation

dDt = −η
(
Dt − D̄(t)

)
dt+

√
2ησ̂Dt (x̄−Dt)dW̃t, D0 = d0 ∈ (0, x̄),

where [0, T ] 3 t ↪→ D̄(t) ∈ (0, x̄) is a deterministic function giving the level of mean reversion of the demande and
η, σ̂ ∈ R++ are constants. With this definition (Dt) is a Jacobi diffusion process; it has a linear, mean-reverting
drift component and degenerates on the boundary. Moreover, subject to min(D̄(t), x̄−D̄(t)) ≥ x̄σ̂, for t ∈ [0, T ], the
process remains within the interval (0, x̄) at all times (cf. [Forman and Sørensen, 2008]). To capture the seasonal
character of demand, we choose a function D̄(t) of the form:

D̄(t) := ϕ0 + ϕ1 sin(2πϑt),

where the coefficients will be chosen below.

The Fuel Price Processes. We assume that the prices of coal (Sct ) and gas (Sgt ) follow correlated exponential OU
processes under the measure Q; i.e., for i ∈ {c, g} and t ∈ [0, T ],

dSit = −ηi
(

logSit − s̄i −
σ̂2
i

2ηi

)
Sitdt+ σ̂iS

i
tdW̃

i
t , Si0 = si0 ∈ R++,

where d 〈W c,W g〉t = ρdt.
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ĥc êc mc x̄c ĥg êg mg x̄g x̄
3 0.9 0.00005 12000 7 0.4 0.00003 18000 30000

Table 1. Parameters relating to the bid stack and the emissions stack.

η ϕ0 ϕ1 ϑ σ̂ d0

50 21000 3000 1 0.1 21000

Table 2. Parameters relating to the demand process.

ηc s̄c σ̂c sc0 ηg s̄g σ̂g sg0 ρ
1.5 2 0.5 exp(2) 1.5 2 0.5 exp(2) 0.3

Table 3. Parameters relating to the fuel price processes.

π Γ T r
100 1.4e+08 1 0.05

Table 4. Parameters relating to the cap-and-trade scheme.

6. Numerical Analysis

We now turn to the detailed analysis of the model we propose. For this purpose we consider a number of case
studies in §6.2 to §6.5. To produce the following results we used the numerical schemes explained in Appendix A
and Appendix B.

6.1. Choice of Parameters. The tables in this section summarise the parameters used for the numerical analysis
of our model that follows below. We refer to the parameters specified in Tables 1 - 5 as the ‘base case’ and indicate
whenever we depart from this choice. Note that our parameter choices do not correspond to a particular electricity
market, but that all values are within a realistic realm.

Table 1 summarises the parameters specifying the bid curves. We consider a medium sized electricity market served
by coal and gas generators and with gas being the dominant technology. For the marginal emission rates, Table
1 implies that ec ∈ [0.9, 1.64] and eg ∈ [0.4, 0.69] (both measured in tCO2 per MWh), so that all gas plants are
‘cleaner’ than all coal plants. For the heat rates, we observe that hc ∈ [3, 5.5] and hg ∈ [7, 12] (both measured in
MMBtu per MWh). Using (9) now with Dt = x̄, for 0 ≤ t ≤ T , and the assumption that there are 8760 production
hours in the year, we find, denoting the the maximum cumulative emissions by ē, that ē = 2.13e+ 08.

Table 2 contains the parameters for the demand process (Dt). We model periodicities on an annual and a weekly
time scale and the chosen rate of mean reversion assumes that demand reverts to its (time dependent) mean over
the course of one week.

In Table 3 we summarise the parameters that specify the behavior of the prices of coal and gas. Both are chosen
to be slowly mean-reverting, at least in comparison to demand. To ease analysis, we assume that all parameters
are identical for the two fuels, including mean price levels, both measured in MMBtu.

Table 4 defines the cap-and-trade scheme that we assume to be in place. The duration of the compliance period
T is measured in years and we set the cap at 70% of the upper bound ē for the cumulative emissions, in order to
incentivise a reduction in emissions. This choice of parameters results in A0 being approximately equal to π/2,
a value for which there is significant initial overlap between gas and coal bids in the stack. Furthermore, the
parameters imply a bid stack structure such that at mean levels of coal and gas prices, At = 0 pushes all coal bids
below gas bids, while for At = π almost all coal bids are above all gas bids.

