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Abstract. Since they were authorized by the U.S. Security and Exchange Commission in 1998,
electronic exchanges have boomed, and by 2010 high frequency trading accounted for over 70% of

equity trades in the US. Such markets are thought to increase liquidity because of the presence

of market makers, who are willing to trade as counterparties at any time, in exchange for a fee,
the bid-ask spread. In this paper, we propose an equilibrium model showing how such market

makers provide liquidity. The model relies on a codebook for client trades, the implied alpha.
After solving the individual clients optimization problems and identifying their implied alphas, we

frame the market maker stochastic optimization problem as a stochastic control problem with an

infinite dimensional control variable. Assuming either identical time horizons for all the clients,
or a stochastic partial differential equation model for their beliefs, we solve the market maker

problem and derive tractable formulas for the optimal strategy and the resulting limit-order book

dynamics.

1. Introduction

Electronic exchanges play an increasingly important role in financial markets and market mi-
crostructure became the key to understanding them. Here market microstructure is understood
as the study of the trading mechanisms used for financial securities [11]. High frequency trading
strategies depend very strongly on these mechanisms which in turn, vary from market to market.
Three main themes were proposed to unite the common features of most of these markets [11].

(1) The first theme is the limit-order book, where agents can post trading intentions at prices
above (ask) or below (bid) the mid-price, which is regarded as the current fair price for the
security. These posts, called limit-orders, can then lead to executions if they are paired with
a matching order. In this case, the initial agent, commonly known as the liquidity provider,
gains a small amount of money, having sold at the ask or bought at the bid. It is said in
that case that the liquidity taker has paid a liquidity fee for the right to trade immediately.

(2) The second theme is adverse selection due to asymmetric sources of information. It is based
on the principle that liquidity takers choose which limit-orders are actually executed, and
when. Moreover, since liquidity providers publicly announce their intentions by posting
their limit-orders, and these two market rules create an information bias in favor of liquidity
takers that compensates for the liquidity fee.

(3) The last theme is statistical predictions. All agents on electronic markets attempt to predict
prices on a short time scale. Such predictions are possible both because of the existence
of private information and the actual market mechanisms that create short-range price cor-
relations. While statistical predictions are used by all traders on electronic markets, the
objectives of these agents vary widely. Some make their profits from these predictions, while
others just reduce their transaction costs by trading smartly.
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After the liquidity crisis of 2008, liquidity became the central object of interest for market mi-
crostructure. Liquidity is rarely defined precisely, although intuitively, it should quantify how diffi-
cult it is to engage in a trade. Commonly accepted measures of liquidity are the bid-ask spread1 and
the volume present in a limit-order book. We tie these two quantities together by modeling what we
will call the liquidity cost curve, or simply cost curve. We define this to be the total fee paid by the
liquidity taker as a function of the volume asked for. If the liquidity taker only executes limit-orders
at the best ask or bid, the fee will be equal to the bid-ask spread times the volume. Some clients,
however, might wish to go beyond the best bid or ask and take more volume from the market. The
marginal fee then becomes a function of the volume.

Trade volumes are difficult to model, in part because they are so dependent on liquidity takers’
decisions and their execution strategies. Empirically, trade volumes present very heavy tails and are
strongly autocorrelated ([6]): there are frequent outliers, buys tend to follow buys, and sells tend
to follow sells, which is what makes them hard to evaluate statistically. Limit-orders, on the other
hand, are mean-reverting and have been widely studied in the literature (see, for instance, [6, 7, 19]).
The interplay between trend-following liquidity takers and mean-reverting liquidity providers is what
makes the market reach the critical state of diffusion, as seen in [5]. From a modeling stand point, all
these attributes are what makes a direct statistical description of trade volumes so difficult, which
is why the introduction of a codebook is desirable.

1.1. Market making. Market makers are a special class of liquidity providers. They essentially
act as a scaled down version of the market itself, always providing limit-orders on both sides of the
mid-price. How these limit-orders are placed in terms of volume, distribution, and distance from the
mid-price, determines the pricing strategy. We can therefore define the liquidity curve associated
with a market maker’s pricing strategy. The agents trading with a market maker are considered as
his clients. Market making is a purely passive strategy that essentially corresponds to the service of
providing liquidity to the market against a fee. This strategy makes money as long as the pricing
accurately anticipates future price variations. The first step towards that objective is to find a model
for client volumes that is consistent with price dynamics.

There are two schools of thoughts on market making models. The first focuses on inventory risk.
There, the market maker has a preferred inventory position and prices according to his risk aversion
to diverging inventory levels. Some of the first models of this type are [10, 4], which can be found
in [11]. The second, initiated by [14], focuses on adverse selection, usually distinguishing between
informed and noise trades. This paper belongs to the second line of thought.

According to our stylized definition of a market maker, the latter does not possess a view on the
market. Clients, on the other hand, have views on the market and this leads to trading needs. When
this view is short term, then the client has a statistical edge on the rest of the market and tries to
push that edge to make a short term profit. But even when the view is long term, the client will
still attempt to minimize transaction costs by predicting prices on a short time scale. Long-term
strategies and liquidity constraints can therefore be modeled as noise around optimal short term
execution strategies. The intuition behind this is that long term constraints, while the main motives
behind most trades, will not necessarily dictate their execution. This is the case because there are
increasingly more layers between the entity that formulates the long term strategy (for example
investment banks or hedge funds) and the one that actually executes it (for example brokers or
execution engines). But only the latter actually has a short term view on the market, which is what

1The bid-ask spread is defined as the price difference between the lowest ask and the highest bid in the limit-order
book.



HIGH FREQUENCY MARKET MAKING 3

the market maker is interested in. Optimal executions based on short term beliefs and associated
trade volumes form therefore the cornerstone of the upcoming analysis and will link prices to trades.

1.2. Alpha. Alpha is the term often used to signify that a client has a directional view on the
market. In an adverse selection model the aim of any market maker is to discover this view and
hedge against it. Most papers (see for example [2, 5, 18, 11]) introduce a notion of market impact
or response function, to study the relationship between trades and prices. Trade size is often –
though not always – included, and a lot of work has been done to fit various curves to the response
function. A large number of papers on execution strategies ([1, 2, 3, 16]) rely heavily on this notion
of market impact. So do most practitioners. Essentially, alpha and market impact are the same
quantity, even though the stories told to justify these concepts are quite different. In the market
impact literature, the premise is that a trade causes a price movement, while alpha is viewed as an
attempt at predicting the movement. Response function is a more neutral term that allows for both
interpretations.

In this paper, we present a simple model for client decisions that proves, under very general
assumptions, a systematic relationship between trade sizes and short term expected price variations.
It states that marginal costs should equal expected price variations. This is an intuitive result given
that price variations are the marginal gains of a risk-neutral client. In this model, each client has a
short term view on the market and trades optimally according to this view: his optimal execution
strategy depends upon his belief. The theoretical notion of implied alpha appears quite naturally
from the stochastic optimal control problem that defines the client’s model.

On the market maker side, our model tries to capture the fact that market makers do not act on
a personal view of the market. The market maker uses the notion of client implied alpha to infer an
approximate price process from his clients’ behaviors, essentially aggregating the views of his clients
to form a probability distribution on the price. The optimal order book strategy then replicates this
distribution, with a corrective term that takes into account the profitability of trades, that is, the
trade-off between spread and volume.

1.3. Results. The thrust of this paper is to propose a framework in which a market making strategy
appears endogenously. This framework is based on

(1) a result to imply a market view from client trades under a simple yet robust model of client
behavior;

(2) a procedure for the market maker to infer his own view on the market from that of his
clients;

(3) a profitability function that measures how profitable a posted volume on the order book is
likely to be;

(4) a penalizing term taking into account possible feedback effects of the market maker’s decision.

