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Abstract

In this paper, we implement and test a market-based model for European-type options, based on the tangent
Lévy models proposed in [4] and [3]. As a result, we obtain a method for generating Monte Carlo samples of
future paths of implied volatility surfaces. These paths and the surfaces themselves are free of arbitrage, and are
constructed in a way that is consistent with the past and present values of implied volatility. We use market data to
estimate the parameters of this model and conduct an empirical study, to compare the performance of the chosen
market-based model with the classical SABR model and with the method based on direct simulation of implied
volatility, described in [7]. We choose the problem of minimal-variance portfolio choice as the main measure of
model performance and compare the three models. Our study demonstrates that the tangent Lévy model does a
better job at finding a portfolio with the smallest variance than the SABR model. In addition, the prediction of
return variance, provided by the tangent Lévy model, is more reliable and the portfolio weights are more stable.
We also find that the performance of the direct simulation method, at the portfolio choice problem, is not much
worse than that of the tangent Lévy model. However, the direct simulation method of [7] is not arbitrage-free. We
illustrate this shortcoming by comparing the direct simulation method and the tangent Lévy model at a different
problem – estimation of Value at Risk of an options’ portfolio. To the best of our knowledge, this paper is the first
example of empirical analysis, based on real market data, which provides a convincing evidence of the superior
performance of market-based models for European options, as compared to the classical spot models.

1 Introduction
The existence of liquid markets for equity and volatility derivatives, as well as a well-developed over-the-counter
market for exotic derivatives, generates a need for a modeling framework that is consistent across time and across
financial instruments. Within this framework, once a model is chosen so that it matches both the present prices
of liquid instruments and their past dynamics, it is expected to produce more realistic results for the problems of
pricing and hedging of exotic instruments. In addition, such models can be used to quantify the risk embedded in
portfolios of derivative contracts. Needless to say, evaluating and managing the risk of such portfolios is crucial for
proper functioning of the financial markets: recall, for example, that VIX index, itself, is a portfolio of European
options written on S&P 500.

In this paper we investigate an arbitrage-free modeling framework for multiple European-type options written
on the same underlying, which is consistent across time and products. In particular, this framework allows to
resolve one of the nagging challenges of quant groups supporting equity trading: i.e. how to generate realistic
Monte Carlo scenarios of implied volatility surfaces which are consistent with present and historical observations?
As mentioned above, such models can be used to address the problems of pricing, hedging and risk management.
Herein, we implement several such models using real market data and conduct a numerical experiment which
demonstrates clearly the advantages of this modeling approach.

The attempts to model the dynamics of implied volatility surface directly can be dated back as early as the
“sticky smile model” and the “sticky delta model” (also known as “floating smile model”) (see Section 6.4 of
[23] for the definitions). As an improvement of the two models, Cont et al. later proposed a multi-factor model
of implied volatility surface in [7] and [8], where they applied a Karhunen-Loève decomposition on the daily
variations of implied volatilities. It turns out that the first three eigenvectors could explain most of the daily
variance, and a mean-reverting factor model based on the three eigenvectors is then constructed for future implied
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volatility surface. The major issue with these early attempts is that the proposed models for the dynamics of implied
volatility are either too restrictive, not allowing to match the historical evolution of implied volatility, or too loose,
so that they may contain arbitrage opportunities. While the importance of the first issue for any time-series analysis
is very clear, the second one deserves a separate discussion. Indeed, what do we mean by arbitrage opportunities
in a model for implied volatility and why do we need to avoid it? There are two types of arbitrage opportunities
we refer to: static and dynamic. A given implied volatility surface contains static arbitrage if it is impossible to
obtain such a surface in any arbitrage-free model for the underlying. The fact that not every surface can be an
arbitrage-free implied volatility simply follows from the well-known static no-arbitrage restrictions on the shape
of a call price surface: e.g. monotonicity and convexity in strikes, etc (cf. [10] and [11]). Notice that a violation
of any of these conditions leads to an obvious arbitrage opportunity which is very easy to implement, hence, it
is natural to assume that every implied volatility surface is free of static arbitrage. This, in turn, implies that any
realistic simulation algorithm for future implied volatility surfaces has to produce surfaces that are arbitrage-free:
otherwise, the algorithm generates outcomes that are simply impossible (see Subsection 3.4.2). The static no-
arbitrage conditions are rather difficult to state explicitly, in terms of the implied volatility surface itself (without
mapping it to a call or put price surface first). Nevertheless, it is not hard to deduce from the existing necessary
conditions (cf. [20]) that the set of arbitrage-free implied volatility surfaces forms a “thin” set in the space of
all (regular enough) functions of two variables. Hence, it is a non-trivial task to construct a modeling framework
that excludes static arbitrage in the implied volatility surface. The dynamic arbitrage adds to this problem, and
it refers to a restriction on the evolution (i.e. the time increments) of implied volatility surface, rather than its
values at a fixed moment in time. This restriction follows from the same arbitrage considerations for option prices.
However, its associated arbitrage strategies are not as straightforward as in the case of static arbitrage. In addition,
the simulated implied volatility surfaces that contain only dynamic arbitrage are, typically, very close to the ones
that are arbitrage-free, when the time horizon is small (it is related to the fact that dynamic arbitrage only changes
the drift term of the implied volatility, which is much smaller than the diffusion term, for small times). This is why,
eliminating the dynamic arbitrage in a model for implied volatility surface is often viewed as a “second priority” for
risk management. Nevertheless, we believe that a good model should exclude both types of arbitrage, in order to
produce realistic dynamics of implied volatility surface (for risk management) and eliminate the possible arbitrage
opportunities (for pricing).

We have already mentioned that it is not a trivial task to construct a model of implied volatility that excludes
arbitrage opportunities. In fact, when trying to model the surface directly, the first challenge that one faces is:
how to describe the space of possible implied volatility surfaces? Note that, as discussed above, the existing
characterizations of arbitrage-free implied volatility surfaces are rather implicit. In addition, if the resulting space
is not an open subset of any linear space (which it is not), what kind of mathematical tools can be used to describe
evolution in space? Recall, for example, that all statistical models of time-series are defined on linear spaces (or
those that can be easily mapped in to a linear space). Hence, it appears natural to map the space of possible
implied volatility surfaces to an open set in a linear space, and then proceed with the construction of arbitrage
free models. Such mapping became known as a code-book mapping, and it turns out that it can be constructed
by means of the so-called tangent models (cf. [2], [4], [3]). The concept of a tangent model is very close to the
method of calibrating a model for underlying to the target derivatives’ prices (in the present case, European options
calls). Consider a family of arbitrage-free models for the underlying,M(θ), parameterized by θ, taking values in
a “convenient” set Θ (an open set of a linear space). For any given surface of option prices (or, equivalently, any
given implied volatility surface), we can try to calibrate a model from this family to a given surface of option
prices (or, equivalently, to a given implied volatility surface). In other words, we attempt to find θ ∈ Θ such
that: Cθ(T,K) = C(T,K), for all given maturities T and strikes K, where C(T,K) is the given call price, and
Cθ(T,K) is the call price produced by the modelM(θ). If the above calibration problem has a unique solution,
we obtain a one-to-one correspondence between the call price surfaces and the models in a chosen family: θ ↔ Cθ.
For every call price surface C = Cθ, the associated (calibrated) modelM(θ) is called a tangent model.1 Notice
thatCθ is always arbitrage-free, hence, we obtain the desired code-book mappingC = Cθ 7→ θ. Now, the problem
of static arbitrage has been resolved, and one simply needs to prescribe the distribution of a stochastic process (θt),
taking values in a convenient set Θ, in order to obtain a model for the dynamics of call prices

(
Ct = Cθt

)
, and,

in turn, the dynamics of implied volatility surface. Finally, one needs to characterize all possible dynamics of (θt)
that produce no dynamic arbitrage in the associated call prices

(
Cθt
)
. An interested reader is referred to [3], for

a more detailed description of this general algorithm, and, for example, to [2], [4], [15], [30], [19], [24], for the
analysis of specific choices of the families of models {M(θ)}.

1It is important to remember that any such model serves only as a static description of option prices, and it does not describe their dynamics!
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The idea of modeling prices of derivative contracts directly dates back to the work of Heath, Jarrow and Morton
[14], who analyzed the dynamic of bond prices along with the short interest rate. Such models have become known
as the market-based models (or simply market models), as opposed to the classical spot models, since the former
are designed to capture the evolution of the entire market, including the liquid derivatives. This approach has been
extended to more general mathematical settings, as well as to other derivatives’ markets. The list of relevant works
includes [11], [25], [26], [28], [27], [12], in addition to those mentioned in the previous paragraph. Even though
the notions of code-book and tangent models never appear in these papers, almost all of them follow the algorithm
outlined in the previous paragraph (and described in more detail in [3]), in order to construct a market-based model.

Even though various code-books for implied volatility surface (or, equivalently, for call price surface) have been
proposed and the corresponding arbitrage-free dynamics have been characterized, it was not until very recently that
some of these models were implemented numerically. As is shown in the rest of the paper, the lack of such results
is not a surprise given the complexity of the models. So far, the numerical implementations are mostly based
on tangent Lévy models proposed in [4] and [3]: as the name suggests, this corresponds to a code-book which is
constructed using non-homogeneous Lévy (or, additive) models as the tangent models. Karlsson [16] implements a
class of tangent Lévy models with absolutely continuous Lévy densities and no continuous martingale component.
Zhao [30] and Leclercq [19], on contrary, implemented the tangent Lévy models whose Lévy measure is purely
atomic in the space variable. As opposed to [30], the work of Leclercq [19] allows for tangent models with
continuous martingale component and includes options with multiple maturities, but it does require that the Lévy
density possess certain symmetry, which may limit the ability of the model to capture the skew of the implied
smile. All of the works [16], [30], [19] estimate the parameters of the model from real market data. In addition,
[19] conducts a numerical experiment comparing the performance of a market-based model to a classical spot
model. The actual results of this experiment, however, do not provide a convincing evidence in favor of the
market-based approach. We believe that the latter is simply due the choice of experiment and not to the deficiency
of the theory, and we intend to demonstrate it in the present work.

The purpose of this paper is to propose an implementation method for a class of tangent Lévy models and to
test its performance using market data. This method provides an algorithm for simulating future arbitrage-free
implied volatility surfaces, which are consistent with both present and past observations. Our method is similar to
the one used in [16], but with a different “dynamic fitting” part. However, the most important original contribution
of this paper is the numerical experiment which uses real market data to demonstrate clearly the advantages of
market-based models for implied volatility (or, option prices), as compared to the classical spot models. In addition,
we conduct a smaller-scale experiment in which we illustrate the advantages of using an arbitrage-free model for
simulating future options’ prices. To the best of our knowledge, this is the first convincing empirical analysis that
justifies the use of market-based approach for modeling option prices (or, equivalently, for modeling the implied
volatility surface).