Finally, in Table 5 we specify the four spread option contracts used in the base case scenario to represent high
and low efficiency coal plants, and high and low efficency gas plants. (Note that low efficiency means dirtier and
corresponds to high hv and ev and vice versa.)
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High Eff. Coal Low Eff. Coal High Eff. Gas Low Eff. Gas
hc ec hc ec hg eg hg eg
3.5 1.05 5.0 1.5 7.5 0.43 11.5 0.66

Table 5. Parameters relating to the spread options.

We now consider a series of case studies to investigate various features of the model’s results in turn. As the model
captures many different factors and effects, this allows us to isolate some of the most important implications. In
Case Study I, we investigate the impact on coal and gas plants of different efficiencies of creating an increasingly
strict carbon emissions market. In Case Study II, we assess the impact on these plants of changes in initial fuel
prices. In Case Study III, we compare spread option prices in our model with two simple reduced-form approaches
for At, which allows us to better understand the role of key model features such as bid stack driven abatement.
Finally in Case Study IV, we consider the overall impact of cap-and-trade markets in the electricity sector, by
comparing with a well-known alternative, a fixed carbon tax.

6.2. Case Study I: Impact of the Emissions Market. The first effect that we are interested in studying in
the model is the impact of the cap-and-trade market on clean spread option prices, for increasingly strict levels
of the cap Γ. At one extreme (when the cap is so generous that At ≈ 0, for all t ∈ [0, T ]), results correspond to
the case of a market without a cap and trade system, while at the other extreme (when the cap is so strict that
At ≈ π exp(−r(T − t)), for all t ∈ [0, T ]), there is essentially a very high carbon tax which tends to push most
coal generators above gas generators in the stack. It is intuitively clear that higher carbon prices typically lead to
higher spark spread option prices and lower dark spread option prices, thus favouring gas plants over coal plants,
but the relationships can be more involved as they vary between low efficiency and high efficiency plants.

In Figure 1, we compare spread option prices corresponding to different efficiency generators (i.e., to different
hv, ev in the spread payoff) as a function of maturity τ . ‘High’ and ‘low’ efficiency plant indicates values of hv, ev
chosen to be near the lowest and highest respectively in the stack, as given by Table 5. Within each of the four
subplots, the five lines correspond to five different values of the cap Γ, ranging from very lenient to very strict. We
immediately observe in Figure 1 the seasonality in spread prices caused by the seasonality in power demand. This
is most striking for the low efficiency cases (high hv, ev), as such plants would rarely be used in shoulder months,
particularly in the case of gas. For low efficiency plants, the relationship with cap level (and corresponding initial
allowance price) is as one would expect: a stricter cap greatly increases the value of gas plants and greatly decreases
the value of the dirtier coal plants. This is also true for high efficiency gas plants, although the price difference (in
percentage terms) for different Γ is less, since these are effectively ‘in-the-money’ options, unlike those discussed
above. However, the analysis becomes more complicated for high efficiency coal plants, which tend to be chosen to
run in most market conditions, irrespective of emissions markets. Interestingly, we find that for these options the
relationship with Γ (and hence A0) can be non-monotonic under certain conditions, particularly for high levels of
demand, when the price is set near the very top of the stack. In such cases a stricter cap provides extra benefit
for the cleaner coal plants via higher power prices (typically set by the dirtier coal plants on the margin) which
outweighs the disadvantage of coal plants being replaced by gas plants in the merit order.

6.3. Case Study II: Impact of Fuel Price Changes. Notice that in Table 3, the initial conditions of both gas
and coal have been set to be equal to their long term median levels. We now consider the case that gas price sg0 is
either above or below its long term level, thus inducing a change in the initial merit order. Given the record low
prices of under $2 recently witnessed in the US natural gas market (due primarily to shale gas discoveries), it is
natural to ask how such fuel price variations affect our spread option results. Note however that since ηc = ηg = 1.5
(implying a typical mean reversion time of 8 months), by the end of the trading period, the simulated fuel price
distributions will again be centred near their mean reversion levels. Thus in this case study, we capture a temporary,
not permanent, shift in fuel prices.