The last part will be motivated by the idea that, just as the market maker implies information from
his clients’ trades, clients can infer information from his order book. Our hypotheses are chosen, and
our results are derived, in order to make the market making problem tractable. Once the theoretical
framework is put in place, the market maker optimal control problem is formulated and solved,
leading to an explicit market making strategy.

The story told by the model is closest to that of the informed trade literature [14], although
one major difference is that there is no clear cut distinction between informed and noise traders.
Our conservative market maker assumes that all of his clients’ implied alphas carry information.
Moreover, the existence of at least one informed trader underpins the estimation formula used by
the market maker. The paper also relates strongly to both the market impact [2, 5, 18, 11] and
optimal execution [1, 3, 2, 16] literatures. A cost function ct and an order book γ′′t are derived
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endogenously from the premises of the model. We hope that the proposed implied alpha codebook
will find applications in other limit-order book models. Finally, while we ignore inventory risk to
make our market maker risk-neutral, our approach still relates to utility function and inventory
models such as [4, 10].

The results of the paper are organized in four sections. First, the setup for the model is given,
which includes a methodology for modeling heterogeneous beliefs and transaction costs. Second, a
simple client model is presented and solved, leading to a relationship between trades and alphas which
motivates the market maker’s choice for a codebook. Third, the market maker model is built step by
step, starting from the client model and working through a series of results and approximations to
lead to a reasonable control problem. Last, the market maker’s problem is solved and the dynamics
of the order book are determined analytically, For the sake of definiteness, we focus on a tractable
example for which we compute the two-humped limit order book shape. An appendix is added at
the end of the paper to provide the proofs of two technical results which, had they been included in
the text, could have distracted from the main objective of the modeling challenge.

2. Setup of the model

In this section, all the elements of the model are presented.

2.1. Heterogeneous beliefs on the price. Consider n clients and one market maker who interact
on an electronic exchange, with n very large. We will denote by i ∈ {1...n} a client index, and
k ∈ {0...n} a generic index, with k = 0 corresponding to the market maker. We first introduce the
following setting for the model:

(1) a filtered probability space (Ω,F , (Ft)t≥0 ,P) representing the “real life” filtration and prob-
ability measure. The filtration is generated by a d-dimensional P Wiener process Wt.

(2) a different filtration and measure ((Fkt )t≥0,Pk) for each of the agents. Assume furthermore
that Fkt ⊂ Ft, that Pk|Fkt and P|Fkt are equivalent and that P0|F0

t
= P|F0

t
.

(3) a dk-dimensional P Wiener process W k
t that generates the filtration (Fkt )t≥0.

(4) a price process pt which is an Itô process adapted to all the filtrations
((
Fkt
)
t≥0

)
k=0...n

.

(5) the drift and volatility of pt grow at most polynomially in t under all probability measures.

where the last hypothesis must be understood in the a.s. and L2 sense.
Let

dpt = atdt+ σtdWt (2.1)

be the Itô decomposition of pt under
(

(Ft)t≥0 ,P
)

. Hypotheses 2 and 3 imply that there exists an(
Fkt
)
t≥0

adapted process rkt such that

W k
t = Bkt +

∫ t

0

rksds (2.2)

for some Pk|Fkt Wiener process Bkt and with r0
t = 0. Because W k is dk dimensional, so are rkt and

Bkt . Furthermore, by the martingale representation theorem, given that W k
t is a P martingale, there

exists an (Ft)t≥0 adapted, dk × d dimensional matrix Σkt such that

dW k
t = Σkt dWt (2.3)

Finally, agent k has the following view on the market under
((
Fkt
)
t≥0

,Pk
)

:

dpt = akt dt+ σkt dB
k
t (2.4)
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with σt = σkt Σkt and akt = at + σkt r
k
t . In particular, σt needs to live in the intersection of the images

of all the
(
Σkt
)T

for pt to be adapted to all the filtrations. Note that the dk is allowed to differ from

one agent to another, in which case the σkt must be of different dimensions and hence differ.
In conclusion, all the agents have views on the price process that potentially conflict with each

other’s probability measure and even filtration, but can be compared coherently within the larger
probability space (Ω,F , (Ft)t≥0 ,P).

Example 2.1. Consider the case where you have three Wiener processes W 1, W 2 and W 3. Let

pt = W 1
t +W 2

t +W 3
t , F it = σ

((
W i
s

)
s≤t , (ps)s≤t

)
and rit = f(W i

t ). You then have that:

dpt = dW 1
t + dW 2

t + dW 3
t under P

= f(W 1
t )dt+ dB1,1

t + dB1,2
t under P1

= f(W 2
t )dt+ dB2,1

t + dB2,2
t under P2

where the two last decompositions are not adapted with respect to the other filtration, but the price
process is nevertheless adapted to both filtrations.

2.2. Transaction costs. We now allow trades among agents. All clients have a cumulative position
Li in the asset, which starts off at 0 at the beginning of the trading period. For the market maker,
we rescale all the quantities according to the number of clients, hence L0

t is his average cumulative
position per client. Clients control their position through its first derivative, lit but incur transaction
costs. The market maker, on the other hand, has no direct control over his position, but receives the
liquidity fee ct. To be precise, the market maker announces to his clients a cost function l 7−→ ct(l),
which denotes the price of trading at speed l at moment t. A client then chooses her preferred
trading volume lit, and pays ct(l

i
t) in total transaction fees. We make the following hypotheses on

these two processes:

(1) The trade volume process lit for each client is adapted to
(
F it
)
t≥0

and
(
F0
t

)
t≥0

.

(2) The cost function process ct is adapted to all filtrations.
(3) Marginal costs are defined: c′t is almost everywhere continuous.
(4) Clients may choose not to trade, ct(0) = 0 and the mid-price is well defined at pt, c

′
t(0) = 0.

(5) Marginal costs increase with volume: ct is convex.
(6) There is a fixed amount of liquidity the market maker offers.

Hypotheses 1 and 2 describe the information the different agents have access to. 3-5 are intuitive
properties that the cost function must verify to make sense in terms of transaction costs. Finally,
the hypothesis 6 is left purposefully vague, because it is best expressed with notation we introduce
now.

2.2.1. Duality and link to the order book. This section introduces a change of variable that is both
mathematically convenient and will carry deeper financial meaning when the model is solved. The
new variable γ is defined as follows:

γt(α) = sup
l∈supp(ct)

(αl − ct(l)) (2.5)

Under the assumptions ct ∈ C1, convex and ct(0) = 0, this is equivalent to defining γ′t = (c′t)
−1 and

γt(0) = 0. In that case, γt is simply the Legendre transform of ct. The following properties can be
derived:
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(1) The Legendre transform maps the space of convex functions onto itself. It is its own in-
verse. In particular, γ′′t , where the second derivative has to be understood in the sense of
distributions, is a positive, finite measure.

(2) ∀α ∈ R,∀l ∈ R, γt(α) + ct(l) ≥ αl (Fenchel’s inequality), with equality for α∗ = c′t(l) or
l∗ = γ′t(α).

(3) γ′′t is a description of the limit-order book of the market maker. Indeed, it represents
marginal volumes as a function of marginal costs. The property γ′′t being a positive, finite
measure corresponds to the fact that the market maker can only post positive, finite volumes
on the order book.

This means we can actually replace ct by the second derivative of its dual γ′′t as the control variable
of the market maker. Similarly, αit is the dual to the client’s control variable lit. Call γ′′t the market
maker’s liquidity offer and αit the client’s implied alpha. The second terminology will be explained
later. We therefore recast all the hypotheses with these new dual variables:

(1) The implied alpha process αit for each client is adapted only to
(
F it
)
t≥0

and
(
F0
t

)
t≥0

.