The rest of the paper is organized as follows. Section 2 starts by reviewing the work on tangent Lévy models
with continuous Lévy density, developed in [4]. We, then, proceed to describe the parametric estimation of the
parameters of this model, which is partially based on the double exponential jump process. In Section 3, the
estimated model is tested against a popular stochastic volatility model and a model based on direct simulation of
implied volatility – in a portfolio optimization problem and for estimating Value at Risk. Section 4 concludes
the paper by highlighting the main contributions and the future work. Appendix A contains technical proofs and
derivations, Appendix B contains all tables and graphs.

2 Double exponential tangent Lévy models

2.1 Model setup and consistency conditions
In this subsection, we review and update the results of [4], which serve as a foundation for the analysis in sub-
sequent sections. Herein, we assume that the interest and dividend rates for the underlying asset are zero. In the
implementation that follows, we discount the market data accordingly, to comply with this assumption. As in [3],
we denote by (St)t≥0 an adapted stochastic process defined on a stochastic basis (Ω,F ,F,Q), with the filtration
F satisfying the usual hypotheses. The process S represents the dynamics of the underlying under the pricing
measure Q. We assume that it is of the form

St = S0 +

∫ t

0

∫
R
Su−(ex − 1)[M(dx, du)−Ku(x)dxdu]. (2.1)
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Here, M is a general integer-valued random measure (not necessarily a Poisson measure!), whose compensator is
Ku,ω(x)dxdu, where (Kt)t≥0 is a predictable stochastic process taking values in the function space B0, defined
in (5.1).

For any fixed time t ≥ 0 and a given value of St, a stochastic process (S̃T )T≥t is said to be tangent to the
true model (St)t≥0 if the time-t prices of all European call options written on S can be obtained by pretending the
future risk-neutral evolution of the index value is instead given by (S̃T )T≥t from t on. Throughout this section,
for any fixed t ≥ 0, we assume that the tangent processes S̃ is in the form

S̃T = St +

∫ T

t

∫
R
S̃u−(ex − 1) [Nt(dx, du)− κt(u, x)dxdu] , (2.2)

for T ∈ [0, T̄ ], where T̄ is a fixed terminal time horizon and Nt(dx, du) is a Poisson random measure associated
with the jumps of log S̃, whose compensator is given by a deterministic measure κt(u, x)dxdu. Notice that the
law of S̃ is uniquely determined by (St, κt). Let CSt,κtt (T, x) denote the option prices generated by (S̃u)u≥t, i.e

CSt,κtt (T, x) := E
[
(S̃T − ex)+|S̃t = St

]
, ∀T ≥ t, x ∈ R. (2.3)

The concept of a tangent model, then, requires that, for each fixed t ∈ [0, T̄ ),

CSt,κtt (T, x) = E
[
(ST − ex)+|Ft

]
, ∀T ≥ t, ∀x ∈ R. (2.4)

Thus, at each time t, we obtain the code-book for call prices, given by (St, κt). Of course, the value of the code-
book may be different at a different time t. Hence, we consider the dynamic tangent Lévy models characterized
by a pair of stochastic processes (St, κt)t∈[0,T̄ ] that satisfies (2.4). Here, S is a positive martingale with dynamics
given by (2.1); κ is progressively measurable positive stochastic process taking values in B (cf. (5.2)). The
dynamics of St and κt are given by St = S0 +

∫ t
0

∫
R Su−(ex − 1)[M(dx, du)−Ku(x)dxdu],

κt(T, x) = κ0(T, x) +
∫ t

0
αu(T, x)du+

∑m
n=1

∫ t
0
βnu (T, x)dBnu ,

(2.5)

where B = (B1, . . . , Bm) is a standard Brownian motion, (αt)t∈[0,T̄ ] is a progressively measurable integrable
stochastic process with values in B, and, for each n ∈ {1, · · · ,m}, (βnt )t∈[0,T̄ ] is a progressively measurable
square integrable stochastic process taking values inH (cf. (5.4)).

Notice that (2.5) defines the dynamics of the code-book (St, κt)t∈[0,T̄ ], but it does not ensure that it does,
indeed, produce tangent models at each time t: in other words, there is no guarantee that (2.4) holds. Thus,
additional “consistency” conditions have to be enforced to obtain models which are, indeed, tangent to the true
underlying process. As shown in [4], this consistency is, in fact, equivalent to the fact that call prices generated by
these tangent models are free of dynamic arbitrage. In order to present the main consistency result, we state the
following regularity assumptions on β.2

Assumption 1. For each n ≤ m, almost surely, for almost every t ∈ [0, T̄ ], we have:

RA1 supT∈[t,T̄ ]

∫ 1

−1
|βnt (T, x)| dx <∞

RA2 For every T ∈ [t, T̄ ], the function βnt (T, · ) is absolutely continuous on R \ {0}.

RA3 For any T ∈ [t, T̄ ],
∫
R (ex − 1)βnt (T, x)dx = 0.

Finally, we introduce some extra notation,

β̄nt (T, x) :=

∫ T

t∧T
βnt (u, x)du, (2.6)

and formulate the consistency result, which is a simple corollary of Theorem 12 in [4].
2The conditions RA1–RA2 are of technical nature – they can be viewed as the regularity assumptions on β. The last condition, RA3, is a

symmetry assumption on β: if this condition does not hold, one would have to introduce a continuous martingale component in the dynamics
of S, in order to obtain a consistent model.
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Theorem 1. (Carmona-Nadtochiy 2012) Assume that (St)t∈[0,T̄ ] is a true martingale,3 β satisfies the above regu-
larity assumptions RA1-RA3, and κt(T, x) ≥ 0, almost surely for all t ∈ [0, T̄ ) and almost all (T, x) ∈ [t, T̄ ]×R.
Then the processes (St, κt)t∈[0,T̄ ] satisfying (2.5) are consistent, in the sense that (2.4) holds, if and only if the
following conditions hold almost surely for almost every x ∈ R and t ∈ [0, T̄ ), and all T ∈ (t, T̄ ]:

1. Drift restriction:

αt(T, x) =−
m∑
n=1

{∫
R
β̄nt (T, y)βnt (T, x− y)dy

− β̄nt (T, x) ·
∫
R
βnt (T, z)dz − βnt (T, x) ·

∫
R
β̄nt (T, z)dz

}
. (2.7)

2. Compensator specification: Kt(x) = κt(t, x).

Theorem 1, along with equations (2.5) provide a general method for constructing a market-based model for call
prices (i.e. an arbitrage-free dyanimc model for implied volatility surface). Indeed, choosing (β1

t . . . , β
m)t∈[0,T̄ ],

we use the drift restriction in Theorem 1 and the second equation in (2.5) to generate the paths of (κt)t∈[0,T̄ ].
Finally, to generate the paths of (St)t∈[0,T̄ ], one can use the compensator specification in Theorem 1 and the first
equation in (2.5), after representing the random measure M through its compensator K and a Poisson random
measure N (as shown in [4]). However, in the present paper we avoid simulating (St)t∈[0,T̄ ] at all, by simply
noticing that

1

St
CSt,κtt (T, x+ logSt) = E

[
(S̃T /St − ex)+|S̃t = St

]
= E

[
(S̃T − ex)+|S̃t = 1

]
= C1,κt

t (T, x),

1

St
CSt,bst (T, x+ logSt;σ) = C1,bs

t (T, x;σ),

where CSt,bst (T, x;σ) is the Black-Scholes price at time t of a call option with maturity T and strike ex given that
the level of underlying is at St and the volatility is σ. At any time t, regardless of the value of St, if we find the
level of σ that makes the right hand sides of the two equations above coincide, then the option prices in the left
hand sides have to coincide as well. This means that we can obtain the implied volatility of CSt,κtt , in the maturity
and log-moneyness variables, by computing the corresponding implied volatility of C1,κt

t , for which we do not
need to generate St.

2.2 Implied volatility simulation with tangent Lévy models
We first introduce the general framework of the simulation procedure. Our procedure has two stages, estimation
and simulation. The estimation stage, where the additive density of the tangent process as well as its dynamics are
fitted to market data, is performed in two steps:

• Static fitting. In static fitting, the additive density κt for each day t is obtained by least squares optimization
which minimizes the squared difference between model prices and actual market prices. Notice that for any
given day t, κt is fixed and there is no dynamics involved, which explains the term ‘static’.

• Dynamic fitting. In dynamic fitting, we recover the dynamics of the time series (κt). In view of the drift
restriction in Theorem 1, this boils down to determining the volatility terms {βn}mn=1. This is done by
applying the Principal Components Analysis to the time series of (κt)t.

Once the estimation is completed, we generate the future paths of (κt) using Euler scheme Monte Carlo applied
to the second equation in (2.5). From the simulated additive densities, we compute call prices C1,κt

t and, then,
implied volatilities by inverting the Black-Scholes formula.

Within the general framework, the simulation stage is generic, but the static part of the estimation stage can
be quite different depending on the specific subclass of tangent Lévy densities κ(u, x) that we fit to option price
at any given time. In this section, we implement the procedure with the Lévy densities arising from the double
exponential Lévy models proposed by Kou in [17]. The small number of parameters in double exponential models
and the availability of an analytical pricing formula for call options make the resulting family of tangent Lévy
models fairly easy to calibrate.

3The conditions on the input parameters which ensure that S is a martingale are presented in [4] – in Remark 5.3 and in the preceding
paragraph.
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2.3 Market data
We use SPX (S&P 500) call option prices provided by OptionMetrics, an option database containing historical
prices of options and their underlying instruments. Throughout the paper, we use the option data from two time
periods: Jan. 2007 - Aug. 2008 and Jan. 2011 - Dec. 2012. Table 1 gives a quick summary of the two periods. We
cut off the first period at August 2008 to reduce the impact of the financial crisis.

