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Abstract. High Frequency Trading (HFT) represents an ever growing pro-

portion of all financial transactions as most markets have now switched to
electronic order book systems. The main goal of the paper is to propose

continuous time equations which generalize the self-financing relationships of
frictionless markets to electronic markets with limit order books. We use NAS-

DAQ ITCH data to identify significant empirical features such as price impact

and recovery, rough paths of inventories and vanishing bid-ask spreads. Start-
ing from these features, we identify microscopic identities holding on the trade

clock, and through a diffusion limit argument, derive continuous time equa-

tions which provide a macroscopic description of properties of the order book.
These equations naturally differentiate between trading via limit and market

orders. We give several applications (including hedging European options with

limit orders, market maker optimal spread choice, and toxicity indexes) to il-
lustrate their impact and how they can be used to the benefit of Low Frequency

Traders (LFTs).

1. Introduction

In a series of papers ([19, 20, 21]) on the divide between high and low frequency
traders, M. O’Hara and co-authors identified a number of market features that
both Low Frequency Traders (LFTs for short) and most academic researchers have
largely ignored, but that High Frequency Traders (HFTs from now on) exploit with
great success.

“There is no question that the goal of many HFT strategies is
to profit from LFTs mistakes. [...] Part of HFTs success is due
to the reluctance of LFT to adopt (or even to recognize) their
paradigm.”([21])

These papers also outline a program to better understand and possibly remedy
these issues: in a nutshell, these authors recommend that LFTs update the strate-
gies and models they use in order to incorporate more of the features of the high
frequency markets. While the goal should not be to try to beat the HFTs at their
own game by modeling the high frequency market microstructure in painstaking
detail, it should be to capture, at least sparsely, the macroscopic effects of those
phenomena that actually affect LFT.

This paper is in line with this program. Case in point, its main thrust is to pro-
vide forms of the self-financing portfolio equation, both in discrete and continuous
time, consistent with the high frequency paradigm. The equations we propose are
motivated by and fitted to high frequency data. They are derived theoretically from
accounting rules at the high frequency level. Their continuous time limits capture
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the relevant effects at the macroscopic level. From these fundamental relationships,
we use the powerful tools of stochastic calculus to revisit the solutions of a certain
number of standard continuous time financial problems in light of the new high
frequency paradigm. We show how the latter affects for example option hedging
and we highlight the different solution depending upon trading being through limit
orders versus market orders. A model for market making in the spirit of [7] is
solved. We also introduce, still in the same framework, an instantaneous and a
cumulative toxicity indexes in the spirit of [21].

The crucial insight of [21], named ’the new paradigm’, is the fact that high
frequency traders do not operate on the ’calendar’ clock, but instead use some form
of ’event-based time’, such as the trade clock, or the volume clock. This is partly
due to the algorithmic nature of their strategies and the lack of direct calendar
clock dependent constraints such as maturities and the likes. A fringe benefit for
quantitative analysis is the well documented fact that prices behave better under an
event-based clock than the calendar clock. A number of papers [6, 14, 15, 29, 30, 21]
argue that, in addition to removing seasonal effects and resolving asynchronicity
issues, this time-change makes the price returns more Gaussian-like. Even though
this property is mostly irrelevant in our analysis, we choose to work in the trade
clock in which each discrete time step corresponds to one trade. Indeed, even
though our conclusions are independent of the clock used, we find the trade clock
especially convenient to formulate and test the significance of our findings. With
these proviso out of the way, we can outline our research agenda:

(1) Understand, at the microscopic level, structural relationships and strategies
that HFTs exploit;

(2) Identify which features persist at the macroscopic level, in which form, and
provide continuous time models on that scale;

(3) Use these models to update LFT strategies and provide monitoring tools:
transaction cost analysis, measure of toxicity of order flow, . . .

For the sake of definiteness, we focus on the self-financing portfolio equation of
continuous time finance. To this effect, we review in Section 2 the role of this
condition in quantitative finance, and in so doing, introduce the continuous time
analysis notation used in the paper, as well as the exact form of our generalization.

The main originality of the form of the self financing condition which we propose
to use, is the fact that it accounts for both price impact and price recovery, two
important empirical microstructure features that are usually ignored or modeled
in separate ad-hoc fashions. It also differentiates between the impacts of limit and
market orders. This is important because nowadays, a large number of agents
trade with both types of orders, rather than simply relying on market makers to
find trades. Furthermore, our generalization of the self-financing portfolio equation
can be used with a larger class of inventories models, e.g. with infinite variation.
This allows the use of the powerful tools of stochastic calculus to retain tractability
in a number of models.

The classical self-financing portfolio equation was generalized in two separate
directions in the financial engineering literature. On one hand, Almgren and Chriss
proposed in [4] a way to incorporate price impact and temporary transaction costs
in a phenomenological model for optimal execution with market orders and finite
speed of trading. On the other hand, and with a completely different point of view,
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extensions of the classical self-financing equation of the Black-Scholes theory were
touted by researchers attempting to include transaction costs in Merton’s optimal
portfolio’s theory. See for example [13, 28, 36] or the recent review [27].

Two books, Empirical market microstructure by J. Hasbrouck ([23]) and Market
microstructure theory by M. O’Hara ([34]) cover the state of the field prior to
the advent of HFT. They contain informed trader models ([26]) and inventory-
based market making ([5, 22, 24, 35]). Three main themes united different market
structures at that time: the limit order book, adverse selection (the underlying
cause of price impact) and statistical predictions. These themes are just as relevant,
if not more so in the new age of high frequency trading.

Our investigations were inspired by a large number of empirical studies of high
frequency data (see for example [8, 9, 10, 12, 32, 38, 39, 40]), and recent publications
of theoretical models of the limit order book ([16, 17, 18, 31, 39]). However, our
emphasis is different as we use limit orders as a starting point. Our goal is not to
explain the evolution of the order book, but merely to analyze the consequences
of the choices made by the liquidity providers and takers on price changes, their
inventories and their wealth.

We close this introduction with a short overview of the paper. Since so much
of our motivation and results depend upon the self financing condition, we devote
next section to a review of the role of this condition in continuous time quantitative
finance, with the goal of introducing the notation used in the paper, as well as
announcing the exact form of our generalization. The remainder of the paper is
structured into two parts. In the first part, we consider limit order books on which
the trades take place at the best bid and best ask only. While seemingly restrictive,
this assumption can be justified by looking closely at the data. Indeed, once two
specific classes of executions are removed from the data 1, this assumption holds true
in all the experiments reported in this paper. In the second part of the paper, we
refrain from pre-processing the data in this way and we consider the case of a general
order book. For the sake of completeness we derive the self-financing equations for
a general order book shape. This generalization is needed for markets where a
significant amount of trades happen outside the bid-ask spread. As expected, this
part of the paper is more involved mathematically.

We first derive discrete versions of our self financing equation and of the price
impact constraint from NASDAQ limit order book data. Our empirical studies are
done in the trade clock, and we demonstrate the significance of our microscopic
analysis by rigorous statistical tests. Next we take the limit as the tick size goes
to zero, and obtain diffusion limits for both price and trade volumes. This leads to
our proposed macroscopic continuous-time self-financing condition.

1We removed two specific classes of trades: 1) executions classified by NASDAQ as type ’C’.

While we were not able to figure out what these special deals are, their numbers are very small,
and on any given day, for any given stock, these executions represent less than 1% of the trades;
2) executions of hidden orders. While in very small numbers, if at all present, for small cap stocks,
these trades are frequently very significant for large cap stocks. For example, on many days, the
proportion of executions of hidden orders can be as large as 35 to 40% of the trades for stocks like

Apple or Google. Moreover, no information is provided as to whether the execution is for a fully
hidden order, or a the tip of an iceberg order. So, we decided to remove these executions for the
purpose of this first empirical study of the self-financing condition from the order book.
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We propose several applications of these macroscopic equations. We first revisit
local volatility models for European options in our framework and obtain hedging
strategies via limit or market orders. As a highlight, we show that limit orders
can only hedge negative convexity options while market orders can hedge positive
convexity options. This is a rare example where the theory naturally distinguishes
between the roles of liquidity providers and liquidity takers. Then a model for high
frequency market making is presented to uncover the relationship between optimal
spread setting and price volatility. Finally, we propose two forms of toxicity of
market order flow in our continuous time setting, and for the sake of illustration,
we compute their empirical analogues on the pool of 120 stocks used in a recent
ECB study of HFT. Following our theoretical analysis of general order book shapes,
we propose for illustrative purposes, a supply and demand model based on perfect
fill rates and deterministic price recovery.

2. The self-financing equation

In quantitative finance, the standard self financing portfolio equation is a cor-
nerstone of the theory of frictionless markets. It plays a crucial role in many
fundamental results, e.g. Merton’s portfolio theory. Mathematically, speaking it is
a simple equation which constrains the wealth process of an investor to live in a
certain sub-space. This sub-space is therefore often called the space of admissible
portfolios. New-comers to the mathematical theories of financial market often gripe
with the self-financing condition and how it relates to the real world. While it can
be postulated as a mathematical definition, it can also be derived from a limiting
procedure starting from accurate descriptions of the microstructure of trades in the
trade clock. This approach is at the core of our strategy.

“The sad fact is that the self-financing condition is considerably
more subtle in continuous time than it is in discrete time.”2

When discussing market models at the macroscopic level, we assume that the
mid-price p and the inventory L are given by Itô processes:{

dpt = µtdt+ σtdWt

dLt = btdt+ ltdW
′
t

(2.1)

for two Wiener processes W and W ′ with unspecified correlation structure. We
shall also consider an adapted process st representing (in the continuous time limit)
the bid-ask spread measured in tick size. The standard self-financing condition of
continuous time finance can be stated as a constraint:

dXt = Ltdpt (2.2)

between the price p of the underlying interest, the inventory L, and the wealth X of
the agent. In most classical financial applications, case in point Merton’s portfolio
theory, the price p is exogenously given, the inventory L is the agent’s input, and
his wealth X appears as the output of equation (2.2).