(2) The liquidity process γ′′t for each market maker is adapted to all filtrations.
(3) We have lit = γ′t

(
αit
)

and αit = c′t(l
i
t).

(4) Clients may choose not to trade and the order book is centered around the mid-price:
γt(0) = 0 and γ′t(0) = 0.

(5) Only positive, finite volumes are posted on a market maker’s liquidity offer: γ′′t is a positive,
finite measure.

(6) The total mass of γ′′t is fixed. For convenience sake we will renormalize it to one, making γ′′t
a probability measure.

As a consequence of 3-5, lit is bounded. Furthermore, γ′′t therefore lives on the space of finite
measures, which is a complete, separable metric space under the Lévy-Prokhorov metric and a
convex set.

2.3. Putting it all together. We summarize the model. First a public price process pt is given.
Assume it is exogenously given to every one, that is, all the agents consider that they have no
impact on the price under their probability measure, and only try to estimate its future movements.
Then, a public liquidity offer, which can both be followed either by the cost function ct or its dual,
γ′′t is announced. Clients pick their trade volumes lit, or equivalently, their implied alphas αit. We
furthermore have the following state variable equations:

dLit = litdt
= γ′t

(
αit
)
dt

dL0
t = − 1

n

∑
i γ
′
t

(
αit
)
dt

(2.6)

since γ′t is bounded, Lkt has at most linear growth in t.
Finally, we write an infinite-horizon objective function for each agent, using distinct time scales

βk for each of them. Cumulative positions appreciate or depreciate at every moment by dpt and
client i pays the liquidity fee ct(l

i
t) to the market maker when readjusting her portfolio. We also

rescale his objective function according to the number of clients he has.
J i = EPi

[∫∞
0
e−β

it
(
Litdpt − ct

(
lit
)
dt
)]

= EPi
[∫∞

0
e−β

it
(
Litdpt − αitγ′t

(
αit
)
dt+ γt

(
αit
)
dt
)]

J0 = EP

[∫∞
0
e−β

0t
(
L0
tdpt + 1

n

∑
i

(
αitγ
′
t

(
αit
)
− γt

(
αit
))
dt
)] (2.7)
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The first term of each objective function is bounded by the linear growth of Lkt and the polynomial
growth of the drift and volatility of pt under Pk.

3. The Client Control Problem

We first solve the problem from the clients’ perspective, in order to know what drives trades.
The results of this simple model will be used in the next section as a codebook for a more powerful
market making model. The section concludes with a small robustness analysis on the underlying
hypothesis of the model.

3.1. Solving the control problem. In this section, we solve the control problem for one generic
client. Because her decisions have no impact on either pt or ct, it will not affect any of the other
clients’ decisions. Her control variable is not even adapted to their filtration. Similarly, her own
control problem is not affected by the other clients’ decision. This allows us to drop the index i in

this subsection. Let

(
P̃,
(
F̃t

)
t≥0

)
denote that client’s probability measure and filtration and W̃

her Wiener process. Remember that the client tries to solve the following control problem:

• An admissible control lt is a stochastic process adapted to
(
F̃t

)
t≥0

that lives in the support

of ct. Because of the hypothesis 〈γ′′t , 1〉 = 1, we have that the support of ct is included in
[−1, 1], which means that the control set A is bounded.

• The state variable Lt verifies the dynamics:

dLt = ltdt (3.1)

• The objective function is

sup
l

EP̃

[∫ ∞
0

e−βt (Ltdpt − ct (lt) dt)

]
(3.2)

We assume β large enough for the problem to be well defined.

Using the notation introduced in the previous section, we have the central result:

Theorem 3.1. (Implied alpha)
A client who trades optimally will follow the relationship

αt = EP̃

[∫ ∞
t

e−β(s−t)dps

∣∣∣∣ F̃t] (3.3)

where αt is defined by the codebook c′t(lt) = αt.

Proof. The aim now is to apply the Pontryagin maximum principle to the above control problem.
The gain function is not in standard form, but a simple integration by parts solves this issue.∫ ∞

0

e−βtLtdpt =
[
e−βtLtpt

]∞
0
−
∫ ∞

0

e−βtltptdt+

∫ ∞
0

e−βtLtβptdt. (3.4)

The first term is equal to 0 because we assume L0 = 0 and limt→∞ e−βtLtpt = 0 by the linear
growth of Lt and the polynomial growth of pt. The client therefore maximizes:

EP̃

[∫ ∞
0

e−βt ((βLt − lt) pt − ct (lt)) dt

]
(3.5)

We write out the generalized Hamiltonian of the system:

H(t, ω, L, l, Y ) = lY + e−βt ((βL− l)pt − ct(l)) (3.6)



8 RENÉ CARMONA AND KEVIN WEBSTER

The generalized Hamiltonian is linear in L and concave in l by convexity of c, and therefore overall
concave in (L, l).
pt and ct are exogenously defined Itô process. Then, the backward equation

−dYt = βpte
−βtdt− Zt · dW̃t (3.7)

has a unique solution

Yt = EP̃

[∫ ∞
t

βpse
−βsds

∣∣∣∣ F̃t] (3.8)

By polynomial growth of the volatility of pt, the Z term of the Backward Stochastic Differential
Equation (BSDE from now on) satisfies the growth condition (A.6).

Therefore, the candidate optimal control is l∗t verifying eβtYt − pt = c′t(l
∗
t ).

This determines lt = γ′t
(
eβtYt − pt

)
. Therefore the forward equation of Lt has a unique solution.

Finally, the quantity

c′t(l
∗
t ) = eβtYt − pt = EP̃

[ ∫ ∞
t

βpse
−β(s−t)ds− pt

∣∣∣∣ F̃t
]

(3.9)

= EP̃

[ ∫ ∞
t

e−β(s−t)dps

∣∣∣∣ F̃t
]

(3.10)

can be seen as the “implied alpha” of the deal, that is, the difference between the projected value
into the future and the current value of p. �

While it makes intuitive sense2, this a non-trivial result. Indeed, ct and hence lt depend on the
market maker’s decision, and yet αt = c′t (lt) becomes a quantity that is “intrinsic” to the client. It
is independent of the market maker’s pricing and only depends on the client’s view on the market. It
intuitively represents the client’s price estimator and summarizes her beliefs on the price dynamics.
Note that the discount factor now becomes the time-scale of her prediction. We define the quantity
the client tries to predict as the realized alpha over the time scale 1

β :

αrt =

∫ ∞
t

e−β(s−t)dps. (3.11)

This coincides with what practitioners refer to as the ’alpha’ of a client.

3.2. Dynamics of the implied alpha. (3.3) can be rewritten in terms of Itô dynamics:

dαt = βαtdt− dpt + eβtZtdW̃t (3.12)

= βαtdt− dpt + θtdW̃t (3.13)

with θt = eβtZt therefore being the volatility of the estimation. All these equations summarize the
link between optimal client volumes and price dynamics under the client’s probability measure and
filtration.

Three things can be noted.

(1) The drift of the implied alpha is the result of two opposing forces. On the one hand, the
self-correlation term guarantees a certain coherence in the client’s decisions over the time-
scale β−1. On the other hand, the implied alpha, through the −dpt term, automatically
takes into account the last price variation to recenter the estimation.

2All the formula says is that marginal costs equal expected marginal gains.
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(2) θt is a measure of intelligence of a client over the price process pt, given that in the limit
where θt = 0, a client has a perfect view on the market. Conversely, clients with a big θt
will have a higher variance on their price estimator, and can at the limit be considered as
“noise” traders.

