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PROBABILISTIC ANALYSIS OF MEAN-FIELD GAMES∗

RENÉ CARMONA† AND FRANÇOIS DELARUE‡

Abstract. The purpose of this paper is to provide a complete probabilistic analysis of a large
class of stochastic differential games with mean field interactions. We implement the Mean-Field
Game strategy developed analytically by Lasry and Lions in a purely probabilistic framework, relying
on tailor-made forms of the stochastic maximum principle. While we assume that the state dynamics
are affine in the states and the controls, and the costs are convex, our assumptions on the nature of
the dependence of all the coefficients upon the statistical distribution of the states of the individual
players remains of a rather general nature. Our probabilistic approach calls for the solution of
systems of forward-backward stochastic differential equations of a McKean–Vlasov type for which
no existence result is known, and for which we prove existence and regularity of the corresponding
value function. Finally, we prove that a solution of the Mean-Field Game problem as formulated by
Lasry and Lions, does indeed provide approximate Nash equilibriums for games with a large number
of players, and we quantify the nature of the approximation.
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1. Introduction. In a trailblazing contribution, Lasry and Lions [18, 19, 20]
proposed a methodology to produce approximate Nash equilibriums for stochastic
differential games with symmetric interactions and a large number of players. In their
model, each player feels the presence and the behavior of the other players through
the empirical distribution of their private states. This type of interaction was in-
troduced and studied in statistical physics under the name of mean-field interaction,
allowing for the derivation of effective equations in the limit of asymptotically large
systems. Using intuition and mathematical results from propagation of chaos, Lasry
and Lions propose to assign to each player, independently of what other players may
do, a distributed closed loop strategy given by the solution of the limiting problem,
arguing that the resulting game should be in an approximate Nash equilibrium. This
streamlined approach is very attractive as large stochastic differential games are noto-
riously nontractable. They formulated the limiting problem as a system of two highly
coupled nonlinear partial differential equations (PDE): the first one, of the Hamilton–
Jacobi–Bellman type, takes care of the optimization part, while the second one, of
the Kolmogorov type, guarantees the time consistency of the statistical distributions
of the private states of the individual players. The issue of existence and uniqueness
of solutions for such a system is a very delicate problem, as the solution of the for-
mer equation should propagate backward in time from a terminal condition while the
solution of the latter should evolve forward in time from an initial condition. More
than the nonlinearities, the conflicting directions of time compound the difficulties.
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In a subsequent series of works [10, 9, 16, 17] with Ph.D. students and postdoc-
toral fellows, Lasry and Lions considered applications to domains as diverse as the
management of exhaustible resources like oil, house insulation, and the analysis of
pedestrian crowds. Motivated by problems in large communication networks, Caines,
Huang, and Malhamé introduced, essentially at the same time [13], a similar strat-
egy which they call the Nash Certainty Equivalence. They also studied practical
applications to large populations behavior [12].

The goal of the present paper is to study the effective Mean-Field Game equations
proposed by Lasry and Lions, from a probabilistic point of view. To this end, we recast
the challenge as a fixed point problem in a space of flows of probability measures, show
that these fixed points do exist and provide approximate Nash equilibriums for large
games, and quantify the accuracy of the approximation.

We tackle the limiting stochastic optimization problems using the probabilistic
approach of the stochastic maximum principle, thus reducing the problems to the so-
lutions of Forward-Backward Stochastic Differential Equations (FBSDEs). The search
for a fixed flow of probability measures turns the system of forward-backward stochas-
tic differential equations into equations of the McKean–Vlasov type where the distri-
bution of the solution appears in the coefficients. In this way, both the optimization
and interaction components of the problem are captured by a single FBSDE, avoiding
the twofold reference to Hamilton–Jacobi–Bellman equations on the one hand, and
Kolmogorov equations on the other hand. As a by-product of this approach, the
stochastic dynamics of the states could be degenerate. We give a general overview
of this strategy in section 2. Motivated in part by the works of Lasry, Lions, and
collaborators, Backward Stochastic Differential Equations (BSDEs) of the mean field
type have recently been studied; see, for example, [3, 4]. However, existence and
uniqueness results for BSDEs are much easier to come by than for FBSDEs, and here,
we have to develop existence results from scratch.

Our first existence result is proven for bounded coefficients by means of a fixed
point argument based on Schauder’s theorem pretty much in the same spirit as in
Cardaliaguet’s notes [5]. Unfortunately, such a result does not apply to some of
the linear-quadratic (LQ) games already studied [14, 1, 2, 7], and some of the most
technical proofs of the papers are devoted to the extension of this existence result
to coefficients with linear growth; see section 3. Our approximation and convergence
arguments are based on probabilistic a priori estimates obtained from tailor-made
versions of the stochastic maximum principle which we derive in section 2. The
reader is referred to the book of Ma and Yong [21] for background material on adjoint
equations, FBSDEs, and the stochastic maximum principle approach to stochastic
optimization problems. As we rely on this approach, we find it natural to derive
the compactness properties needed in our proofs from convexity properties of the
coefficients of the game. The reader is also referred to the papers by Hu and Peng
[11] and Peng and Wu [22] for general solvability properties of standard FBSDEs
within the same framework of stochastic optimization.

The thrust of our analysis is not limited to existence of a solution to a rather
general class of McKean–Vlasov FBSDEs, but also to the extension to this non-
Markovian set-up of the construction of the FBSDE value function expressing the
solution of the backward equation in terms of the solution of the forward dynamics.
The existence of this value function is crucial for the formulation and the proofs of the
results of the last part of the paper. In section 4, we indeed prove that the solutions
of the fixed point FBSDE (which include a function α̂ minimizing the Hamiltonian of
the system, three stochastic processes (Xt, Yt, Zt)0≤t≤T solving the FBSDE, and the
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FBSDE value function u) provide a set of distributed strategies which, when used by
the players of a N -player game, form an εN -approximate Nash equilibrium, and we
quantify the speed at which εN tends to 0 when N → +∞. This type of argument has
been used for simpler models in [2] or [5]. Here, we use convergence estimates which
are part of the standard theory of propagation of chaos (see, for example, [25, 15])
and the Lipschitz continuity and linear growth the FBSDE value function u which we
prove earlier in the paper.

2. General notation and assumptions. Here, we introduce the notation and
the basic tools from stochastic analysis which we use throughout the paper. We
also remind the reader of the general assumptions under which the converse of the
stochastic maximum principle applies to standard optimization problems. This set
of assumptions will be strengthened in section 3 in order to tackle the mean-field
interaction in the specific case of mean-field games.

2.1. The N player game. We consider a stochastic differential game with N
players, each player i ∈ {1, . . . , N} controlling his own private state U it ∈ R

d at time
t ∈ [0, T ] by taking an action βit in a set A ⊂ R

k. We assume that the dynamics of
the private states of the individual players are given by Itô’s stochastic differential
equations of the form

(2.1) dU it = bi(t, U it , ν̄
N
t , β

i
t)dt+ σi(t, U it , ν̄

N
t , β

i
t)dW

i
t , 0 ≤ t ≤ T, i = 1, . . . , N,

where theW i = (W i
t )0≤t≤T arem-dimensional independent Wiener processes, (bi, σi) :

[0, T ]×R
d×P(Rd)×A ↪→ R

d×R
d×m are deterministic measurable functions satisfying

the set of assumptions (A.1)–(A.4) spelled out below, and ν̄Nt denotes the empirical
distribution of Ut = (U1

t , . . . , U
N
t ) defined as

ν̄Nt (dx′) =
1

N

N∑
i=1

δUi
t
(dx′).

Here and in the following, we use the notation δx for the Dirac measure (unit point
mass) at x, and P(E) for the space of probability measures on E whenever E is a
topological space equipped with its Borel σ-field. In this framework, P(E) itself is
endowed with the Borel σ-field generated by the topology of weak convergence of
measures.

Each player chooses a strategy in the space A = H
2,k of progressively measurable

A-valued stochastic processes β = (βt)0≤t≤T satisfying the admissibility condition:

(2.2) E

[∫ T

0

|βt|2dt
]
< +∞.

The choice of a strategy is driven by the desire to minimize an expected cost over
the period [0, T ], each individual cost being a combination of running and terminal
costs. For each i ∈ {1, . . . , N}, the running cost to player i is given by a measurable
function f i : [0, T ] × R

d × P(Rd) × A ↪→ R and the terminal cost by a measurable
function gi : Rd × P(Rd) ↪→ R in such a way that if the N players use the strategy
β = (β1, . . . , βN ) ∈ A

N , the expected total cost to player i is

(2.3) J i(β) = E

[
gi(U iT , ν̄

N
T ) +

∫ T

0

f i
(
t, U it , ν̄

N
t , β

i
t

)
dt

]
.
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Here AN denotes the product of N copies of A. Later in the paper, we let N → ∞ and
use the notation JN,i in order to emphasize the dependence upon N . Notice that even
though only βit appears in the formula giving the cost to player i, this cost depends
upon the strategies used by the other players indirectly, as these strategies affect not
only the private state U it , but also the empirical distribution ν̄Nt of all the private
states. As explained in the introduction, our model requires that the behaviors of the
players be statistically identical, imposing that the coefficients bi, σi, f i, and gi do
not depend upon i. We denote them by b, σ, f , and g.

In solving the game, we are interested in the notion of optimality given by
the concept of Nash equilibrium. Recall that a set of admissible strategies α∗ =
(α∗1, . . . , α∗N ) ∈ A

N is said to be a Nash equilibrium for the game if

∀i ∈ {1, . . . , N}, ∀αi ∈ A, J i(α∗) ≤ J i(α∗−i, αi),

where we use the standard notation (α∗−i, αi) for the set of strategies (α∗1, . . . , α∗N )
where α∗i has been replaced by αi.

2.2. The mean-field problem. In the case of large symmetric games, some
form of averaging is expected when the number of players tends to infinity. The
Mean-Field Game (MFG) philosophy of Lasry and Lions is to search for approximate
Nash equilibriums through the solution of effective equations appearing in the lim-
iting regime N → ∞, and assigning to each player the strategy α provided by the
solution of the effective system of equations they derive. In the present context, the
implementation of this idea involves the solution of the following fixed point problem
which we break down in three steps for pedagogical reasons:

(i) Fix a deterministic function [0, T ] � t ↪→ μt ∈ P(Rd).
(ii) Solve the standard stochastic control problem

inf
α∈A

E

[∫ T

0

f(t,Xt, μt, αt)dt+ g(XT , μT )

]

subject to dXt = b(t,Xt, μt, αt)dt+ σ(t,Xt, μt, αt)dWt; X0 = x0.

(2.4)

(iii) Determine the function [0, T ] � t ↪→ μ̂t ∈ P(Rd) so that ∀t ∈ [0, T ], PXt = μ̂t.
Once these three steps have been taken successfully, if the fixed-point optimal control
α identified in step (ii) is in feedback form; i.e., of the form αt = α̂(t,Xt,PXt) for
some function α̂ on [0, T ]×R

d×P(Rd), denoting by μ̂t = PXt the fixed-point marginal
distributions, the prescription α̂i∗t = α̂(t,X i

t , μ̂t), if used by the players i = 1, . . . , N
of a large game, should form an approximate Nash equilibrium. We prove this fact
rigorously in section 4, and we quantify the accuracy of the approximation.

2.3. The Hamiltonian. For the sake of simplicity, we assume that A = R
k, and

in order to lighten the notation and to avoid many technicalities, that the volatility is
an uncontrolled constant matrix σ ∈ R

d×m. The fact that the volatility is uncontrolled
allows us to use a simplified version for the Hamiltonian:

(2.5) H(t, x, μ, y, α) = 〈b(t, x, μ, α), y〉 + f(t, x, μ, α),

for t ∈ [0, T ], x, y ∈ R
d, α ∈ R

k, and μ ∈ P(Rd). In anticipation of the application of
the stochastic maximum principle, assumptions (A.1) and (A.2) are chosen to make
possible the minimization of the Hamiltonian and provide enough regularity for the
minimizer. Indeed, our first task will be to minimize the Hamiltonian with respect
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to the control parameter, and understand how minimizers depend upon the other
variables.

(A.1) The drift b is an affine function of α in the sense that it is of the form

(2.6) b(t, x, μ, α) = b1(t, x, μ) + b2(t)α,

where the mapping [0, T ] � t ↪→ b2(t) ∈ R
d×k is measurable and bounded, and the

mapping [0, T ] � (t, x, μ) ↪→ b1(t, x, μ) ∈ R
d is measurable and bounded on bounded

subsets of [0, T ]× R
d × P2(R

d).
Here and in the following, whenever E is a separable Banach space and p is an

integer greater than 1, Pp(E) stands for the subspace of P(E) of probability measures
of order p, i.e., having a finite moment of order p, so that μ ∈ Pp(E) if μ ∈ P(E) and

(2.7) Mp,E(μ) =

(∫
E

‖x‖pEdμ(x)
)1/p

< +∞.