The objective of this paper is to generalize the self-financing portfolio condition
(2.2) to incorporate known idiosyncrasies of the high frequency markets including
transaction costs, price impact and price recovery. Also, we want this generalization
to be able to quantify the differences between trading via limit orders and market

2J. Michael Steele, Stochastic Calculus and Financial Applications, section 14.5 ’Self-financing
and self-doubt’.
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orders. We warn the reader that the equations proposed in this paper are only
necessary conditions and that quantifying limit order fill rates, priorities and price
recovery are beyond the immediate scope of the present paper.

2.1. Our basic formula. The empirical analysis of NASDAQ order book data
given in Section 3 and in the Appendix, together with the diffusion limit arguments
of Section 4, prompt us to formulate the self-financing condition in the following
form:

dXt = Ltdpt ±
stlt√

2π
dt+ d[L, p]t (2.3)

where ± is + when trading with limit orders, and − when trading with market
orders. Indeed, we show in Section 3 below that, when time is measured in the
trade clock, the discrete time analog of formula (2.3) can be derived rigorously
from a specific limit order book feature, and matches real wealth data extremely
accurately. We shall also impose the constraint

d[L, p] < 0 (2.4)

whenever trading with limit orders. Again, this adverse selection constraint is also
dictated by the empirical analysis of the NASDAQ data.

We now explain how our condition (2.3) and the adverse selection constraint
(2.4) relate to the conditions used in the separate sets of works reviewed in the
introduction.

2.2. The Almgren-Chriss model. The seminal work by Almgren and Chriss [4]
addresses a question closely related to ours. These authors propose a macroscopic
model for the price impact and the change of wealth after a liquidity taker’s decision.
The model leads to a very tractable framework which was used by many optimal
execution studies (see [2, 33] for example). This framework can be summarized by
the system: 

dpt = ft(lt)dt+ σtdWt

dLt = ltdt

dXt = Ltdpt − ct(lt)dt
(2.5)

where f and c are two function-valued adapted processes which are positive, and
in the case of c, convex.

The main advantage of this model is that price impact appears in a tractable
fashion. Indeed, it comes through the function ft, which creates a positive ‘corre-
lation’ between traded volumes and the price process. However, it constrains L to
be differentiable and for this reason, the model parameters cannot be calibrated to
market data directly, making the model difficult to test empirically. As the empiri-
cal analysis of NASDAQ data reported in Section 3 and the appendix shows, there
is ample evidence supporting nondifferentiable inventories. Moreover, limit orders
are not part of the discussion in the Almgren-Chriss framework.

2.3. Transaction cost literature. The branch of classical mathematical finance
most related to our paper is portfolio selection under transaction costs ([13, 28,
36] or the recent review [27]). Most of these works start from a model for the
wealth of a liquidity taker which generalizes the self-financing equation to a setting
with transaction costs. In general however, these papers do not emphasize the
derivation of the model, but instead, the study of its consequences. We hope to
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appeal to this side of the community by providing more accurate equations for self-
financing portfolios while keeping similar tractability, leading the way to problems
related to liquidity provision, such as market making. An interesting feature of
such problems is that the agent does not directly control his portfolio, adding an
additional modeling challenge. For the record we note that the standard equation
used in this branch of the literature is

dXt = Ltdpt −
st
2
|dL|t (2.6)

where again, the inventory process L is assumed to have finite variation
∫ t

0
|dL|s <

∞ for all finite t and st is the bid-ask spread.
Strengths of this model are its simplicity, relative tractability, and straightfor-

ward calibration to the market. Its weaknesses include the fact that the process
L can only have finite variation. Moreover, price impact, limit orders and other
microstructure considerations are absent in the model.

Formula (2.6) is much closer to our proposed equation (2.3) than it may seem
at first. It merely corresponds to a different diffusion limit. It can be recovered
in our framework by considering non-vanishing bid-ask spread, zero price impact
and looking at market orders only. Notice that these assumptions may be more
natural than ours for low frequency markets. This is presumably the reason for
their introduction.

3. Empirical study and discrete equations

We first recall standard terminology from the high frequency markets.

3.1. High frequency terminology. Trading on high frequency markets takes
place on an object called the limit order book. An agent can interact with others
via two possible trading mechanisms: limit orders and market orders. Limit orders
correspond to the act of providing liquidity to the market, while market orders take
liquidity from it. We will refer to agents who engage in the first type of trade as
liquidity providers3 while traders who trade with market orders will be referred to
as liquidity takers. In real markets, traders often switch between liquidity providing
and taking strategies, blurring this definition somewhat. The following comments
can help highlight the differences.

• A liquidity taker pays a fee for his aggressiveness. This fee typically takes
the form of the bid-spread, which is where most trades happen. The corre-
sponding provider captures this bid-ask spread.
• Right after the trade happens, the price may move. If it does, it almost

always moves in favor of the market order, compensating to some degree
the transaction costs. This phenomena is called price impact. It is a con-
sequence of the adverse selection of limit orders by takers.
• Between two successive trades, the price reverts to some value in between

the impacted price and the original one. Price recovery is an intuitive name
often used to describe this high frequency feature.
• Takers control their inventory directly. Attaining correlation with the mar-

ket requires high frequency predictions of the next price move.

3Of which market makers are a special class.
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• Providers do not directly control their inventory, but only their exposure to
the flow of market orders. How much of the flow they are able to capture
depends on their limit order fill rate. Flow is considered toxic if it leads to
adverse selection. The profitability of a provider’s strategy depends on the
spread he captures and the toxicity of his flow.

3.2. Data used in the Study. The statistical tests reported in this paper were
produced by the analysis of the NASDAQ ITCH data of, amongst other stocks, the
pool of 120 stocks used in the recent ECB study [11] of high frequency trading. The
figures included in this paper were produced using the data for Coca Cola (KO) on
18/04/13 . As explained in an earlier footnote, the only cleaning pre-processing of
the raw data was to remove the special deals and the executions of hidden orders.

The data do not contain the identity of the agents involved in the transactions.
For that reason, all quantities relating to the inventory L, cash K or wealth X are
aggregate quantities which could be thought of as relating to a representative aggre-
gate liquidity provider. The mid-price will be denoted by p and the bid-ask spread
by s. The time stamps of the transactions are measured in fractions of microsec-
onds and given in the calendar clock. However, the data analysis is performed in
the trade clock n = 1, ...N where each time step corresponds to one trade time. For
example, pn = ptn = ptn− where tn is the n-th trading time in the calendar clock
gives the mid-price just before the n-th transaction. Limit order data happening
between two trade times is the source of the changes in the best bid and best ask,
(and consequently of the mid-price) and is discarded for the purpose of our analysis.
More generally, if Y is a discrete process, we denote by ∆nY the forward-looking
increment ∆nY = Yn+1 − Yn.

3.2.1. More Notation. We denote by sn the bid-ask spread just before the n-th
trade. In other words, sn is the difference between the best ask and the best bid,
just before the n-th trade. We shall argue later on that the spread is of the same
order of magnitude as the change in price, namely that sn ≈ |∆np|. We also

Figure 1. Plots of the best bid, best ask and mid-price as func-
tions of trade time (left). Zoom into a part of the graph to see the
differences between the three plots (right).

denote by Ln and Kn the inventory and the cash held by the aggregate liquidity
provider just before the n-th trade. These quantities are not given explicitly with
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the data provided by NASDAQ, but starting from L0 = K0 = 0, they can easily be
computed after each trade. Indeed, Ln is the cumulative sum up to time n of the
algebraic volumes of the trades (positive volume for a limit order executed against
a sell market order, and negative volume for an execution against a buy market
order). Similarly, Kn is the cumulative sum up to time n of the cash exchanged
during the trades. The inventory and the cash Ln and Kn held by the aggregate
liquidity provider are plotted in Figure 2 against the trade time n.

Figure 2. Coca Cola (KO) stock on 18/04/13. Inventory, cash
and wealth are those of the aggregate liquidity provider.

3.3. Price impact. Empirically, price impact is the simple fact that the price
moves after each trade, and tends to move in favor of the market order. There have
been several empirical studies and multiple proposed measures and models for it
([2, 4, 9, 10, 12, 32, 33, 38, 39]). The main economic interpretation for price impact
is adverse selection. In this study, we isolate, measure and model price impact by
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a straightforward relationship.

∆nL∆np ≤ 0. (3.1)

For all n = 1, ...(N − 1). This relationship states that the price cannot move up
when the liquidity provider has bought and cannot move down when the provider
has sold. From the taker’s perspective, this means that the price always moves in
his favor right after a trade.

We provide rigorous statistical tests of (3.1) in Appendix A. For the sake of
illustration, we note that for Coca Cola on April 18, 2013, (3.1) holds for all but
166 of the 20742 trades of our streamlined data set, which represents 0.9% of the
trades. This trade impact relationship has clear consequences for the continuous
time analogs of the discrete model considered here: the quadratic covariation be-
tween the provider’s inventory and the price process is negative and decreasing.
Conversely, the quadratic covariation between the inventory of a liquidity taker
and the price process is positive and increasing.

Figure 3. Quadratic covariation between inventory and price path.

Price impact will give us an extra compelling reason to accept trade volumes
with infinite variation. Indeed, when using continuous time models, if the price
path and the inventory have a non-negligible quadratic covariation, then we cannot
model one as a diffusion process and the other as a finite variation process.