(3) We can write the dynamics of αt under P to obtain:

dαt = βαtdt− dpt + θtΣtdWt + θtrtdt (3.14)

which provides the link between trade and price dynamics. Note that, while under P̃, αt is
intrinsic to the client, under P, αt may depend on the market maker’s decisions. In words,
this means that while the market maker cannot influence the client’s decision under her own
view of the market, he can affect that view itself.

3.2.1. The cost of information. Given the above result, it is clear that a market maker has a priv-
ileged position on the market: he catches a glimpse of everyone’s belief on the price. We can now
give an interpretation of γ beyond the fact that γ′′ represents the order book:

Under a martingale measure of pt, ct(lt) represents the cost the client pays to the market maker
for the liquidity lt, and this is the conservative interpretation of transaction costs. However, γt(αt)

represents the cost the market maker pays under the client’s view of the market. Under P̃, it is as
if the market maker pays the client for information on the price process.

This gives us a good intuition about the market maker’s strategy: he collects information from
each client, pricing them according to the current beliefs and how much the new information brings
to him: γ(α) is essentially how much the market maker is willing to pay for a prediction of strength
α, assuming that the client is correct.

3.3. Robustness analysis. In this section we define the notion of a ’cash-insensitive’ agent and
generalize the implied alpha relationship to the utility function case. This illustrates the robustness
and limits of the proposed codebook.

Define the state variables {
dLt = ltdt
dKt = − (ptlt + ct(lt)) dt

(3.15)

The second variable represents the client’s cash position at time t. If we define her wealth process
as Xt = ptLt +Kt then it verifies the standard dynamics

dXt = Ltdpt (3.16)

The proposed decomposition has a clear economic meaning: the agent calculates her wealth by
adding her cash Kt and the marked-to-the-mid value of her asset position Lt. This means that a
’cash-insensitive’ objective function would be of the standard form

J = E [U(Xτ , pτ )] = E [U(pτLτ +Kτ , pτ )] (3.17)

with τ a stopping time adapted to the client’s filtration and U her utility function. The special form
guarantees that the client does not differentiate between wealth in cash and wealth in the asset. An
agent concerned with the liquidity of the asset would not be ’cash-insensitive’.

One could generalize the utility framework to ’cash-sensitive’ agents by considering a utility func-
tion of the form U(Lτ ,Kτ , pτ ). In this case, the below result would not hold. The new Hamiltonian
becomes:

H(t, ω, L,K, l, YL, YK) = lYL − (ptl + ct(l))YK (3.18)
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where the dual variables satisfy in the ’cash-insensitive’ case the BSDEs

YL,t = E [∂XU(Xτ , pτ )pτ | Ft]
YK,t = E [∂XU(Xτ , pτ )| Ft]

The optimal execution strategy therefore verifies:

c′t(l
∗
t ) = E

[
YK,τ
YK,t

pτ

∣∣∣∣Ft]− pt (3.19)

which can be rewritten in a manner very similar to (3.3):

αt = EQ [pτ | Ft]− pt (3.20)

where dQ
dP =

YK,τ
E[YX,τ ] is a legitimate change of measure if ∂XU(Xτ , pτ ) is positive and integrable. In

the case where τ is exponential and independent of the price process, we simply recover (3.3) under
a different probability measure. Given that we assume all the clients to have differing probability
measures anyway, we can without loss of generality stick to (3.3).

The above computation is somewhat formal, but can be made rigorous by giving explicit integra-
bility assumptions on τ such that the growth condition (A.2) is verified. This is in particular the
case when τ is independent of p and has exponential moments, or if τ is bounded.

4. Reworking the Market Maker’s <odel

In this section, we work under the measure P and often drop the superscrip 0 referring to the
market maker. Our goal is to provide an optimal market making strategy. Because of its complexity,
the problem cannot be solved in full generality, and we propose a set of approximations which we
justify on financial grounds.

The next four subsections identify a succession of simplifications guided by intuition based on the
behavior of a typical market maker:

(1) First, he should ’not hold a view on the market’. Mathematically speaking, this means that
in his model for the price, the main explanatory variables are his client’s beliefs. The error
associated to this first simplification is proved to be small, though a function of the market
maker’s control.

(2) Second, he should model how his clients’ views might evolve into the future. A straightfor-
ward system of correlated Ornstein-Uhlenbeck processes is proposed to serve this purpose.
This will be used to define an approximate objective function for the market maker.

(3) The third approximation is made for mathematical convenience: we assume that the market
maker has an infinite number of clients. This leads to the previous models becoming SPDEs.

(4) Finally, a placeholder function is proposed to model the source of error identified in the first
subsection.

4.1. Approximate Price Process. As the market maker should not hold a view on the market,
we refrain from directly modeling pt under the market maker’s measure and filtration. Instead, the
market maker constructs his model from the client’s implied alphas. This is done in the following
fashion:

Equation (3.14) can be turned around to describe price dynamics using the implied alpha of client
i under P:

dpt = βiαitdt− dαit + θitΣ
i
tdWt + θitr

i
tdt (4.1)

and this equation holds true for all i. Notice that there is no contradiction with the uniqueness of
the Itô decomposition: these representations correspond to the same Itô process rewritten in terms
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of the variable αit. Using a sequence of positive and constant weights λi averaging to 1 (i.e. such
that (1/n)

∑n
i=1 λ

i = 1), we obtain:

dpt =
1

n

n∑
i=1

λi
(
βiαitdt− dαit

)
+

(
1

n

n∑
i=1

λiθitΣ
i
t

)
dWt +

(
1

n

n∑
i=1

λiθitr
i
t

)
dt (4.2)

Again, this equation is just a reformulation of the Itô decomposition of pt. The advantage of that
rparticular epresentation is that the first term is adapted to

(
F0
t

)
t≥0

. Hence, if he also knows (or

rather, chooses) the weights
(
λi
)
i=1...n

, then the market maker can follow the first term of this

decomposition in real time. We introduce the special notation pλt for this term and we refer to it as
his price estimator: So:

dpλt =
1

n

n∑
i=1

λi
(
βiαitdt− dαit

)
. (4.3)

The remainder which we denote ελt includes quantities that are unknown to him since

dελ =

(
1

n

n∑
i=1

λiθitΣ
i
t

)
dWt +

(
1

n

n∑
i=1

λiθitr
i
t

)
dt (4.4)

If we replace p by pλ in the market maker’s problem, the only difference appears in the objective
function, which now contains an extra term. We refer to is as the error term:

err = E

[∫ ∞
0

e−βtLt

(
1

n

n∑
i=1

λiθitr
i
t

)
dt

]
(4.5)

on the market maker’s objective function. Next we define(
σi
)2

= E
[∫ ∞

0

e−βt|θit|2dt
]
. (4.6)

This quantity is a measure of how ’noisy’ client i is, and can be estimated by fitting the expression
for the implied alpha to historical data. To be more specific, recall that under the client measure
and filtration,

αit = EP i
[∫ ∞

t

e−β
i(s−t)dps

∣∣∣∣F it] (4.7)

and that θit is the error on this estimation. Hence, the smaller θit, the closer the implied alpha is to
the realized one, which means that he client is particularly well informed. Note that in the finance
literature, clients are often called informed if their market impact function (their average alpha) is
unusually large. Our notion of intelligence of the price process does not coincide with this practice,
as one can have at the same time a systematically small though correct alpha. In this paper, an
informed trader is a trader for whom the implied and realized alphas nearly coincide, whereas for
a noise trader, relationship (3.3) has much higher variance (due, for example, to liquidity concerns,
a strongly non-linear utility function, or a poor filtration). The βi and σi can be estimated from
historical data by regressing the implied alpha against the realized one, that is for example by solving
the least squares regression problem

inf
β>0

1

N

N∑
k=1

(
αitk −

∫ ∞
tk

e−β(s−tk)dps

)2

(4.8)

where the tk are the times in the past at which client i traded.
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A skilled market maker can therefore construct his approximate price process by choosing a λ
which puts most of its weight on such intelligent clients and little weight on noise traders with large
σi’s.