On each day of a period, we only keep the options with time to maturity less than one year, whose best closing
bid price and best closing offer price are both available, and take the average of the two prices as the option price.
To ensure the validity of all prices, the contracts with zero open interest are excluded. As a result, there are roughly
10 to 80 call contracts with valid prices available for each maturity. The log-moneyness (more precisely, the put
log-moneyess, defined as log(K/St)) of these call options ranges roughly from -0.3 to 0.1, varying for different t
and T . Our calibration also requires dividend and interest rate data available on OptionMetrics and the homepage
of U.S. Department of Treasury, respectively. This dividend yield is recovered from option prices via put-call parity
with the method proposed in [1]. On day t, we denote the dividend yield by qt, and the risk-free rate between t and
T by rt,T . To simplify our implementation, we perform a simple transformation on the market data so that we can
assume that the interest and dividend rates are both zero from now on:

Cmktt (T, x) = eqt(T−t)C̄mktt (T, x̄), with x = x̄− (rt,T − qt)(T − t), (2.8)

where C̄mktt (T, x̄) is the market price of a call option with maturity T and strike ex̄. The adjusted call prices
Cmktt (T, x), corresponding to maturity T and strike ex, are then consistent with the assumption of zero interest
and dividend rates (i.e. they do not contain arbitrage under thee assumptions). In a similar way, we define the
adjusted bid and ask prices, Cmkt,bt and Cmkt,at .

In this section, we will perform the calibration of a tangent Lévy model on the time span from Jan. 3, 2007 to
Dec. 31, 2007, denoted by [t0, T̄ ]. In Section 3, data from both periods will be used to test the performance of the
tangent Lévy model.

2.4 Static fitting
Before we proceed with the static fitting, let us first have a quick review of the double exponential model. In
such a model, the logarithm of underlying follows a pure jump Lévy process whose jump sizes have a double
exponential distribution. More specifically, assuming no diffusion term, the dynamics of the underlying in the
double exponential model are given by

dŜt = µ Ŝt−dt+ Ŝt− d

(
Nt∑
i=1

(exp(Yi)− 1)

)
, (2.9)

where µ is the drift term, Nt is a Poisson process with rate λ, {Yi} is a sequence of i.i.d. random variables with
asymmetric double exponential distribution, independent of Nt. Note that the double exponential model is not
exactly a tangent model that we will be using – rather, we will use it as a building block to construct our tangent
model. This is why we use the notation Ŝ to denote the dynamics under the double exponential model, whereas
the tangent model dynamics are denoted by S̃. The density of an asymmetric double exponential distribution is
given by

fY (y) = p · λ1e
−λ1y1y≥0 + q · λ2e

λ2y1y<0, (2.10)

where p, q ≥ 0, p + q = 1 represent the probabilities of positive and negative jumps, and λ1 > 1, λ2 > 0 are the
parameters of the two exponential distributions. In other words, a double exponential model is a martingale model
for the underlying whose logarithm is a pure jump Lévy process, with the Lévy density

η(x) = λ(p · λ1e
−λ1x1x≥0 + q · λ2e

λ2x1x<0). (2.11)

One of the advantages of double exponential models is the availability of analytical pricing formulas for Euro-
pean call options, which could greatly simplify the calibration. [17] gives the pricing formula for double exponen-
tial models with a diffusion term. A minor modification of the derivation in [17] gives us the pricing formula in
absence of the diffusion term, summarized in the lemma below (its proof is omitted, as it is, essentially, a repetition
of the derivations in [17]).
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Lemma 1. Under the assumptions of zero interest and dividend rates, assume, in addition, that the underlying
process S follows a double exponential process with Lévy density given by (2.11), under the risk-neutral probability
measure. Then, the price of a European call option with strike K and maturity T is given by

Cλ,λ1,λ2,p
t (T, logK) = StΨ (−λζ, λ∗, p∗, λ∗1, λ∗2; log (K/St) , T − t)

−KΨ (−λζ, λ, p, λ1, λ2; log (K/St) , T − t) , (2.12)

where

p∗ =
p

1 + ζ
· λ1

λ1 − 1
, λ∗1 = λ1 − 1, λ∗2 = λ2 + 1,

λ∗ = λ(ζ + 1), ζ =
pλ1

λ1 − 1
+

qλ2

λ2 + 1
− 1,

and the function Ψ is given by:

Ψ(µ, λ, p, λ1, λ2; a, T )

= π01a−µT≤0 +

∞∑
n=1

πn

n∑
k=1

Pn,k

[
k−1∑
i=0

(λ1(a− µT ))i

i!
e−λ1(a−µT )1a−µT≥0 + 1a−µT<0

]

+
∞∑
n=1

πn

n∑
k=1

Qn,k

(
1−

k−1∑
i=0

(−λ2(a− µT ))i

i!
eλ2(a−µT )

)
1a−µT<0, (2.13)

with

πn =
e−λT (λT )n

n!
and

Pn,k =

n−1∑
i=k

(
n− k − 1

i− k

)(
n

i

)(
λ1

λ1 + λ2

)i−k (
λ2

λ1 + λ2

)n−i
piqn−i, 1 ≤ k ≤ n− 1,

Qn,k =

n−1∑
i=k

(
n− k − 1

i− k

)(
n

i

)(
λ1

λ1 + λ2

)n−i(
λ2

λ1 + λ2

)i−k
pn−iqi, 1 ≤ k ≤ n− 1,

Pn,n = pn, Qn,n = qn.

For each Tl, with l = 1, . . . , L, we would like to find the set of parameters {λ, λ1, λ2, p} that minimizes the
difference between the market and the model prices. For practical reasons, we will work with time values instead
of options prices. The market time value and the model time value are calculated as follows

V mkt,jt (Tl) = Cmktt (Tl, e
xj )− (St − ex

j

)+,

V λ,λ1,λ2,p,j
t (Tl) = Cλ,λ1,λ2,p

t (Tl, e
xj )− (St − ex

j

)+.

There are two reasons for working with time values. Firstly, the time values go to zero for very large and very
small log-moneyness, which allows us to truncate the x-space with negligible numerical errors. Secondly, time
values and option prices are often of different magnitudes, especially for in the money options, with option prices
much greater than time values, hence, working with time values is likely to result in smaller numerical errors. For
fixed time t and fixed maturity Tl, the optimization problem can be written as

min
λ>0,λ1>0,λ2>0,p∈(0,1)

N∑
j=1

ωj |V λ,λ1,λ2,p,j
t (Tl)− V mkt,jt (Tl)|2, (2.14)

where ωj =
∣∣Cbidt (Tl, e

xj )− Caskt (Tl, e
xj )
∣∣−2

are the weights we put on different options to take into account
the difference in liquidity (measured by bid-ask spread). For every fixed maturity Tl, the solution of the above
optimization problem, (λl, λl1, λ

l
2, p

l), yields the Lévy density ηt(Tl, x) via (2.11). Then, we search for a function
κt(·, ·), such that

ηt(Tl, x) =
1

Tl − t

∫ Tl

t

κt(u, x)du, (2.15)
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for every maturity Tl and all x ∈ R. The resulting tangent model on day t is defined as a martingale model for
the underlying whose logarithm is a pure jump additive (non-homogeneous Lévy) process, with the Lévy density
κt(·, ·). It is easy to see that the call prices produced by this model, for every maturity Tl and strike exj , coincide

with the prices produced by the double exponential model, Cλ
l,λl1,λ

l
2,p

l

t (Tl, e
xj ). Thus, for a given t, the problem

of static fitting is essentially a series of optimization problems (2.14), over all maturities Tl, along with the fitting
problem (2.15).

At the first glance, the optimization in (2.14) seems to have four parameters. However, the following constraints
will reduce the number of parameters to two in our calibration:

• To improve the stability of small-jumps intensity over time, we would like the Lévy density η(Tl, x) to be
continuous in x. The continuity at x = 0 requires

p · λ1 = (1− p) · λ2 ⇔ λ2 =
p

1− p
λ1. (2.16)

• In view of the results in Section 2.1, we have to impose the symmetry condition RA3 on βn’s. A simple
application of Itô’s lemma shows that, for the symmetry condition RA3 to hold, it suffices to choose every
κt, so that ∫

R
(ex − 1)κt(T, x)dx

is a deterministic function of T − t, for all times 0 ≤ t < T ≤ T̄ . To achieve this, in view of (2.15), we need
to choose every ηt(Tl, ·) so that the symmetry index

Ξ(T − t) :=

∫
R

(ex − 1)ηt(T, x)dx = λ

(
p

λ1 − 1
− 1− p
λ2 + 1

)
(2.17)

is a deterministic function of T − t. This yields:

p =
−(1 + Ξ(T − t)/λ)(λ1 − 1)

Ξ(T − t)/λ(λ1 − 1)2 − 2(λ1 − 1)− 1
, (2.18)

where Ξ is a fixed (estimated a priori) function.

With the two constraints, our calibration takes only two variables: λ and λ1. The condition p ∈ (0, 1) trans-
forms to the following condition on λ1:

λ1 ∈

{
(1,∞), if Ξ(T − t) ≤ 0,(

1, 1 + 1
Ξ(T−t)

)
, if Ξ(T − t) > 0.

(2.19)

As a result, the optimization problem (2.14) can be re-written as

min
λ>0,λ1∈Iλ1

N∑
j=1

ωj |V λ,λ1,j
t (Tl)− V mkt,jt (Tl)|2, (2.20)

where Iλ1
is the interval defined in (2.19). The symmetry index function Ξ(τ), for all τ ∈ R+, can be obtained on

the first calibration day t = 0, solving a three-variable optimization problem,

min
λ>0,λ1>1,p∈(0,1)

N∑
j=1

ωj |V λ,λ1,p,j
0 (Tl)− V mkt,j0 (Tl)|2, (2.21)

and setting

Ξ(Tl) = λ

(
p

λ1 − 1
− 1− p
λ2 + 1

)
, (2.22)

for every maturity Tl, and, finally, interpolating linearly between every Tl−1 and Tl. We summarize the calibration
procedure for {ηt(Tl, ·)} in the following algorithm:

8



Algorithm 1: Algorithm for calibrating {ηt(Tl, ·)}
1 Preprocess the market data according to (2.8);
2 For t = 0, run the three-variable optimization (2.21), without the symmetry condition, for all maturities, and

compute Ξ(·) by (2.22) and linear interpolation;
3 For the subsequent days t ∈ (0, T̄ ], run the two-variable optimization (2.20), with already estimated Ξ, to

obtain the time series of Lévy densities (ηt)t∈[0,T̄ ].