We write Mp for Mp,Rd . Below, bounded subsets of Pp(E) are defined as sets of
probability measures with uniformly bounded moments of order p.

(A.2) There exist two positive constants λ and cL such that for any t ∈ [0, T ] and
μ ∈ P2(R

d), the function R
d × R

k � (x, α) ↪→ f(t, x, μ, α) ∈ R is once continuously
differentiable with Lipschitz-continuous derivatives (so that f(t, ·, μ, ·) is C1,1), the
Lipschitz constant in x, and α being bounded by cL (so that it is uniform in t and
μ). Moreover, it satisfies the convexity assumption

(2.8) f(t, x′, μ, α′)− f(t, x, μ, α)− 〈(x′ − x, α′ − α), ∂(x,α)f(t, x, μ, α)〉 ≥ λ|α′ − α|2.
The notation ∂(x,α)f stands for the gradient in the joint variables (x, α). Finally, f ,

∂xf , and ∂αf are locally bounded over [0, T ]× R
d × P2(R

d)× R
k.

The minimization of the Hamiltonian is taken care of by the following result.
Lemma 2.1. If we assume that assumptions (A.1)–(A.2) are in force, then, for

all (t, x, μ, y) ∈ [0, T ]×R
d×P2(R

d)×R
d, there exists a unique minimizer α̂(t, x, μ, y)

of H. Moreover, the function [0, T ]×R
d×P2(R

d)×R
d � (t, x, μ, y) ↪→ α̂(t, x, μ, y) is

measurable, locally bounded and Lipschitz-continuous with respect to (x, y), uniformly
in (t, μ) ∈ [0, T ]×P2(R

d), the Lipschitz constant depending only upon λ, the supremum
norm of b2 and the Lipschitz constant of ∂αf in x.

Proof. For any given (t, x, μ, y), the function R
k � α ↪→ H(t, x, μ, y, α) is once con-

tinuously differentiable and strictly convex so that α̂(t, x, μ, y) appears as the unique
solution of the equation ∂αH(t, x, μ, y, α̂(t, x, μ, y)) = 0. By strict convexity, measura-
bility of the minimizer α̂(t, x, μ, y) is a consequence of the gradient descent algorithm.
Local boundedness of α̂(t, x, μ, y) also follows from the strict convexity (2.8). Indeed,

H(t, x, μ, y, 0) ≥ H(t, x, μ, y, α̂(t, x, μ, y)
)

≥ H(t, x, μ, y, 0) + 〈α̂(t, x, μ, y), ∂αH(t, x, μ, y, 0)〉+ λ
∣∣α̂(t, x, μ, y)∣∣2,

so that

(2.9)
∣∣α̂(t, x, μ, y)∣∣ ≤ λ−1

(|∂αf(t, x, μ, 0)|+ |b2(t)| |y|
)
.

Inequality (2.9) will be used repeatedly. Moreover, by the implicit function theorem, α̂
is Lipschitz-continuous with respect to (x, y), the Lipschitz-constant being controlled
by the uniform bound on b2 and by the Lipschitz-constant of ∂(x,α)f .
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2.4. Stochastic maximum principle. Going back to the program (i)–(iii) out-
lined in subsection 2.2, the first two steps therein consist in solving a standard min-
imization problem when the distributions (μt)0≤t≤T are frozen. Then, one could
express the value function of the optimization problem (2.4) as the solution of the
corresponding Hamilton–Jacobi–Bellman (HJB) equation. This is the keystone of
the analytic approach to the MFG theory, the matching problem (iii) being resolved
by coupling the HJB equation with a Kolmogorov equation intended to identify the
(μt)0≤t≤T with the marginal distributions of the optimal state of the problem. The
resulting system of PDEs can be written as
(2.10)⎧⎪⎪⎨
⎪⎪⎩
∂tv(t, x) +

σ2

2
Δxv(t, x) +H

(
t, x, μt,∇xv(t, x), α̂(t, x, μt,∇xv(t, x))

)
= 0,

∂tμt − σ2

2
Δxμt + divx

(
b
(
t, x, μt, α̂(t, x, μt,∇xv(t, x))

)
μt
)
= 0

in [0, T ] × R
d, with v(T, ·) = g(·, μT ) and μ0 = δx0 as boundary conditions, the

first equation being the HJB equation of the stochastic control problem when the
flow (μt)0≤t≤T is frozen, the second equation being the Kolmogorov equation giving
the time evolution of the flow (μt)0≤t≤T of measures dictated by the dynamics (2.4)
of the state of the system. These two equations are coupled by the fact that the
Hamiltonian appearing in the HJB equation is a function of the measure μt at time
t and the drift appearing in the Kolmogorov equation is a function of the gradient
of the value function v. Notice that the first equation is a backward equation to be
solved from a terminal condition while the second equation is forward in time starting
from an initial condition. The resulting system thus reads as a two-point boundary
value problem, the general structure of which is known to be intricate.

Instead, the strategy we have in mind relies on a probabilistic description of
the optimal states of the optimization problem (2.4) as provided by the so-called
stochastic maximum principle. Indeed, the latter provides a necessary condition for
the optimal states of the problem (2.4): Under suitable conditions, the optimally
controlled diffusion processes satisfy the forward dynamics in a characteristic FBSDE,
referred to as the adjoint system of the stochastic optimization problem. Moreover, the
stochastic maximum principle provides a sufficient condition since, under additional
convexity conditions, the forward dynamics of any solution to the adjoint system are
optimal. In what follows, we use the sufficiency condition for proving the existence
of solutions to the limit problem (i)–(iii) stated in subsection 2.2. This requires
additional assumptions. In addition to (A.1)–(A.2) we will also assume:

(A.3) The function [0, T ] � t ↪→ b1(t, x, μ) is affine in x; i.e., it has the form
[0, T ] � t ↪→ b0(t, μ) + b1(t)x, where b0 and b1 are R

d and R
d×d valued, respectively,

and bounded on bounded subsets of their respective domains. In particular, b reads

(2.11) b(t, x, μ, α) = b0(t, μ) + b1(t)x + b2(t)α.

(A.4) The function R
d×P2(R

d) � (x, μ) ↪→ g(x, μ) is locally bounded. Moreover,
for any μ ∈ P2(R

d), the function R
d � x ↪→ g(x, μ) is once continuously differentiable

and convex, and has a cL-Lipschitz-continuous first order derivative.
In order to make the paper self-contained, we state and briefly prove the form

of the sufficiency part of the stochastic maximum principle as it applies to (ii) when
the flow of measures (μt)0≤t≤T are frozen. Instead of the standard version given for
example in Chapter IV of the textbook by Yong and Zhou [26], we shall use the
following theorem.
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Theorem 2.2. Under assumptions (A.1)–(A.4), if the mapping [0, T ] � t ↪→ μt ∈
P2(R

d) is measurable and bounded, and the cost functional J is defined by

(2.12) J
(
β;μ
)
= E

[
g(UT , μT ) +

∫ T

0

f(t, Ut, μt, βt)dt

]

for any progressively measurable process β = (βt)0≤t≤T satisfying the admissibility
condition (2.2) where U = (Ut)0≤t≤T is the corresponding controlled diffusion process

Ut = x0 +

∫ t

0

b(s, Us, μs, βs)ds+ σWt, t ∈ [0, T ]

for x0 ∈ R
d, if the forward-backward system

(2.13){
dXt = b

(
t,Xt, μt, α̂(t,Xt, μt, Yt)

)
dt+ σdWt, X0 = x0

dYt = −∂xH(t,Xt, μt, Yt, α̂(t,Xt, μt, Yt)
)
dt+ ZtdWt, YT = ∂xg(XT , μT )

has a solution (Xt, Yt, Zt)0≤t≤T such that

(2.14) E

[
sup

0≤t≤T

(|Xt|2 + |Yt|2
)
+

∫ T

0

|Zt|2dt
]
< +∞,

and if we set α̂t = α̂(t,Xt, μt, Yt), then for any β = (βt)0≤t≤T satisfying (2.2), it
holds that

J
(
α̂;μ
)
+ λE

∫ T

0

|βt − α̂t|2dt ≤ J
(
β;μ
)
.

Proof. By Lemma 2.1, α̂ = (α̂t)0≤t≤T satisfies (2.2), and the standard proof of
the stochastic maximum principle (see, for example, Theorem 6.4.6 in Pham [23])
gives

J
(
β;μ
) ≥ J

(
α̂;μ
)
+ E

∫ T

0

[
H(t, Ut, μt, Yt, βt)−H(t,Xt, μt, Yt, α̂t)

− 〈Ut −Xt, ∂xH(t,Xt, μt, Yt, α̂t)〉 − 〈βt − α̂t, ∂αH(t,Xt, μt, Yt, α̂t)〉
]
dt.

By linearity of b and assumption (A.2) on f , the Hessian of H satisfies (2.8), so that
the required convexity assumption is satisfied. The result easily follows.

Remark 2.3. As the proof shows, the result of Theorem 2.2 above still holds if the
control β = (βt)0≤t≤T is merely adapted to a larger filtration as long as the Wiener
process W = (Wt)0≤t≤T remains a Brownian motion for this filtration.

Remark 2.4. Theorem 2.2 has interesting consequences. First, it says that the
optimal control, if it exists, must be unique. Second, it also implies that, given two
solutions (X,Y, Z) and (X ′, Y ′, Z ′) to (2.13), dP⊗dt almost everywhere (a.e.) it holds
that

α̂(t,Xt, μt, Yt) = α̂(t,X ′
t, μt, Y

′
t ),

so that X and X ′ coincide by the Lipschitz property of the coefficients of the forward
equation. As a consequence, (Y, Z) and (Y ′, Z ′) coincide as well.

It should be noticed that in some sense, the bound provided by Theorem 2.2 is
sharp within the realm of convex models as shown, for example, by the following slight
variation on the same theme. We shall use this form repeatedly in the proof of our
main result.
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Proposition 2.5. Under the same assumptions and notation as in Theorem 2.2
above, if we consider, in addition, another measurable and bounded mapping [0, T ] �
t ↪→ μ′

t ∈ P2(R
d) and the controlled diffusion process U ′ = (U ′

t)0≤t≤T defined by

U ′
t = x′0 +

∫ t

0

b(s, U ′
s, μ

′
s, βs)ds+ σWt, t ∈ [0, T ]

for an initial condition x′0 ∈ R
d possibly different from x0; then,

J
(
α̂;μ
)
+ 〈x′0 − x0, Y0〉+ λE

∫ T

0

|βt − α̂t|2dt

≤ J
([
β, μ′];μ)+ E

[∫ T

0

〈b0(t, μ′
t)− b0(t, μt), Yt〉dt

]
,

(2.15)

where

(2.16) J
([
β, μ′];μ) = E

[
g(U ′

T , μT ) +

∫ T

0

f(t, U ′
t, μt, βt)dt

]
.

The parameter [β, μ′] in the cost J([β, μ′];μ) indicates that the flow of measures in the
drift of U ′ is (μ′

t)0≤t≤T whereas the flow of measures in the cost functions is (μt)0≤t≤T .
In fact, we should also indicate that the initial condition x′0 might be different from
x0, but we prefer not to do so since there is no risk of confusion in what follows. Also,
when x′0 = x0 and μ′

t = μt for any t ∈ [0, T ], J([β, μ′];μ) = J(β;μ).
Proof. The idea is to go back to the original proof of the stochastic maximum

principle and, using Itô’s formula, expand(
〈U ′

t −Xt, Yt〉+
∫ t

0

[
f(s, U ′

s, μs, βs)− f(s,Xs, μs, α̂s)
]
ds

)
0≤t≤T

.

Since the initial conditions x0 and x
′
0 are possibly different, we get the additional term

〈x′0 − x0, Y0〉 in the left-hand side of (2.15). Similarly, since the drift of U ′ is driven
by (μ′

t)0≤t≤T , we get the additional difference of the drifts in order to account for the
fact that the drifts are driven by the different flows of probability measures.