Remark 3.1. The causality of price impact is unclear: do trades cause price move-
ments, or simply predict them? While not crucial for the mathematical theory, it
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is important for interpretation purposes, and we choose to use the second option.
In particular, we shall say that a liquidity taker whose changes in inventory are
strongly correlated with the price movements has a very good short term prediction
of the price. This typically is the case of sophisticated high-frequency traders. Low-
frequency traders, on the other hand, trade more slowly and acquire inventories
which aren’t directly correlated with the smaller price movements.

3.4. Price recovery. This is another simple observation. Trades move prices, but
typically move them at most by one bid-ask spread. If they systematically moved
the price by one bid-ask spread, then the correlation between the price path and the
taker inventory should be one. Otherwise, it is smaller than one and we say that
the price has recovered from the price impact. Note that, of all our relationships,
this is statistically the weakest one: it is not verified for 5% of the Coca Cola data.

Figure 4. Relationship between price increments and spread.

Mathematically, this implies that |∆np| ≤ sn for n = 1, ...(N − 1). In the
continuous time version considered later, it will provide in the diffusion limit an
upper bound on instantaneous price volatility based on the current spread.

3.5. A bit of accounting. Finally, we derive the self-financing portfolio equation
from first principles in such a high frequency market.

Because after removing the special deals and the executions against hidden or-
ders, all the trades do happen at the best bid or ask, the amount of cash exchanged
is equal to

∆nK =

{
−(p− sn

2 )∆nL if ∆nL ≥ 0

−(p+ sn
2 )∆nL else

(3.2)
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That is, the provider pays the bid (resp. receives the ask) when he buys (resp.
sells). This can be summarized by the equation:

∆nK = −pn∆nL+
sn
2
|∆nL| (3.3)

3.5.1. The aggregate liquidity provider’s wealth. We define wealth as

Xn = pnLn +Kn (3.4)

that is, the cash held by the liquidity provider plus the value of her inventory
marked to the mid-price. The wealth Xn of the aggregate liquidity provider is
plotted in Figure 2 against the trade time n.

3.5.2. The discrete self-financing equation. We derive the dynamics of the wealth
process X from equations (3.3) and (3.4):

∆nX = Ln∆np+ pn∆nL+ ∆np∆nL+ ∆nK

= Ln∆np+
sn
2
|∆nL|+ ∆np∆nL (3.5)

3.5.3. Empirical validation. We compare four quantities: 1) the actual wealth, 2)
the wealth computed from the standard self-financing equation:

∆nX = Ln∆np (3.6)

used in the classical Black-Scholes option pricing and Merton portfolio theories, 3)
the wealth computed from the standard self-financing condition:

∆nX = Ln∆np+
sn
2
|∆nL| (3.7)

advocated to include transaction costs in Merton’s theory of optimal portfolio
choice, and finally 4) the wealth computed from our self-financing condition (3.5).
The plots of these four wealth processes are given in Figure 5 for Coca Cola stock
on April 18, 2013. Changing stock or changing day does not seem to affect the fol-
lowing facts which are easily illustrated in this figure. The wealth computed from
the standard self-financing equation of the Black-Scholes theory clearly underesti-
mates the actual wealth of the aggregate liquidity provider The wealth computed
from the classic equation (3.7) tries to correct for the lack of transaction cost, but it
over-shoots and over-estimates the wealth of the aggregate liquidity provider. The
error is reduced and practically canceled by including the adverse selection term
given by the quadratic covariation, and using our proposed formula (3.5). The
quadratic covariation between inventory and price matters!

3.5.4. Recovering the frictionless case. A surprising property worth mentioning
concerns the case sn = 0. Indeed, the latter does not correspond to the fric-
tionless case. Rather, choosing price jumps |∆np| = sn/2 and using the fact that
the price impact is negative, i.e. ∆nL∆n = −|∆nL∆n|, yields the identity

∆nX = Ln∆np+
sn
2
|∆nL| − |∆np||∆nL| = Ln∆np

which is the standard self-financing portfolio equation. In our high frequency frame-
work, it is not the absence of transaction costs that corresponds to the frictionless
case, but rather the absence of price-recovery, for in that case, the price impact
exactly compensates the transaction costs.
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Figure 5. Plots of the actual wealth of the aggregate liquidity
provider (as in Figure 2) together with the wealth computed from
the three self-financing conditions. Red is the frictionless case.
Green corresponds to (3.7). The actual wealth and the wealth
computed from our self-financing condition (3.5) are indistinguish-
able on the graph.

3.6. Summary. Our empirical evidence suggests the following equations and fea-
tures for the inventory L and wealth X of a liquidity provider, the bid-ask spread
s and the price p:

3.6.1. Self-financing equation.

∆nX = Ln∆np+
sn
2
|∆nL|+ ∆np∆nL (3.8)

3.6.2. Price impact (adverse selection).

∆nL∆np ≤ 0 (3.9)

3.6.3. Price recovery.

|∆np| ≤ sn (3.10)
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3.6.4. Vanishing bid-ask spread. sn and ∆np are of the same order of magnitude,
namely sn ≈ |∆np|.

4. Continuous equation: Bid-Ask case

The aim of this section is to derive formula (2.3) from its discrete version (3.8)
established in the previous section. In the process, we shall also derive continuous-
time analogs of the price impact / adverse selection constraint, the price recovery
and vanishing bid-ask spread condition equivalents of the relationships of subsection
3.6. The key is to let the tick size vanish, assume that the bid-ask spread vanish
with the tick size, and assume that the price and inventory converge to diffusion
limits.

Remark 4.1. The bid-ask spread is of the same order of magnitude as the price
jumps: the tick size. This implies in particular that the bid-ask spread vanishes in
absolute terms in the diffusion limit and should therefore be measured in tick-size.
The mathematical consequence of this simple comment is that transaction costs do
not diverge as the tick size goes to zero, allowing inventories that have infinite
variations in the continuous limit.

The main technical tool we use in this section and section 6 is the functional law
of large number for discretized process by Jacod and Protter [25]. Let φσ2 denote
the density function of the Gaussian distribution with mean 0 and variance σ2.

Theorem 4.2 ((7.2.2) from [25]). Let (t, y) → Ft(y) be an Ft-adapted random
function that is a.s. continuous in (t, y) and verifies the growth condition Ft(y) ≤
Cy2 for some constant C. Then we have the following convergence u.c.p. as N →
∞ for any continuous Itô process Y :

1

N

bNtc∑
n=1

Fn/N

(√
N(Y(n+1)/N − Yn/N )

)
→
∫ t

0

∫
Fs(y)φσ2

s
(y)dy ds

where σ2
t = d[Y,Y ]t

dt .

We proceed as follows:

(1) We begin with the continuous processes for the inventory L, price p and
bid-ask spread s as our data.

(2) By discretizing them, we obtain the data to plug into the discrete relation-
ships listed in subsection 3.6, yielding our discrete time output relation-
ships.

(3) Finally, we take the limit again to obtain the diffusion limits of our discrete
output to obtain our continuous-time relationships.

In discrete time, prices are a pure-jump process, and therefore have finite vari-
ations. It is common on larger time scales to consider the price as ‘zoomed out’
enough to be approximated by a diffusion process. Mathematically, this corre-
sponds to a vanishing tick size. Recall that tick size is typically of the order of
magnitude of the cent4, that is 10−4 relative to the typical stock price. Given the
relative roughness of the path of inventories when compared to prices, see for ex-
ample Figure 2, it seems reasonable to also expect high-frequency inventories to be
modeled by processes with infinite variation.

4Decibasis point for some exchanges in the foreign exchange market.
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4.1. Mathematical Setup. Let (Ω,F ,F,P) be a filtered probability space sup-
porting two Wiener processes W and W ′ with unspecified correlation structure.
We consider two Itô processes for the price p and provider inventory L:{

pt = p0 +
∫ t

0
µudu+

∫ t
0
σudWu

Lt = L0 +
∫ t

0
budu+

∫ t
0
ludW

′
u

(4.1)

where p0 and L0 are F0-measurable square integrable random variables, and µ, σ,
b and l are F-adapted continuous processes. Finally, we also assume the existence
of a F-adapted continuous process s.

Now consider the discrete approximation pNn = pn/N and likewise for L, µ, σ,

b and l. The interpretation is that 1√
N

is the tick size, which we formally make

vanish. For the bid-ask spread s, we define sNn = 1√
N
sn/N in line with our previous

comments. Plugging these definitions into the equations from subsection 3.6, we
obtain the discrete relationships:

∆nX
N = LNn ∆np

N +
sn/N

2
1√
N
|∆nL

N |+ ∆np
N∆nL

N

∆nL
N∆np

N ≤ 0

|∆np
N | ≤ sNn

(4.2)

where the first equation is understood as the definition of the wealth XN .

4.2. Main result.

Theorem 4.3. Assuming that relations (4.2) hold for every N ≥ 1, then the limit
limN→∞XN

bNtc exists for the uniform convergence in probability and defines a pro-

cess Xt which together with the Itô processes pt and Lt satisfy the relationships:
dXt = Ltdpt + stlt√

2π
dt+ d[L, p]t

d[L, p]t ≤ 0

σt ≤
√

2
π st

(4.3)

Proof. Using a localizing sequence of stopping times if needed, we can assume
without any loss of generality that the process st is bounded by a constant. The

convergence of the discrete approximations of
∫ t

0
Ludpu and [L, p]t is plain, proving

the second relationship.
For the last term of the self-financing equation, we have that

sNn
2

1√
N
|∆nL

N | = 1

2N
sn/N |

√
N∆nL

N | (4.4)

which allows us to apply Theorem 4.2 with Ft(y) = st
2 |y| and Yt = Lt. This proves

the self-financing equation.
The last relationship of (4.3) follows from applying the same theorem to the

process Yt = pt and the random function Ft(y) = y2 − st|y|. We obtain that, for
each t1 < t2, the quantity

1

N

bt2Nc∑
n=bt1Nc

(
(
√
N∆np

N )2 − sn/N |
√
N∆np

N |
)

(4.5)
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converges toward ∫ t2

t1

(σt −
√

2

π
st)σtdt, (4.6)

and the fact that this process is negative for all t1 < t2 concludes the proof. �

Remark 4.4. Technically speaking, nothing prevents us from going through with
the same limiting argument for the hidden part of the order book, simply replacing pt
and st by their ‘hidden’ counterparts. Two practical problems appear however. First,
measuring the hidden price and spread is difficult. Second, and more importantly,
it is unclear by what to replace the price impact inequality, as adverse selection of
hidden orders is not well studied or understood.