Using Cauchy-Schwartz’s inequality and the particular choice of weights

λi =
n
(
σi
)−2∑

j (σj)
−2 , (4.9)

and assuming Lt is uniformly bounded by a constant L, we obtain:

|err|2 ≤ β−1(L)2E

∣∣∣∣∣
∫ ∞

0

βe−βt
1

n

n∑
i=1

λiθitr
i
tdt

∣∣∣∣∣
2

≤ β(L)2 1

n

n∑
i=1

∫ ∞
0

e−βtE|λiθit|2
1

n

∫ ∞
0

e−βt
n∑
i=1

E
∣∣rit∣∣2 dt

≤ βI−1(L)2

∫ ∞
0

e−βt
1

n

n∑
i=1

E
∣∣rit∣∣2 dt

where

I−1 = min
λ

1

n

n∑
i=1

(
λiσi

)2
=

(
1

n

n∑
i=1

(
σi
)−2

)−1

. (4.10)

I can therefore be seen as a measure of the aggregate intelligence the clients have over the price
process. Note that it suffices for one σi to be of order ε for I to be of order ε−1. By Girsanov’s
theorem, we then have that

E
∣∣rit∣∣2 = −2

d

dt
E log

dPi|Fit
dP|Fit

, (4.11)

and finally,

|err|2 ≤ 2β2I−1(L)2

∫ ∞
0

e−βt
1

n

n∑
i=1

E log
dPi|Fit
dP|Fit

dt (4.12)

Two important remarks are in order at this point. First, as long as at least one agent is well informed,
I−1 is small. Second, the dependence of p and αi upon the market maker’s control γ′′ is hidden in the

Radon Nykodym derivative
dPi|Fit
dP|Fit

. To understand why it is (unfortunately) reasonable to assume

that this term may be strongly dependent upon γ′′ is because a client can use the information on the
order book γ′′ publicly available as one of the sources of information he uses to form his probability
measure on the price. This problem will be addressed in the last subsection.

4.2. Approximate Objective Function. In this subsection, we take a crucial methodological
step. Instead of maximizing

J = E

[∫ ∞
0

e−βt

(
Ltdpt +

1

n

∑
i

αitγ
′
t

(
αit
)
dt− 1

n

∑
i

γt
(
αit
)
dt

)]
(4.13)

we assume that the market maker maximizes the approximate objective function

Jλ =

∫ ∞
0

e−βt
1

n

n∑
i=1

E

Ltλi(βi − β)αit +

αit − 1

n

n∑
j=1

λjαjt

 γ′t(α
i
t)− γt(αit)

 dt (4.14)
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subject to a constraint of the form |err|2 ≤ C for some constant C > 0. The new objective function
was obtained by replacing dpt by dpλt and integrating by parts. Because of our choice of the form of
the approximate price (4.3), the market maker’s objective function does not depend upon pt anymore,
and he only needs to model the client belief distribution. This is consistent with the intuition that
a market maker should not hold a view on the market. Rather, he should model the behavior of
his clients with respect to each other, and price according to the information they provide. This is
exactly the approach used in what follows.

However, we still need to propose a model for the αit. For reasons of tractability we choose them
as correlated Ornstein-Uhlenbeck processes:

dαit = −ραitdt+ σdM i
t + νdWt (4.15)

with ρ > 0 and the M i Wiener processes which are independent of each other and of W .
√
σ2 + ν2

is the overall volatility level of a client, and ν the volatility that is due to some common information
amongst client s(for example, the movement of the midprice). The next step of our strategy is to
introduce a penalization term to account for the possible feedback effects hidden inside the error
term introduced when replacing the objective function by its approximation. But first, we take the
limit n → ∞ to identify effective equations providing informative approximation to the properties
of the original system comprising finitely many clients.

4.3. Infinitely Many Clients. Assume that the number of clients of the market maker is large
enough to justify an approximation in the asymptotic regime n large. This will greatly improve the
tractability of the model by allowing us to work in function spaces and rely on stochastic calculus
tools to solve the model. The mainstay of this subsection is the Stochastic Partial Differential
Equation (SPDE for short):

dvt =

(
1

2
(σ2 + ν2)∆vt + ρ∇ (id vt)

)
dt− ν∇vtdWt (4.16)

describing the dynamics of an infinite dimensional measure valued Ornstein-Uhlenbeck process. The
following lemma links this macroscopic SPDE to our microscopic Orstein-Uhlenbeck model for the
implied alphas.

Proposition 4.1. If (εi)i≥1 is a sequence of random variables such that (αi0, ε
i)i≥1 is an iid sequence

independent of W and the sequence (M i)i≥1, and such that the joint distribution, say m, of all the
couples (αi0, ε

i) satisfies: ∫
(|α|p + |ε|2)m(dα, dε) <∞, (4.17)

for all p > 0, then for each t ≥ 0, the limit

νt = lim
n→∞

1

n

n∑
i=1

εiδαit (4.18)

exists almost surely in the sense of weak convergence of measures, almost surely for every t ≥ 0 it
holds: ∫

|α|p dνt(α) <∞ (4.19)

for every p > 0, and the measure valued process (νt)t≥0 is a weak solution of the SPDE (4.16) in
the sense that for any twice continuously differentiable function f (i.e. f ∈ C2) such as f and its
two derivatives have at most polynomial growth, we have that

d 〈f, vt〉 =

〈
1

2
(σ2 + ν2)∆f − ρid∇f, vt

〉
dt+ ν 〈∇f, vt〉 dWt (4.20)
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Furthermore, for each t > 0, the measure vt possesses an L2 density almost surely.

Proof. See appendix. �

The papers [13, 12] provide similar results for a more general class of microscopic models, including
existence and uniqueness of the solution of the SPDE (4.16). However, given the simple form of
the dynamics chosen in our particular model, we can provide an explicit form for the solution and
detailed properties on the nature of its tails. Note that the correlation between client beliefs is
crucial in having a fully stochastic model, given that for ν = 0, νt only satisfies a deterministic
partial differential equation.

We shall use four measure valued solutions of the above SPDE. In each case, the weights εi

are explicit functions of the parameters σi and βi introduced earlier. Because the values of these
parameters appear as outcomes of statistical estimation procedures in practice, assuming that they
are random and satisfy some form of ergodicity is not restrictive3. To construct these measures we
assume that (αi0)i≥1 is an iid sequence of random variables whose common distribution has finite
moments of all orders. The first of our four measures is obtained by choosing εi ≡ 1 for all i ≥ 1.
Then:

µt = lim
n→∞

1

n

n∑
i=1

δαit . (4.21)

Next we assume that {(σi)−2}i≥1 is a sequence of positive random variables of order 1 such that
{(αi0, (σi)−2)}i≥1 is an iid sequence independent of W and the sequence (M i)i≥1, so by choosing
εi = (σi)−2 for all i ≥ 1 we can define:

It = lim
n→∞

1

n

n∑
i=1

(
σi
)−2

δαit . (4.22)

We shall also assume that the number I = E[(σi)−2] is finite and strictly positive, and for each t ≥ 0
we define the non-negative measure λt by:

λt = I−1
0 It. (4.23)

Finally, we assume that (βi)i≥1 is a sequence of bounded random variables such that {(αi0, (σi)−2, βi)}i≥1

is an iid sequence independent of W and the sequence (M i)i≥1, so by choosing εi = βi(σi)−2 for all
i ≥ 1 we can define:

βt = I−1 lim
n→∞

1

n

n∑
i=1

βi
(
σi
)−2

δαit . (4.24)

We now make a few remarks on the properties shared by essentially all the solutions (vt)t≥0 of the
SPDE (4.16). For the sake of definiteness, we shall assume that (vt)t≥0 is a non-negative measure
valued process solving this SPDE.

