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Summary. The purpose of this paper is to highlight some of the key efgmef the HIM
approach as originally introduced in the framework of fixechime market models, to explain
how the very same philosophy was implemented in the caseditqortfolio derivatives and
to show how it can be extended to and used in the case of eqaityetrmodels. In each case
we show how the HIM approach naturally yields a consistepaglition and a no-arbitrage
conditions in the spirit of the original work of Heath, Jarrand Morton. Even though the
actual computations and the derivation of the drift conditin the case of equity models
seems to be new, the paper is intended as a survey of exissnlig, and as such, it is mostly
pedagogical in nature.

1 Introduction

The motivation for this paper can be found in the desire tceustdnd recent attempts
to implement the HIM philosophy in the valuation of optiomsavedit portfolios.
Several proposals appeared almost simultaneously intdratlire on credit portfo-
lio valuation. They were written independently by N. Benin@j, J. Sidenius, V.
Piterbarg and L. Andersen [26] and P. Shonbucher [41], therlaeing most influ-
ential in the preparation of the present survey. After aslrarease in volume and
liquidity due to the coming of age of the single tranche sgtithCDOs, markets
for these credit portfolios came to a stand still due to thek laf dynamic mod-
els needed to price forward starting contracts, optionspiows,. ... So the need
for dynamic models prompted these authors to build anaddugéween the original
HJM approach to interest rate derivatives and derivativesredit portfolio losses.
The common starting point of these three papers is the tlodmell documented
shortcomings of the market standard for the valuation ofd@@lized Debt Obliga-
tions (CDOs). The Gaussian copula model on which the standantrinsically a
one periodstatic model which cannot be used to price forward startimgtracts.
The valuation by expectation of these forward starting @mt$ require the analysis
of a term structure of forward loss probabilities. The HIMdmling of the dynamics
of the forward instantaneous interest rates, suggestsdohaose dynamic models
for the these forward loss probabilities. The three papenstibned above try to take
advantage of this analogy with various degree of generatfitysuccess.

The goal of this paper is to review the salient features ofHld®& modeling
philosophy as they can be applied to three different marke¢sfixed income mar-
kets originally considered by Heath, Jarrow and Morton,dfeelit markets and the

* This research was partially supported by NSF DMS-0456195.
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equity markets. In each of the three cases considered ipalpisr, the financial mar-
ket model is based on a set of financial securities which eenasd to be liquidly
traded. A basic assumption is that the price of each suchriseobservable, and
any quantity of the security can be sold or bought at this eskprice. These prices
are used to encapsulate what the market is telling the moaelé the thrust of the
HJM modeling approach is to postulate dynamical equationdhfe prices of all
these liquid instruments and to check that the multitudeldahase equations does
not introduce inconsistencies and arbitrage in the marlketah

The classical HIM approach is reviewed in Section 3. Ouriméd presentation
does not do justice to the depth of the original contribufiot] of Heath, Jarrow and
Morton. It is meant as a light introduction to the modeling@sophy, our main goal
being to introduce notation which are used throughout thpepand to emphasize
the crucial steps which will recur in the discussion of theestmarket models. Sec-
tion 5 is devoted to the discussion of the recent works [2&idénius, Pitterbarg and
Andersen and [41] Schoenbucher on the construction of dimaradels for credit
portfolios in the spirit of the HIM approach. These two pagee at the root of our
renewed interest in the HIM modeling philosophy. It is wihdading them that we
realized the impact they could have on the classical equdgets. The latter are
usually calibrated to market prices by constructing an ietplolatility surface, or
equivalently a local volatility surface as advocated by Peipnd Derman and Kani
in a series of influential works [19][16]. As we explain in $iea 6, the construc-
tion of these surfaces is only the first step in the conswaadf a dynamic model.
A dynamic version of local volatility modeling was touted Bgrman and Kani in a
paper [17] mostly known for its discussion of implied treedals. Motivated by the
fact that the technical parts of [17] dealing with continsmaiodels are rather infor-
mal and lacking mathematical proofs, Carmona and Nadtadéweloped in [7] the
program outlined in [17]. On the top of providing a rigorouatimeematical derivation
of the so-called drift condition, they also provide califiva and Monte Carlo im-
plementation recipes, and they analyze the classical Makspot models as well
as stochastic volatility models in a generalized HIM framdw\We present their
results in the last section of this paper.

Acknowledgements.would like to thank Dario Villani and Kharen Musaelian for
introducing me to the intricacies of the credit markets.ifimsights were invaluable:
what they taught me cannot be found in textbooks !!!