4.3. Time change. Note that equation (2.3) was proved in a trade clock, which
means that all the time-related quantities, such as volatility, must be measured per
trade time. While this is a positive feature for high frequency models under this
clock (e.g. [6, 9]), it is less advantageous for financial problems working under a
different clock. For example, pricing an option with a fixed maturity in the calendar
clock may be difficult to do directly from equation (2.3). We therefore discuss how
our proposed formula behaves under time-changes, with the canonical time-change
being the switch to a calendar clock. Another possible time-change is the switch
from a trade clock to a volume clock.

Definition 4.5. We define a good time change to be an Ft-adapted stochastic
process τt such that τ0 = 0 and

dτt = n2
tdt (4.7)

with nt uniformly bounded away from zero.

We start from: 
dpt = µtdt+ σtdWt

dLt = btdt+ ltdW
′
t

dXt = Ltdpt + st√
2π
ltdt+ d[L, p]t

(4.8)

with d[L, p]t ≤ 0, and we study the processes p̃t = pτt , L̃t = Lτt and X̃t = Xτt .
Note that all the time-changed processes are now adapted with respect to the time-
changed filtration F̃t = Fτt . Note also that the processes W̃t =

∫ τt
0

1/nτ−1
u
dWu and

W̃ ′t =
∫ τt

0
1/nτ−1

u
dW ′u are F̃t Wiener processes.

A simple chain-rule leads to the time-changed dynamics:
dp̃t = µ̃tdt+ σ̃tdW̃t

dL̃t = b̃tdt+ l̃tdW̃
′
t

dX̃t = L̃tdp̃t + s̃t√
2π
l̃tdt+ d[L̃, p̃]t

(4.9)

where

µ̃t = n2
tµτt ; b̃t = n2

t bτt

σ̃t = ntστt ; l̃t = ntlτt

which are standard, as well as the more surprising:

s̃t = ntsτt (4.10)
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Remark 4.6. Part of this result is expected: under the modified time clock, drifts
and volatility must be measured by the new unit of time instead of by unit of trade,
which corresponds to the factors n2

t and nt. However, the unfortunate result is that
the bid-ask spread must also be multiplied by nt, which means that one needs to keep
track of the process s̃t rather than the more natural process sτt .

Remark 4.7. This issue is resolved when st = λσt. Such a assumption would
follow the conclusion of the empirical paper [39] which suggests a linear relationship
between daily average bid-ask spread and daily average volatility per trade. From
a theoretical perspective, this model is stable under time change, in the sense that
s̃t = λσ̃t, a desirable property.

Remark 4.8. One could have also from the beginning worked under the changed
clock and used the law of large numbers with irregular discretization schemes found
in [25] to recover the same result.

4.4. The case of a liquidity taker. By symmetry, the corresponding equations
for the inventory and wealth of a liquidity taker are{

dXt = Ltdpt − stlt√
2π
dt+ d[L, p]t

d[L, p]t ≥ 0
(4.11)

Unfortunately, as we already pointed out, these equations are only necessary con-
ditions. Indeed, unlike with the standard self-financing equation, it is difficult to
tell which processes L and p are admissible: we can only derive X once L and p
are given.

To give an example of why not all L can be attained, assume the volume on
the order book is finite. Then the volatility of L must be bounded by the amount
of volume available. Other factors that can come into play to determine which
processes L are actually attainable by market participants are: limit order fill rate,
instantaneous price recovery and for market orders the ability to predict the next
price jump. These factors will directly impact the volatility of L and the possible
correlation and quadratic covariation between L and p.

Ultimately, supply and demand rule the price p and volume L. X, however,
stems from accounting rules.

5. Applications

Applications of the proposed relationships depend on models of the inventory L
and the price p. Notice that, when we formulate an optimization problem, we often
assume that the inventory can be any Itô process. This is an act of faith as making
it happen typically requires good execution algorithms and limit order fill rates.

Reasonable models for the spread s are easier to come by. We shall typically
scale the spread with the price volatility: st =

√
2πλσt (for some constant λ > 1/2).

This is consistent with the empirical literature on the matter, e.g. [39].

5.1. Hedging. In this subsection we explore perfect replication of European op-
tions, assuming that the corresponding inventory can be attained via high-frequency
trades. Let f be the payoff function of our option and let

dpt = µ(t, pt)dt+ σ(t, pt)dWt (5.1)
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be a Markovian stochastic differential equation for the price. Denote by L the
inventory of the hedger and let us assume that it is of the form:

dLt = btdt+ ltdWt (5.2)

with bt and lt continuous, bounded and adapted processes. Note that the dynamics
of Lt are driven by the same Wiener process as the price, so the model is complete
and perfect replication is possible. Note also that lt < 0 corresponds to trading via
limit orders and lt > 0 to trading via market orders. Furthermore, when working
with this signed lt, the self-financing equation writes the same for limit and market
orders:

dXt = Ltdpt −
stlt√

2π
dt+ d[L, p]t (5.3)

as when lt < 0, we want to capture the transaction costs and when lt > 0, we need
to pay them.

Assume that interest rates are zero and define by v(t, p) the price of the option
knowing that pt = p. Then we have the replication equation

d(Xt − v(t, pt)) = (Lt −∆t) dpt + d[p, L]t −
st√
2π
ltdt− (Θt +

1

2
Γtσ

2(t, pt))dt

where ∆t, Θt and Γt denote the usual Greeks evaluated at t and pt. Delta hedging
the option removes the price risk and leads to the equation

dLt = d∆t

=

(
∂2
t v(t, pt) +

1

2
σ2(t, pt)∂

3
tp2v(t, pt)

)
dt+ Γtdpt

and in particular the identity

lt = Γtσ(t, pt) (5.4)

Note that therefore lt and Γt must be of the same sign!
Finally, the pricing partial differential equation becomes

∂tv(t, p) +

(
λ− 1

2

)
σ2(t, p)∂2

pv(t, p) = 0 (5.5)

with terminal condition v(T, p) = f(p). As λ > 1/2, this leads to a multiplicative
factor of

√
2λ− 1 on the implied local volatility when compared to the frictionless

case.

Remark 5.1. An important point is that negative Gamma options can be repli-
cated via limit orders, while positive Gamma options can be replicated via market
orders. This is assuming that one can guarantee perfect correlation (respectively
anti-correlation) with the price process for the inventory Lt to be driven by the
same Wiener process as the price.

This is consistent with the fact that one would not expect to use limit orders to
delta-hedge a call option, as hedging a call option requires you to buy when the price
goes up and sell when the price goes down: exactly the opposite of a limit order.
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5.2. Market making. In this section, we adapt to our framework the key insight
of the model proposed in [7]. The ultimate aim is to solve the optimization problem
of a representative market maker choosing the spread and maximizing his profits.
The trade-off he faces, and which is the key ingredient of the model, is the following:
the smaller the spread, the likelier trades are, but the less profit he makes on each
of them.

In a way similar to [7, 37], we model the probability of execution of a limit
order by a decreasing function of the quoted spread. This will first be done at the
microscopic level, to obtain a reasonable model for our inventory process L at the
macroscopic level. A key difference with [7] is that we still impose the price impact
constraint, which will further depress the market maker’s profits because of adverse
selection.

To guarantee the price impact constraint is satisfied, we use, at the microscopic
level, a modified version of the Almgren and Chriss model [4] to relate the price to
the aggregate inventory of the liquidity providers. We assume that

∆nL = −λn+1∆np (5.6)

for a Fn+1-measurable, positive random variable λn+1. This is an unpredictable
form of linear price impact, in the sense that, ex-post, the price increment is a
linear function of the traded volume.

To capture the insight of [7], we model λn+1 in such a way that

E[λn+1| Fn] = ρn(sn)fn(sn); E[λ2
n+1

∣∣Fn] = (fn(sn))
2

(5.7)

where sn is the market maker’s chosen spread, and ρn and fn are continuous,
positive function with fn decreasing and ρn ∈ [0, 1]. The assumption that fn is
decreasing in the spread is inherited from [7], and the fact that ρ must be smaller
than 1 is due to Jensen’s convexity inequality. We assume λn+1 to be independent
of ∆np conditional on Fn. Computing the predictable quadratic variation of Ln
yields:

n−1∑
k=1

f2
k (sk)E

[
∆kp

2
∣∣Fk] , (5.8)

while the predictable quadratic covariation of Ln and pn is given by:

−
n−1∑
k=1

ρk(sk)fk(sk)E
[
∆kp

2
∣∣Fk] . (5.9)

This suggests the use of the following model in the continuum limit:{
dpt = µtdt+ σtdWt

dLt = −ρt(st)ft(st)µtdt+ ft(st)σtdW
′
t

(5.10)

with d[W,W ′]t = −
∫ t

0
ρu(su)du for some adapted, continuous and positive func-

tions ρt(·) and ft(·) with ρt ≤ 1 and ft decreasing. Note that the equation for Lt
can also be rewritten as:

dLt = −ρt(st)ft(st)dpt + ft(st)
√

1− ρ2
t (st)σtdW

⊥
t (5.11)

with a Wiener process W⊥t independent from Wt. We will from now on assume
that pt is adapted to the filtration generated by Wt.
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Applying our wealth equation, we obtain:

XT = LT pT −
∫ T

0

ptdLt +
1√
2π

∫ T

0

σtstft(st)dt. (5.12)

For both ft and ρt, a natural assumption is that they are functions of the spread
rescaled by the volatility:

ft(s) = f(s/σt); ρt(st) = ρ(st/σt) (5.13)

for some C0 decreasing function f and C0 function ρ. We will furthermore assume
that g(x) = xf(x) is a decreasing function for x large enough, that g(x) → 0 as
x→∞, and that f(x) > 0 for all x ≥ 0.