3. The mean-field FBSDE. In order to solve the standard stochastic control
problem (2.4) using the Pontryagin maximum principle, we minimize the Hamiltonian
H with respect to the control variable α, and inject the minimizer α̂ into the forward
equation of the state as well as the adjoint backward equation. Since the minimizer
α̂ depends upon both the forward state Xt and the adjoint process Yt, this creates a
strong coupling between the forward and backward equations leading to the FBSDE
(2.13). The MFG matching condition (iii) of subsection 2.2 then reads: Seek a family
of probability distributions (μt)0≤t≤T of order 2 such that the process X solving the
forward equation of (2.13) admits (μt)0≤t≤T as flow of marginal distributions.

In a nutshell, the probabilistic approach to the solution of the mean-field game
problem results in the solution of a FBSDE of the McKean–Vlasov type

(3.1)

{
dXt = b

(
t,Xt,PXt , α̂(t,Xt,PXt , Yt)

)
dt+ σdWt,

dYt = −∂xH
(
t,Xt,PXt , Yt, α̂(t,Xt,PXt , Yt)

)
dt+ ZtdWt,

with the initial condition X0 = x0 ∈ R
d, and terminal condition YT = ∂xg(XT ,PXT ).

To the best of our knowledge, this type of FBSDE has not been considered in the
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existing literature. However, our experience with the classical theory of FBSDEs
tells us that existence and uniqueness are expected to hold in short time when the
coefficients driving (3.1) are Lipschitz-continuous in the variables x, α, and μ from
standard contraction arguments. This strategy can also be followed in the McKean–
Vlasov setting, taking advantage of the Lipschitz regularity of the coefficients upon
the parameter μ for the 2-Wasserstein distance, exactly as in the theory of McKean–
Vlasov (forward) SDEs; see Sznitman [25]. However, the short time restriction is
not really satisfactory for many reasons, and, in particular, for practical applications.
Throughout the paper, all the regularity properties with respect to μ are understood
in the sense of the 2-Wasserstein’s distance W2. Whenever E is a separable Banach
space, for any p ≥ 1, μ, μ′ ∈ Pp(E), the distance Wp(μ, μ

′) is defined by

Wp(μ, μ
′)

= inf

{[∫
E×E

|x− y|pE π(dx, dy)
]1/p

; π ∈ Pp(E × E) with marginals μ and μ′
}
.

Below, we develop an alternative approach and prove existence of a solution over
arbitrarily prescribed time duration T . The crux of the proof is to take advantage
of the convexity of the coefficients. Indeed, in optimization theory, convexity often
leads to compactness. Our objective is then to take advantage of this compactness in
order to solve the matching problem (iii) in (2.4) by applying Schauder’s fixed point
theorem in an appropriate space of finite measures on C([0, T ];Rd).

For the sake of convenience, we restate the general FBSDE (3.1) of McKean–
Vlasov type in the special set-up of the present paper. It reads

dXt =
[
b0(t,PXt) + b1(t)Xt + b2(t)α̂(t,Xt,PXt , Yt)

]
dt+ σdWt,

dYt = −[b†1(t)Yt + ∂xf
(
t,Xt,PXt , α̂(t,Xt,PXt , Yt)

)]
dt+ ZtdWt,

(3.2)

where a† denotes the transpose of the matrix a.

Remark 3.1. We can compare the system of PDEs (2.10) with the mean-field
FBSDE (3.2). Formally, the adjoint variable Yt at time t reads as ∇xv(t,Xt), so that
the dynamics of Y are directly connected with the dynamics of the gradient of the
value function v in (3.2); similarly, the distribution of Xt identifies with μt in (3.2).

3.1. Standing assumptions and main result. In addition to (A.1)–(A.4), we
shall rely on the following assumptions in order to solve the matching problem (iii) in
(2.4):

(A.5) The functions [0, T ] � t ↪→ f(t, 0, δ0, 0), [0, T ] � t ↪→ ∂xf(t, 0, δ0, 0) and
[0, T ] � t ↪→ ∂αf(t, 0, δ0, 0) are bounded by cL, and ∀t ∈ [0, T ], x, x′ ∈ R

d, α, α′ ∈ R
k,

and μ, μ′ ∈ P2(R
d), it holds that∣∣(f, g)(t, x′, μ′, α′)− (f, g)(t, x, μ, α)

∣∣
≤ cL

[
1 + |(x′, α′)|+ |(x, α)| +M2(μ) +M2(μ

′)
][|(x′, α′)− (x, α)|+W2(μ

′, μ)
]
.

Moreover, b0, b1, and b2 in (2.11) are bounded by cL and b0 satisfies for any μ, μ′ ∈
P2(R

d): |b0(t, μ′)− b0(t, μ)| ≤ cLW2(μ, μ
′).

(A.6) For all t ∈ [0, T ], x ∈ R
d and μ ∈ P2(R

d), |∂αf(t, x, μ, 0)| ≤ cL.
(A.7) For all (t, x) ∈ [0, T ]×R

d, 〈x, ∂xf(t, 0, δx, 0)〉 ≥ −cL(1+|x|), 〈x, ∂xg(0, δx)〉 ≥
−cL(1 + |x|).
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Theorem 3.2. Under (A.1–7), the forward-backward system (3.1) has a solu-
tion. Moreover, for any solution (Xt, Yt, Zt)0≤t≤T to (3.1), there exists a function
u : [0, T ]×R

d ↪→ R
d (referred to as the FBSDE value function), satisfying the growth

and Lipschitz properties

(3.3) ∀t ∈ [0, T ], ∀x, x′ ∈ R
d,

{|u(t, x| ≤ c(1 + |x|),
|u(t, x)− u(t, x′)| ≤ c|x− x′|

for some constant c ≥ 0, and such that, P-almost surely (a.s.), ∀t ∈ [0, T ], Yt =
u(t,Xt). In particular, for any � ≥ 1, E[sup0≤t≤T |Xt|�] < +∞.

(A.5) provides Lipschitz continuity while condition (A.6) controls the smoothness
of the running cost f with respect to α uniformly in the other variables. The most
unusual assumption is certainly condition (A.7). We refer to it as a weak mean-
reverting condition as it looks like a standard mean-reverting condition for recurrent
diffusion processes. Moreover, as shown by the proof of Theorem 3.2, its role is to
control the expectation of the forward component in (3.1) and to establish an a priori
bound for it. This is of crucial importance in order to make the compactness strategy
effective. We use the terminology weak as no convergence is expected for large time.

Remark 3.3. An interesting example which we should keep in mind is the so-
called linear-quadratic model in which b0, f , and g have the form

b0(t, μ) = b0(t)μ, f(t, x, μ, α) =
1

2

∣∣m(t)x+m̄(t)μ
∣∣2+1

2
|n(t)α|2, g(x, μ) = 1

2

∣∣qx+q̄μ∣∣2,
where q, q̄, m(t), and m̄(t) are elements of Rd×d, n(t) is an element of Rk×k, and μ
stands for the mean of μ. Assumptions (A.1)–(A.7) are then satisfied when b0(t) ≡ 0
(so that b0 is bounded as required in (A.5)) and q̄†q ≥ 0 and m̄(t)†m(t) ≥ 0 in the
sense of quadratic forms (so that (A.7) holds). In particular, in the one-dimensional
case d = m = 1, (A.7) says that qq̄ and m(t)m̄(t) must be nonnegative. As shown
in [7], these conditions are not optimal for existence when d = m = 1, as (3.2) is
indeed shown to be solvable when [0, T ] � t ↪→ b0(t) is a (possibly nonzero) continuous
function and q(q+q̄) ≥ 0 andm(t)(m(t)+m̄(t)) ≥ 0. Obviously, the gap between these
conditions is the price to pay for treating general systems within a single framework.

Another example investigated in [7] is b0 ≡ 0, b1 ≡ 0, b2 ≡ 1, f ≡ α2/2, with
d = m = 1. When g(x, μ) = rxμ̄, with r ∈ R

∗, Assumptions (A.1)–(A.7) are satisfied
when r > 0 (so that (A.7) holds). The optimal condition given in [7] is 1 + rT �= 0.
When g(x, μ) = xγ(μ̄), for a bounded Lipschitz-continuous function γ from R into
itself, Assumptions (A.1)–(A.7) are satisfied.

Remark 3.4. Uniqueness of the solution to (3.1) is a natural but challenging
question. We address it in subsection 3.3.

3.2. Definition of the matching problem. The proof of Theorem 3.2 is split
into four main steps. The first one consists of making the statement of the matching
problem (iii) in (2.4) rigorous. To this end, we need the following lemma.

Lemma 3.5. Given μ ∈ P2(C([0, T ];Rd)) with marginal distributions (μt)0≤t≤T ,
the FBSDE (2.13) is uniquely solvable. If (Xx0;μ

t , Y x0;μ
t , Zx0;μ

t )0≤t≤T denotes its so-
lution, then there exist a constant c > 0, only depending upon the parameters of
(A.1)–(A.7), and a locally bounded measurable function uμ : [0, T ] × R

d ↪→ R
d such

that

∀x, x′ ∈ R
d, |uμ(t, x′)− uμ(t, x)| ≤ c|x′ − x|,

and P-a.s., ∀t ∈ [0, T ], Y x0;μ
t = uμ(t,Xx0;μ

t ).
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Proof. Since ∂xH reads ∂xH(t, x, μ, y, α) = b†1(t)y+∂xf(t, x, μ, α), by Lemma 2.1,
the driver [0, T ] × R

d × R
d � (t, x, y) ↪→ ∂xH(t, x, μt, α̂(t, x, μt, y)) of the backward

equation in (2.13) is Lipschitz continuous in the variables (x, y), uniformly in t. There-
fore, by Theorem 1.1 in [8], existence and uniqueness hold for small time. In other
words, when T is arbitrary, there exists δ > 0, depending on the Lipschitz constant of
the coefficients in the variables x and y such that unique solvability holds on [T−δ, T ],
that is when the initial condition x0 of the forward process is prescribed at some time
t0 ∈ [T − δ, T ]. The solution is then denoted by (Xt0,x0

t , Y t0,x0

t , Zt0,x0

t )t0≤t≤T . Fol-
lowing the proof of Theorem 2.6 in [8], existence and uniqueness can be established
on the whole [0, T ] by iterating the unique solvability property in short time provided
we have

(3.4) ∀x0, x′0 ∈ R
d,

∣∣Y t0,x0

t0 − Y
t0,x

′
0

t0

∣∣2 ≤ c|x0 − x′0|2,
for some constant c independent of t0 and δ. Notice that, by Blumenthal’s Zero-One

Law, the random variables Y t0,x0

t0 and Y
t0,x

′
0

t0 are deterministic. By (2.15), we have

(3.5) Ĵ t0,x0 + 〈x′0 − x0, Y
t0,x0

t0 〉+ λE

∫ T

t0

|α̂t0,x0

t − α̂
t0,x

′
0

t |2dt ≤ Ĵ t0,x
′
0 ,

where Ĵ t0,x0 = J((α̂t0,x0

t )t0≤t≤T ;μ) and α̂
t0,x0

t = α̂(t,Xt0,x0

t , μt, Y
t0,x0

t ) (with similar

definitions for Ĵ t0,x
′
0 and α̂

t0,x
′
0

t by replacing x0 by x′0). Exchanging the roles of x0
and x′0 and adding the resulting inequality with (3.5), we deduce that

(3.6) 2λE

∫ T

t0

|α̂t0,x0

t − α̂
t0,x

′
0

t |2dt ≤ 〈x′0 − x0, Y
t0,x

′
0

t0 − Y t0,x0

t0 〉.

Moreover, by standard SDE estimates first and then by standard BSDE estimates
(see Theorem 3.3, Chapter 7 in [26]), there exists a constant c independent of t0 and
δ, such that

E

[
sup

t0≤t≤T
|Xt0,x0

t −X
t0,x

′
0

t |2
]
+E

[
sup

t0≤t≤T
|Y t0,x0

t − Y
t0,x

′
0

t |2
]
≤ cE

∫ T

t0

|α̂t0,x0

t −α̂t0,x′
0

t |2dt.

Plugging (3.6) into the above inequality completes the proof of (3.4).
The function uμ is then defined as uμ : [0, T ] × R

d � (t, x) ↪→ Y t,xt . The rep-
resentation property of Y in terms of X directly follows from Corollary 1.5 in [8].
Local boundedness of uμ follows from the Lipschitz continuity in the variable x to-
gether with the obvious inequality: sup0≤t≤T |uμ(t, 0)| ≤ sup0≤t≤T [E[|uμ(t,X0,0

t ) −
uμ(t, 0)|]+ E

[|Y 0,0
t |]] < +∞.