Below are the calibration results. The Lévy densities η on Jan. 3, 2007 – the first day of calibration – are
obtained by the three-variable optimization (2.21). From the calibrated parameters, we compute the symmetry
index Ξ via (2.22), which is shown in Figure 1. With the symmetry index Ξ, we run the two-variable optimization
(2.20) on the following day, Jan. 4, 2007, and obtain the Lévy densities η shown in Figure 2. The corresponding
time values are shown in Figure 3, and the implied volatilities are shown in Figure 4.4 We can see that the
calibration results are quite precise for the strike values close to the spot. The quality of the calibration deteriorates
for very large and very small strike values. However, for the experiment presented in the subsequent sections, we
are only concerned with the strike values close to the spot. The full calibration results are presented here in order
to illustrate the use of tangent Lévy models, and not in order to argue that the double exponential model provides a
perfect fit of the market prices.5 As for the calibrated Lévy densities η, their values tend to decrease as the time to
maturity increases (cf. Figure 2). The magnitude of Ξ ( which measures the “asymmetry” of the Lévy measure) is
decreasing with maturity as well. Both results are in line with empirical findings on jump intensities and volatility
skews. In order to see how the calibration parameters change over time, in Figure 5, we plot the time series of
calibrated λ and λ1, corresponding to the first two maturities (recall that the optimization in (2.20) is performed
over (λ, λ1)). We can see that these parameters change significantly over time (even the average between the first
and the second maturity values changes significantly), hence, it is not realistic to use the double exponential model
(with fixed parameters) for analyzing the future dynamics of options’ prices.

Next, for every day t, we need to find κt that satisfies (2.15). Notice that, if ηt(T, x) is differentiable in T , we
obtain:

ηt(T, x) + (T − t)∂ηt(T, x)

∂T
= κt(T, x), (2.23)

for each x ∈ R. The relationship (2.23) can be used to back out the additive densities (κt)t∈[0,T̄ ] from the calibrated
Lévy densities (ηt)t∈[0,T̄ ]. However, the calibrated densities ηt(T, ·) are only defined for T = Tl, hence, we need
to interpolate them across maturities. An analysis of the calibrated Lévy densities shows that ηt(T, x) generally
exhibits one of the following two patterns as a function of T .

• For small jump sizes x, ηt(T, x) decreases rapidly as T increases. To ensure that the recovered κ is non-
negative, we used a combination of exponential function and power function

ηt(T, x) = c1(T − t)c2 + c3(T − t) exp(−c4(T − t)) + c5 (2.24)

to fit η, for any fixed x. The corresponding Lévy density κ can then be computed as

κt(T, x) = c1(c2 + 1)(T − t)c2 + exp(−c4(T − t))(2c3(T − t)− c3c4(T − t)2) + c5. (2.25)

For every day t, we run an optimization algorithm, searching for constants ci’s that would provide the
best approximation of the calibrated {ηt(Tl, x)}l via (2.24). This optimization is subject to the following
constraints: c1 > 0, c2 ∈ (−1, 0), c3 > 0, c4 ∈ (0, 2/T̄ ) and c5 > 0. It is easy to see that these constraints
ensure the positivity of κt, defined by (2.25).

• For large jump sizes x, ηt(T, x) increases as T increases. The function we used to fit this scenario is a simple
polynomial function

ηt(T, x) = c1(T − t)4 + c2(T − t)3 + c3(T − t)2 + c4(T − t) + c5. (2.26)
4In Figure 4, we assume that the market implied volatility is zero whenever the bid price of the call option falls below its payoff value.

Recall that, as described in Subsection 2.3, the market prices of call options have been adjusted so that they are consistent with the assumption
of zero interest and dividend rates. Hence, the implied volatility of such an option is not well defined if its value is below the payoff, and we
have to set it to zero. Notice also that it does not lead to any arbitrage opportunities, due to the presence of a bid-ask spread.

5If additional precision of calibration is required, one can simply use a family of Lévy models with a larger number of parameters. We,
however, do not do it in the present paper, due to somewhat limited computing power available to us.
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Then, κ is computed as

κt(T, x) = 5c1(T − t)4 + 4c2(T − t)3 + 3c3(T − t)2 + 2c4(T − t) + c5. (2.27)

As before, for every day t, we run an optimization algorithm, searching for constants ci’s that would provide
the best approximation of the calibrated {ηt(Tl, x)}l via (2.26). However, in this case, it is not easy to obtain
explicit bounds on the constants ci that would guarantee the positivity of κt, given by (2.27), while preserving
enough flexibility and the tractability of the optimization problem. Therefore, we simply construct a very
fine partition of the interval [0, T̄ ] (with the diameter of one day) and introduce a system of obvious (linear)
constraints on {ci}, which ensure that κt(T, x), given by (2.27), is positive for the values of T − t in the
chosen partition.6

An illustration of the two scenarios together with an example of the reconstructed κ is shown in Figure 6.

Remark 1. It is worth commenting on the potential drawbacks of the proposed calibration method. First of all,
as the Kou’s model has very few parameters, the resulting curve ηt(Tl, ·) does not provide a very good fit of the
option prices with very large and very small strikes. In addition, the fact that each ηt(Tl, ·) is fitted to the options’
prices with maturity Tl, separately for each Tl, introduces possible inconsistencies in this family of surfaces for
large Tl Namely, the larger is the range of maturities, the worse is the performance of the above interpolation
of ηt(·, x): the algorithm struggles to maintain a high quality of fit of the actual, calibrated, ηt(Tl, x) while
preserving the nonnegativity of κt. Finally, the proposed calibration method is computationally expensive: it takes
over an hour to calibrate κt to a surface with 10 maturities and 70 strikes.7 These are some of the reasons why
we restrict the empirical analysis in the subsequent sections to a set of options with a fairly small range of strikes
and maturities. We believe that there may exist a more flexible family of tangent Lévy densities and/or a more
efficient calibration algorithm, however, even the present specification allows us to illustrate the advantages of the
market-based approach.

2.5 Dynamic fitting
Recall that, in view of (2.5), the Lévy density κ has the following dynamics:

dκt(T, x) = αt(T, x)dt+

m∑
n=1

βnt (T, x)dBnt . (2.28)

In the dynamic fitting, we need to assume that the time increments of κ are stationary, which is only natural if we
work with the time to maturity τ = T − t instead of the maturity T . Namely, we define κ̂t(τ, x) = κt(t + τ, x)
and its dynamics

dκ̂t(τ, x) = α̂t(τ, x)dt+

m∑
n=1

β̂nt (τ, x)dBnt . (2.29)

A simple application of Itô’s formula shows that

α̂t(τ, x) = αt(t+ τ, x) +
∂κt(t+ τ, x)

∂T
and β̂nt (τ, x) = βnt (t+ τ, x). (2.30)

To simulate future implied volatility surfaces, all we need are the diffusion terms β̂n’s, because the drift term α̂ can
be computed from β̂n’s. We assume that β̂nt (τ, x)’s are deterministic and constant as functions of t, for any (τ, x)
(from a finite family of points).8 The values of κ̂ are observed at the discrete times {ti} (which correspond to days
in our experiment). Then, every increment ∆κ̂ti = κ̂ti+1

−κ̂ti is a sum of a Gaussian random vector, corresponding
to the diffusion part, and a vector that corresponds to the drift term (we view every surface as a vector whose entries
correspond to different values of (τ, x)). Notice that the distribution of the Gaussian component is completely
determined by its covariance matrix, hence, we will aim to choose β̂n’s to match the estimated covariance matrix.

6Of course, in theory, the values of κt(τ, x) may become negative for the values of τ between the partition points (albeit unlikely, if the
diameter is small). However, this causes no problem for our experiment, because, in what follows, we restrict our analysis to a finite number of
points (τ, x) on the surface κt(·, ·), and we may (and will) choose these points so that τ belongs to the given partition.

7Of course, calibration to a smaller set of option’s prices (e.g. single maturity and multiple strikes) can be done significantly faster.
8Notice that this assumptions implies that β̂n’s are the same under both the physical and the risk-neutral measures.
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Assuming that the drift term is bounded, it is easy to notice that the standard estimate of the covariance of ∆κ̂ti
also provides a consistent estimate of the covariance of the aforementioned Gaussian vector, asymptotically, as the
length of the time increments converges to zero. In the actual computations, we use daily increments – these are
small compared to the time span of the entire sample, which is one year. To fit β̂n’s to the estimated covariance
matrix, it is natural to use the Principal Components Analysis (PCA), which finds the directions that explain most
of the variance in the increments {∆κ̂ti}. However, the PCA cannot be applied directly because the number of
points on the surface is close to the sample size, which is 251 (i.e. the number of days in the sample): for each
t, we have call prices for 10 maturities and 21 jump sizes, which gives us 210 points on the κ̂ surface after static
fitting. To reduce the number of points, we pick every other maturity and the 7 jump sizes whose intensities are
larger than others across time t. This gives us 5 ∗ 7 = 35 points on the reduced surface of ∆κ̂ti .

Applying PCA to the reduced surface, we see that the first three eigenmodes {fn(τ, x)}3n=1 explain over
93% of the daily variance of {∆κ̂ti}, as shown in Figure 7. To extend the values of the eigenmodes to other
points (i.e. other jump sizes and maturities), we simply perform a linear interpolation. The first three eigenmodes
have very unique characteristics. The first eigenmode takes the most prominent feature of ∆κ̂ – the large values
are concentrated around small jumps at very short time to maturity. This eigenmode can be understood as a
combination of the “level” factor and the “slope” factor (appearing in a typical PCA result for yield curve dynamics)
along both the maturity and the jump size directions. The second eigenmode shows the curvature along the jump
size direction, and the third eigenmode shows the curvature along the time to maturity direction. As the eigenmodes
{fn(τ, x)}3n=1 are normalized, to obtain the diffusion terms β̂n’s, we need to multiple the eigenmodes by the
loading factors:

β̂nt (τ, x) =
√
λn · fn(τ, x), n = 1, 2, 3, (2.31)

where λn is the eigenvalue of the covariance matrix corresponding to the eigenmode fn. Once we have β̂n’s, we
change the variables to pass to βn’s and calculate the drift term α according to (2.7). Figure 8 shows the drift term
α computed according to (2.7). Notice that, due to our assumptions on β̂n’s and according to (2.7), the drift α̂t is
deterministic and constant in t. Notice that α̂ can then be computed as

α̂t(τ, x) = αt(t+ τ, x) +
∂κt(t+ τ, x)

∂T
, (2.32)

where we have no problem with evaluating the partial derivative, as, in the static fitting stage, κt was interpolated
across maturities.

2.6 Monte Carlo simulation of implied volatility surfaces
Once all the terms in the right hand side of (2.29) are estimated, we can, for example, apply an explicit Euler scheme
to simulate the future Lévy densities κ̂t. However, we need to ensure that the simulated κ̂t’s stay nonnegative at
all times. Inspired by [4], we incorporate a scaling factor in (2.29) as follows:

dκ̂t(τ, x) = γ2
t α̂t(τ, x)dt+ γt

m∑
n=1

β̂n(τ, x)dBnt , (2.33)

where

γt =
1

ε

(
inf

τ∈[0,τ̄ ],x∈R
κ̂t(τ, x) ∧ ε

)
, (2.34)

with ε = 1e−6 and τ̄ = 1. Of course, this modification changes the diffusion term of κ̂t, which was estimated from
historical data. However, the value of ε is chosen to be so small that, in the historical sample, γt is always equal to
one.9 Hence, if we use the β̂n’s chosen in the previous subsection, the resulting dynamics are still consistent with
the past observations. It is also easy to see that, since γt is a scalar, the drift restriction (2.7) is satisfied by the new
drift and volatility of κ. Finally, this modification ensures that κ̂t is almost surely nonnegative for any t.