(1) The total mass 〈1, vt〉 of the measure vt is constant over time. Indeed, using the constant test
function f ≡ 1 in (4.16) we see that

d 〈1, vt〉 = 0 (4.25)

In particular, the intelligence assumption I = 〈1, I0〉 ≥ ε−1 is conserved over time.

(2) If we use the test function f = id in (4.16) where the identity function id is defined by id(α) = α,
then we see that the first moment of vt is itself an Ornstein-Uhlenbeck process mean reverting around
0 since:

d 〈id, vt〉 = −ρ 〈id, vt〉 dt+ ν 〈1, v0〉 dWt. (4.26)

3The fact that we have to enlarge the Brownian filtration at time t = 0 to randomize the coefficients does not

impact the martingale representation theorem.
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(3) Using f = id2 we see that the second moment mean reverts around
(
σ2 + ν2

)
〈1, v0〉 since:

d
〈
id2, vt

〉
=
(〈
σ2 + ν2, v0

〉
− 2ρ

〈
id2, vt

〉)
dt+ 2ν 〈id, vt〉 dWt. (4.27)

These Stochastic Differential Equations (SDEs for short) guarantee the existence of a constant C1

such that:

E
〈
id2, vt

〉
≤ eC1t

E 〈|id|, vt〉 ≤
√
E 〈id2, vt〉 ≤ e

1
2C1t.

We shall use these estimates for the measures µt, λt and βt. In fact similar estimates hold for
moments of all order as can be proved by induction from (4.16). We do not give the details as they
will not be used in what follows.

Coming back to the optimal control problem of the market maker, since γ′′t belongs to a space of
probability measures whenever the control (γt)t≥0 is admissible, the following estimates hold:

||γ′t||∞ ≤ 1

|γt(α)| ≤ α
|〈γ′t, vt〉| ≤ 〈1, v0〉 = O(1)

E |〈γt, vt〉| ≤ E 〈|id|, vt〉 = o
(
eβt
)

E |〈id γ′t, vt〉| ≤ E 〈|id|, vt〉 = o
(
eβt
)

As an immediate consequence of the above remarks we have:

Corollary 4.2. For any progressively measurable process (γt)t≥0 such that γ′′t is a probability mea-
sure, the state dynamic equation of the market maker:

dLt = −〈γ′t, µt〉 dt (4.28)

makes sense, and for sufficiently large β, the approximate objective function

Jλ =

∫ ∞
0

e−βtE [Lt 〈id, βt〉+ 〈−Ltβid+ (id− ᾱt) γ′t − γt, µt〉] dt (4.29)

where ᾱt = 〈id, λt〉, is well defined.

4.4. Modeling the Error Term. As argued in the first subsection, the approximation technique
hinges on one hypothesis: the existence of at least one ’ε-intelligent’ client. Furthermore, the clients
probability measure (by which we mean the distribution of the clients implied alphas) is potentially
a function of the market maker’s control. This causes an undesirable nonlinear feedback effect which
needs to be reined in to avoid explosion of the approximation error. In this subsection we propose
a direct description of the error term, leaving open the question of how to derive it from a specific
model of the clients probability measures.

Intuitively, the feedback effect corresponds to how much new information the order book shape
reveals to the clients. The clients’ beliefs at time t can be summarized by the probability measure
µt and the order book by γ′′t . A reasonable model for the error term is given by the expression

E = εE
∫ ∞

0

e−βtH(γ′′t |µt)dt (4.30)

where H(ν|µ) denotes the Kullback-Leibler distance (also known as relative entropy) defined by

H(ν|µ) =

{ ∫
f
(
dν
dµ

)
dµ, whenever ν << µ;

∞ otherwise
(4.31)
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with f(x) = x log x . Note that H(ν|µ) is minimal for γ′′t = µt by convexity of f . As explained
in the introduction, we choose this particular distance for its intuitive interpretation and the fact
that it leads to an explicit expression for the two hump order book shape endogenous to the model.
However, the results hold for general strictly convex functions f , in which case the pseudo-distance
H defined in (4.31) is known as the f-divergence between the measures µ and ν. See [8].

5. The Market Maker’s Control Problem

With all the pieces of our model in place, we now solve the market maker’s control problem.

5.1. Model Summary. We consider a sequence
(
βi, (σi)−2

)
i≥1

of random variables such that the

assumptions of Proposition 4.1 are satisfied with εi ≡ 1, εi = (σi)−2 and ε1 = βi(σi)−2 respectively,
so that the measure-valued processes (µt)t≥0, (λt)t≥0 and (βt)t≥0 constructed in (4.21), (4.23) and
(4.24) are well defined.

As explained earlier, the market maker’s control at time t is the convex function γt, and given our
choice of penalizing terms, we expect its second derivative γ′′t to be a probability measure absolutely
continuous with respect to µt in order to avoid infinite penalties. So we refine the definition of
the set A of admissible controls for the market maker as the set of random fields (gt(x))t≥0,x∈R
such that (gt(x))t≥0 is progressively measurable for each x ∈ R fixed, and 〈g, µt〉 = 1 for each
t ≥ 0. Given an admissible control g ∈ A, we define the function γt as the anti-derivative of the
function γ′(α) =

〈
gt1[0,α], µt

〉
satisfying γt(0) = 0. The objective of the market maker is to choose

an admissible control in order to maximize his modified objective function defined as:∫ ∞
0

e−βtE [Lt 〈id, βt〉+ 〈−Ltβid+ (id− ᾱt) γ′t − γt − εf ◦ gt, µt〉] dt (5.1)

where the controlled dynamics of the state Lt of the system are given by:

dLt = −〈γ′t, µt〉 dt. (5.2)

We used the functions γt and γ′t for consistency with earlier discussions. See below for forms of the
state dynamics and market maker objective function written exclusively in terms of the density gt).
The above quantities are well-defined because of the estimates proven for the measures µt, λt and
βt solving the SPDE.

5.2. Solving the Market Maker Control Problem. We denote by Y the adjoint variable of L
so that the generalized (random) Hamiltonian of the problem can be defined as

H(t, L, g, Y ) = −〈γ′t, µt〉Y + e−βt (L 〈id, βt〉+ 〈−βLid+ (id− ᾱt)γ′t − γt − εf ◦ g, µt〉) (5.3)

for any deterministic function g as long as we define γ and γ′ by γ′(α) =
〈
gt1[0,α], µt

〉
and γ(α) =∫ α

0
γ′(α̃)dα̃. Note that in the above expression of the Hamiltonian, g is determinist and does not

depend upon t, but γ′t which is the cumulative distribution function of the probability measure γ′′t
with density g with respect to µt is random and depends upon t. Clearly, so is γt. This Hamiltonian
can be rewritten as

H(t, L, g, Y ) = e−βtL〈id, βt − βµt〉+ e−βtH̃(g) (5.4)

where the modified Hamiltonian H̃ is defined by

H̃(g) = −〈γ′t, µt〉eβtY + 〈(id− ᾱt)γ′t − γt − εf ◦ g, µt〉,

and the other terms do not depend upon the control. Since the stochastic maximum principle proven
in appendix says that we can look for the optimal control by maximizing the Hamiltonian, we shall
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maximize the modified Hamiltonian. For each choice of the admissible control (gt)t≥0, we consider
the corresponding state process (Lt)t≥0 given by (5.2) and the adjoint equation:

−dYt = e−βt 〈id, βt − βµt〉 dt− ZtdWt. (5.5)

Since the derivative of the Hamiltonian with respect to the state variable L does not depend upon
the control or the state L, the adjoint process can be determined independently of the choice of the
admissible control (gt)t≥0 and the associated state (Lt)t≥0 solving (5.2). Given the explicit formulas
we have derived for µt, we obtain:

Lemma 5.1. The solution to the adjoint Backward Stochastic Differential Equation (5.5) is given
by:

Yt =
e−βt

β + ρ
〈id, βt − βµt〉 , (5.6)

and it verifies the growth condition (A.6).