We now set the following definition.
Definition 3.6. To each μ ∈ P2(C([0, T ];Rd)) with marginal distributions

(μt)0≤t≤T , we associate the measure PXx0;µ , where Xx0;μ is the solution of (2.13)
with initial condition x0. The resulting mapping P2

(C([0, T ];Rd)) � μ ↪→ PXx0;µ ∈
P2

(C([0, T ];Rd)) is denoted by Φ, and we call solution of the matching problem (iii)
in (2.4) any fixed point μ of Φ. For such a fixed point μ, Xx0;μ satisfies (3.1).

Definition 3.6 captures the essence of the approach of Lasry and Lions who freeze
the probability measure at the optimal value when optimizing the cost. This is not the
case in the study of the control of McKean–Vlasov dynamics investigated in [6] as in
such a setting, optimization is also performed with respect to the measure argument.
See also [7] and [2] for the linear quadratic case.
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3.3. Uniqueness. With Definition 3.6 at hand, we can address the issue of
uniqueness in the same conditions as Lasry and Lions (see section 3 in [5]).

Proposition 3.7. If, in addition to (A.1)–(A.7), we assume that f has the form

f(t, x, μ, α) = f0(t, x, μ) + f1(t, x, α), t ∈ [0, T ], x ∈ R
d, α ∈ R

k, μ ∈ P2(R
d),

f0 and g satisfying the monotonicity property:∫
Rd

(
f0(t, x, μ)− f0(t, x, μ

′)
)
d
(
μ− μ′)(x) ≥ 0,∫

Rd

(
g(x, μ)− g(x, μ′)

)
d
(
μ− μ′)(x) ≥ 0

(3.7)

for any μ, μ′ ∈ P2(R
d) and t ∈ [0, T ], then (3.1) has at most one solution.

Proof. Given two flows of measures μ = (μt)0≤t≤T and μ′ = (μ′
t)0≤t≤T solving

the matching problem as in Definition 3.6, we denote by (α̂t)0≤t≤T and (α̂′
t)0≤t≤T

the associated controls and by (Xt)0≤t≤T and (X ′
t)0≤t≤T the associated controlled

trajectories. Then by Proposition 2.5,

J(α̂;μ) + λE

∫ T

0

|α̂t − α̂′
t|2dt ≤ J

(
[α̂′, μ′];μ

)
= E

[
g(X ′

T , μT ) +

∫ T

0

f(t,X ′
t, μt, α̂

′
t)dt

]
.

Therefore,

J(α̂;μ)− J(α̂′;μ′) + λE

∫ T

0

|α̂t − α̂′
t|2dt

≤ E

[
g(X ′

T , μT )− g(X ′
T , μ

′
T ) +

∫ T

0

(
f(t,X ′

t, μt, α̂
′
t)− f(t,X ′

t, μ
′
t, α̂

′
t)
)
dt

]

=

∫
Rd

(
g(x, μT )− g(x, μ′

T )
)
dμ′

T (x) +

∫ T

0

∫
Rd

(
f0(t, x, μt)− f0(t, x, μ

′
t)
)
dμ′

t(x)dt.

By exchanging the roles of μ and μ′ and then by summing the resulting inequality
with that above, the monotonicity property (3.7) implies that

E

∫ T

0

|α̂t − α̂′
t|2dt ≤ 0,

from which uniqueness follows.

3.4. Existence under additional boundedness conditions. We first prove
existence under an extra boundedness assumption.

Proposition 3.8. The system (3.1) is solvable if, in addition to (A.1)–(A.7), we
also assume that ∂xf and ∂xg are uniformly bounded; i.e., for some constant cB > 0

(3.8) ∀t ∈ [0, T ], x ∈ R
d, μ ∈ P2(R

d), α ∈ R
k, |∂xg(x, μ)|, |∂xf(t, x, μ, α)| ≤ cB.

Notice that (3.8) implies (A.7).
Proof. We apply Schauder’s fixed point theorem in the space M1(C([0, T ];Rd))

of finite signed measure ν of order 1 on C([0, T ];Rd) endowed with the Kantorovich–
Rubinstein norm:

‖ν‖KR = sup

{∣∣∣∣
∫
C([0,T ];Rd)

F (w)dν(w)

∣∣∣∣ ; F ∈ Lip1
(C([0, T ];Rd))}
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for ν ∈ M1(C([0, T ];Rd)), which is known to coincide with the Wasserstein distance
W1 on P1(C([0, T ];Rd)). In what follows, we prove existence by proving that there
exists a closed convex subset E ⊂ P2(C([0, T ];Rd)) ⊂ M1(C([0, T ];Rd)), which is
stable for Φ, with a relatively compact range, Φ being continuous on E .

Step 1. We first establish several a priori estimates for the solution of (2.13). The
coefficients ∂xf and ∂xg being bounded, the terminal condition in (2.13) is bounded
and the growth of the driver is of the form

|∂xH
(
t, x, μt, y, α̂(t, x, μt, y)

)| ≤ cB + cL|y|.

By expanding (|Y x0;μ
t |2)0≤t≤T as the solution of a one-dimensional BSDE, we can

compare it with the deterministic solution of a deterministic BSDE with a constant
terminal condition; see Theorem 6.2.2 in [23]. This implies that there exists a constant
c, only depending upon cB, cL, and T , such that, for any μ ∈ P2(C([0, T ];Rd))

(3.9) ∀t ∈ [0, T ], |Y x0;μ
t | ≤ c

holds P-a.s. By (2.9) in the proof of Lemma 2.1 and by (A.6), we deduce that (the
value of c possibly varying from line to line)

(3.10) ∀t ∈ [0, T ], α̂
(
t,Xx0;μ

t , μt, Y
x0;μ
t

) ≤ c.

Plugging this bound into the forward part of (2.13), standard Lp estimates for SDEs
imply that there exists a constant c′, only depending upon cB , cL, and T , such that

(3.11) E

[
sup

0≤t≤T
|Xx0;μ

t |4
]
≤ c′.

We consider the restriction of Φ to the subset E of probability measures of order 4
whose fourth moment is not greater than c′, i.e.,

E =
{
μ ∈ P4

(C([0, T ];Rd)) :M4,C([0,T ];Rd)(μ) ≤ c′
}
,

E is convex and closed for the 1-Wasserstein distance and Φ maps E into itself.
Step 2. The family of processes ((Xx0;μ

t )0≤t≤T )μ∈E is tight in C([0, T ];Rd). In-
deed, by the form (2.11) of the drift and (3.10), there exists a constant c′′ such that,
for any μ ∈ E and 0 ≤ s ≤ t ≤ T ,

|Xx0;μ
t −Xx0;μ

s | ≤ c′′
[
(t− s)

(
1 + sup

0≤r≤T
|Xx0;μ

r |
)
+ |Bt −Bs|

]
,

so that tightness follows from (3.11). By (3.11) again, Φ(E) is actually relatively
compact for the 1-Wasserstein distance on C([0, T ];Rd). Indeed, tightness says that
it is relatively compact for the topology of weak convergence of measures and (3.11)
says that any weakly convergent sequence (PXx0;µn )n≥1, with μn ∈ E for any n ≥ 1,
is convergent for the 1-Wasserstein distance.

Step 3. We finally check that Φ is continuous on E . Given another measure
μ′ ∈ E , we deduce from (2.15) in Proposition 2.5 that

(3.12) J
(
α̂;μ
)
+λE

∫ T

0

|α̂′
t−α̂t|2dt ≤ J

([
α̂′, μ′];μ)+E

∫ T

0

〈b0(t, μ′
t)−b0(t, μt), Yt〉dt,
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where α̂t = α̂(t,Xx0;μ
t , μt, Y

x0;μ
t ), for t ∈ [0, T ], with a similar definition for α̂′

t by
replacing μ by μ′. By optimality of α̂′ for the cost functional J(·;μ′), we claim

J
([
α̂′, μ′];μ) ≤ J

(
α̂;μ′)+ J

([
α̂′, μ′];μ)− J

(
α̂′;μ′),

so that (3.12) yields

λE

∫ T

0

|α̂′
t − α̂t|2dt ≤ J

(
α̂;μ′)− J

(
α̂;μ
)
+ J
([
α̂′, μ′];μ)− J

(
α̂′;μ′)

+ E

∫ T

0

〈b0(t, μ′
t)− b0(t, μt), Yt〉dt.

(3.13)

We now compare J(α̂;μ′) with J(α̂;μ) (and similarly J(α̂′;μ′) with J([α̂′, μ′];μ)).
We notice that J(α̂;μ) is the cost associated with the flow of measures (μt)0≤t≤T and
the diffusion process Xx0;μ whereas J(α̂;μ′) is the cost associated with the flow of
measures (μ′

t)0≤t≤T and the controlled diffusion process U satisfying

dUt =
[
b0(t, μ

′
t) + b1(t)Ut + b2(t)α̂t

]
dt+ σdWt, t ∈ [0, T ]; U0 = x0.

By Gronwall’s lemma, there exists a constant c such that

E

[
sup

0≤t≤T
|Xx0,μ

t − Ut|2
]
≤ c

∫ T

0

W 2
2 (μt, μ

′
t)dt.

Since μ and μ′ are in E , we deduce from (A.5), (3.10), and (3.11) that

J
(
α̂;μ′)− J

(
α̂;μ
) ≤ c

(∫ T

0

W 2
2 (μt, μ

′
t)dt

)1/2

,

with a similar bound for J([α̂′, μ′];μ)−J(α̂′;μ′) (the argument is even simpler as the
costs are driven by the same processes), so that, from (3.13) and (3.9) again, together
with Gronwall’s lemma to go back to the controlled SDEs,

E

∫ T

0

|α̂′
t − α̂t|2dt+ E

[
sup

0≤t≤T
|Xx0;μ

t −Xx0;μ
′

t |2
]
≤ c

(∫ T

0

W 2
2 (μt, μ

′
t)dt

)1/2

.

As probability measures in E have bounded moments of order 4, Cauchy-Schwarz

inequality yields (keep in mind that W1(Φ(μ),Φ(μ
′)) ≤ E[sup0≤t≤T |Xx0;μ

t −Xx0;μ
′

t |])

W1(Φ(μ),Φ(μ
′)) ≤ c

(∫ T

0

W 2
2 (μt, μ

′
t)dt

)1/4

≤ c

(∫ T

0

W
1/2
1 (μt, μ

′
t)dt

)1/4

,

which shows that Φ is continuous on E with respect to the 1-Wasserstein distance W1

on P1(C([0, T ];Rd)).
3.5. Approximation procedure. Examples of functions f and g, which are

convex in x and such that ∂xf and ∂xg are bounded, are rather limited in num-
ber and scope. For instance, boundedness of ∂xf and ∂xg fails in the typical case
when f and g are quadratic with respect to x. In order to overcome this lim-
itation, we propose to approximate the cost functions f and g by two sequences
(fn)n≥1 and (gn)n≥1, referred to as approximated cost functions, satisfying (A.1)–
(A.7) uniformly with respect to n ≥ 1, and such that, for any n ≥ 1, (3.1), with
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(∂xf, ∂xg) replaced by (∂xf
n, ∂xg

n), has a solution (Xn, Y n, Zn). In this framework,
Proposition 3.8 says that such approximated FBSDEs are indeed solvable when ∂xf

n

and ∂xg
n are bounded for any n ≥ 1. Our approximation procedure relies on the

following lemma.
Lemma 3.9. If there exist two sequences (fn)n≥1 and (gn)n≥1 such that
(i) there exist two parameters c′L and λ′ > 0 such that, for any n ≥ 1, fn and gn

satisfy (A.1)–(A.7) with respect to λ′ and c′L;
(ii) fn (resp., gn) converges towards f (resp., g) uniformly on any bounded subset

of [0, T ]× R
d × P2(R

d)× R
k (resp. R

d × P2(R
d));

(iii) for any n ≥ 1, (3.1), with (∂xf, ∂xg) replaced by (∂xf
n, ∂xg

n), has a solution
which we denote by (Xn, Y n, Zn);

then, (3.1) is solvable.
Proof. We establish tightness of the processes (Xn)n≥1 in order to extract a

convergent subsequence. For any n ≥ 1, we consider the approximated Hamiltonian

Hn(t, x, μ, y, α) = 〈b(t, x, μ, α), y〉 + fn(t, x, μ, α),

together with its minimizer α̂n(t, x, μ, y) = argminαH
n(t, x, μ, y, α). Setting α̂nt =

α̂n(t,Xn
t ,PXn

t
, Y nt ) for any t ∈ [0, T ] and n ≥ 1, our first step will be to prove that

(3.14) sup
n≥1

E

[∫ T

0

|α̂ns |2ds
]
< +∞.