To simulate the future values of κ, we apply the explicit Euler scheme to (2.33), to obtain

κ̂ti+1
(τ, x) = κ̂ti(τ, x) + γ2

ti α̂ti(τ, x)∆ti + γti

m∑
n=1

β̂n(τ, x)∆Bnti , (2.35)

9Due to the natural restrictions on the values of the calibration parameters, it is guaranteed that all the calibrated κ̂t are strictly positive,
hence, there always exists a small enough ε, such that, in the historical sample, γt is equal to one.
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with ti+1 = ti + ∆ti and ∆ti being one day. Having simulated future κ̂ti , we compute ηti via (2.15). Then, for
every fixed maturity T , the option prices in the model given by the Lévy density ηti(T, ·) can then be computed,
for example, using the methods proposed in [5] or [21]. These methods are based on Fourier transform and can be
implemented efficiently via numerical integration.10 In particular, in our computation, we set the initial value of
the associated exponential Lévy process to one, and use the following formula to calculate future option prices:

C1,κt
t (T, x) = 1− ex/2

π

∫ ∞
0

du

u2 + 1
4

Re

[
exp (−iux)φt

(
T, u− i

2

)]
, (2.36)

where φt is the characteristic function of an exponential Lévy process with the Lévy density ηt(T, ·) and with
initial value one:

φt(T, u) = exp

[
− iu(T − t)

∫
R
ηt(T, x)(ex − 1)dx+ (T − t)

∫
R

(eiux − 1)ηt(T, x)dx

]
.

From the above option price, C1,κt
t (T, x), we can easily calculate the implied volatility by inverting the Black

Scholes formula, assuming that the spot level is at one and that the interest and dividend rates are zero. As
discussed at the very end of Subsection 2.1, this value is the same as the value of implied volatility of a call option
for any spot level St, strike Stex, and maturity T , regardless of what the level of St is (hence, we don’t need to
simulate it). Using this method, we simulate the implied volatility surfaces five days into the future starting from
Dec. 13, 2007, as shown in Figures 9 and 10.

3 Empirical analysis of the performance of tangent Lévy models
In this section, we discuss the importance of modeling derivatives prices in a way that is consistent with their
historical time series. As we know, an investment manager’s portfolio or a trader’s trading book often contains
multiple financial derivatives written on the same underlying. As a simple example, an equity trader might hold
a calendar spread and a butterfly spread at the same time. To properly manage the risk, one needs to understand
the joint dynamics of these derivatives. In turn, to construct a reliable model, it is crucial to have a modeling
framework which produces feasible combinations of option prices (i.e. is arbitrage-free) and which can be fitted
both to the present and to the historical values of these prices. Tangent Lévy models (as any market-based model)
are built to achieve this goal precisely. This is due to the fact that not only present but also historical information
contained in the time series of options’ prices is used in the estimation of model dynamics. Classical stochastic
volatility models cannot capture the historical evolution of options’ prices, hence, there is a reason to believe
that market-based models would lead to better performance in portfolio management. To show that tangent Lévy
models do indeed work better, here, we test the model implemented in Section 2, using the portfolio choice problem
described below. The results are, then, compared against one of the most popular volatility models in the industry
– the Stochastic Alpha Beta Rho (SABR) model. In addition, we compare the results produced by the tangent Lévy
model to the ones produced by the method of direct simulation of implied volatility, described in [7], which also
makes use of historical options’ prices. However, the latter method produces arbitrage in the simulated options’
prices, which makes it impossible to use this method in many applications (e.g. pricing illiquid securities) and
which brings it beyond the scope of arbitrage-free models, within which we aim to show the superiority of market-
based models. We conduct an additional experiment, aimed at estimating Value at Risk of an options’ portfolio, in
order to illustrate the negative consequences of the presence of arbitrage in the direct simulation method.

3.1 The variance-minimizing portfolio choice problem
This example is a simplified Markowitz-type portfolio optimization problem. Consider a portfolio manager who
needs to decide how he/she should balance a portfolio of SPX options so that its risk is minimized. Among
the many definitions of portfolio risk, we adopt the one used in the classic Markowitz problem (for example, see
Section 6.6 of [22]) – namely, the standard deviation of the portfolio return over a given (future) time period. Notice
that this is not a typical Markowitz portfolio problem, given we are not considering the trade-off between return
and risk as a typical Markowitz problem would. As a matter of fact, we assume that the portfolio manager lives

10Please note that we cannot use (2.12) to calculate option prices, because, even though the calibrated Lévy densities {ηt(T, ·)} are double
exponential, there is no reason to believe that the simulated η’s remain double exponential.
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in a risk-neutral world, so that the expected return is normalized. We admit that lacking excess return might make
the example less exciting, but it helps us compare the model performance in an apples-to-apples fashion. With the
normalized return, there is no need to worry about the impact of different market views portfolio managers might
build into the investment decisions. Of course, without such a trade-off, there is a trivial solution to the portfolio
choice problem – do not invest at all, reducing the risk to zero. To make the problem non-trivial, we require that
the value of the portfolio at the time when it is constructed must be equal to a fixed number. Such a restriction
is relevant if the manager makes profits off the commission, proportional to the size of the investment portfolio
he/she manages. For example, an option market maker might want to know the optimal inventory so that he/she
can adjust the quoting strategy accordingly to reach the portfolio composition with minimal inventory risk. Or, a
broker dealer might need to know her optimal position in options over the next several days to meet the risk and
capital requirements.

We now formulate this problem mathematically. Let us assume that there are n options with the same maturity
T but with different strikes K1, ...,Kn in the portfolio.11 Let Ct(Ki) be the time-t price of the Ki-struck option,
and let ωi be the quantity of this option in the portfolio, with a negative ωi representing the short-selling. The
weights ωi have to be determined at the initial time t. The portfolio value at any future time t + u is simply
Vt+u =

∑n
i=1 ωiCt+u(Ki), and the return over the time period [t, t + u] is Rtu = Vt+u/Vt. For simplicity, we

assume that the risk-free rate and the dividend yield are both zero, so the expectation of Rtu, computed at time t,
is simply 1.12 For a given t ∈ [0, T ) and u ∈ (0, T − t], to determine the portfolio weights, we need to solve the
following convex optimization problem:

min
ω∈Rn

Et(Rtu − 1)2 = min
ω∈Rn

Et(Vt+u − 1)2

s.t. Vt = ωTCt = 1,

where the initial value of the portfolio is one. This is equivalent to

min
ω∈Rn

ωTΛtuω (3.1)

s.t. Vt = ωTCt = 1,

where Λtu = Et[(Ct+u − Ct)2] is the time-t covariance matrix of the (absolute) returns of the options in the time
period [t, t+ u]. It is easy to see that the closed-form solution to the quadratic optimization (3.1) is

ωt =
(Λtu)

−1
Ct

CTt (Λtu)
−1
Ct
. (3.2)

Thus, as it is well-known, the key to solving this optimization problem is to estimate the covariance matrix Λtu.
To do this, we compute the sample covariance matrix using the time-(t + u) option prices simulated under each
model at time t. Note that, to obtain a fair comparison, the parameters of each model are only estimated using the
options data prior to day t. Then, given N samples of the time-(t+ u) options’ prices,

C
(j)
t =

[
C

(j)
t+u(K1), ..., C

(j)
t+u(Kn)

]T
, j = 1, ..., N,

the sample covariance matrix is estimated as

Λtu =
1

N − 1

N∑
j=1

(C
(j)
t − Ct)(C

(j)
t − Ct)T . (3.3)

Different models generate different simulated paths of options’ prices, which then lead to different optimal weights.
Naturally, how these optimal weights perform in the real world serves as an indicator of the model performance.
To be more specific, a better model should be able to generate portfolios with smaller standard deviation in the
returns. To estimate the standard deviation of portfolio returns, we define the figure of merit Q as the average
realized deviation of the portfolio return in the testing period, i.e.

Q =

√√√√ 1

Ntest

Ntest∑
k=1

(Rtku − 1)2, (3.4)

11The strikes will be chosen so that they always stay between 95% and 105% of the spot value (evaluated at the time when the portfolio is
constructed).

12This assumption is justified by the very short time horizon for each portfolio return – 8 days – and it is confirmed empirically.
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where Ntest is the number of trials (i.e. the number of days in the testing period), and Rtku is the actual portfolio
return (given by market data) over the time period [tk, tk + u], with the optimal weights ωtk , obtained by (3.2) on
day tk. Every tk correspond to the kth day in the testing period, i.e.

Rtku =

n∑
i=1

ωtki Ctk+u(Ki). (3.5)

Recall that, by assumption, the mean of Rtku , computed at tk, should always be 1. To make this assumption be
consistent with the data, we choose a relatively small time horizon u.

3.2 Simulation algorithms
As mentioned in the previous subsection, to find the optimal portfolio, we need to estimate the covariance matrix
using simulated option prices. In this section, we describe the simulation algorithms for each model.

• Double exponential tangent Lévy model. For this experiment, we need to simulate both the underlying
process S and the non-homogeneous Lévy density κ. For the double exponential tangent Lévy model, in
particular, we need to complete the following two steps to move one step ahead from ti to ti+1:

– Step 1: Simulate the underlying process by

Sti+1
= Sti exp{−

∫
R
(ex − 1)κti(ti, x)dx∆ti +

Nti∑
k=1

Jk},

with ti+1 = ti + ∆ti and ∆ti being one day. Here κti(ti, x) is the additive density for immediate ma-
turity T = ti, Nti is the number of jumps during the (ti, ti+1] period, which has a Poisson distribution
with parameter λ∆ti, where λ =

∫
R κti(ti, x)dx, and Jk’s are the jump sizes having the distribution

1
λκti(ti, x)dx. Notice that we approximate the jump component of logS with a compound Poisson
process, which is reasonable given that the jump activity is finite in our setting.

– Step 2: Simulate the Lévy density κti+1
via (2.35).

Simulating u days ahead requires repeating the two steps u times. We can then use the Fourier transform
methods, as described in Subsection 2.6, to calculate time-u option prices, and estimate the covariance
matrix to obtain optimal weights.