Proof. The exact form (5.6) of the solution can be guessed by going back to the explicit system
of finitely many Ornstein-Uhlenbeck processes and taking the limit. However, for the proof, we
show that the process (Yt)t≥0 given by (5.6) is the solution by direct inspection, computing the Itô
differential of Yt defined by (5.6) and using the fact that the random measures βt and βµt also solve
the SPDE (4.16). Using (4.26), we get:

dYt = −βYtdt− ρYtdt+ e−βt
ν

β + ρ
dWt

= −e−βt 〈id, βt − βµt〉 dt+ e−βt
ν

β + ρ
dWt

and by the growth properties of the first moment, limt→∞ Yt = 0. Moreover, Zt = e−βtν/(β + ρ)
clearly verifies the growth condition (A.6). �

The form of the modified Hamiltonian justifies the introduction of the quantity:

α∗t = ᾱt + eβtYt =

〈
id, λt +

βt − βµt
β + ρ

〉
(5.7)

so that, if we compute the modified Hamiltonian along the path of the adjoint process we get:

H̃(g) = −〈α∗t γ′t − γt, µt〉 − ε〈f ◦ g, µt〉.
α∗t can be viewed as the shadow alpha of the market maker.4 The first term in the definition of α∗t is
the average belief for alpha under the weighted client measure λt, while the second term takes into
account mismatches in the time-horizons of the clients. For each t ≥ 0, we define the profitability
function mt by:

α ↪→ mt(α) = (α− α∗t )[µt([α,∞))− 1(−∞,0](α)]. (5.8)

For each α ∈ R, (mt(α))t≥0 is a progressively measurable stochastic process and for each fixed t ≥ 0,
the function α ↪→ mt(α) is almost surely continuous in α, except for a possible jump mt(0

+)−mt(0
−)

at α = 0. mt is bounded and vanishes at the infinitives because of the integrability property (4.19)
of the solutions of the SPDE. The profitability function quantifies the expected profit for an order
placed at time t at the price level α. Indeed, the absolute value |α − α∗t | is equal to the spread
the market maker expects to gain per filled order, and up to a possible change of sign, the term
µt([α,∞)) − 1(−∞,0](α) is equal to the proportion of clients that will fill the order. If the arrivals

4This terminology is justified by the fact that, when the market maker does have his own view on the market (that

is, his own model for dpt), we would obtain the same optimization problem replacing α∗t by E
[ ∫∞
t e−β(s−t)dps

∣∣F0
t

]
.
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of the agents of our model occurred according to a Poisson process instead of simultaneously, this
would be the filling probability of the order. The respective contributions of these two terms are
commonly parsed by practitioners. Notice also that, in the degenerate case ε = 0, the profitability
function is the derivative of the Hamiltonian in the direction of the control.

We now identify the modified Hamiltonian in terms of the control g without involving the anti-
derivatives γ′t an γt.

Lemma 5.2. For each t ≥ 0, we have the identity

〈(id− α∗t )γ′t − γt, µt〉 = 〈mt, γ
′′
t 〉 . (5.9)

Proof. Successive integrations by parts and simplifications yield:〈
γ′′t , (id− α∗t )

(
µt([ · ,∞))− 1(−∞,0]( · )

)〉
= −

〈
γ′t,
(
µt([ · ,∞))− 1(−∞,0]( · )

)
− (id− α∗)µt − α∗t δ0

〉
= 〈γt, µt − δ0〉+ 〈γ′t(id− α∗), µt〉+ α∗t γ

′(0)

= 〈(id− α∗t )γ′t − γt, µt〉
where the first integration by parts is justified by the fact that γ′ is bounded, the Dirac distribution
has compact support and the simple facts:

lim
α→∞

µt([α,∞)) = 0, and lim
α→−∞

µt([α,∞))− 1α≤0 = − lim
α→−∞

µt((−∞, α]) = 0,

and αµ(α) vanishes at the infinities. The linear growth of γ justifies the second integration by parts.
The last line uses the initial conditions of γt and γ′t. �

We can now state and prove the main result of this section:

Theorem 5.3. The solution to the market maker’s control problem is given by

gt(α) =
emt(α)/ε∫

emt(α)εdµt(α)
(5.10)

The quantity in the right hand side of can be seen as the change of measure from the distribution
of the clients alphas to the order book of the market maker.

Proof. Using Lemma 5.1 and equation (5.9) enables us to rewrite the modified Hamiltonian as:

H̃(g) = 〈mtg, µt〉 − ε 〈f ◦ g, µt〉 (5.11)

which we need to maximize for each fixed t ≥ 0, over g ∈ L1(µt) with 〈g, µt〉 = 1 and g ≥ 0. Again,

for each fixed t and almost surely, by convexity of f , H̃ is concave in g and bounded from above, so
that M̃ = supAt H̃(g) exists and is finite.

Let (gn)n≥1 be a maximizing sequence in At, i.e. a sequence of admissible gn such that H(gn)→
M̃ . By Komlos’s lemma (see for example [9]), there exists a subsequence gφ(n) and an element

g∞ ∈ L1(µt) such that 1
n

∑n
i=1 gφ(ψ(i)) → g∞ µt-a.e. as n→∞ for any subsequence of the original

subsequence. Clearly, g∞ ≥ 0 µt almost everywhere. To prove 〈g∞, µt〉 = 1 we show uniform
integrability of {gn}n using De la Vallée-Poussin’s theorem (see [15]). Indeed, by definition of the

maximizing sequence, H(gn) ≥ M̃ − 1 for large enough n. Hence ε 〈f ◦ gn, µt〉 ≤ −M̃ + 1 + ||mt||∞.
f is non-negative, convex, increasing on [1,∞) and verifies limx→∞

1
xf(x) =∞. This concludes the

proof of the admissibility of g∞ as a control. Finally, by concavity of the modified Hamiltonian, the
supremum is attained at g∞.

We now characterize the maximal element we just constructed. We introduce a Lagrange multi-
plier η ∈ R to relax the problem to the set of g ∈ L1(µt) such that g ≥ 0, so that the Lagrangian
reads:

L̃(g) = 〈(mt − η)g − εf ◦ g, µt〉 (5.12)
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Classical variational calculus yields the optimality condition

g = (f ′)−1
(
ε−1 (mt − η)

)
, (5.13)

for some η. The existence and uniqueness of a Lagrange multiplier renormalizing g is obvious given
the explicit formula for (f ′)−1. We conclude that g is the desired optimum. �

Figure 1. Graph of a simulated profitability curve m with α∗ ≈ −0.33. The
maximum profitability is only 5% of the volatility used to simulate prices. The
average spread being comparable to the volatility (see [18]), this means that the
market maker’s margins are very thin in this simulation.