The problem of a risk-neutral market maker attempting to set the spread opti-
mally is to maximize:

sup
s

EXT . (5.14)

We solve this control problem using the Pontryagin maximum principle. Let us
define a few functions first.

Lemma 5.2. For all a > 0, define the function Fa by

Fa : x 7→ x√
2π
f(x)− aρ(x)f(x) (5.15)

Then the function

M(a) = max
x∈[0,∞)

Fa(x) (5.16)

is well defined, continuous, and decreasing in a. Furthermore, there exist a mea-
surable selection

m(a) ∈ argmaxx∈[0,∞)Fa(x) (5.17)

and we have that m(a) > 0.

Proof. First, note that for all a > 0,

Fa(0) = −aρ(0)f(0) ≤ 0, Fa(a+ 1) ≥ f(a+ 1) > 0

Next, if g is decreasing on the interval [x0,∞), then we can define the function β(a)
as g−1 ◦ f(a + 1) if f(a + 1) is in g[x0,∞), and x0 otherwise. β(a) is continuous
and verifies f(a+ 1) ≥ g(x) for all x ∈ (β(a),∞).

This proves that the maximum of Fa is attained on the compact [a+1, β(a)]. The
continuity of M holds by Berge’s maximum theorem. It is decreasing by definition
of Fa. The measurable selection result follows by Thm 18.19 of [3]. �

Proposition 5.3. Any solution of the control problem is of the form

st
σt

= m (αt) (5.18)

where

αt = E [pT − pt| Ft]
µt
σ2
t

+
Zt
σt
, (5.19)

Zt being the volatility of the martingale representation of pT
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Proof. We apply the necessary part of the stochastic Pontryagin maximum princi-
ple. The generalized Hamiltonian is equal to:

Ht(s, L, Y, Z, Z⊥) = −ρ(s/σt)f(s/σt) [(Yt − pt)µt + σtZ]

+
σt√
2π
sf(s/σt) + σtf(s/σt)

√
1− ρ2(s/σt)Z

⊥

and the adjoint equation is solved by

Yt = E [pT | Ft] (5.20)

which, in particular, implies Z⊥t = 0. Zt can be computed via the martingale
representation theorem on the Brownian filtration generated by Wt.

The Hamiltonian to maximize therefore becomes

σ2
tFαt

(
s

σt

)
(5.21)

and the previous lemma concludes. �

Beyond the optimal control, one might be interested in the dependence in σt
and αt of the market maker’s expected profits as well as the volatility of his inven-
tory. Note that a low volatility of the inventory means that the market maker has
essentially pulled out of the market.

Corollary 5.4. The market maker’s expected profits and losses are

E

[∫ T

0

M (αt)σ
2
t dt

]
(5.22)

while the volatility of his inventory is

σtf(m (αt)). (5.23)

Proof. The expected profits can be computed by integrating the Hamiltonian along
the optimal path. The rest follows from the previous proposition. �

A consequence of the corollary is that the market maker is on average short αt
and, for αt being fixed, long volatility.

There are now two distinct problems if one looks for tractable formulas. First,
an explicit model for pT must be given for which the martingale representation
term Zt can be computed. Second, one has to propose a function g for which the
maximal argument m of F can easily be characterized as a function of αt.

5.2.1. The martingale case. Note that the latter problem is solved when pt is as-
sumed to be a martingale. Indeed, if we have

dpt = σtdWt (5.24)

for some adapted, continuous and positive process σt. Then αt = 1 and we simply
have

st = m(1)σt (5.25)

circumventing the need for explicit functions ρ and f . This result provides a the-
oretical argument for the empirical claim made in [39] that the spread is a linear
function of volatility.
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Plugging this optimal spread back into the objective function, the market maker’s
expected profits and losses (P&L) are

M(1)E

[∫ T

0

σ2
t dt

]
(5.26)

In the martingale case, the market maker is therefore on average, Delta neutral,
has negative Gamma but positive Vega.

5.2.2. Explicit cases. Other cases where αt can be computed explicitly are:

• the Black-Scholes model

dpt = µptdt+ σptdWt (5.27)

in which case we obtain:

E [pT | Ft] = pte
µ(T−t); Zt = σpte

µ(T−t), (5.28)

and hence

αt =
µ

σ2

(
eµ(T−t) − 1

)
+ eµ(T−t). (5.29)

• the case of a mean reverting (Ornstein-Uhlenbock) price process

dpt = ρ(p0 − pt)dt+ σdWt (5.30)

in which case:

E [pT | Ft] = p0 + e−ρ(T−t)(pt − p0); Zt = σe−ρ(T−t), (5.31)

and hence

αt = − ρ

σ2
(pt − p0)

2
(
e−ρ(T−t) − 1

)
+ e−ρ(T−t). (5.32)

Unlike in the martingale case, it is hard to obtain any tractable formulas without
specifying a functional form for ρ and f . In the case where ρ(x) = 1/(1 + x) and
f(x) = 1/(1 + x)2, the optimal spread becomes

st = σt
√

1 + 3αt (5.33)

Note thatm is an increasing function of αt. To compare with the martingale case,
where αt = 1, we therefore want to compare the ratio αt to 1 to study the impact
of the model assumptions on the market maker’s profits and inventory volatility.

• For the Black-Scholes model, αt is larger than 1 for µ > 0. For µ < 0, there
exists a critical value depending on T and σ for which this ratio flips sign.
• In the case of an Ornstein-Uhlenbock process, αt is smaller than 1 iff

(pt − p0)
2
<
σ2

ρ
(5.34)

that is, if the current price pt isn’t too far from the long-term average p0.

In line with intuition, the market maker quotes larger spreads, expects less profit,
and captures less volume in the ’momentum’ Black-Scholes model, as compared to
the martingale case. In a mean-reverting market, unless the price is significantly
away from its long-term trend, the market maker quotes smaller spreads, expects
more profit and captures more volume than in the two other market models.
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5.3. Transaction cost analysis and measure of toxicity. Following the sug-
gestion of [21], one aim of the analysis is to provide macroscopic analysis tools of
microstructure for LFTs and academics. Not everyone wants to delve into the de-
tails of high frequency rules. In this respect, this paper only scratches the surface of
the microstructure relationships HFTs can uncover, but it conveniently summarizes
them and compares them to the standard ’frictionless’ case.

[21] identifies two particular tools that could be of use. One is what the paper
calls ’transaction cost analysis’, which we interpret to be the analysis of the differ-
ence between the effective wealth, and the one that would have been obtained in a
frictionless market. Therefore, ’transaction costs’ contain two terms:

• the spread component:

±
∫ T

0

stlt√
2π
dt (5.35)

This component is positive if using limit orders, and negative if using market
orders. Using one or the other affects the Gamma exposure of the trading
strategy.
• and the price impact component:

[L, p]T (5.36)

which is always of the opposite sign to the spread component.

Depending on the Gamma of the LFT strategy, one or the other term will be the
potential source of losses of the trader.

The second tool sought for is a measure of toxicity of the flow of market orders,
preferably expressed as an index. Such an index could be used both by market
makers to decide on whether it is profitable to provide liquidity and by LFTs to
decide whether to execute their trades now or wait for better market conditions.
The toxicity of market orders is entirely captured in our framework by the price
impact term [L, p]T . Two natural measures of the strength of this price impact
term, and hence toxicity of market order flows, are as follows:

• The instantaneous negative correlation

ρt = − 1

σt`t

d[L, p]t
dt

(5.37)

between the aggregate provider’s inventory and the price. In particular,
this could serve as a benchmark for a particular market maker to measure
if the flow of market orders he captures is more or less toxic than that of
the market as a whole. For the purpose of empirical studies, when working
in the discrete trade clock, we compute the discrete time toxicity index as
the negative of the empirical correlation of the inventory and the mid-price
over the time interval [0, t], namely:

ρ
(d)
t = −corr(∆L[0,t],∆p[0,t]) (5.38)

which is nothing but a plain discretization of formula (5.37).
• The ratio between the integrated price impact and spread components of

the aggregate provider’s wealth.

r = −
√

2π
[L, p]T∫ T
0
stltdt

(5.39)
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which can be discretized as

r(d) = −2

∑
∆np∆nL∑
sn|∆nL|

(5.40)

The market maker in particular holds an implicit option on this quantity:
he can pull out of the market if the ratio is larger than 1, as in that case
he loses money even in the absence of long term alpha trading by his LFT
clients.

The advantage of the first measure of toxicity is that it measures the immediate
proportion of toxic versus non-toxic market orders. The disadvantage is that it
must be estimated via statistical procedures. The second measure, on the other
hand, is more closely related to the actual P&L of a market maker but must be
computed over a longer time horizon, making it an ex-post analysis tool.

We give a table illustrating these two measures across several stocks on a same
given trading day.