• SABR model. The simulation based on SABR model is slightly easier. SABR model, as proposed by Hagan
et al. in [13], describes the dynamics of the forward price F and the volatility α as follows:

dFt = αtF
β
t dB

1
t ,

dαt = ναtdB
2
t , (3.6)

where F and α are correlated through dB1
t dB

2
t = ρdt. [13] provides the following asymptotic formula for

the time-t implied volatility under the SABR model:13

σt(K,T, Ft, αt) ≈
αt

(FtK)(1−β)/2
{

1 + (1−β)2

24 log2 Ft/K + (1−β)4

1920 log4 Ft/K
} · ( z

x(z)

)
·{

1 +

[
(1− β)2

24

α2
t

(FtK)(1−β)
+

1

4

ρβναt
(FtK)(1−β)/2

+
2− 3ρ2

24
ν2

]
(T − t)

}
, (3.7)

where K is the strike value, T is the maturity, Ft is the current spot level, and z and x(z) are defined as

z =
ν

αt
(FtK)(1−β)/2 log

Ft
K
,

x(z) = log

{√
1− 2ρz + z2 + z − ρ

1− ρ

}
. (3.8)

13Note that 3.7 is only an approximation for the true implied volatility in SABR model. This approximation speeds up the computations
significantly, and, as mentioned in [13], approximates the true implied volatility well for reasonable parameter values.
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As for the parameters’ values, [13] suggests that β can be fixed in advance and [29] verifies empirically that
this is a reasonable assumption. In our example, we will use two values of β: β = 1 and β = 0.7. β = 1 is
probably the most natural choice for equity market as it mimics a log-nomal model most closely, and β = 0.7
is widely used on trading desks as it provides better results for risk management. The other parameters – the
current volatility αt, the volatility of volatility ν and the correlation ρ – will be calibrated to market prices
by minimizing the sum of squared differences between the market call prices and those produced by the
model, calculated with (3.7). With the parameters calibrated on the initial day dk, the forward price and the
volatility can be simulated as follows:

Fti+1 = Ftie
−0.5α2

ti
∆ti+αti∆B

1
ti ,

αti+1
= αtie

−0.5ν2∆ti+ν(ρ∆B1
ti

+
√

1−ρ2∆B2
ti

), (3.9)

where B1 and B2 are independent Brownian motions. The time-ti implied volatilities and option prices can
then be computed via (3.7), with the simulated spot Fti and volatility αti . Figure 11 shows the results of
calibrating SABR model with β = 1 to SPX options with a fixed (short) maturity, on the first trading day of
2008. We can see that the model fits market prices very well, at least, if the range of strikes and the maturity
are small enough.

3.3 Direct simulation of implied volatility
In this subsection, we describe another method of simulating the implied volatility surface, mentioned in the
introduction. This method is described in [7], and it is based on the PCA analysis of the increments of the logarithm
of implied volatility. Namely, on any past observation day ti, we consider the market implied volatility surface
IVti(τ, x), for different values of the times to maturity τ and the (negative of) log-moneyness x = K/Sti ,

14 where
K is the strike of an option and Sti is the underlying value at time ti. As mentioned earlier, we use market prices
of SPX options and deduce the implied volatility from these prices using an inverse of the Black-Scholes formula
(note that we apply discounting to the options’ prices and strikes, so that the inverse function is used with zero
interest and dividend rates). In order to obtain the value of IVti(τ, x) for an arbitrary (τ, x), we interpolate linearly
across the observed values: first, in τ , then, in x (i.e. first, we construct continuous curves IVti(τ, xj), for every
observed xj , then, we interpolate in x for every value of τ ). We fix 15 pairs of {τj , xj}, located in the region that is
relevant for our experiment (in particular, all {xj} are between 0.9 and 1.1). In fact, for the numerical experiment
described in the next section, we only need the prices (or implied volatilities) of the options with short maturities
(around 1 month), hence, we choose all τj to be equal to one month (the implied volatilities for shorter maturities
are simply assumed to be equal to the ones with maturity one month). Thus, we obtain a time-series of vectors,

{IVti = (IVti(x1), . . . , IVti(x15))} ,

where ti is the ith day in a given historical sample.
As in [7], our standing assumption is that the log-increments of this time series {∆ log IVti = log(IVti+1/IVti)}

have the same Gaussian distribution. In other words,

∆ log IVti(xj) = µ(xj)∆ti +

m∑
n=1

Σn(xj)∆B
n
ti , (3.10)

where ∆ti is one day, Bn’s are independent Brownian motions, and µ = (µ(x1), . . . , µ(x15)) and each

Σn = (Σn(x1), . . . ,Σn(x15))

is a constant vector. The vector µ is estimated as a sample mean, and we estimate the vectors {Σn} via PCA, as it
is done in [7]. The results of this analysis, carried out using the market data in the time period Jan. – Dec. 2011,
are presented in Figure 12. In particular, we see that the first two eigenmodes {fn}2n=1 explain over 98% of the
daily variance of {∆ log IVti}. As the eigenmodes {fn}2n=1 are normalized, to obtain the vectors Σn’s, we need
to multiple the eigenmodes by the loading factors:

Σn =
√
λn · fn, n = 1, 2,

14With a slight abuse of notation, in this paper, we refer to x as the “log-moneyness”, while it is, in fact, a negative of log-moneyness.

15



where λn is the eigenvalue of the covariance matrix corresponding to the eigenmode fn. The estimate of µ shows
that its values are negligible (in view of the small size of the time increment ∆ti). Having estimated the parameters,
we can simulate the future values of implied volatility directly using (3.10). In order to simulate the underlying
values, we use the following model

∆Sti = IVti(0)

(
m∑
n=1

ρn∆Bnti + ρ0∆B0
ti

)
,

whereBn’s are the same Brownian motions that appear in (3.10),B0 is an independent Brownian motion, and ρn’s
are the correlation parameters, to be estimated. Recall that we have found that m = 2. Due to the orthogonality
of the eigenmodes of ∆ log IV , it is easy to extract the time series {Bnti}, for n = 1, 2, from the time series
{∆ log IVti} (cf. [7]). Then, ρn’s, for n = 1, 2, can be estimated using the standard methods – as the correlation
between the increments of Bn and logS. We obtain: ρ1 = −0.865 and ρ2 = 0.22. The remaining coefficient is
computed in an obvious way: ρ0 =

√
1− ρ2

1 − ρ2
2 ≈ 0.45.

Despite the fact the model (3.10) is very simple to implement, it suffers from one serious drawback – it is not
arbitrage-free. As we discussed at the beginning of this paper, there are two types of arbitrage in options market: the
static arbitrage, in which certain relations between options’ prices for different strikes and maturities are violated,
and the dynamic one, in which the time changes in options’ prices do not have the correct pattern (i.e. do not
have the correct drifts). From a practical point of view, the presence of the latter type of arbitrage may not lead
to any obvious trading opportunities (especially, for short time horizons), while the static arbitrage opportunities
are very easy to exploit and, hence, are not typically observed in the market. It turns out that the model implied
by (3.10) does produce static arbitrage in the simulated options’ prices. Indeed, there is no particular reason to
believe that the shapes of implied volatility produced by (3.10) are such that the shapes of the associated options’
prices satisfy the desired static no-arbitrage conditions. This observation has been documented in several existing
publications (cf. [2]), and it serves as one of the main arguments for using the market-based models. From a
practical point of view, the presence of static arbitrage in the model may or may not lead to a problem, depending
on how the model is used. In fact, it is shown in Subsection 3.4.2 that the direct simulation method performs
reasonably well for the problem at hand, which, effectively, reduces to the computation of the covariance matrix
of options’ returns. However, the presence of static arbitrage may create unnatural (and, hence, unreliable) results
when computing other measures of risk of a portfolio of options. To illustrate the latter, in Subsection 3.4.2, we
conduct an additional experiment, which compares the performance of the direct simulation method and of the
DETL model in estimating the Value at Risk (VaR) of a portfolio consisting of two call options. In particular, we
show that the estimates of VaR produced by the direct simulation are unrealistic, while the DETL model does a
fairly good job at this task.

3.4 Results of empirical analysis
In this section, we go through the test procedure in detail and present the test results for the following models:

• Double exponential tangent Lévy model (DETL).

• SABR model with β = 1.

• SABR model with β = 0.7.

• Direct simulation of implied volatility.

The DETL and SABR models will be run in two periods: (I) Jan. 2007- Aug. 2008 and (II) Jan. 2011 - Dec.
2012. The direct simulation of implied volatility will only be tested in period (II). For each period, we use the first
year’s data as a training sample, to estimate the parameters of the tangent Lévy model, and we use the rest of the
data as the testing sample, to compute the figure of merit Q defined in (3.4). The division between training and
testing samples is shown in Table 2. Please note that we cut off the first period at August 2008 to reduce the impact
of the financial crisis. The tests will be run on a portfolio of call options and underlying – referred to as a “(C +
S) portfolio” – with three, four and five strikes. In each case, we pick every other strike starting from the strike
closest to the underlying spot value (in other words, closest to at-the-money) at the moment when the portfolio is
constructed. We pick these options because their market prices are most accurate. Assuming the set of available
strikes isK1 < K2 < ... < Kn and the spot S satisfiesKi−1 < S < Ki, Table 3 illustrates the strikes used in each
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case. The values of the strikes chosen this way always stay between 95% and 105% of the spot value (evaluated at
the time when the portfolio is constructed).

As announced earlier, we also investigate the performance of the method based on the direct simulation of
implied volatility. As the latter model is not arbitrage-free (and, hence, is not the main emphasis of the present
investigation), we only provide the analysis of its performance for a smaller number of experiments: i.e. for the
case of five strikes and only in period (II). The parameters of this model (i.e. the vectors Σn’s and correlations
ρn’s) are estimated using the 2011 data, and the model is tested (i.e. the portfolios are constructed and the figure
of merit is computed) on the 2012 data.

For all portfolios, we use a simulation horizon u equal to 8 days, and, at the time tk, when the portfolio
is constructed, the options have maturity equal to tk + u plus additional 30 days, so that their time-to-maturity
becomes 30 days when the given simulation period ends. We also assume the budget constraint M = 1. In
addition to the figure of merit Q, we also check the average predicted deviation defined as

P =

√√√√ 1

Ntest

Ntest∑
k=1

(ωtk)TΛtku ωtk , (3.11)

where ωtk is the set of optimal weights obtained via (3.2) on the day tk. The difference between Q and P is
another measure of the accuracy of a model’s prediction. Besides the predicted and realized deviation, one may
be interested in how much the optimal portfolio weights fluctuate across the initial days tk. To measure this
fluctuation, we define the average quantity oscillation index K:

K =
1

n

n∑
i=1

(
1

Ntest

Ntest−1∑
k=1

∣∣∣ωtk+1

i − ωtki
∣∣∣ ), (3.12)

where ωtki is the quantity of the Ki-struck option in the optimal portfolio constructed on day tk.