5.3. Interpretation. Figure 1 and Figure 2 illustrate what the market maker does:

(1) He tries to stick to a shape not too far away from µt, his client alpha distribution. This is
to avoid feedback effects and associated errors on the price estimation.

(2) He also takes into account the profitability function mt, which leads him “to make a big
hole” in the center of the distribution µt.

The combined effects lead to the familiar “double hump” shape of the order book, as seen in [18].
Other consequences of the liquidity formula are

(1) In the limit where one client is perfectly intelligent of the price (ε → 0), the market maker
places a Dirac mass on the order book. In particular, he only trades on profitable sections
of the book.

(2) In the noise trade limit (ε → ∞), the market maker simply reproduces the client alpha
distribution.

(3) If the return distribution of the asset is mean-reverting (which is not the case for options
with maturities, for example), then so will µt and hence γt and ct. In the case of a European
option, γ′′t converges to a Dirac at the payoff at maturity.
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Figure 2. Bimodal distribution: Optimal order book γ′′ for ε = 0.01 using the
simulated alpha distribution and the entropic penalizing factor. Unimodal distri-
bution: Client alpha distribution. The profitability used is the same as in figure
1.

6. Conclusion

In this paper, we propose an equilibrium model for high frequency market making. We show that
each client chooses his level of trade by an expected discount of future prices according to his beliefs.
We call this the implied alpha of the client. This relationship can be used as a codebook to link
trade and price dynamics. The different clients can be differentiated according to the time scales of
their implied alphas and the variances of the errors they make estimating the price. This leads to an
expression for the latter that the market maker can use to avoid having his own view on the market.
He can then construct a profitability curve which dictates which sections of the order book are the
most profitable. In solving the market maker optimization problem, we use a penalizing term to
smooth the objective function and capture possible feedback effects. All these result in a tractable
framework in which we can solve the market maker’s control problem and identify the equilibrium
order book dynamics.

Appendix A. A convenient form of the stochastic maximum principle

We present a form of the Pontryagin stochastic maximum principle tailored to the needs of the
analysis of Section 5. The set-up is quite general, following loosely [17] Chapter 3. We assume that
(Ω,F , (Ft)t≥0 ,P) is a filtered probability space, (Ft)t≥0 is generated by a Wiener process (Wt)t≥0,

and we let At(ω) be such that for all (t, ω), At is a Borel convex subset of a Polish topological
vector space E, adapted to (Ft)t≥0. The admissible control processes (αt)t≥0 are the progressively
measurable processes in E such that αt ∈ At for all t ≥ 0. We also assume that the dynamics
of the controlled state X are governed by an Ordinary Differential Equation(ODE) with random



HIGH FREQUENCY MARKET MAKING 21

coefficients valued in Rn:

dXt = ft(Xt, αt)dt (A.1)

where the coefficient f : (ω, t,X, a)→ ft(X, a) is Lipschitz in X uniformly in all the other variables.
Assume an estimate of the form

|Xt| ≤ |X0|eCt (A.2)

where C is a constant. We also assume that f is continuously differentiable (i.e. C1) in X. The
controller’s objective function is given by

J(α) = E
[∫ τ

0

jt(Xt, αt)dt+ gτ (Xτ )

]
(A.3)

where τ is a stopping time adapted to (Ft)t≥0 and j and g are random real-valued concave func-

tions which are C1 in X. Furthermore, we assume that j, g and τ are such that E [|gτ (Xτ )|] and
E
[∫ τ

0
|jt(Xt, αt)|dt

]
are finite and uniformly bounded from above. Next, we define the Hamiltonian

Ht(ω,X, a, Y ) = ft(ω,X, a)Y + jt(ω,X, a) (A.4)

for Y ∈ Rn and for each admissible control (αt)t≥0, the adjoint equation:

−dYt = ∂XHt(Xt, αt, Yt)dt− ZtdWt (A.5)

with Yτ = ∂Xg(Xτ ) and Zt such that E
∫ τ

0
|Zt|2dt < ∞. Under these conditions we have the

following result.

Theorem A.1 (Pontryagin’s maximum principle). Let α̂ be an admissible control and X̂ be the
associated state variable. Suppose there exists a solution (Y,Z) to the adjoint equation (A.5) such
that

E
[∫ τ

0

eCt|Zt|2dt
]
<∞, (A.6)

and the Hamitonian verifies for everyt ≥ 0

Ht
(
X̂t, α̂t, Yt

)
= maxa∈AtHt

(
X̂t, a, Yt

)
, a.s. (A.7)

and for every t ≥ 0, almost surely, the function

(X,α) ↪→ Ht
(
X̂t, α̂t, Yt

)
is concave, then α̂ is an optimal control, that is, J(α) ≤ J(α̂) for all admissible α = (αt)t≥0.
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Proof. If (Xt)t≥0 is the state associated to another admissible control (αt)t≥0, we have the chain of
relationships:

E
[
gτ (Xτ )− gτ (X̂τ )

]
≤ E

[(
Xτ − X̂τ

)
· Yτ
]

(A.8)

= E
[∫ τ

0

(
−
(
Xt − X̂t

)
· ∂XHt(X̂t, α̂t, Yt) +

(
ft(Xt, αt)− ft(X̂t, α̂t)

)
· Yt
)
dt

]
(A.9)

≤ E
[∫ τ

0

(
Ht(X̂t, α̂t, Yt)−Ht(Xt, α̂t, Yt) +

(
ft(Xt, αt)− ft(X̂t, α̂t)

)
· Yt
)
dt

]
(A.10)

= E
[∫ τ

0

(
Ht(X̂t, α̂t, Yt)−Ht(Xt, α̂t, Yt)−Ht(X̂t, α̂t, Yt) +Ht(Xt, αt, Yt)

)
dt

]
− E

[∫ τ

0

(
jt(Xt, αt)− jt(X̂t, α̂t)

)
dt

]
(A.11)

≤ −E
[∫ τ

0

jt(Xt, αt)− jt(X̂t, α̂t)

]
. (A.12)

(A.8) stems from the concavity of g and terminal condition of Y . (A.9) follows from the dynamics
of Y and the relationship:

E
[∫ τ

0

(
Xt − X̂t

)2

Z2
t dt

]
≤ 2X0E

[∫ τ

0

eCtZ2
t dt

]
<∞ (A.13)

which guarantees that the local martingale part is a martingale. (A.10) holds by the concavity of
the Hamiltonian. (A.11) is just the definition of H. Finally, (A.12) is a consequence of the fact that

α̂t maximizes Ht(X̂t, ·, Yt). �

Appendix B. Derivation of the SPDE (4.16)

We give the main steps of the proof of Proposition 4.1. By independence of the common random-
ness W and the idiosyncratic randomness (M i, αi0, ε

i)i≥1, we can freeze the randomness of W and
work after conditioning with respect to FW , the σ-algebra generated by W , without affecting the
independence properties of the idiosyncratic random variables. By independence of the M i, the αi0
and εi, we have that, conditional on FW , the random variables

αit = αi0e
−ρt +

∫ t

0

e−ρ(t−s)
(
νdWs + σdM i

s

)
(B.1)

are iid and Gaussian. So if f ∈ C2 is such that f and its two derivatives have at most polynomial
growth, given the assumption (4.17) on the joint distribution m of all the couples (αi0, ε

i), we can
apply the law of large numbers and get:

lim
n→∞

1

n

n∑
i=1

εif(αit) = E
[
ε1f(α1

t )
∣∣FW ]

=

∫
R3

εf

α0e
−ρt +

∫ t

0

e−ρ(t−s)νdWs + σx

√∫ t

0

e−2ρ(t−s)ds

 1√
2π
e−

x2

2 m(dα0, dε)dx

The other results can be derived directly from this explicit representation.
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