Stock ρ(d) r(d)

AAPL 0.17270704 0.19904208
GOOG 0.23689058 0.32856196
BRCM 0.19237560 0.29776003
CELG 0.26835355 0.48287317
CTSH 0.33887494 0.51758560
CSCO 0.08393210 0.09300757
BIIB 0.27832205 0.40193651
AMZN 0.23614694 0.30494250
GPS 0.20956508 0.48908889
SFG 0.24173454 0.57253111
INTC 0.05301259 0.05574866
GE 0.10889870 0.11888714
JKHY 0.33407745 0.56987813
PFE 0.15849674 0.15958849
CBT 0.34887086 0.74490980
AGN 0.35890531 0.78020785
CB 0.38667565 0.58090719
AA 0.08046277 0.08406282
FPO 0.49598056 1.14964119

Table 1. Values of the toxicity indexes on sample stocks.

6. Continuous equation: general order book shape

While on our particular choice of stock, most of the trades happened at the best
bid or ask price, we wish to generalize our results to a general limit order book. This
section starts by formally introducing the notion of limit order book and deriving
some basic machinery before going through with the same diffusion limit strategy
as section 4.
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6.1. Microscopic description of the order book. Borrowing from a time-
honored method in statistical physics, we first describe in depth the interactions
between agents at a microscopic level before deriving effective equations holding at
the macroscopic level. We consider a single liquidity taker and a single liquidity
provider. They trade an asset whose possible price range is (0,∞) via a limit order
system. The liquidity provider always moves first by choosing the limit orders she
places on the limit order book. These limit orders are represented by a control vari-
able (b, a) consisting of a pair of strictly positive measures on (0,∞). The liquidity
taker then chooses the control variable (β, α) ∈ (0,∞)×(0,∞) representing market
orders that he wants to execute on that limit order book.

Throughout this section we use the liquidity provider’s point of view to track
changes in portfolio positions and ignore the following high frequency phenomena:

(1) Slippage. Market orders execute immediately at their intended price.
(2) Partial fills. Market orders consume all the volume present at a given price5.
(3) Hidden orders. All limit orders are public.

6.1.1. Basic relationships. We first focus on basic relationships between the two
agents, their orders and inventories.

𝑝 𝑝1 0 

1 

Volume 

Price 

𝑏 =  𝛿𝑝 

𝑝2 

𝑎 =  1.3 𝛿𝑝1
+ 0.8 𝛿𝑝2

 

Limit Orders: discrete case 

The control (b, a) of the liquidity provider repre-
sents her limit orders. A bid for one unit of the
asset placed at a price p is represented by the prob-
ability measure b = δp, while an offer (or ask) for
one unit at price p′ by a = δp′ . If the provider
places multiple limit orders, we sum these unit
masses and obtain two non-negative measures b
and a representing the liquidity provider’s aggre-
gate orders.

We will call (b, a) a limit order book, or order book. We define the best bid and
ask of an order book in the following way:

Definition 6.1 (Best bid and ask). Let (b, a) be an order book. Then we define
the best bid and best ask prices to be

b̄ = sup{p ∈ supp(b)} , a = inf{p ∈ supp(a)} (6.1)

Here we use the notation supp(µ) for the topological support of the measure µ.

Remark 6.2. In real markets, such limit orders
can only be placed on a discrete grid, and the re-
sulting a and b are always discrete measures. The
recent push of high frequency markets to refine
their grid may justify considering measures a and
b that are absolutely continuous with respect to the
Lebesgue measure.

0 
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Volume 

Price 

Limit Orders: continuous case 

𝒃  : best bid 𝒂: best ask 

The control (β, α) of the liquidity taker represents his market orders. A market
order placed against the bids will cause all the bid orders above and including the
price β to be executed. For market orders against the ask, all the limit orders below

5This property automatically holds when you formally consider a continuous order book
distribution.
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the level α will be executed. The limiting cases α = 0 and β = ∞ correspond to
’empty’ market orders that do not execute any limit orders. The execution of a
market order leads to the following changes in cash and inventory:

Definition 6.3 (Execution of a market order). Assume the order book is (b, a) and
that the liquidity taker chooses the pair (β, α). Then the change ∆L of inventory
triggered by the trade and the change ∆K in cash that the liquidity provider is
subject to are defined by:

∆L = b[β,∞)− a(0, α] (6.2)

∆K =

∫
(0,α]

xa(dx)−
∫

[β,∞)

xb(dx) (6.3)
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Market Orders: execution 
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𝑎 0, 𝛼  
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−𝑏[𝛽,∞) 

For the justification of this formula let us first con-
sider a single bid b = δp. That is, the provider
expresses interest in buying one unit of the asset
at the price p or lower. A liquidity taker’s market
order to sell will therefore execute the order if and
only if its price level β is smaller. Should such an
execution take place, the liquidity provider gains
one unit of volume and loses p units of cash. The
above formula is then obtained by aggregating lin-
early the individual limit orders.

The following assumptions will be used throughout the section.

Assumption 6.4. The order books (b, a) are such that b̄ < a, that is, the bid-ask
spread is always positive. We will say in this case that the order book exhibits no
arbitrage.

Assumption 6.5. It is never optimal for the liquidity taker to buy and sell simul-
taneously.

In particular, we can recode the liquidity taker’s control by a single real number
α by making him formally send the market orders (α, α). Indeed, if α ∈ (b̄, a) there
is no trade, if α ≥ a a buy happens but no sell, and similarly for α ≤ b̄.

6.1.2. A probabilistic model for liquidity taker behavior. We now provide a
simple model for which Assumption 6.5 follows automatically from Assumption 6.4.
Let (Ω,F ,P) be a probability space modeling the beliefs of the liquidity taker. Let
p be a random variable representing the price at which the liquidity taker values
the asset at a future time. We assume that the liquidity taker is risk-neutral under
P in the sense that he maximizes his expected wealth after the trade, in other words
he solves the optimization problem:

max
β,α

E [−p∆L−∆K] (6.4)

Proposition 6.6. Let the order book (a, b) be given. Then an optimal trade for the
liquidity taker is given by

β = α = E[p]. (6.5)
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Proof. The liquidity taker looks for the supremum over (0,∞)× (0,∞) of the func-
tion

(β, α) 7−→
∫

[β,∞)

(x− E[p])b(dx)−
∫

(0,α]

(x− E[p])a(dx) (6.6)

This function decouples and we are left maximizing

β 7−→
∫

[β,∞)

(x− E[p])b(dx) (6.7)

which is non-decreasing on (0,E[p]] and non-increasing on [E[p],∞). The same
result holds for

α 7−→ −
∫

(0,α]

(x− E[p])a(dx) (6.8)

The supremum is attained for β = α = E[p]. �

Remark 6.7. While we do not have uniqueness of this maximum, all the other
choices of optimum market orders will lead to exactly the same executions. In-
deed, the function β 7−→

∫
[β,∞)

(x − E[p])b(dx) and α 7−→ −
∫

(0,α]
(x − E[p])a(dx)

respectively do not have a strict maximum in E[p] iff b and a respectively put zero
mass on some interval including E[p]. Any market orders on this interval will lead
to exactly the same cash and asset transfers and we can without loss of generality
replace them by market orders at E[p]. A similar argument can be made to rule
out partial orders. In particular, we can summarize the taker’s market orders by a
single number α.

Corollary 6.8. Assume the order book (b, a) exhibits no arbitrage. Then it is never
optimal for the taker to buy and sell simultaneously.

Proof. By the previous comment, we can summarize the market orders of a taker
behaving optimally by a single real α. The taker’s buy and sell volumes are

a[a, α] and b[α, b̄] (6.9)

The no arbitrage property implies that these two terms cannot both be positive. �

6.1.3. Alternative representation of the order book. Even though the above repre-
sentation of limit and market orders is clear, we still present an alternative descrip-
tion which only makes sense if no arbitrage is present on the market and Assumption
6.5 is verified.

The below definitions correspond to a very intuitive ‘graphic’ approach. In the
previous section, we have defined the order book as a pair of positive measures
(b, a). The no-arbitrage condition guarantees that these two measures have disjoint
supports. One is therefore tempted to ‘glue’ the two measures together into one.
But in order to do that, we also need to keep track of where the offers starts and
the bids stop. This is done in the following way.

Definition 6.9 (Quoted price). Let (b, a) be an order book that does not exhibit
arbitrage. Then we say that p is a quoted price of the order book if p ∈ (b̄, a).

Because the bid-ask spread is positive, there is not a unique quoted price. This
is an unfortunate reality of high frequency markets, and we will only be able to
mathematically resolve this difficulty in the limit where the bid-ask spread vanishes.
Using a quoted price as a separation point between bid and ask limit orders, we
can define:
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Definition 6.10 (Shape function). Let (b, a) be an order book that exhibits no
arbitrage and p be one of its quoted prices. Then define the order book’s shape
function γ : R 7−→ [0,∞) to be

γ(u) =

∫ u

0

(a(0, p+ x]− b[p+ x,∞)) dx. (6.10)

In particular, γ is convex, γ(0) = 0 and γ′(0) = 0. Moreover, γ′ is bounded and as
a result, γ has at most linear growth.

Remark 6.11. Notice that γ′′(·+p) = b+a if both measures b and a have densities,
or more generally, if we understand this equality in the sense of distributions.

The following result recasts the trade equations in terms of the function γ.