Since Xn is the diffusion process controlled by (α̂nt )0≤t≤T , we use Theorem 2.2 to
compare its behavior to the behavior of a reference controlled process Un whose dy-
namics are driven by a specific control βn. We shall consider two different versions
for Un corresponding to the following choices for βn:

(3.15) (i) βns = E(α̂ns ) for 0 ≤ s ≤ T ; (ii) βn ≡ 0.

For each of these controls, we compare the cost to the optimal cost by using the version
of the stochastic maximum principle which we proved earlier, and subsequently, derive
useful information on the optimal control (α̂ns )0≤s≤T .

Step 1. We first consider (i) in (3.15). In this case

(3.16) Unt = x0 +

∫ t

0

[
b0(s,PXn

s
) + b1(s)U

n
s + b2(s)E(α̂

n
s )
]
ds+ σWt, t ∈ [0, T ].

Notice that taking expectations on both sides of (3.16) shows that E(Uns ) = E(Xn
s ),

for 0 ≤ s ≤ T , and that

[
Unt − E(Unt )

]
=

∫ t

0

b1(s)
[
Uns − E(Uns )

]
ds+ σWt, t ∈ [0, T ],

from which it easily follows that supn≥1 sup0≤s≤T Var(Uns ) < +∞.
By Theorem 2.2, with gn(·,PXn

T
) as terminal cost and (fn(t, ·,PXn

t
, ·))0≤t≤T as

running cost, we get

E
[
gn
(
Xn
T ,PXn

T

)]
+ E

∫ T

0

[
λ′|α̂ns − βns |2 + fn

(
s,Xn

s ,PXn
s
, α̂ns
)]
ds

≤ E

[
gn
(
UnT ,PXn

T

)
+

∫ T

0

fn
(
s, Uns ,PXn

s
, βns
)
ds

]
.

(3.17)
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Using the fact that βns = E(α̂ns ), the convexity condition in (A.2)–(A.4) and Jensen’s
inequality, we obtain

gn
(
E(Xn

T ),PXn
T

)
+

∫ T

0

[
λ′Var(α̂ns ) + fn

(
s,E(Xn

s ),PXn
s
,E(α̂ns )

)]
ds

≤ E

[
gn
(
UnT ,PXn

T

)
+

∫ T

0

fn
(
s, Uns ,PXn

s
,E(α̂ns )

)
ds

]
.

(3.18)

By (A.5), we deduce that there exists a constant c, depending only on λ, cL, x0, and
T , such that (the actual value of c possibly varying from line to line)

∫ T

0

Var(α̂ns )ds ≤ c
(
1 + E

[|UnT |2]1/2 + E
[|Xn

T |2
]1/2)

E
[|UnT − E(Xn

T )|2
]1/2

+ c

∫ T

0

(
1 + E

[|Uns |2]1/2 + E
[|Xn

s |2
]1/2

+ E
[|α̂ns |2]1/2)E[|Uns − E(Xn

s )|2
]1/2

ds.

Since E(Xn
t ) = E(Unt ) for any t ∈ [0, T ], we deduce from the uniform boundedness of

the variance of (Uns )0≤s≤T that

(3.19)

∫ T

0

Var(α̂ns )ds ≤ c

[
1 + sup

0≤s≤T
E[|Xn

s |2]1/2 +
(
E

∫ T

0

|α̂ns |2ds
)1/2]

.

From this, the linearity of the dynamics of Xn and Gronwall’s inequality, we deduce

(3.20) sup
0≤s≤T

Var(Xn
s ) ≤ c

[
1 +

(
E

∫ T

0

|α̂ns |2ds
)1/2]

,

since

(3.21) sup
0≤s≤T

E
[|Xn

s |2
] ≤ c

[
1 + E

∫ T

0

|α̂ns |2ds
]
.

Bounds like (3.20) allow us to control for any 0 ≤ s ≤ T , the Wasserstein distance
between the distribution of Xn

s and the Dirac mass at the point E(Xn
s ).

Step 2. We now compare Xn to the process controlled by the null control. So we
consider case (ii) in (3.15), and now

Unt = x0 +

∫ t

0

[
b0(s,PXn

s
) + b1(s)U

n
s

]
ds+ σWt, t ∈ [0, T ].

Since no confusion is possible, we still denote the solution by Un although it is different
from the one in the first step. By the boundedness of b0 in (A.5), it holds that
supn≥1 E[sup0≤s≤T |Uns |2] < +∞. Using Theorem 2.2 as before in the derivation of
(3.17) and (3.18), we get

gn
(
E(Xn

T ),PXn
T

)
+

∫ T

0

[
λ′E(|α̂ns |2) + fn

(
s,E(Xn

s ),PXn
s
,E(α̂ns )

)]
ds

≤ E

[
gn
(
UnT ,PXn

T

)
+

∫ T

0

fn
(
s, Uns ,PXn

s
, 0
)
ds

]
.
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By convexity of fn with respect to α (see (A.2)) together with (A.6), we have

gn
(
E(Xn

T ),PXn
T

)
+

∫ T

0

[
λ′E
(|α̂ns |2)+ fn

(
s,E(Xn

s ),PXn
s
, 0
)]
ds

≤ E

[
gn
(
UnT ,PXn

T

)
+

∫ T

0

fn
(
s, Uns ,PXn

s
, 0
)
ds

]
+ cE

∫ T

0

|α̂ns |ds

for some constant c, independent of n. Using (A.5), we obtain

gn
(
E(Xn

T ), δE(Xn
T )

)
+

∫ T

0

[
λ′E
(|α̂ns |2)+ fn

(
s,E(Xn

s ), δE(Xn
s ), 0

)]
ds

≤ gn
(
0, δE(Xn

T )

)
+

∫ T

0

fn
(
s, 0, δE(Xn

s ), 0
)
ds+ cE

∫ T

0

|α̂ns |ds

+ c

(
1 + sup

0≤s≤T

[
E
[|Xn

s |2
]1/2])(

1 + sup
0≤s≤T

[
Var(Xn

s )
]1/2)

,

the value of c possibly varying from line to line. From (3.21), Young’s inequality yields

gn
(
E(Xn

T ), δE(Xn
T )

)
+

∫ T

0

[
λ′

2
E
(|α̂ns |2)+ fn

(
s,E(Xn

s ), δE(Xn
s ), 0

)]
ds

≤ gn
(
0, δE(Xn

T )

)
+

∫ T

0

fn
(
s, 0, δE(Xn

s ), 0
)
ds+ c

(
1 + sup

0≤s≤T

[
Var(Xn

s )
])

.

By (3.20), we obtain

gn
(
E(Xn

T ), δE(Xn
T )

)
+

∫ T

0

[
λ′

2
E
(|α̂ns |2)+ fn

(
s,E(Xn

s ), δE(Xn
s ), 0

)]
ds

≤ gn
(
0, δE(Xn

T )

)
+

∫ T

0

fn
(
s, 0, δE(Xn

s ), 0
)
ds+ c

(
1 +

[∫ T

0

E
(|α̂ns |2)ds

]1/2)
.

Young’s inequality and the convexity in x of gn and fn from (A.2)–(A.4) give

〈
E(Xn

T ), ∂xg
n
(
0, δE(Xn

T )

)〉
+

∫ T

0

[
λ′

4
E
(|α̂ns |2)+ 〈E(Xn

s ), ∂xf
n
(
s, 0, δE(Xn

s ), 0
)〉]

ds ≤ c.

By (A.7), we have E
∫ T
0
|α̂ns |2ds ≤ c

(
1+sup0≤s≤T E

[|Xn
s |2
]1/2)

, and the bound (3.14)
now follows from (3.21), and as a consequence

(3.22) E

[
sup

0≤s≤T
|Xn

s |2
]
≤ c.

Using (3.14) and (3.22), we can prove that the processes (Xn)n≥1 are tight. Indeed,
there exists a constant c′, independent of n, such that, for any 0 ≤ s ≤ t ≤ T ,

|Xn
t −Xn

s | ≤ c′(t− s)1/2
[
1 +

(∫ T

0

[|Xn
r |2 + |α̂nr |2

]
dr

)1/2]
+ c′|Wt −Ws|,

so that tightness follows from (3.14) and (3.22).
Step 3. Let μ be the limit of a convergent subsequence (PXnp )p≥1. By (3.22),

M2,C([0,T ];Rd)(μ) < +∞. Therefore, by Lemma 3.5, FBSDE (2.13) has a unique
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solution (Xt, Yt, Zt)0≤t≤T . Moreover, there exists u : [0, T ] × R
d ↪→ R

d, which is
c-Lipschitz in the variable x for the same constant c as in the statement of the lemma,
such that Yt = u(t,Xt) for any t ∈ [0, T ]. In particular,

(3.23) sup
0≤t≤T

|u(t, 0)| ≤ sup
0≤t≤T

[
E
[|u(t,Xt)− u(t, 0)|]+ E

[|Yt|]
]
< +∞.

We deduce that there exists a constant c′ such that |u(t, x)| ≤ c′(1+ |x|) for t ∈ [0, T ]
and x ∈ R

d. By (2.9) and (A.6), we deduce that (for a possibly new value of c′)
|α̂(t, x, μt, u(t, x))| ≤ c′(1 + |x|). Plugging this bound into the forward SDE satisfied
by X in (2.13), we deduce that

(3.24) ∀� ≥ 1, E

[
sup

0≤t≤T
|Xt|�

]
< +∞,

and, thus,

(3.25) E

∫ T

0

|α̂t|2dt < +∞,

with α̂t = α̂(t,Xt, μt, Yt) for t ∈ [0, T ]. We can now apply the same argument to any
(Xn

t )0≤t≤T for any n ≥ 1. We claim

(3.26) ∀� ≥ 1, sup
n≥1

E

[
sup

0≤t≤T
|Xn

t |�
]
< +∞.

Indeed, the constant c in the statement of Lemma 3.5 does not depend on n. Moreover,
the second-order moments of sup0≤t≤T |Xn

t | are bounded, uniformly in n ≥ 1 by
(3.22). By (A.5), the driver in the backward component in (2.13) is at most of
linear growth in (x, y, α), so that by (3.14) and standard L2 estimates for BSDEs
(see Theorem 3.3, Chapter 7 in [26]), the second-order moments of sup0≤t≤T |Y nt | are
uniformly bounded as well. This shows (3.26) by repeating the proof of (3.24). By
(3.24) and (3.26), we get that sup0≤t≤T W2(μ

np

t , μt) → 0 as p tends to +∞, with
μnp = PXnp .

Repeating the proof of (3.13), we have

λ′E
∫ T

0

|α̂nt − α̂t|2dt ≤ Jn
(
α̂;μn

)− J
(
α̂;μ
)
+ J
([
α̂n, μn

]
;μ
)− Jn

(
α̂n;μn

)
+ E

∫ T

0

〈b0(t, μnt )− b0(t, μt), Yt〉dt,
(3.27)

where J(·;μ) is given by (2.12) and Jn(·;μn) is defined in a similar way, but with
(f, g) and (μt)0≤t≤T replaced by (fn, gn) and (μnt )0≤t≤T ; J([α̂

n, μn];μ) is defined as
in (2.16). With these definitions at hand, we notice that

Jn
(
α̂;μn

)− J
(
α̂;μ
)

= E
[
gn(UnT , μ

n
T )− g(XT , μT )

]
+ E

∫ T

0

[
fn
(
t, Unt , μ

n
t , α̂t

)− f
(
t,Xt, μt, α̂t

)]
dt,

where Un is the controlled diffusion process

dUnt =
[
b0(t, μ

n
t ) + b1(t)U

n
t + b2(t)α̂t

]
dt+ σdWt, t ∈ [0, T ]; Un0 = x0.
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By Gronwall’s lemma and by convergence of μnp towards μ for the 2-Wasserstein
distance, we claim that Unp → X as p→ +∞ for the norm E[sup0≤s≤T |·s|2]1/2. Using
on one hand the uniform convergence of fn and gn towards f and g on bounded subsets
of their respective domains, and on the other hand the convergence of μnp towards
μ together with the bounds (3.24)–(3.26), we deduce that Jnp(α̂;μnp) → J(α̂;μ) as
p → +∞. Similarly, using the bounds (3.14) and (3.24)–(3.26), the other differences
in the right-hand side in (3.27) tend to 0 along the subsequence (np)p≥1 so that
α̂np → α̂ as p→ +∞ in L2([0, T ]×Ω, dt⊗ dP). We deduce that X is the limit of the
sequence (Xnp)p≥1 for the norm E[sup0≤s≤T | ·s |2]1/2. Therefore, μ matches the law
of X exactly, proving that (3.1) is solvable.