3.4.1 Period I

For Period I, the estimation of the parameters of the tangent Lévy model is described in Section 2. Following
the simulation algorithm outlined in Subsection 3.2, for every initial day tk in the testing sample, we simulate
500 sample paths of the underlying and the options’ prices, using each model, and starting with the actual prices
observed on day tk. In the simulation for the tangent Lévy model, we use the drift α and the volatility β estimated
from the training sample, so that the testing is performed out-of-sample (this issue is irrelevant for SABR model,
as it does not allow for any use of past option prices). Using the simulated prices, for each model, we calculate the
average predicted deviation P , according to (3.11), and estimate the optimal portfolio weights ωtk via (3.2). Using
these weights, we construct the corresponding portfolio and record its value at time tk + u using the actual market
prices. Collecting the results for all initial days tk, we compute the average realized deviation Q via (3.4).

The results are shown in Table 4. It is easy to see that, for a portfolio with 5 strikes, DETL model produces
much smaller values of Q than those produced by SABR model, indicating that the tangent Lévy models do a
much better job at finding the minimal-variance portfolio. This can also be seen in Figure 13, which shows that
the distribution of realized returns is much more concentrated around 1 under the DETL model than under the
SABR model. Furthermore, if we look at the difference between Q and P , we can see that it is much smaller
for DETL than for SABR model. This suggests that the tangent Lévy models produce a more reliable prediction
of the risk of an options’ portfolio (as measured by the standard deviation of its return) than the SABR model.
Besides a small return deviation, another nice feature of tangent Lévy models is the stability of optimal option
quantities across the initial days tk. Figure 14 shows the optimal quantities of options and underlying index, in the
portfolio with 5 strikes, across all initial days in the testing period, for every model. Similarly, Table 5 shows the
average quantity oscillationK (defined in (3.12)) for all portfolios and all models. It is easy to see that the portfolio
weights constructed via DETL model are much more stable than those constructed using SABR model. This can
be explained by the fact that the parameters of a tangent Lévy model are estimated from both the present and the
historical options’ prices, while a classical stochastic volatility model, such as SABR, can only be calibrated to the
options’ prices available on day tk. It is well known (and obvious intuitively) that an estimate based on a larger
sample is more robust. Thus, the ability of tangent Lévy models to be fitted to the historical options prices makes
their output (in this case, the optimal portfolio weights) more stable. This advantage, of course, comes at a cost of
higher computational complexity. The Monte Carlo simulations and the computation of optimal portfolio weights
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for 5 strikes, using DETL model, take around 10 minutes for each initial day. Analogous computations using
SABR model take around 10 seconds.15 Nevertheless, in many cases, 10 minutes is a reasonable time to wait in
order to obtain higher quality results (e.g. if the computations are performed daily).

Tables 4 and 5 also show that the difference between the performances of DETL and SABR models shrinks
as the number of strikes in the portfolio decreases. This is not a surprise: as the number of strikes decreases,
the number of degrees of freedom in the dynamics of options’ prices, which have to be captured by the model,
decreases as well. Eventually, for a very small number of strikes, the SABR model does relatively well. How-
ever, even in the case of 3 strikes, the tangent Lévy model does at least as good as SABR (although at a higher
computational cost). Of course, the real benefit of using tangent Lévy models is only visible when the number of
options in the portfolio is relatively large. Figure 15 provides a visual explanation for DETL’s outperformance. It
shows the 500 simulated call option prices, as functions of strike, at the end of the simulation period, under DETL
model and under SABR model with β = 1. It is easy to see that the SABR model only allows for very limited
shapes of the simulated call price curves, while the tangent Lévy model is able to generate a much wider variety
of shapes. It is the lack of variety of different scenarios for the joint evolution of call prices (not merely the lack
of parameters in the model) that prohibits the classical stochastic volatility models, such as SABR, from capturing
the true dynamics of options’ prices (or, of implied volatility surface) contained in the historical data.

3.4.2 Period II

Herein, we repeat the same analysis for Period II. The main purpose of this analysis is to show that the outperfor-
mance of tangent Lévy models is not due to our choice of a testing period, but that it is a persistent property. In
addition, we investigate the performance of the method based on direct simulation of implied volatility.

First, we need to estimate the parameters of DETL model using the data of year 2011. The estimation procedure
is exactly the same as the one described in Section 2, so we only present the main results here. In particular, the
PCA shows that the first three eigenmodes explain over 93% of the variance. The eigenvalues and the eigenmodes
are shown in Figure 16, and the corresponding drift term α is shown in Figure 17.a. Comparing to Figures 7 and
8, we see that these results are almost the same as for the year 2007, suggesting that this model is very robust.

Once the estimation is completed, we can repeat the same simulation and testing procedures as in Subsection
3.4.1, to obtain the results shown in Tables 6 and 7, as well as in Figures 18 and 19. These results confirm the
finding of Subsection 3.4.1: for sufficiently many strikes in the portfolio, the tangent Lévy model does a much
better job at finding a portfolio with smallest variance, its prediction for the variance is more reliable, and the
portfolio weights are more stable.

In the case of direct simulation of implied volatility, we proceed similarly. Namely, we estimate the parameters
of the model (i.e. the vectors Σn’s and the correlations ρn’s) using the PCA analysis of the time series of implied
volatilities from 2011, and, then, conduct the forward 8-day simulation starting from every day in 2012 (using
the market implied volatility as the initial condition, and reusing the same vectors Σn’s and the same correlations
ρn’s). As shown in Tables 6–7 and in Figures 18–19, the method of direct simulation of implied volatility does
slightly worse than the DETL model, but it is quite close. From the results of this particular experiment, one can
argue that the performance of the direct simulation is comparable to the DETL performance. This can be explained
by the fact that the direct simulation method also takes into account both the present and the historical values of
the implied volatility. In addition, this method is significantly faster than the other two models: the Monte Carlo
simulations and the computation of optimal portfolio weights for 5 strikes take around 0.15 seconds for each initial
day.

However, the direct simulation method does not constitute an arbitrage-free model: in particular, the simulated
options’ prices, typically, contain static arbitrage, as discussed in Subsection 3.3. The presence of static arbitrage
implies certain obvious shortcomings, which make it impossible to use the same model for other tasks, in addition
to the one considered in this experiment. To illustrate this, we conduct an additional experiment, in which we use
the direct simulation method and the DETL model to estimate the VaR of a so-called “digital spread” portfolio.
This portfolio consists of a long position in a European call option with a smaller strike and short position in a
co-maturing call with a larger strike, scaled for convenience: (C(K4)−C(K5))/(K4 −K5), with K4 < K5. On
each day tk in 2012, we construct the digital spread portfolio by choosing K4 and K5 to be the two largest strikes
used in the main experiment (i.e. the variance minimization problem) and by choosing the same maturity as in the
main experiment (defined at the beginning of Subsection 3.4). Recall that VaR is a quantile of the distribution of
the future value of the portfolio. Hence, for each day tk, we use the direct simulation method and the DETL model

15These computations are performed on 2.2 GHz Intel Core i7, 8 GB 1600 MHz DDR3.
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to simulate 500 future sample values of this portfolio, for 16 days ahead. In each of the two samples, we compute
the 0.01-quantile, thus, obtaining two time series of quantiles. These time series are plotted in Figure 20. Notice
that the actual portfolio values have to be nonnegative at all times, due to the obvious static no-arbitrage condition.
Therefore, a reasonable estimate of a quantile has to be nonnegative as well. In agreement with this observation, the
quantiles produced by the DETL model are nonnegative, because this model is designed to exclude the possibility
of static arbitrage in the simulated prices. However, the direct simulation method does not take the issue of static
arbitrage into account. As a result, the quantiles produced by the direct simulation often take negative values of
significant magnitude (relative to the quantiles produced by the DETL model). In addition, the quantile estimates
of the direct simulation method exhibit strong oscillation over time, while the estimates produced by the DETL
model do not. This demonstrates the additional advantage of the DETL model, which is the stability of the quantile
estimate. On every day tk, we also compute the actual (realized) future value of the digital spread portfolio, for
16 days ahead. These values, as expected, remain positive at all times. Part (b) of Figure 20 shows the time
period with the smallest realized future values of the digital spread portfolio. We can see that these values remain
positive and above the quantiles produced by the DETL model, while they do fall below the quantiles produced
by the direct simulation method, in two instances. The latter observation, itself, does not imply that the quality of
the quantile estimates produced by direct simulation is low.16 However, it does indicate that, for two days in the
sample, the direct simulation method fails to provide the appropriate capital requirements for the given portfolio,
even at a 99% confidence level. We conclude that the DETL model performs significantly better than the direct
simulation method at the task of computing VaR of the digital spread portfolio. In practice, one would like to use
the same model for various purposes, hence, it is highly desireable that the model performs reasonably well for
a wide range of problems. The simplistic example of the VaR computation, described above, shows that using a
model that is not free of arbitrage may have unpredictable consequences.17

4 Conclusion
In this paper, we implement and test a market-based model for European-type options. This model is a numerically
tractable specification of the family of tangent Lévy models proposed in [4] and [3]. Such models, in particular,
provide a method for generating Monte Carlo samples of future implied volatility surfaces, in a way that is consis-
tent with their past and present values. We estimate the parameters of this model using real market data, for two
periods: 2007-2008 and 2011-2012. The estimation procedure is described in detail, so that it can be reproduced
by any interested reader.

In addition, we use the estimated model and the real market data to conduct an empirical study, whose main goal
is to compare the performance of a market-based model with the performance of a classical stochastic volatility
model. We choose the problem of minimal-variance portfolio choice to compare the performance of the tangent
Lévy model with the SABR model. Our study demonstrates that the tangent Lévy model does a much better
job at finding a portfolio with smallest variance. In addition, its prediction of the future return variance is more
reliable, and the portfolio weights are more stable. To the best of our knowledge, this is the first example of
empirical analysis, based on real market data, which provides a convincing evidence of the outperformance of the
market-based models for European options, as compared to the classical spot models.

We also compare the DETL model to the method of direct simulation of implied volatility proposed in [7]. We
find that the performance of direct simulation is quite close to that of the DETL model (only slightly worse), for
the problem of portfolio selection. However, unlike the DETL and SABR models, the method of direct simulation
does not belong to the class of arbitrage-free models. As a result, it may produce a priori impossible scenarios in
the Monte Carlo simulations and, in turn, unrealistic estimates. We illustrate this fact by estimating VaR of a given
portfolio of call options using both the DETL model and the direct simulation method. This analysis illustrates
some of the advantages of arbitrage-free models in general, and the market-based models in particular.