2 General Mathematical Framework

This section is very abstract in nature. Its goal is to senhtitation and the stage for
the discussion of a common approach to three different nimrke

2.1 Mathematical Notation

Throughout this paper we assume th@t 7, P) is a probability space andF; } ;>0

is a right continuous filtration of sub-fields of 7, F, containing all the null sets
of P. Most often, we assume that this filtration is a Browniandtitin in the sense
that it is generated by a Wiener process$’ },>o. We allow this Wiener process
to be multi-dimensional, and in fact, it can even be infinit@ehsional. The facts
from infinite dimensional stochastic analysis which areialty needed to prove the
results discussed in this paper in the infinite dimensiogtlng can be found in
many books and published articles. Most of them can be dkrisithout using too

much functional analysis. For the sake of my personal caewer, | chose to refer
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the interested reader to the book [9] for definitions anditsetdoout those infinite
dimensional stochastic analysis results which we rely upon

In order to compute cash flopresent valugswe use a discount factor which
we denote by{3,},>0. The latter is a non-negative adapted stochastic processes
Typically we use forg; the inverse of the bank accouBt which is defined as the
solution of the ordinary (possibly random) differentiabegjon:

dBt = TtBt dt, BO = 1, (1)

where the stochastic proces },>( has the interpretation of a short interest rate. In
this case we have

Br=e Joreds, 2)
Notice that{ 3, }:>0 is multiplicative in the sense that
ﬁs+t(w) = 5s(w)ﬁt(esw)a w e Qv

where{0,}:> is a semigroup of shift operators ¢h For the sake of illustration, we
should think of thev’s in (2 as functions of time, in which ca$é,w](t) = w(s+1t).

We shall assume thi#tis a pricing measure. This means that the market price at
timet = 0 of any liquidly traded contingent claim which pays a randamoant¢
at timeT’, saypy, is given by (notice that the pay-affis implicitly assumed to be a
Fr integrable random variable):

po = E{fr&}

whereE{ -} = EF{ .} denotes the expectation with respect to the probability-mea
surelP. In other wordsPP is a pricing measure if prices of contingent claims are given
by P-expectations of present values of their future cashflows.

If we also assume that the market is free of arbitrage, theptticep; at timet <
T of the same contingent claim is necessarily given by the itionel expectation

Do = %E{mm
t

which shows that{5,p; }+>0 is a P-martingale in the filtration{ ; };>¢. In other
words, if P is a pricing measure, the discounted pricesfareartingales.

Notice that we do not assume that such a pricing measure igi@nin other
words, we allow for incomplete market models in our discoissi

2.2 Liquidly Traded Instruments

We next assume that our economy is driven by a set of liquidigetd instruments
whose prices at timg we denote byP?. We can think of the vectd?; = (P )aca
of these observable prices as a state vector for our econdmwill not make the
completeness assumption that

Fi =c{Ps; 0 < s <t} t>0.

These instruments are fundamental for the analysis of thikeheand a minimal
requirement on a dynamical model of the economy will be thelhs& model provides
prices for forward starting contracts and European callmriéptions on these basic
instruments. In particular, at each tiheve should be able to compute the quantity

E{Br (P — K)"|F:} 3)
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for every maturityl’ > ¢ and strikeX > 0. Since a measure on the half lineR .
is entirely determined by the knowledge of its call transfpr.e. the values of the
integrals

[ =5 utaa),
Ry

for K > 0, the knowledge at time, of the prices of all the call options completely
determines the distributions under the conditional meaBuyr of all the random
variablesPy for all T > t and alla € A.

Here, for eacht > 0, we define the random meastiiteas the (regular version of
the) conditional distribution givest; of the discounted version @&f. In other words,
P, is characterized by the requirement that the equality

E{B 7P 0 6,} = B{3PE{prw}}

holds for all bounded random variablésand¥ which areF; and 7 measurable
respectively.

Remark. Notice that if instead of simply requiring the knowledgetioé prices of
all the European call options we were to also require the kedge of the prices of
all the path dependent options, then for eack A, the entire (joint) distribution
underP, of (P%)r>, would be determined. In the situation of interest to us, dinéy
one-dimensional marginal distributions Bf are determined by the prices we can
observe.

2.3 Dynamic Market Model

All the information about the market model should be coredim the specification
of a pricing measur®. However, as we explained earlier, it seems that a reasenabl
market model should

e be consistent with the prices of the liquidly traded instemts quoted on the
market in other words, the numerical valué¥' observed on the market should
be recovered as conditional expectations under the prioeasuré® of the dis-
counted cashflows of the corresponding instruments;

e allow for the pricing of forward starting contracts (e.g. Epean call options
on call optionsusing the identified liquidly traded instruments as undady
In other words, it should provide a way to compute the timeli@n of the
conditional (random) measur®@s, or at least its marginal distributions.