3.6. Choice of the approximating sequence. In order to complete the proof
of Theorem 3.2, we must specify the choice of the approximating sequence in
Lemma 3.9. Actually, the choice is performed in two steps. We first consider the
case when the cost functions f and g are strongly convex in the variables x,

Lemma 3.10. Assume that, in addition to (A.1)–(A.7), there exists a constant
γ > 0 such that the functions f and g satisfy (compare with (2.8)):

f(t, x′, μ, α′)− f(t, x, μ, α)

− 〈(x′ − x, α′ − α), ∂(x,α)f(t, x, μ, α)〉 ≥ γ|x′ − x|2 + λ|α′ − α|2,
g(x′, μ)− g(x, μ)− 〈x′ − x, ∂xg(x, μ)〉 ≥ γ|x′ − x|2.

(3.28)

Then, there exist two positive constants λ′ and c′L, depending only upon λ, cL, and γ,
and two sequences of functions (fn)n≥1 and (gn)n≥1 such that

(i) for any n ≥ 1, fn and gn satisfy (A.1)–(A.7) with respect to the parameters
λ′ and c′L and ∂xf

n and ∂xg
n are bounded,

(ii) for any bounded subsets of [0, T ]× R
d × P2(R

d)× R
k, there exists an integer

n0, such that, for any n ≥ n0, f
n and gn coincide with f and g, respectively.

The proof of Lemma 3.10 is a pure technical exercise in convex analysis, and for
this reason, we postpone its proof to the appendix in section 5.

3.7. Proof of Theorem 3.2. Equation (3.1) is solvable when, in addition to
(A.1)–(A.7), f and g satisfy the convexity condition (3.28). Indeed, by Lemma
3.10, there exists an approximating sequence (fn, gn)n≥1 satisfying (i) and (ii) in the
statement of Lemma 3.9, and also (iii) by Proposition 3.8. When f and g satisfy
(A.1)–(A.7) only, the assumptions of Lemma 3.9 are satisfied with the following
approximating sequence:

fn(t, x, μ, α) = f(t, x, μ, α) +
1

n
|x|2; gn(x, μ) = g(x, μ) +

1

n
|x|2

for (t, x, μ, α) ∈ [0, T ] × R
d × P(Rd) × R

k and n ≥ 1. Therefore, (3.1) is solvable
under (A.1)–(A.7). Moreover, given an arbitrary solution to (3.1), the existence of a
function u, as in the statement of Theorem 3.2, follows from Lemma 3.5 and (3.23).
Boundedness of the moments of the forward process is then proven as in (3.24).

4. Propagation of chaos and approximate Nash equilibriums. While the
rationale for the mean-field strategy proposed by Lasry and Lions is clear given the
nature of Nash equilibriums (as opposed to other forms of optimization suggesting
the optimal control of stochastic dynamics of the McKean–Vlasov type as studied in
[6]), it may not be obvious how the solution of the FBSDE introduced and solved in
the previous sections provides approximate Nash equilibriums for large games. In this
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section, we prove just that. The proof relies on the Lipschitz property of the FBSDE
value function, standard arguments in propagation of chaos theory, and the following
specific result due to Horowitz and Karandikar (see, for example, section 10 in [24])
which we state as a lemma for future reference.

Lemma 4.1. Given μ ∈ Pd+5(R
d), there exists a constant c depending only upon

d and Md+5(μ) (see the notation (2.7)), such that

E
[
W 2

2 (μ̄
N , μ)

] ≤ CN−2/(d+4),

where μ̄N denotes the empirical measure of any sample of size N from μ.
Throughout this section, assumptions (A.1)–(A.7) are in force. We let

(Xt, Yt, Zt)0≤t≤T be a solution of (3.1) and let u be the associated FBSDE value func-
tion. We denote by (μt)0≤t≤T the flow of marginal probability measures μt = PXt for
0 ≤ t ≤ T . We also denote by J the optimal cost of the limiting mean-field problem

(4.1) J = E

[
g(XT , μT ) +

∫ T

0

f
(
t,Xt, μt, α̂(t,Xt, μt, Yt)

)
dt

]
,

where as before, α̂ is the minimizer function constructed in Lemma 2.1. For conve-
nience, we fix a sequence ((W i

t )0≤t≤T )i≥1 of independent m-dimensional Brownian
motions, and for each integer N , we consider the solution (X1

t , . . . , X
N
t )0≤t≤T of the

system of N stochastic differential equations

(4.2) dX i
t = b

(
t,X i

t , μ̄
N
t , α̂

(
t,X i

t , μt, u(t,X
i
t)
))
dt+ σdW i

t , μ̄Nt =
1

N

N∑
j=1

δXj
t
,

with t ∈ [0, T ] and X i
0 = x0. Equation (4.2) is well posed since u satisfies the

regularity property (3.3) and the minimizer α̂(t, x, μt, y) was proven, in Lemma 2.1,
to be Lipschitz continuous and at most of linear growth in the variables x and y,
uniformly in t ∈ [0, T ]. The processes (X i)1≤i≤N give the dynamics of the private
states of the N players in the stochastic differential game of interest when the players
use the strategies

(4.3) ᾱN,it = α̂(t,X i
t , μt, u(t,X

i
t)), 0 ≤ t ≤ T, i ∈ {1, . . . , N}.

These strategies are in closed loop form. They are even distributed since at each time
t ∈ [0, T ], a player need only know the state of his own private state in order to
compute the value of the control to apply at that time. By boundedness of b0 and by
(2.9) and (3.3), it holds that

(4.4) sup
N≥1

max
1≤i≤N

[
E

[
sup

0≤t≤T
|X i

t |2
]
+ E

∫ T

0

|ᾱN,it |2dt
]
< +∞.

For the purpose of comparison, we recall the notation we use when the players
choose a generic set of strategies, say ((βit)0≤t≤T )1≤i≤N . In this case, the dynamics
of the private state U i of player i ∈ {1, . . . , N} are given by

(4.5) dU it = b
(
t, U it , ν̄

N
t , β

i
t

)
dt+ σdW i

t , ν̄Nt =
1

N

N∑
j=1

δUj
t
,
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with t ∈ [0, T ] and U i0 = x0, and where ((βit)0≤t≤T )1≤i≤N are N square-integrable
R
k-valued processes that are progressively measurable with respect to the filtration

generated by (W 1, . . . ,WN ). For each 1 ≤ i ≤ N , we denote by

(4.6) J̄N,i(β1, . . . , βN ) = E

[
g
(
U iT , ν̄

N
T

)
+

∫ T

0

f(t, U it , ν̄
N
t , β

i
t)dt

]
,

the cost to the ith player. Our goal is to construct approximate Nash equilibriums
for the N -player game. We follow the approach used by Bensoussan et al. [2] in the
linear-quadratic case. See also [5].

Theorem 4.2. Under assumptions (A.1)–(A.7), the strategies (ᾱN,it )0≤t≤T, 1≤i≤N
defined in (4.3) form an approximate Nash equilibrium of the N -player game (4.5)–
(4.6). More precisely, there exists a constant c > 0 and a sequence of positive numbers
(εN )N≥1 such that, for each N ≥ 1,

(i) εN ≤ cN−1/(d+4);
(ii) for any player i ∈ {1, . . . , N} and any progressively measurable strategy βi =

(βit)0≤t≤T , such that E
∫ T
0
|βit |2dt < +∞, one has

(4.7) J̄N,i(ᾱN,1, . . . , ᾱN,i−1, βi, ᾱN,i+1, . . . , ᾱN,N) ≥ J̄N,i(ᾱN,1, . . . , ᾱN,N)− εN .

Proof. By symmetry (invariance under permutation) of the coefficients of the
private states dynamics and costs, we need only prove (4.7) for i = 1. Given a

progressively measurable process β1 = (β1
t )0≤t≤T satisfying E

∫ T
0
|β1
t |2dt < +∞, let

us use the quantities defined in (4.5) and (4.6) with βit = ᾱN,it for i ∈ {2, . . . , N} and
t ∈ [0, T ]. By boundedness of b0, b1, and b2 and by Gronwall’s inequality, we get

(4.8) E

[
sup

0≤t≤T
|U1
t |2
]
≤ c

(
1 + E

∫ T

0

|β1
t |2dt

)
.

Using the fact that the strategies (ᾱN,it )0≤t≤T satisfy the square integrability condition
of admissibility, the same argument gives

(4.9) E

[
sup

0≤t≤T
|U is|2

]
≤ c,

for 2 ≤ i ≤ N , which clearly implies after summation that

(4.10)
1

N

N∑
j=1

E

[
sup

0≤t≤T
|U jt |2

]
≤ c

(
1 +

1

N
E

∫ T

0

|β1
t |2dt

)
.

For the next step of the proof we introduce the system of decoupled independent
and identically distributed states

dX̄ i
t = b

(
t, X̄ i

t , μt, α̂(t, X̄
i
t , μt, u(t, X̄

i
t))
)
dt+ σdW i

t , 0 ≤ t ≤ T.

Notice that the stochastic processes X̄ i are independent copies ofX and, in particular,
PX̄i

t
= μt for any t ∈ [0, T ] and i ∈ {1, · · · , N}. We shall use the notation

α̂it = α̂
(
t, X̄ i

t , μt, u(t, X̄
i
t)
)
, t ∈ [0, T ], i ∈ {1, . . . , N}.

Using the regularity of the FBSDE value function u and the uniform boundedness
of the family (Md+5(μt))0≤t≤T derived in Theorem 3.2 together with the estimate
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recalled in Lemma 4.1, we can follow Sznitman’s proof [25] (see also Theorem 1.3 of
[15]) and get

(4.11) max
1≤i≤N

E

[
sup

0≤t≤T
|X i

t − X̄ i
t |2
]
≤ cN−2/(d+4),

(recall that (X1, . . . , XN) solves (4.2)), and this implies

(4.12) sup
0≤t≤T

E
[
W 2

2 (μ̄
N
t , μt)

] ≤ cN−2/(d+4).

Indeed, for each t ∈ [0, T ],

(4.13) W 2
2 (μ̄

N
t , μt) ≤

2

N

N∑
i=1

|X i
t − X̄ i

t |2 + 2W 2
2

(
1

N

N∑
i=1

δX̄i
t
, μt

)
,

so that, taking expectations on both sides and using (4.11) and Lemma 4.1, we get
the desired estimate (4.12). Using the local-Lipschitz regularity of the coefficients g
and f together with Cauchy–Schwarz inequality, we get, for each i ∈ {1, . . . , N},∣∣J − J̄N,i(ᾱN,1, . . . , ᾱN,N )

∣∣
=

∣∣∣∣E
[
g(X̄ i

T , μT ) +

∫ T

0

f
(
t, X̄ i

t , μt, α̂
i
t

)
dt− g(X i

T , μ̄
N
T )−

∫ T

0

f
(
t,X i

t , μ̄
N
t , ᾱ

N,i
t

)
dt

]∣∣∣∣
≤ cE

⎡
⎣
⎛
⎝1 + |X̄ i

T |2 + |X i
T |2 +

1

N

N∑
j=1

|Xj
T |2
⎞
⎠
⎤
⎦
1/2

E
[|X̄ i

T −X i
T |2 +W 2

2 (μT , μ̄
N
T )
]1/2

+ c

∫ T

0

⎧⎪⎨
⎪⎩E

⎡
⎣
⎛
⎝1 + |X̄ i

t |2 + |X i
t |2 + |α̂it|2 + |ᾱN,it |2 + 1

N

N∑
j=1

|Xj
t |2
⎞
⎠
⎤
⎦
1/2

×E
[|X̄ i

t −X i
t |2 + |α̂it − ᾱN,it |2 +W 2

2 (μt, μ̄
N
t )
]1/2⎫⎬⎭ dt

for some constant c > 0 which can change from line to line. By (4.4), we deduce

∣∣J − J̄N,i(ᾱN,1, . . . , ᾱN,N)
∣∣ ≤ cE

[|X̄ i
T −X i

T |2 +W 2
2 (μT , μ̄

N
T )
]1/2

+ c

(∫ T

0

E
[|X̄ i

t −X i
t |2 + |α̂it − ᾱN,it |2 +W 2

2 (μt, μ̄
N
t )
]
dt

)1/2

.

Now, by the Lipschitz property of the minimizer α̂ proven in Lemma 2.1 and by the
Lipschitz property of u in (3.3), we notice that

|α̂it − ᾱN,it | = ∣∣α̂(t, X̄ i
t , μt, u(t, X̄

i
t)
)− α̂

(
t,X i

t , μt, u(t,X
i
t)
)∣∣ ≤ c|X̄ i

t −X i
t |.