In Figure 2, we plot the value of coal and gas power plants, as given by the sum of spread options of all maturities
τ ∈ [0, T ]. In the first plot, we consider high efficiency (low hv and ev) plants, while in the second we consider
low efficiencies. The former are much more likely to operate each day and to generate profits, and are hence much
more valuable than the latter. However, they also show different relationships with sg0, as illustrated for several
different cap levels Γ (like in Case Study I above) which correspond to high, low or medium (base case) values of
A0. Firstly, for low efficiency plants (right plot), we observe that gas plant value is typically decreasing in sg0, as we
expect, since higher gas prices tend to push the bids from gas above those from coal, meaning there is less chance
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Figure 1. Cap strictness analysis for high efficiency coal (top left), low efficiency coal (top right),
high efficiency gas (bottom left) and low efficiency gas (bottom right): Spark and dark spread
option values plotted against maturity, for varying levels of the cap Γ. Note that the five equally-
spaced cap values from 2e+ 08 to 1.2e+ 08 tons of CO2 imply initial allowance prices of $5, $28,
$52, $80, and $94.
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Figure 2. Power Plant Value (sum of spreads over τ) versus sg0 for high efficiency (left) and low
efficiency (right). ‘High A’ corresponds to Γ = 1e+ 08, ‘Mid A’ to Γ = 1.4e+ 08 (base case) and
‘Low A’ to Γ = 1.8e+ 08, with corresponding values A0 = 94, A0 = 52, A0 = 5
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σa ρac ρag σe ρec ρeg
0.6 -0.2 0.4 0.006 -0.2 0.2

Table 6. Parameters for reduced-form comparisons, treating At and Et as GBMs.

that the gas plant will be used for electricity generation. Similarly, coal plant values are typically increasing in sc0,
as more coal plants will be used.2 Note however, that for some cases, the curves flatten out, as no more merit order
changes are possible. This is particularly true for the coal plant when A0 is very high (and hence once gas drops
below a certain point, the coal plant is almost certainly going to remain more expensive than all gas plants) and
for the gas plant when A0 is very low (and hence once coal increases above a certain point, the gas plant is almost
certainly going to remain more expensive than all coal plants).

We now turn our attention to the high efficiency case (left plot), meaning the relatively cheap and clean plants for
each technology. As expected, coal benefits from low values of A0 (ie, a lenient cap) and gas from high values of
A0 (ie, a strict cap). On the other hand, the relationship with sg0 is now increasing for almost all six cases plotted
except that of a gas plant with high A0. While it may seem surprising that for low or medium values of A0, the gas
plant value increase with sg0, this is quite intuitive when one considers that the range of bids from gas generators
widens as sg0 increases, implying that the efficient plants can make a larger profit when the inefficient plants set
the power price. Indeed, as demand is quite high on average, and gas is 60 percent of the market, it is likely that
these efficient gas plants will almost always be ‘in-the-money’ even if coal is lower in the stack. Only in the case
that coal is typically above gas and now marginal (i.e. the high A0 case) is the value of the gas plant decreasing in
sg0 since the plant’s profit margins shrink as gas and coal bids converge.

6.4. Case Study III: Comparison with Reduced-Form. The second analysis we consider is to compare the
results of our structural model for the allowance price, with two other simpler models, both of which belong
to the class of ‘reduced-form’ models. The first of these treats the allowance price itself as a simple Geometric
Brownian Motion (with drift r under Q), and hence Aτ is lognormal at spread maturity, like Scτ and Sgτ . The
second comparison treats the emissions process as a Geometric Brownian Motion (GBM), and retains the digital
terminal condition AT = πI{ET>Γ}. As the drift of (Et) is then simply a constant (chosen to match the initial
value A0 in the full model), there is no feedback from (At) on (Et), or in other words, no abatement induced by
the allowance price. For any time t, At is then given in closed-form by a formula resembling the Black-Scholes
digital option price. In order to fully specify the reduced-form models, we need to choose volatility parameters σa
and σe for each of the GBMs, as well as correlations ρac, ρag and ρec, ρeg with the Brownian Motions driving the
other exogenous factors, coal and gas prices. All of these parameters are chosen to approximately match the levels
of volatility and correlation produced by simulations in the full structural model, and are given in Table 6. Finally,
note that in all three models we compare, the power price is given by the same bid stack function as usual, so our
aim is to isolate and evaluate the effect of our more sophisticated framework for the allowance price, in comparison
to simpler approaches. The cap throughout is Γ = 1.4e+ 08, the base case.