Proposition 6.12. Let (b, a) be an order book which exhibits no arbitrage, p be
one of its quoted prices and γ the associated shape function. If α = u + p is the
liquidity taker’s market order, then we have

∆L = −γ′(u) (6.11)

∆K = (u+ p)γ′(u)− γ(u). (6.12)

Proof. The first identity is immediate from the definition of γ and ∆L:

∆L = b[α,∞)− a(0, α]

= −γ′(u)



28 RENÉ CARMONA AND KEVIN WEBSTER

The second identity follows using integration by parts:

∆K =

∫
(0,α]

xa(dx)−
∫

[α,∞)

xb(dx)

= αa(0, α]−
∫

(0,α]

a(0, x]dx− α b[α,∞) +

∫
[α,∞)

b[x,∞)dx

= αγ′(u)− γ(u)

�

Remark 6.13. The liquidity provider’s change in portfolio is captured by the pair
(∆L,∆K) comprising her inventory and cash positions. There are multiple ways
to denote her change in wealth. But if there is no price recovery, then the change
in price of the asset after the transaction would be α− p, and we have:

∆X = (α− p)∆L+ ∆K

= −γ(u)

for the transfer of wealth from the liquidity taker to the liquidity provider. Notice
that we used (6.11) and (6.12) to deduce the second equality. ∆X is always non-
positive by construction of γ, and minimal at the quoted price used to define γ. As a
result, the shape function can be seen as a measure of adverse selection the liquidity
provider is willing to incur at a given price level if price recovery were non-existent.

To relate the transaction costs back to the traded volume without going through
the transaction price α, we use the following result:

Proposition 6.14. (Transaction costs) Define the transaction cost function c as
the Legendre transform of γ:

c(l) = sup
u

(ul − γ(u)) . (6.13)

Then we have:
∆K = −p∆L+ c (∆L) , (6.14)

and in particular, c is convex and satisfies c(0) = 0.

Proof. By the Fenchel identity, we have that

uγ′(u) = γ(u) + c(γ′(u))

and that c′ is the generalized inverse of γ′. Hence, as ∆L = γ′(u) we have that
u = c′(∆L) and

∆K = −p∆L+ uγ′(u)− γ(u)

= −p∆L+ c(∆L)

�

An order book (b, a) which does not exhibit arbitrage can therefore be represented
by a pair (p, γ) with p a real and γ a differentiable, convex function with linear
growth satisfying γ(0) = γ′(0) = 0. Note that this representation in terms of quoted
price and order book shape is not unique, but leads to a completely equivalent
description of trades and hence the same market model.

Both representations have pros and cons and unfortunately, both will need to
be juggled at different times of our analysis. The advantages of the original (b, a)
representation are: uniqueness of the decomposition, ease to derive no-arbitrage
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relationships and natural interpretation of formulas. The alternative representation
in terms of (p, γ) is more tractable and concise as it involves a real number and a
function rather than a pair of measures.

6.1.4. Summary. For future reference, we summarize the different trade equations
and market representations defined and derived in this section.

The liquidity provider places limit orders. If the limit order book formed that
way presents no arbitrage, it will be represented either by a pair of measures (b, a)
or a couple (p, γ) with p a real number and γ a differentiable, convex function
with linear growth and γ(0) = γ′(0) = 0. Consistency equations between the two
representations can be found above.

We call (b, a) the order book, p a quoted price and γ the shape of the order book.
The liquidity taker’s market order will be represented either by a real α representing
a price, or a real u denoting a centered price (shifted by the quoted price p). Both
representations lead to the same trades.

∆L = b[α,∞)− a(0, α]

= −γ′(u)

is the change in inventory of the liquidity provider, while

∆K =

∫
(0,α]

xa(dx)−
∫

[α,∞)

xb(dx)

= (u+ p)γ′(u)− γ(u)

= p∆L+ c (∆L)

is her change in cash position.
The market order corresponding to this trade can be recovered from the limit

orders and the trade volume by the relationship

α− p = c′(−∆L) (6.15)

and this is the price impact in the absence of price recovery.

6.2. Discrete self-financing equation and other relationships. We now give
ourselves a discrete price process p and provider inventory process L. Just as in
the bid-ask spread case, three necessary conditions can be derived.

6.2.1. Self-financing equation.

∆X = L∆p+ c (∆L) + ∆p∆L (6.16)

6.2.2. Price impact.

∆p∆L ≤ 0 (6.17)

6.2.3. Price recovery.

|∆p| ≤ |c′(−∆L)| (6.18)

6.3. Macroscopic limit. The strategy in this section is identical to that of section
4. We start off with the data of our problem in continuous time, discretize it to
apply the discrete relationships derived earlier and finally take the diffusion limit
to obtain our continuous time relationships.
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Figure 6. Renormalization of the model for the diffusion limit.
Time is scaled by 1/N , prices by 1/

√
N and volume by 1 (un-

changed). For example, the y-axis of γ represents cost, that is
[volume] · [price]2 which scales in 1/N . The x-axis is expressed in

prices and is scaled in 1/
√
N , leading to the formula γN (·) =

γ(
√
N ·)/N .

6.3.1. Approximation procedure. Let (Ω,F ,F,P) be a filtered probability space sup-
porting a Wiener process (W,W ′) with unspecified correlation structure. We con-
sider a fixed time interval [0, 1] and give ourselves the following F-adapted processes
for the price and inventory of a provider:{

pt = p0 +
∫ t

0
µudu+

∫ t
0
σudWu

Lt = L0 +
∫ t

0
budu+

∫ t
0
ludW

′
u

(6.19)

where p0 and L0 are F0-measurable elements of L2 and µ, σ, b and l are F-adapted
and càdlàg processes. Finally, let c : Ω× [0, 1]×R→ Rd be a random, Ft-adapted
function that is C0 in (t, l). Assume c to be a.s. convex for all t, with a minimum
at ct(0) = 0 and such that ct(l) < Cl2 for some constant C. We denote by γt its
Legendre transform, which will represent the shape function of the order book as
measured in tick size.

Let 1√
N

be a vanishing tick size. Define the discretized price process as pNn =

pn/N and likewise LN .
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We propose the following choice of renormalization for the order book.

γNn (x) =
1

N
γn/N

(√
Nx
)

(6.20)

This in particular implies

cNn (l) =
1

N
cn/N

(√
Nl
)

(6.21)

This follows from the fact that γ is defined in tick size and needs to be renormalized
appropriately in the discrete approximation, where we want γN to be expressed in
absolute terms.

6.3.2. Main result.

Theorem 6.15. The continuous time relationships between provider wealth X,
inventory L, price p and transaction costs c are:

dXt = Ltdpt + Φlt(ct)dt+ d[L, p]t

d[L, p]t ≤ 0

σ2
t ≤ Φlt((c

′
t)

2)

(6.22)

where Xt = limN→∞XN
bNtc u.c.p.

Proof. Just as in the bid-ask spread case, the result to prove is the u.c.p. conver-
gence of

1

N

btNc∑
n=1

cn/N

(√
N∆nL

N
)

(6.23)

and

1

N

bt2Nc∑
n=bt1Nc

(
∆np

N
)2 − (c′n/N (√N∆nL

N
))2

(6.24)

to the integrals ∫ t

0

Φlu(cu)du (6.25)

and ∫ t2

t1

(
σ2
u − Φlu((c′u)2)

)
du (6.26)

This is a direct application of theorem 4.2. �

7. Naive supply and demand model

The aim of this section is to illustrate how a model for limit order fill rates and
exact price recovery leads to models of the price as a function of trade volumes, or
vice versa. This therefore models supply and demand in high frequency markets
and closes the loop of our endeavor. However, we do not believe these models to
be as accurate as the previously derived relationships and only use this section for
illustrative purposes.

7.1. Microscopic assumptions. The proposed model is: perfect fill rate and de-
terministic price recovery.
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7.1.1. Disclaimer. Unlike for the other microscopic relationships checked empiri-
cally in Section 3, the model considered now is not always consistent with empirical
data. Fill rates are definitely not one, and price recovery is not deterministic.

7.1.2. Setup. Let (Ω,F ,P) be a probability space and p and L be two discrete
time processes representing the price of the market and the inventory of a liquidity
provider respectively. Let γ be a C3-function valued discrete time process repre-
senting our provider’s shape function and c its associated transaction costs.

7.1.3. Additional relationships. We translate ’perfect fill rate’ and ’deterministic
price recovery’ by the following equation:

∆p = λc′(−∆L) (7.1)

or, equivalently

∆L = −γ′(λ−1∆p) (7.2)

where λ ∈ (0, 1] is a real that encapsulates price recovery. The bigger λ, the smaller
the price recovery.

7.2. Macroscopic limit. Equation (7.1) allows a liquidity provider to derive the
price from trade volumes and the order book, while equation (7.2) derives the trade
volumes from the prices and the order book. Both lead to the same consistency
relationships between p, L and γ in the continuous limit.

7.2.1. Main tool. The proof method is based on another result from [25]. We first
summarize the hypothesis and result before imposing them on the data of our
problem.

Let (Ω,F ,F,P) be a filtered probability space supporting an 1-dimensional Wiener
process W and Y be a 1-dimensional Itô process of the form

Yt = Y0 +

∫ t

0

btdt+

∫ t

0

σtdWt (7.3)

where we consider t ∈ [0, 1].

Assumption 7.1. (H)+ (K) from [25]
Assume that bt and σt are progressively measurable, bt is locally bounded and σt

is càdlàg.

Let now F : Ω× [0, 1]×R→ R be a random, Ft-adapted function that is C1 in
y and C0 in (t,y). We will shorten the notation to y 7→ Ft(y). Define the following
assumption.