Using (4.11) and (4.12), this proves that, for any 1 ≤ i ≤ N ,

(4.14) J̄N,i(ᾱ1,N , . . . , ᾱN,N) = J +O(N−1/(d+4)).

This suggests that, in order to prove inequality (4.7) for i = 1, we could restrict
ourselves to compare J̄N,1(β1, ᾱ2,N , . . . , ᾱN,N) to J . Using the argument which led
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to (4.8), (4.9), and (4.10), together with the definitions of U j and Xj for j = 1, . . . , N ,
we get, for any t ∈ [0, T ],

E

[
sup

0≤s≤t
|U1
t −X1

t |2
]
≤ c

N

∫ t

0

N∑
j=1

E

[
sup

0≤r≤s
|U jr −Xj

r |2
]
ds+ cE

∫ T

0

|β1
t − ᾱN,1t |2dt,

E

[
sup

0≤s≤t
|U it −X i

t |2
]
≤ c

N

∫ t

0

N∑
j=1

E

[
sup

0≤r≤s
|U jr −Xj

r |2
]
ds, 2 ≤ i ≤ N.

Therefore, using Gronwall’s inequality, we get

(4.15)
1

N

N∑
j=1

E

[
sup

0≤t≤T
|U jt −Xj

t |2
]
≤ c

N
E

∫ T

0

|β1
t − ᾱN,1t |2dt,

so that

(4.16) sup
0≤t≤T

E
[|U it −X i

t |2
] ≤ c

N
E

∫ T

0

|β1
t − ᾱN,1t |2dt, 2 ≤ i ≤ N.

Putting together (4.4), (4.11), and (4.16), we see that, for any A > 0, there exists a
constant cA depending on A such that

(4.17) E

∫ T

0

|β1
t |2dt ≤ A =⇒ max

2≤i≤N
sup

0≤t≤T
E
[|U it − X̄ i

t |2
] ≤ cAN

−2/(d+4).

Let us fix A > 0 (to be determined later) and assume that E
∫ T
0 |β1

t |2dt ≤ A. Using
(4.17) we see that

(4.18)
1

N − 1

N∑
j=2

E
[|U jt − X̄j

t |2
] ≤ cAN

−2/(d+4)

for a constant cA depending upon A, and whose value can change from line to line.
Now by the triangle inequality for the Wasserstein distance,

E
[
W 2

2 (ν̄
N
t , μt)

] ≤ c

⎧⎨
⎩E

⎡
⎣W 2

2

⎛
⎝ 1

N

N∑
j=1

δUj
t
,

1

N − 1

N∑
j=2

δUj
t

⎞
⎠
⎤
⎦

+
1

N − 1

N∑
j=2

E
[|U jt − X̄j

t |2
]
+ E

⎡
⎣W 2

2

⎛
⎝ 1

N − 1

N∑
j=2

δX̄j
t
, μt

⎞
⎠
⎤
⎦
⎫⎬
⎭ .

(4.19)

We note that

E

⎡
⎣W 2

2

⎛
⎝ 1

N

N∑
j=1

δUj
t
,

1

N − 1

N∑
j=2

δUj
t

⎞
⎠
⎤
⎦ ≤ 1

N(N − 1)

N∑
j=2

E
[|U1

t − U jt |2
]
,

which is O(N−1) because of (4.8) and (4.10). Plugging this inequality into (4.19), and
using (4.18) to control the second term and Lemma 4.1 to estimate the third term
therein, we conclude that

(4.20) E
[
W 2

2 (ν̄
N
t , μt)

] ≤ cAN
−2/(d+4).
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For the final step of the proof we define (Ū1
t )0≤t≤T as the solution of the SDE

dŪ1
t = b(t, Ū1

t , μt, β
1
t )dt+ σdW 1

t , 0 ≤ t ≤ T ; Ū1
0 = x,

so that, from the definition (4.5) of U1, we get

U1
t − Ū1

t =

∫ t

0

[b0(s, ν̄
N
s )− b0(s, μs)]ds+

∫ t

0

b1(s)[U
1
s − Ū1

s ]ds.

Using the Lipschitz property of b0, (4.20), and the boundedness of b1 and applying
Gronwall’s inequality, we get

(4.21) sup
0≤t≤T

E
[|U1

t − Ū1
t |2
] ≤ cAN

−2/(d+4),

so that, going over the computation leading to (4.14) once more and using (4.20),
(4.8), (4.9), and (4.10),

J̄N,1(β1, ᾱN,2, . . . , ᾱN,N) ≥ J(β1)− cAN
−1/(d+4),

where J(β1) stands for the mean-field cost of β1:

(4.22) J(β1) = E

[
g(Ū1

T , μT ) +

∫ T

0

f
(
t, Ū1

t , μt, β
1
t

)
dt

]
.

Since J ≤ J(β1) (notice that, even though β1 is adapted to a larger filtration than
the filtration of W 1, the stochastic maximum principle still applies as pointed out in
Remark 2.3), we get in the end

(4.23) J̄N,1(β1, ᾱN,2, . . . , ᾱN,N) ≥ J − cAN
−1/(d+4),

and from (4.14) and (4.23), we easily derive the desired inequality (4.7). Actually,
the combination of (4.14) and (4.23) shows that (ᾱN,1, . . . , ᾱN,N) is an ε-Nash equi-
librium for N large enough, with a precise quantification (though not optimal) of the
relationship between N and ε. But for the proof to be complete in full generality, we

need to explain how we choose A, and discuss what happens when E
∫ T
0
|β1
t |2dt > A.

Using the convexity in x of g around x = 0 and the convexity of f in (x, α) around
x = 0 and α = 0 (see (2.8)), we get

J̄N,1(β1, ᾱN,2, . . . , ᾱN,N)

≥ E

[
g(0, ν̄NT ) +

∫ T

0

f(t, 0, ν̄Nt , 0)dt

]
+ λE

∫ T

0

|β1
t |2dt

+ E

[
〈U1

T , ∂xg(0, ν̄
N
T )〉+

∫ T

0

(〈U1
t , ∂xf(t, 0, ν̄

N
t , 0)〉+ 〈β1

t , ∂αf(t, 0, ν̄
N
t , 0)〉

)
dt

]
.

The local-Lipschitz assumption with respect to the Wasserstein distance and the defi-
nition of the latter imply the existence of a constant c > 0 such that for any t ∈ [0, T ],

E
[|f(t, 0, ν̄Nt , 0)− f(t, 0, δ0, 0)|

] ≤ cE
[
1 +M2

2 (ν̄
N
t )
]
= c

[
1 +

(
1

N

N∑
i=1

E
[|U it |2]

)]
.
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with a similar inequality for g. From this, we deduce

J̄N,1(β1, ᾱN,2, . . . , ᾱN,N) ≥ g(0, δ0) +

∫ T

0

f(t, 0, δ0, 0)dt

+ E

[
〈U1

T , ∂xg(0, ν̄
N
T )〉+

∫ T

0

(〈U1
t , ∂xf(t, 0, ν̄

N
t , 0)〉+ 〈β1

t , ∂αf(t, 0, ν̄
N
t , 0)〉

)
dt

]

+ λE

∫ T

0

|β1
t |2dt− c

[
1 +

(
1

N

N∑
i=1

sup
0≤t≤T

E
[|U it |2]

)]
.

By (A.5), we know that ∂xg, ∂xf , and ∂αf are, at most, of linear growth in the
measure parameter (for the L2-norm), so that, for any δ > 0, there exists a constant
cδ such that

J̄N,1(β1, ᾱN,2, . . . , ᾱN,N ) ≥ g(0, δ0) +

∫ T

0

f(t, 0, δ0, 0)dt+
λ

2
E

∫ T

0

|β1
t |2dt

− δ sup
0≤t≤T

E
[|U1

t |2
]− cδ

(
1 +

1

N

N∑
i=1

sup
0≤t≤T

E
[|U it |2]

)
.

(4.24)

Estimates (4.8) and (4.9) show that one can choose δ small enough in (4.24) and c so
that

J̄N,1(β1, ᾱN,2, . . . , ᾱN,N ) ≥ −c+
(
λ

4
− c

N

)
E

∫ T

0

|β1
t |2dt.

This proves that there exists an integer N0 such that, for any integer N ≥ N0 and
constant Ā > 0, one can choose A > 0 such that

(4.25) E

∫ T

0

|β1
t |2dt ≥ A =⇒ J̄N,1(β1, ᾱN,2, . . . , ᾱN,N ) ≥ J + Ā,

which provides us with the appropriate tool to choose A and avoid having to consider
(β1
t )0≤t≤T whose expected square integral is too large.
A simple inspection of the last part of the above proof shows that a stronger

result actually holds when E
∫ T
0 |β1

t |2dt ≤ A. Indeed, the estimates (4.8), (4.17), and
(4.20) can be used as in (4.14) to deduce (up to a modification of cA)

(4.26) J̄N,i(β1, ᾱN,2, . . . , ᾱN,N ) ≥ J − cAN
−1/(d+4), 2 ≤ i ≤ N.

Corollary 4.3. Under assumptions (A.1)–(A.7), not only does(
(ᾱN,it = α̂(t,X i

t , μt, u(t,X
i
t)))1≤i≤N

)
0≤t≤T

form an approximate Nash equilibrium of the N -player game (4.5)–(4.6) but
(i) there exists an integer N0 such that, for any N ≥ N0 and Ā > 0, there exists

a constant A > 0 such that, for any player i ∈ {1, . . . , N} and any admissible strategy
βi = (βit)0≤t≤T ,
(4.27)

E

∫ T

0

|βit |2dt ≥ A =⇒ J̄N,i(ᾱN,1, . . . , ᾱN,i−1,, βi, ᾱN,i+1, . . . , ᾱN,N) ≥ J + Ā.
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(ii) Moreover, for any A > 0, there exists a sequence of positive real numbers
(εN )N≥1 converging toward 0, such that for any admissible strategy β1 = (β1

t )0≤t≤T
for the first player,

(4.28) E

∫ T

0

|β1
t |2dt ≤ A =⇒ min

1≤i≤N
J̄N,i(β1, ᾱN,2, . . . , ᾱN,N) ≥ J − εN .

5. Appendix: Proof of Lemma 3.10. We focus on the approximation of the
running cost f (the case of the terminal cost g is similar) and we ignore the dependence
of f upon t to simplify the notation. For any n ≥ 1, we define fn as the truncated
Legendre transform:

(5.1) fn(x, μ, α) = sup
|y|≤n

inf
z∈Rd

[〈y, x− z〉+ f(z, μ, α)
]

for (x, α) ∈ R
d × R

k and μ ∈ P2(R
d). By standard properties of the Legendre

transform of convex functions,

(5.2) fn(x, μ, α) ≤ sup
y∈Rd

inf
z∈Rd

[〈y, x− z〉+ f(z, μ, α)
]
= f(x, μ, α).

Moreover, by strict convexity of f in x,

fn(x, μ, α) ≥ inf
z∈Rd

[
f(z, μ, α)

] ≥ inf
z∈Rd

[
γ|z|2 + 〈∂xf(0, μ, α), z〉

]
+ f(0, μ, α)

≥ − 1

4γ
|∂xf(0, μ, α)|2 + f(0, μ, α),

(5.3)

so that fn has finite real values. Clearly, it is also n-Lipschitz continuous in x.
Step 1. We first check that the sequence (fn)n≥1 converges towards f , uniformly

on bounded subsets of Rd×P2(R
d)×R

k. So for any given R > 0, we restrict ourselves
to |x| ≤ R and |α| ≤ R, and μ ∈ P2(R

d), such that M2(μ) ≤ R. By (A.5), there
exists a constant c > 0, independent of R, such that

(5.4) sup
z∈Rd

[〈y, z〉 − f(z, μ, α)
] ≥ sup

z∈Rd

[〈y, z〉 − c|z|2]− c(1 +R2) =
|y|2
4c

− c(1 +R2).

Therefore,

(5.5) inf
z∈Rd

[〈y, x− z〉+ f(z, μ, α)
] ≤ R|y| − |y|2

4c
+ c(1 +R2).

By (5.3) and (A.5), fn(t, x, μ, α) ≥ −c(1 + R2), c depending possibly on γ, so that
optimization in the variable y can be done over points y� satisfying

(5.6) −c(1 +R2) ≤ R|y�| − |y�|2
4c

+ c(1 +R2), that is |y�| ≤ c(1 +R),

In particular, for n large enough (depending on R),

(5.7) fn(x, μ, α) = sup
y∈Rd

inf
z∈Rd

[〈y, x− z〉+ f(z, μ, α)
]
= f(x, μ, α).