Figure 3 reveals that the difference between the reduced form models and the full structural model is relatively
small for high efficiency gas and coal plants which are typically ‘in-the-money’. In contrast a larger gap appears
for low efficiency cases, where the reduced form models significantly overprice spread options relative to the stack
model. In particular, the case of lognormal emissions produces much higher prices, especially for dark spreads.
The intuition is as follows. In the full model, the bid stack structure automatically leads to lower emissions when
the allowance price is high, and higher emissions when the allowance price is low, producing a mean-reversion-like
effect on the cumulative emissions, keeping the process moving roughly towards the cap, with the final outcome
(compliance or not) in many simulations only becoming clear very close to maturity. In contrast, if Et is a GBM,
much of the uncertainty is often resolved early in the trading period, with At then sticking near zero or π for much
of the period. In such cases, there is a much larger benefit for deep OTM options (low efficiency plants), for which
the tails of the allowance price distribution provide great value either for coal (when the price is near zero) or
for gas (when the price is near the penalty). We observe that in some of the subplots (particularly low efficiency
coal), this extra benefit is indeed realized in the full model, but only very near the end of the trading period when
the volatility of (At) spikes, and the process either rises or falls sharply. In contrast, for the other reduced-form
model with lognormal (At), the volatility of the allowance price is constant throughout and At never moves rapidly
towards zero or the penalty. However, the overall link with fuel and power prices is much weaker when simply

2In this plot, the cases ‘coal - low A’ and ‘gas - high A’ are not included as their values are much greater and hence cannot be shown

conveniently on the same axis.
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Figure 3. Model comparison against reduced-form: Spark and dark spread option values for
varying heat rates, emissions rates and maturities.

using correlated Brownian Motions, which serves to widen the spread distribution in most cases relative to the full
structural model. This result is somewhat similar to the observation in [Carmona et al., 2012a] that a stack model
generally produces lower spread option prices than Margrabe’s formula for correlated lognormals.

6.5. Case Study IV: Cap-and-Trade vs. Carbon Tax. Finally, we wish to investigate the implications of
the model for cap-and-trade systems, as compared with fixed carbon taxes. This question has been much debated
by policy makers as well as academics, and can be roughly summarized as fixing quantity versus fixing price. In
[Carmona et al., 2010], several different designs for cap-and-trade systems are compared to a carbon tax, using
criteria such as cost to society and windfall profits to power generators. Here we follow a related approach by
analyzing the power sector as a whole, but we build on our previous case studies by using spread option prices as
a starting point. Firstly we observe that the total expected discounted profits of the power sector are equal to the
value of all the power plants implied by the bid stack structure, which in turn equals a portfolio of (or integral over)
sums of spread option prices with varying hv and ev. i.e, for each simulation over the period [0, T ], total profits
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Figure 4. Cap-and-trade vs. carbon tax: Power sector profits versus time for the ‘base case’
(left); Total profits over one year for equally-spaced cap values from 1e+ 08 to 1.95e+ 08 tons of
CO2. (right)

(total revenues minus total costs) are3

Total Profits =
∑

τ∈[0,T ]

(
PτDτ −

∫ Dτ

0

b(x,Aτ , Sτ )dx

)

=
∑

τ∈[0,T ]

∫ x̄

0

(Pτ − b(x,Aτ , Sτ ))
+

dx

=
∑

τ∈[0,T ]

(∫ x̄c

0

(Pτ − hc(x)Scτ − ec(x)Aτ )
+

dx+

∫ x̄g

0

(Pτ − hg(x)Sgτ − eg(x)Aτ )
+

dx

)
,

where the second line follows from the fact that the events {Pτ ≥ b(x,Aτ , Sτ )} and {Dτ ≥ x} are equal.

Hence, instead of picking particular coal and gas plants with efficiencies specified by the parameters in Table 5,
we now integrate power plant value over all the efficiencies of plants in the stack, as defined by the parameters in
Table 1. For the case of the carbon tax, we simply force At = A0 exp(rt) for all t ∈ [0, T ], including the exponential
function in order to match the mean of the process in the cap-and-trade model. This is equivalent to setting the
volatility σa equal to zero in the GBM model for the allowance price in Case Study III.