Our work is subject to certain limitations, which suggest directions for future research. One of the biggest

16For example, if the sample members are independent, it is likely that one of the members falls below the 0.01-quantile. In the present case,
the members are not independent, as the testing time periods overlap, hence, the probability of such an event is lower. Nevertheless, it may be
non-negligible.

17The consequences may be much more severe if, for example, the model is used for pricing exotic instruments, such as options written
on portfolios of call options. From a theoretical point of view, this type of phenomena are well understood, and, hence, we do not provide a
detailed discussion of this in the present paper. It may be interesting to construct a particular example in which the absence of arbitrage in the
direct simulation causes serious deficiencies in pricing exotic options, thus, demonstrating the benefits of arbitrage-free models. However, this
requires an entirely new numerical experiment, and, hence, we leave it for future research.

19



challenges in implementing a market-based model is the numerical complexity and potential instability of the
static fitting (see Remark 1). To mitigate some of these issues, we chose to work with a parametric family of
Lévy densities. Although this increases the stability of computations, we still have to rely on the convergence of
a generic optimization algorithm, which is applied to a non-convex problem and takes a long time to converge.
In addition, the restriction to a parametric form of the density also implies that we may not be able to fit option
prices with a required precision. Finally, the transition between Lévy density and option prices, at least, as it is
implemented herein, requires substantial (although reasonable) time. As a result, the DETL model performs slower
than the competing models, and its applications are limited to the problems that do not require frequent re-runs (e.g.
daily runs would be appropriate). Herein, we do not aim to show that the present choice and implementation of a
market-based model are the most efficient ones: rather, our goal is to demonstrate the practical advantages of the
general principle of market-based modeling. However, it is important to, ultimately, design more efficient classes
of market-based models. To achieve this using tangent Lévy models, one has to find a family of Lévy densities
that is rich enough, to approximate market prices of the options with sufficient precision, and, at the same time,
not too large, so that the transition between Lévy density and options’ prices (and vice versa) is fast and stable.18

This is a balance that seems hard to find. One can go even further along these lines and search for other families of
tangent models – not necessarily based on Lévy processes. This, in turn, motivates the search for other families of
models, which can always fit an arbitrary family of arbitrage-free options’ prices.19 An example of such a family
is provided in [6], but the existence and description of consistent dynamics within this family of tangent models
remains an open question.

5 Appendix A
Here, we define the Banach spaces associated with tangent Lévy processes.

• B0 is a Banach space of Borel measurable functions satisfying

‖f‖B0 :=

∫
R
(|x| ∧ 1)|x|(1 + ex)|f(x)|dx <∞. (5.1)

• B is a Banach space of absolutely continuous functions f : [0, T̄ ]→ B0 satisfying

‖f‖B := ‖f(0)‖B0 +

∫ T̄

0

‖ d
du
f(u)‖B0du <∞. (5.2)

• H0 is a Hilbert space of Borel measurable functions f : R→ R satisfying

‖f‖2H0
:=

∫
R
|x|4(1 + ex)2|f(x)|2dx <∞. (5.3)

• H is a Hilbert space of absolutely continuous functions f : [0, T̄ ]→ H0 satisfying

‖f‖2H := ‖f(0)‖2H0
+

∫ T̄

0

‖ d
du
f(u)‖2H0

du <∞. (5.4)

• C([0, T̄ ]) is a Banach space of continuous functions f : [0, T̄ ]→ R satisfying

sup
x∈[0,T̄ ]

|f(x)| <∞. (5.5)

• W 1,2([0, T̄ ]) is a Hilbert space of absolutely continuous functions f : [0, T̄ ]→ R satisfying

|f(0)|2 +

∫ T̄

0

| d
du
f(u)|2 <∞. (5.6)

18Ideally, we would like to be able to propose an algorithm for the associated optimization problem that is guaranteed to converge at a known
rate.

19In fact, one has to go beyond Lévy processes to do this. For example, it is not hard to find a combination of arbitrage-free prices of three
call options, with the same maturity and different strikes, which cannot be approximated with an arbitrary precision (simultaneously) by any
exponential Lévy model. This means that, in principle, if there are more than two strikes traded in the market, the associated call prices (even
with the bid-ask spreads) may be such that there is no tangent Lévy model that can match them.
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• Bd is a Banach space of absolutely continuous functions f : [0, T̄ ]→ R satisfying

‖f‖Bd := |f(0)|+
∫ T̄

0

| d
du
f(u)|du <∞. (5.7)

Here the subscript d is used to indicate the “discrete” models.

• Hd is the Hilbert space of absolutely continuous functions f : [0, T̄ ]→ R satisfying

‖f‖2Hd := |f(0)|2 +

∫ T̄

0

| d
du
f(u)|2du <∞. (5.8)

We know that H0 ⊂ B0, H ⊂ B, W 1,2([0, T̄ ]) ⊂ C([0, T̄ ]) and Hd ⊂ Bd. In addition, it is not hard to see
that the completion of H0 is B0 with respect to the norm ‖ · ‖B0

. Similarly, the completion of H is B with respect
to ‖ · ‖B, the completion of W 1,2([0, T̄ ]) is C([0, T̄ ]) with respect to the “sup” norm, and the completion ofHd is
Bd with respect to the ‖ · ‖Bd norm. Hence, we conclude that the couples (H,B),

(
W 1,2([0, T̄ ]), C([0, T̄ ])

)
, and

(Hd,Bd) are all conditional Banach spaces (see III 5.3 in [18] for definition).

6 Appendix B
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Figure 1: Symmetry index Ξ as a function of time to maturity, in DETL model

Table 1: Time periods
Jan. 2007 - Aug. 2008 Jan. 2011 - Dec. 2012

# of days 419 502
Range of SPX spot price $1214.9 - $1565.2 $1099.2 - $1465.8
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Table 2: Testing periods
Period Training period Testing period

I Jan. 2007 - Dec. 2007 Jan. 2008 - Aug. 2008
II Jan. 2011 - Dec. 2011 Jan. 2012 - Dec. 2012

Table 3: Strikes used in each portfolio
# of strikes Strikes used

5 Ki−3(call), Ki−1(call), Ki+1(call), Ki+3(call), Ki+5(call)
4 Ki−3(call), Ki−1(call), Ki+1(call), Ki+3(call)
3 Ki−1(call), Ki+1(call), Ki+3(call)

Table 4: Average deviation of (C + S) portfolio in period I
# of strikes DETL SABR (β = 1) SABR (β = 0.7)

Average realized
deviation Q

5 0.55% 84.97% 111.42%
4 0.54% 4.69% 24.43%
3 0.64% 2.18% 10.50%

Average predicted
deviation P

5 0.87% 0.19% 9.33%
4 0.88% 0.30% 9.66%
3 1.05% 0.53% 10.29%

Table 5: Average quantity oscillation K (as defined in (3.12)) in (C + S) portfolio in Period I
# of strikes DETL SABR (β = 1) SABR (β = 0.7)

5 0.0039 1.1747 2.3846
4 0.0038 0.1339 0.4629
3 0.0027 0.0263 0.0807

Table 6: Average deviation of (C + S) portfolio in Period II
# of strikes DETL SABR (β = 1) SABR (β = 0.7) Direct Simulation

Average realized
deviation Q

5 0.41% 9.07% 33.22% 0.6%
4 0.42% 3.51% 17.61% -
3 0.42% 0.90% 5.22% -

Average predicted
deviation P

5 0.79% 0.36% 7.98% 0.43%
4 0.79% 0.43% 8.11% -
3 0.94% 0.62% 8.46% -

Table 7: Average quantity oscillation K (as defined in (3.12)) of (C + S) portfolio with 5 strikes in Period II
# of strikes DETL SABR (β = 1) SABR (β = 0.7) Direct Simulation

5 0.0011 0.1410 0.6642 0.0065
4 0.0012 0.0537 0.2736 -
3 0.0011 0.0145 0.0474 -
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Figure 3: Calibrated time values for DETL model on the second day, Jan. 4, 2007
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Figure 9: Simulated κ’s and implied volatility surfaces using DETL model (1)
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Figure 10: Simulated κ’s and implied volatility surfaces using DETL model (2)
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Figure 13: Distribution of the 8-day returns of (C + S) portfolio with 5 strikes in Period I. Different scales are used
to show more details.

31



20080102 20080314 20080527 20080805
−10

−8

−6

−4

−2

0

2

4

6

8

10

The testing period

Q
ua

nt
ity

Quantity of options in the calls + underying portfolio under SABR with beta = 1

 

 
Quantity of C(K

1
)

Quantity of C(K
2
)

Quantity of C(K
3
)

Quantity of C(K
4
)

Quantity of C(K
5
)

Quantity of S

20080102 20080314 20080527 20080805
−10

−8

−6

−4

−2

0

2

4

6

8

10

The testing period

Q
ua

nt
ity

Quantity of options in the calls + underying portfolio under SABR with beta = 0.7

 

 
Quantity of C(K

1
)

Quantity of C(K
2
)

Quantity of C(K
3
)

Quantity of C(K
4
)

Quantity of C(K
5
)

Quantity of S

(a) Under SABR model with β = 1 (b) Under SABR model with β = 0.7

20080102 20080314 20080527 20080805
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

The testing period

Q
ua

nt
ity

Quantity of options in the calls + underying portfolio under double exponential tangent Levy

 

 
Quantity of C(K

1
)

Quantity of C(K
2
)

Quantity of C(K
3
)

Quantity of C(K
4
)

Quantity of C(K
5
)

Quantity of S

(c) Under double exponential tangent Lévy model

Figure 14: Option quantities in (C + S) portfolio with 5 strikes in Period I. Different scales are used to show more
details
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Figure 15: Terminal option prices in (C + S) portfolio, as functions of strike, simulated using 500 sample paths
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Figure 16: Eigenvalues and eigenmodes of ∆κ̂ under DETL, estimated using 2011 data
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Figure 17: The drift term α in DETL model, estimated using 2011 data
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Figure 18: Distribution of the 8-day returns of (C + S) portfolio with 5 strikes in Period II
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Figure 19: Option quantities in (C + S) portfolio with 5 strikes in Period II. Different scales are used to show more
details
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Figure 20: Estimated 0.01-quantiles of the future (16 days ahead) values of the “digital spread” portfolio, produced
by the direct simulation (blue) and by DETL model (red), on every day in 2012. Part (b) contains the same quantiles
on a smaller time interval, with the realized future (16 days ahead) values of the portfolio (yellow).
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