So on bounded subsets of Rd × P2(R
d) × R

k, fn and f coincide for n large enough.
In particular, for n large enough, fn(0, δ0, 0), ∂xfn(0, δ0, 0), and ∂αfn(0, δ0, 0) exist,
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coincide with f(0, δ0, 0), ∂xf(0, δ0, 0), and ∂αf(0, δ0, 0), respectively, and are bounded
by cL as in (A.5). Moreover, still for |x| ≤ R, |α| ≤ R, and M2(μ) ≤ R, we see from
(5.2) and (5.6) that optimization in z can be reduced to z� satisfying

〈y�, x− z�〉+ f(z�, μ, α) ≤ f(x, μ, α) ≤ c(1 +R2),

the second inequality following from (A.5). By strict convexity of f in x, we obtain

−c(1 +R)|z�|+ γ|z�|2 + 〈∂xf(0, μ, α), z�〉+ f(0, μ, α) ≤ c(1 +R2),

so that, by (A.5), γ|z�|2 − c(1 +R)|z�| ≤ c(1 +R2), that is

(5.8) |z�| ≤ c(1 +R).

Step 2. We now investigate the convexity property of fn(·, μ, ·) for a given μ ∈
P2(R

d). For any h ∈ R, x, e, y, z1, z2 ∈ R
d, and α, β ∈ R

k, with |y| ≤ n and |e|, |β| = 1,
we deduce from the convexity of f(·, μ, ·) that

2 inf
z∈Rd

[〈y, x− z〉+ f(z, μ, α)
]

≤
〈
y, (x+ he− z1) + (x− he− z2)

〉
+ 2f

(
z1 + z2

2
, μ,

(α+ hβ) + (α− hβ)

2

)
≤ 〈y, x+ he− z1〉+ f(z1, μ, α+ hβ) + 〈y, x− he− z2〉+ f(z2, μ, α− hβ)− 2λh2.

Taking infimum with respect to z1, z2 and supremum with respect to y, we obtain

(5.9) fn(x, μ, α) ≤ 1

2
fn(x+ he, μ, α+ hβ) +

1

2
fn(x− he, μ, α− hβ)− λh2.

In particular, the function R
d×R

k � (x, α) ↪→ fn(x, μ, α)−λ|α|2 is convex. We prove
later on that it is also continuously differentiable so that (2.8) holds.

In a similar way, we can investigate the semi-concavity property of fn(·, μ, ·). For
any h ∈ R, x, e, y1, y2 ∈ R

d, α, β ∈ R
k, with |y1|, |y2| ≤ n and |e|, |β| = 1,

inf
z∈Rd

[〈y1, x+ he− z〉+ f(z, μ, α+ hβ)
]
+ inf
z∈Rd

[〈y2, x− he− z〉+ f(z, μ, α− hβ)
]

= inf
z∈Rd

[〈y1, x− z〉+ f(z + he, μ, α+ hβ)
]
+ inf
z∈Rd

[〈y2, x− z〉+ f(z − he, μ, α− hβ)
]
.

By expanding f(·, μ, ·) up to the second order, we see that

inf
z∈Rd

[〈y1, x+ he− z〉+ f(z, μ, α+ hβ)
]
+ inf
z∈Rd

[〈y2, x− he− z〉+ f(z, μ, α− hβ)
]

≤ inf
z∈Rd

[〈y1 + y2, x− z〉+ 2f(z, μ, α)
]
+ c|h|2

for some constant c. Taking the supremum over y1, y2, we deduce that

fn(x + he, μ, α+ hβ) + fn(x− he, μ, α− hβ)− 2fn(x, μ, α) ≤ c|h|2.

So for any μ ∈ P2(R
d), the function R

d ×R
k � (x, α) ↪→ fn(x, μ, α)− c[|x|2 + |α|2] is

concave and fn(·, μ, ·) is C1,1, the Lipschitz constant of the derivatives being uniform in
n ≥ 1 and μ ∈ P2(R

d). Moreover, by definition, the function fn(·, μ, ·) is n-Lipschitz
continuous in the variable x, that is ∂xfn is bounded, as required.
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Step 3. We now investigate (A.5). Given δ > 0, R > 0, and n ≥ 1, we consider
x ∈ R

d, α ∈ R
k, μ, μ′ ∈ P2(R

d) such that

(5.10) max
(|x|, |α|,M2(μ),M2(μ

′)
) ≤ R, W2(μ, μ

′) ≤ δ.

By (A.5) and (5.8), we can find a constant c′ (possibly depending on γ) such that

fn(x, μ
′, α) = sup

|y|≤n
inf

|z|≤c(1+R)

[〈y, x− z〉+ f(z, μ′, α)
]

≤ sup
|y|≤n

inf
z≤c(1+R)

[〈y, x− z〉+ f(z, μ, α) + cL(1 +R+ |z|)δ]
= sup

|y|≤n
inf
z∈Rd

[〈y, x− z〉+ f(z, μ, α)
]
+ c′(1 +R)δ.

(5.11)

This proves local Lipschitz-continuity in the measure argument as in (A.5).
In order to prove local Lipschitz-continuity in the variables x and α, we use the

C1,1-property. Indeed, for x, μ, and α as in (5.10), we know that

(5.12)
∣∣∂xfn(x, μ, α)∣∣+ ∣∣∂αfn(x, μ, α)∣∣ ≤ ∣∣∂xfn(0, μ, 0)∣∣+ ∣∣∂αfn(0, μ, 0)∣∣+ cR.

By (5.7), for any integer p ≥ 1, there exists an integer np, such that, for any n ≥ np,
∂xfn(0, μ, 0) and ∂αfn(0, μ, 0) are, respectively, equal to ∂xf(0, μ, 0) and ∂αf(0, μ, 0)
for M2(μ) ≤ p. In particular, for n ≥ np,

(5.13)
∣∣∂xfn(0, μ, 0)∣∣+ ∣∣∂αfn(0, μ, 0)∣∣ ≤ c

(
1 +M2(μ)

)
whenever M2(μ) ≤ p,

so that (5.12) implies (A.5) whenever n ≥ np and M2(μ) ≤ p. We get rid of these
restrictions by modifying the definition of fn. Given a probability measure μ ∈ P2(R

d)
and an integer p ≥ 1, we define Φp(μ) as the push-forward of μ by the mapping R

d �
x ↪→ [

max
(
M2(μ), p

)]−1
px so that Φp(μ) ∈ P2(R

d) and M2(Φp(μ)) ≤ min(p,M2(μ)).
Indeed, if X has μ as distribution, then the random variable Xp = pX/max(M2(μ), p)
has Φp(μ) as distribution. It is easy to check that Φp is Lipschitz continuous for the
2-Wasserstein distance, uniformly in n ≥ 1. We then consider the approximating
sequence

f̂p : R
d × P2(R

d)× R
k � (x, μ, α) ↪→ fnp

(
x,Φp(μ), α), p ≥ 1,

instead of (fn)n≥1 itself. Clearly, on any bounded subset, f̂p still coincides with f
for p large enough. Moreover, the conclusion of the second step is preserved. In
particular, the conclusion of the second step together with (5.11), (5.12), and (5.13)
say that (A.5) holds (for a possible new choice of cL). From now on, we get rid of the

symbol “hat” in (f̂p)p≥1 and keep the notation (fn)n≥1 for (f̂p)p≥1.
Step 4. It only remains to check that fn satisfies the bound (A.6) and the sign

condition (A.7). Since |∂αf(x, μ, 0)| ≤ cL, the Lipschitz property of ∂αf implies
that there exists a constant c ≥ 0 such that |∂αf(x, μ, α)| ≤ c ∀(x, μ, α) ∈ R

d ×
P2(R

d) × R
k with |α| ≤ 1. In particular, for any n ≥ 1, it is plain to see that

fn(x, μ, α) ≤ fn(x, μ, 0) + c|α|, for any (x, μ, α) ∈ R
d × P2(R

d)× R
k with |α| ≤ 1, so

that |∂αfn(x, μ, 0)| ≤ c. This proves (A.6).
Finally, we can modify the definition of fn once more to satisfy (A.7). Indeed,

for any R > 0, there exists an integer nR, such that, for any n ≥ nR, fn(x, μ, α) and
f(x, μ, α) coincide for (x, μ, α) ∈ R

d × P2(R
d) × R

k with |x|, |α|,M2(μ) ≤ R so that
〈x, ∂xfn(0, δx, 0)〉 ≥ −cL(1 + |x|) for |x| ≤ R and n ≥ nR. Next we choose a smooth
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function ψ : Rd ↪→ R
d, satisfying |ψ(x)| ≤ 1 for any x ∈ R

d, ψ(x) = x for |x| ≤ 1/2,

and ψ(x) = x/|x| for |x| ≥ 1, and we set f̂p(x, μ, α) = fnp

(
x,Ψp(μ), α

)
for any integer

p ≥ 1 and (x, μ, α) ∈ R
d × P2(R

d) × R
k, where Ψp(μ) is the push-forward of μ by

the mapping R
d � x ↪→ x − μ + pψ(p−1μ̄). Recall that μ stands for the mean of μ.

In other words, if X has distribution μ, then X̂p = X − E(X) + pψ(p−1
E(X)) has

distribution Ψp(μ).
Ψp is Lipschitz continuous with respect to W2, uniformly in p ≥ 1. More-

over, for any R > 0 and p ≥ 2R, M2(μ) ≤ R implies | ∫
Rd x

′dμ(x′)| ≤ R so that

p−1| ∫
Rd x

′dμ(x′)| ≤ 1/2, that is Ψp(μ) = μ and, for |x|, |α| ≤ R, f̂p(x, μ, α) =

fnp(x, μ, α) = f(x, μ, α). Therefore, the sequence (f̂p)p≥1 is an approximating se-
quence for f which satisfies the same regularity properties as (fn)n≥1. In addition,

〈x, ∂xf̂p(0, δx, 0)〉 = 〈x, ∂xfnp(0, δpψ(p−1x), 0)〉 = 〈x, ∂xf(0, δpψ(p−1x), 0)〉

for x ∈ R
d. Finally, we choose ψ(x) = [ρ(|x|)/|x|]x (with ψ(0) = 0), where ρ is a

smooth nondecreasing function from [0,+∞) into [0, 1] such that ρ(x) = x on [0, 1/2]
and ρ(x) = 1 on [1,+∞). If x �= 0, then the above right-hand side is equal to

〈x, ∂xf(0, δpψ(p−1x), 0)〉 = |p−1x|
ρ(|p−1x|) 〈pψ(p

−1x), ∂xf(0, δpψ(p−1x), 0)〉

≥ −cL |p−1x|
ρ(|p−1x|)

(
1 + |pψ(p−1x)|).

For |x| ≤ p/2, we have ρ(p−1|x|) = |p−1x|, so that the right-hand side coincides with
−cL(1 + |x|). For |x| ≥ p/2, we have ρ(p−1|x|) ≥ 1/2 so that

− |p−1x|
ρ(|p−1x|)

(
1+ |pψ(p−1x)|) ≥ −2p−1|x|(1+ |pψ(p−1x)|) ≥ −2p−1|x|(1+ p

) ≥ −4|x|.

This proves that (A.7) holds with a new constant.

REFERENCES

[1] M. Bardi, Explicit Solutions of Some Linear Quadratic Mean Field Games, Technical report,
Padova University, Padova, Italy, 2011.

[2] A. Bensoussan, K. C. J. Sung, S. C. P. Yam, and S. P. Yung, Linear Quadratic Mean Field
Games, Technical report, 2011.

[3] R. Buckdahn, J. Li, and S. Peng, Mean-field backward stochastic differential equations and
related partial differential equations, Stochastic Process. Appl., 119 (2007), pp. 3133–3154.

[4] R. Buckdahn, B. Djehiche, J. Li, and S. Peng, Mean-field backward stochastic differential
equations: A limit approach, Ann. Probab., 37 (2009), pp. 1524–1565.

[5] P. Cardaliaguet, Notes on Mean Field Games, Technical report, 2010.
[6] R. Carmona and F. Delarue, Forward-Backward Stochastic Differential Equations and Con-

trolled McKean Vlasov Dynamics, Technical report, Princeton University and University
of Nice, http://hal.archives-ouvertes.fr/hal-00803683.

[7] R. Carmona, F. Delarue, and A. Lachapelle, Control of McKean-Vlasov versus Mean
Field Games, Mathematical Financial Economics, to appear.

[8] F. Delarue, On the existence and uniqueness of solutions to FBSDEs in a non-degenerate
case, Stochastic Process. Appl., 99 (2002), pp. 209–286.
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