In Figure 4, we first plot the expected total market profits in the base case as a function of time. It is interesting
to observe that two important effects occur, pulling the profits in opposite directions, but varying in strength over
the trading period. In particular, although the profits must be equal at time zero, a gap quickly appears in the
early part of the trading period, with expected profits to power generators significantly higher under a carbon
tax than cap-and-trade. However, as maturity approaches, the gap narrows and the order reverses over the final
days, as cap-and-trade generates higher expected profits. These effects can be understood with a little thought.
Firstly, as A0 = 52 in the base case, the bids of coal and gas begin the period at very similar levels, a state which
generally keeps profits low, since the variance of electricity prices is low and the profit margins of both coal and
gas generators are quite low. As time progresses and fuel prices move, the coal and gas bids will tend to drift apart
in most simulations, for example with gas sometimes moving above coal, say. However, in our structural model for
the cap-and-trade scheme, in such a case the higher emissions will induce a higher allowance price, and in turn a
feedback effect due to the coupling in (7), which acts to keep coal and gas bids closer together. A similar argument
can be made for the case of gas bids tending to move below coal bids but then being counteracted by lower allowance
prices. Again we see that the power market structure induces mean reversion on (Et), which in this scenario (of an
averagely strict cap) corresponds to keeping coal and gas bids close together. On the other hand, under a carbon
tax with fixed (or deterministic) At, there is of course no feedback mechanism (price-sensitive abatement), and

3Note that we do not consider here additional issues such as whether allowances are auctioned or freely allocated to generators.

Instead, we assume that allowances are bought on the market by generators as and when they need them.
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bids tend to wander apart. However, as the end of the trading period approaches, in the cap-and-trade system the
allowance price eventually gets pulled to either zero or π, which will separate the bids in one way or the other,
either leading to very large profits for coal plants (if AT = 0) or for gas plants (if AT = π). This is a similar effect
to that discussed when comparing with a lognormal allowance price in Case Study III, as neither a carbon tax nor
a lognormal allowance price model sees the extra volatility near maturity caused by the terminal condition.

Finally, in the second plot of Figure 4, we consider how these conclusions change if the cap is made stricter or more
lenient. Instead of plotting against maturity, we consider the total profits of the power sector over the entire period
[0, T ]. Firstly, we observe that under both forms of emissions regulation, power sector profits are lowest if the cap
is chosen close to base case, under which the bids from coal and gas generators are more tightly clustered together.
Secondly, it is important to notice that the conclusion in the previous discussion that a carbon tax provides more
profits to the power sector does not hold for all scenarios of the cap. In particular, for either very high or very
low values of the cap, the cap-and-trade scheme provides more profits than a tax. The explanation here is that for
the automatic abatement mechanism in the stack to have its largest impact (keeping bids together, and emissions
heading towards the cap), there needs to be significant uncertainty at time zero as to whether the cap will be
reached. The feedback mechanism of a cap-and-trade system then allows this uncertainty to be prolonged through
the period. On the other hand, for an overly strict or overly lenient cap (or similarly for a merit order which does
not allow for much abatement), the second effect discussed above dominates over the first. In other words, the
terminal condition which guarantees large profits to either coal or gas at maturity begins to take precedence earlier
in the trading period, instead of just before maturity as in the base case. Although in practice there are many other
details to consider when comparing different forms of emissions legislation, our stylized single-period model sheds
some light on the differences between cap-and-trade and carbon tax, as well as the clear importance of choosing an
appropriate cap level.

7. Conclusion

As policy makers debate the future of global carbon emissions legislation, the existing cap-and-trade schemes around
the world have already significantly impacted the dynamics of electricity prices and the valuation of real assets,
such as power plants, particularly under the well-known European Union Emissions Trading Scheme. Together
with the recent volatile behaviour of all energy prices (e.g., gas, coal, oil), the introduction of carbon markets has
increased the risk of changes in the merit order of fuel types, known to be a crucial factor in the price setting
mechanism of electricity markets. In the US, the recent sharp drop in natural gas prices is already causing changes
in the merit order, which would be further magnified by any new emissions regulation. Such considerations are
vital for describing the complex dependence structure between electricity, its input fuels, and emissions allowances,
and thus highly relevant for both market participants and policy makers designing emissions trading schemes. In
this paper, we derived the equilibrium carbon allowance price as the solution of an FBSDE, in which feedback from
allowance price on market emission rates is linked to the electricity stack structure. The resulting model specifies
simultaneously both electricity and allowance price dynamics as a function of fuel prices, demand and accumulated
emissions; in this way, it captures consistently the highly state-dependent correlations between all the energy
prices, which would not be achievable in a typical reduced-form approach. We used a PDE representation for the
solution of the pricing FBSDE and implemented a finite difference scheme to solve for the price of carbon allowances.
Finally we compared our model for allowance prices with other reduced-form approaches and analysed its important
implications on price behaviour, spread option pricing and the valuation of physical assets in electricity markets
covered by emissions regulation. The four case studies illustrated the many important considerations needed to
understand the complex joint dynamics of electricity, emissions and fuels, as well as the additional insight that can
be provided by our structural approach.