Assumption 7.2. (7.2.1), (10.3.2), (10.3.3), (10.3.4) and (10.3.7) from [25]
Assume that a.s. for all t, Ft is an odd function in y.
Furthermore, assume there exists a function g : R → R with polynomial growth

and a real β > 1/2 such that, for all ω ∈ Ω, (t, s) ∈ [0, 1]2 and y ∈ R:

|Ft(y)| ≤ g(y)

|F ′t (y)| ≤ g(y)

|Ft(y)− Fs(y)| ≤ g(y)|t− s|β

Let us now state the new result from [25] we will use.
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Theorem 7.3. (10.3.2) from [25] Assume 7.1 and 7.2. Then there exists a very
good filtered extension of the original space such that we have the following stable
convergence in law as N →∞:

1√
N

bNtc∑
n=1

Fn/N

(√
N(X(n+1)/N −Xn/N )

)
→ Ut

where

Ut =

∫ t

0

bsΦσs (F ′s) ds+

∫ t

0

√
Φσs ((Fs)2)dW ′s (7.4)

with W ′t a d-dimensional Wiener process such that

[W ′,W ]t =

∫ t

0

Φσs

(
id F ks

)
σs
√

Φσs
(F ks )2

ds

where id is the identity function.

7.2.2. Continuous time setup. Let (Ω,F ,F,P) be a filtered probability space sup-
porting a Wiener process Wt. We will fix either an Itô process

pt = p0 +

∫ t

0

µsds+

∫ t

0

σsdWs (7.5)

for the price or

Lt = L0 +

∫ t

0

bsds+

∫ t

0

lsdWs (7.6)

for the inventory.
In addition to one of these processes, we also fix an order book shape process γt

and denote by ct the associated transaction cost process.
Assume L (respectively p) verifies Assumption 7.1 and c (respectively γ) satisfies

Assumption 7.2.
Just as previously, we define the discretized processes LNn = Ln/N (respectively

pNn = pn/N ) and cNn (·) = 1
N cn/N

(√
N ·
)

(respectively γNn (·) = 1
N γn/N

(√
N ·
)

).

7.2.3. Main result. The main result is a straightforward application of Theorem
7.3. If we are given the inventory L and transaction costs c then we have:

Theorem 7.4. There exists a very good filtered extension of the original space such
that we have the stable convergence in law pNbNtc → pt with

dpt = −λbtΦlt (c′′t ) dt+ λ
√

Φlt((c
′
t)

2)dW ′t (7.7)

where

[W ′,W ]t = −
∫ t

0

Φls (id c′s)

ls
√

Φls((c′s)
2)
ds. (7.8)

In particular,

d[p, L]t = −Φlt (id c′t) dt (7.9)

A completely equivalent result is obtained if the price p and order book shape
function γ are given:
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Theorem 7.5. There exists a very good filtered extension of the original space such
that we have the stable convergence in law LNbNtc → Lt with

dLt = −µtΦσt

(
γ′′t (λ−1·)

)
dt+

√
Φσt

((γ′t)
2(λ−1·))dW ′t (7.10)

where

d[p, L]t = −Φσs

(
id γ′t(λ

−1·)
)
dt. (7.11)

7.3. A special case. A flat order book corresponds to γ′′t = mt for some adapted
process m. While quite unrealistic, it is extremely tractable and has been proposed
and used in other models ([2, 33]).

This corresponds to quadratic transaction costs and linear price impact:{
dpt = − λ

mt
dLt

dXt = Ltdpt +
(

1
2 − λ

) l2t
mt
dt

(7.12)

Note that the the sign of the effective transaction costs is that of 1
2 − λ. Indeed,

in the self-financing case λ = 1
2 , price recovery and price impact perfectly cancel

each other out. If λ > 1
2 , then the price impact of trades is stronger than the

collected spread because of insufficient price recovery. Also, because of the uniform
structure of the order book and perfect fill rate, the inventory of the provider is
perfectly anti-correlated to the price.

7.3.1. The worst case for providers. As we have seen before, perfect anti-correlation
is the worst case for the liquidity provider, making the uniform order book ‘the
worse’ shape from the liquidity provider’s perspective. Amongst uniform order
books, absence of price recovery, λ = 1 is the wost case scenario.

A cute result is that if the liquidity provider provides constant liquidity (mt = 1)
then we have the following identity between wealth and inventory:

Xt = X0 − L2
t + L2

0 (7.13)

that is, even with the most naive strategy in the worst case scenario, the liquidity
provider does not lose money if she manages her inventory. Symmetrically, one
can show that, even in this best case scenario for liquidity takers, there are no
round-trip statistical arbitrage opportunities due to price impact only.

8. Conclusions

In conclusion, the present paper identifies key features of high frequency limit
order book markets and derives corresponding necessary conditions on self-financing
portfolios for continuous-time models of such markets. These features are:

(1) Non-smoothness of inventories of high frequency traders and vanishing bid-
ask spread in high frequency markets.

(2) Adverse selection as given by a negative quadratic covariation between price
increments and change in provider inventory, which is a consequence of the
price impact of trades on such time-scales.

(3) Price recovery and the way it links the bid-ask spread and price volatility
processes.

(4) Generalized formula for the wealth process of a self-financing portfolio when
including price impact.
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(5) Applications to option hedging and portfolio optimization highlighting the
differences between trades via market orders and limit orders, and the dif-
ferences between liquidity providers and liquidity takers.

These features were obtained by studying, both theoretically and empirically, high
frequency market microstructure before summarizing it on a macroscopic level. As
pointed out by [21], the crucial technical tool was the use of an event-based clock.
We hope further research will follow this method to uncover more effects of HFT
on the broader financial system.

Appendix A. Cross-sectional analysis

The main empirical claim of the paper is the negative covariation between liquid-
ity provider inventory and the price process. This is one of many ways of identifying
price impact, and is due to adverse selection of limit orders by liquidity takers. We
wish to test this on a sample of stocks to identify when this relationship is verified,
and when not. The data used in this appendix are 29 large cap stocks using Nas-
daq ITCH data on 18/04/13. Other days and stocks have been tested with similar
results.

This test will come in three forms, from the most intuitive to the most sophisti-
cated.

We first begin by listing for each of our 29 stocks the proportion of trades not
satisfying the property ∆L∆p ≤ 0.

Then we plot the empirical quadratic covariations with confidence intervals con-
structed using the functional central limit theorem [1] for continuous Itô processes.

Finally, we set up a rigorous statistical test based on the same functional central
limit theorem. In the last case, we assume that we are given two continuous Itô
processes L and p such that: {

dpt = µtdt+ σtdWt

dLt = btdt+ ltdW
′
t

(A.1)

with the quadratic covariation between Wt and W ′t being ρt. Assume furthermore
that µt and bt to be locally bounded and that σt, lt and ρt are càdlàg.

If we then denote by pN and LN the discrete measurements of these processes on
the uniform grid {1/N, 2/N, ..., 1} then [1] tells us to consider the discrete processes:{

CNt =
∑bNtc−1
n=1 ∆np

N∆nL
N

V Nt = N
∑bNtc−2
n=1

((
∆np

N∆n+1L
N
)2

+ ∆np
N∆nL

N∆n+1p
N∆n+1L

N
)
(A.2)

and we have the functional central limit theorem

L

(
CNt − [p, L]t√
N−1|V Nt |

)
→ N(0, 1) (A.3)

This allows the construction of confidence intervals for the quadratic covariation
process. We also use this result to reject the following null hypothesis:

Assumption A.1. There exists t ∈ [0, 1] such that ρt > 0.

by constructing confidence intervals for the quadratic covariation on small time
intervals [tk, tk+1), we can compute rejection probabilities for the events ρtk > 0
for each tk. By multiplying these rejection probabilities, we obtain the rejection



36 RENÉ CARMONA AND KEVIN WEBSTER

Figure 7. Empirical quadratic covariations (rescaled).

probability for our overall null hypothesis. Our choice of time intervals [tk, tk+1] is
such that we have 100 data points in each of these intervals.

Finally, we obtain the tables:
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Stock proba reject nb false nb trades percent false recovery rejection
MSFT 0.7868301 19 27540 0.06899056 6.147422
KO 0.9876695 72 20362 0.3535998 13.932816
BA 0.9999383 222 4824 4.60199 24.212272
GPS 0.9999044 97 7378 1.314719 22.445107
GE 0.9991448 4 12969 0.03084278 6.847097
CS 0.8971721 132 3621 3.645402 37.448219
CPB 0.9421457 129 3578 3.605366 26.914477
BCS 0.9625842 43 1613 2.66584 27.774334
JNJ 0.9550316 152 16114 0.9432791 19.777833
UPS 0.9983282 237 5608 4.226106 30.117689
CLX 0.9563385 118 1381 8.544533 31.643736
T 0.9996831 27 13287 0.2032061 12.139685
DELL 0.9893074 1 3742 0.02672368 5.130946
XOM 0.9998707 340 20714 1.641402 19.276818
CAT 0.9814122 397 13456 2.950357 26.575505
COF 0.8973841 131 6103 2.146485 27.117811
AAPL 0.9999987 2347 46710 5.02462 9.648897
PG 0.9998587 189 18616 1.015256 18.038247
GOOG 0.9929220 609 8595 7.085515 15.602094
HSY 0.9615380 177 1807 9.795241 35.030437
WFC 0.9129410 13 17672 0.0735627 11.854912
DTV 0.6174753 117 9334 1.253482 21.952003
BBY 0.9999374 85 7181 1.183679 22.113912
MT 0.8870935 18 2273 0.791905 21.293445
GM 0.9774693 19 5963 0.3186316 18.279390
CL 0.9833529 187 3006 6.220892 24.550898
MA 0.9996761 113 1435 7.874564 18.048780
KSU 0.9945635 118 1756 6.719818 26.765376
GIS 0.9735843 68 3624 1.87638 22.323400

Table 2. Rejection probability of the null hypothesis, number of
trades not satisfying our main inequality, total number of trades,
percentage of trades not verifying our main inequality and percent-
age of trades not verifying our price recovery inequality. We also
noted that all the lit trades across all the stocks happened at the
best bid and best ask. Note that, of all our proposed relationships,
the only weak one is price recovery, which is routinely violated.
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