Appendix A. Numerical Solution of the FBSDE

A.1. Candidate Pricing PDE. The construction of a solution to the FBSDE 7 was done in Theorem 1 by means
of a decoupling random field u representing the solution in the form At = u(t, Et). The existence of this random field
was derived from the results of [Ma et al., 2011], and given its uniqueness and the Markov nature of FBSDE 7, it is
possible to show that u is in fact a function of Dt and St, so that At is in fact of the form At = α(t,Dt, Et, S

c
t , S

g
t )

for some deterministic function α : [0, T ] × [0, x̄] × R++ × [0, ē] ↪→ [0, π]. Standard arguments in the theory of
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FBSDEs show that this α is a viscosity solution of the semilinear PDE:

Lα+Nα = 0, on UT(10)

α = φ(e), on {t = T} × U,(11)

where U := (0, x̄)× R++ × R++ × (0, ē) and UT := [0, T )× U ; the operators L and N are defined by

L :=
∂

∂t
+

1

2
σd(d)2 ∂

2

∂d2
+

1

2
σc(sc)

2 ∂
2

∂s2
c

+
1

2
σg(sg)

2 ∂
2

∂s2
g

+ µd(t, d)
∂

∂d
+ µc(sc)

∂

∂sc
+ µg(sg)

∂

∂sg
− r·

and N := µe(d, ·, (sc, sg)) ∂∂e . As previously, we specify for our purposes that φ(e) = πI[Γ,∞)(e), for e ∈ R.

With regards to the problem (10) the question arises at which parts of the boundary we need to specify boundary
conditions and, given the original stochastic problem (7), of what form these conditions should be. To answer the
former question we consider the Fichera function f at points of the boundary where one or more of the diffusion
coefficients disappear (cf. [Oleinik and Radkevic, 1973]). Defining n := (nd, nc, ng, ne) to be the inward normal
vector to the boundary, Fichera’s function for the operator (N + L) reads

(12) f(t, d, sc, sg, e) :=

(
µd −

1

2

∂

∂d
σ2
d

)
nd +

(
µc −

1

2

∂

∂sc
σ2
c −

∂

∂sc
ρσcσg

)
nc

+

(
µg −

1

2

∂

∂sg
σ2
g −

∂

∂sg
ρσcσg

)
ng + µene, on ∂UT .

At points of the boundary where f ≥ 0 the direction of information propagation is outward and we do not need
to specify any boundary conditions; at points where f < 0 information is inward flowing and boundary conditions
have to be specified. We evaluate (12) for the choice of coefficients presented in §5.3.

Considering the parts of the boundary corresponding to d = 0 and d = x̄, we find that f ≥ 0 if and only if
min(D̄(t), x̄ − D̄(t)) ≥ x̄σ̂, which is the same condition prescribed in §5.3 to guarantee that the Jacobi diffusion
stays within the interval (0, x̄). At points of the boundary corresponding to e = 0, we find that f ≥ 0 always. On
the part of the boundary on which e = ē, f < 0 except at the point (d, ·, ·, e) = (0, ·, ·, ē), where f = 0, an ambiguity
which could be resolved by smoothing the domain. Similarly, we find that f ≥ 0 on parts of the boundary where
sc = 0 or sg = 0. Therefore, no boundary conditions are necessary except when e = ē, where we prescribe

(13) α = exp(−r(T − t))π, on UT |e=ē.
In addition we need to specify an asymptotic condition for large values of sc and sg. We choose to consider solutions
that, for i ∈ {c, g}, satisfy

(14)
∂α

∂si
∼ 0, on UT |si→∞.

A.2. An Implicit - Explicit Finite Difference Scheme. We approximate the domain ŪT by a finite grid
spanning [0, T ] × [0, x̄] × [0, s̄c] × [0, s̄g] × [0, ē]. For the discretization we choose mesh widths ∆d, ∆sc, ∆sg, ∆e
and a time step ∆t. The discrete mesh points (tk, dm, sci , sgj , en) are then defined by

tk := k∆t, dm := m∆d,

sci := i∆sc, sgj := j∆sg, en := n∆e.

The finite difference scheme we employ produces approximations αkm,i,j,n, which are assumed to converge to the
true solution α as the mesh width tends to zero.

Since the partial differential equation (10) is posed backwards in time with a terminal condition, we choose a
backward finite difference for the time derivative. In order to achieve better stability properties we make the part
of the scheme relating to the linear operator L implicit; the part relating to the operator N is made explicit in
order to handle the nonlinearity.

In the e-direction we are approximating a conservation law PDE with discontinuous terminal condition. (For an
in depth discussion of numerical schemes for this type of equation see [LeVeque, 1990]) The first derivative in
the s-direction, relating to the nonlinear part of the partial differential equation, is discretised against the drift
direction using a one-sided upwind difference. Because characteristic information is propagating in the direction of
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decreasing e, this one-sided difference is also used to calculate the value of the approximation on the part of the
boundary corresponding to e = 0. At the part of the boundary corresponding to e = ē we apply the condition (13).

In the d-direction the equation is elliptic everywhere except on the boundary, where it degenerates. Therefore,
we expect the convection coefficient to be much larger than the diffusion coefficient near the boundaries. In order
to keep the discrete maximum principle we again use a one-sided upwind difference for the first order derivative.
Thereby we have to pay attention that due to the mean-reverting nature of (Dt) the direction of information
propagation and therefore the upwind direction changes as the sign of µd changes. The same upwind difference is
also used to calulate the value of the approximation at the boundaries d = 0 and d = x̄. To discretize the second
order derivative we use central differences.

The sc and sg-direction are treated similarly to the d-direction. We use one-sided upwind differences for the first
order derivatives, thereby taking care of the boundaries corresponding to sc = 0 and sg = 0. The second order
derivatives are discretized using central differences. At the boundary corresponding to sc = s̄c and sg = s̄g we
apply the asymptotic condition (14) as a boundary condition.

With smooth boundary data, on a smooth domain, the scheme described above can be expected to exhibit first
order convergence. In our setting, we expect the discontinuous terminal condition to have adverse effects on the
convergence rate.

Appendix B. Numerical Calculation of Spread Prices

B.1. Time Discretisation of SDEs. Let (Dk, S
c
k, S

g
k , Ek, Ak) denote the discrete time approximation to the

FBSDE solution (Dt, S
c
t , S

g
t , Et, At) on the time grid 0 < ∆t < 2∆t < . . . < nk∆t = τ . At each time step we

calculate Ak by interpolating the discrete approximation αkm,i,j,n at (Dk, S
c
k, S

g
k , Ek), beginning with the initial

values D0 = d0, S
c
0 = sc0, S

g
0 = sg0, E0 = 0. The approximations (Dk, S

c
k, S

g
k , Ek) are obtained using a simple Euler

scheme (cf. [Glasserman, 2004]). The discretized version of (Dt) is forced to be instantaneously reflecting at the
boundaries Dk = 0 and Dk = x̄; similarly, the discretized versions of (Sct ) and (Sgt ) are made instantaneously
reflecting at Sck = 0 and Sgk = 0.

B.2. Monte Carlo Calculation of Option Prices. Using this discretization we simulate nmc paths and, as
usual, for t ∈ [0, τ), calculate the mean spark spread price V̂t, given by

V̂t := exp(−r(τ − t)) 1

nmc

nmc∑

i=1

(
b(Di

nk
, Sc,ink , S

g,i
nk
, Aink)− hvSg,ink − evAink

)+
,

where the index i refers to the simulation scenario. The corresponding standard error σ̂v is obtained by

σ̂v :=

√√√√ 1

nmc (nmc − 1)

nmc∑

i=1

(
V ink − V̂τ

)2

.
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