The first bullet pointinvolves simply reproducing the paad the basic liquid instru-
ments at time = 0. It usually goes under the name of calibration. The resbriadf
the measur@® to 7 is typically trivial and the computation of these pricesdlwes
only regular expectations with respectftavhich can be computed at timie= 0. So
this first bullet point does not seem to involve the dynamiahe stochastic evolu-
tion of the characteristics of the market model: it look l& static requirement for
a one period model.

On the other hand, the second bullet point involves inforomadbout the model
(and hence the pricing measuitgof a more dynamic nature. For this reason, if will
appear to be preferable to specify this dynamic informaéibautP by specifying
{P:}+>0 as a stochastic process in the space of probability measoriée possible
future time evolutions of the vectof®,s}s>o of basic instruments. This is the
main thrust of the HIM approach to fixed income market modeiswaas originally
introduced by Heath, Jarrow and Morton, and this is the pointiew we take to
review in the remaining part of this paper, recent develapsan modeling credit
and equity markets.
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3 The Classical HIM Approach

The goal of this section is purely of a pedagogical naturés hot intended as a
rigorousexposéof the original work of Heath, Jarrow and Morton: it is merely
informal discussion aimed at a very general audience. Ircéise of fixed income
markets (also called interest rate derivatives markedis) simplest form of interest
rate is the spot rate whose value at timee denote by,. As we will emphasize
in several instances, any market model needs to providethétldistribution of the
stochastic procesg }:>o, even if its role is limited to the introduction of the bank
account and the discount factor as in the previous sectiamyivharket models have
been based on the specification of the dynamics of this psoEes this reason they
are callecshort rate modeldDespite the limitations which we are about to document,
they remain very popular, mostly because of their vergatiind the existence of
closed form formulae for the prices of many liquidly tradedtruments.

There are several sets of liquid interest rate derivatietgedy traded and quoted
daily. Coupon bearing bonds, caps, floors, swaptions, ane &6 them. But because
most of them can be viewed as portfolios of zero coupon bardsyropean options
on zero coupon bonds, and because this section aims atingcelsissical material
(which can be found in most financial mathematics textboaits) the framework
adopted in the paper, we find convenient to choose, for thefsiquidly traded
securities, the ensemble of all the zero coupon non-defalelbonds.

For the sake of definiteness, we denoteit, T") the price at time of such
a zero coupon bond with maturity’. We shall often use the term "Treasury”
(which essentially means that the bond will not defaulinhangeably with "non-
defaultable”. The entire face value will be paid at tiffiéy the issuer of the bond to
the buyer as long &@B > ¢. So at timef = 0, all the pricesB(0,T') can be observed
and the entire curve
T — By(T) = B(0,T) 4

is known. So as stated in the first bullet point of Subsecti@raBove, a first require-
ment for a model given by a pricing meastrés to reproduce these prices exactly.

As we are about to see, this innocent looking condition caaiways be sat-
isfied by the short interest rate models which need to belibrated frequently to
satisfy, at least approximatively this requirement. Irdjeshort interest rate models
are endogenous term structure models as the initial tennstane of zero coupon
bond prices (4) is an output of the model instead of being patiobserved in the
market place. This last point is one of the main componentiseoHJM approach.

Since the cash flows of a zero coupon bond reduce to payingritéal amount
(which we conveniently normalize tj at timeT’, the price has to be given by

Bo(T) = E{fr} = E{e~ /o 7+ds}, (5)

recall thatg, = 1. So if the parameters of the pricing meashrallow for the com-
putation of the expectation in the above right hand sideyéhee of this expectation
will have to coincide with the observed pride (T) if we want to satisfy the first
bullet point above.

Using Instantaneous Forward Rates InsteadFor reasons that will become clear
later, if the zero coupon price3(t, T') are (or assumed to be) smooth in the maturity
variableT', it is more convenient to work with the forward rates defingd b

F(.7) = 5 log B(t,T) ©

rather than the bond prices directly. Since the bond priaae recovered from the
forward rates
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B(t, T) = e j‘tT f(tu) du (7)

the term structure of interest rates can be given equivglbgitthe forward curves.
In particular, observing all the bond pricék (7)) at timet = 0 is equivalent to
observing all the forward rate (7"), and the initial forward rate curve

T — fo(T)

can be the object of the calibration efforts (in the case oftstate models) or it can
serve as initial condition (in the case of HIM dynamical msgde

3.1 Short Rate Models

Since the prices of the basic instruments of the market cartobguted as expec-
tations over the short interest rate, recall formula (53,4implest prescription for a
pricing measuré is to describe the dynamics of the short rate process. T\piea
short rate model assumes that under the pricing med@suhe short interest ratg
is the solution of a stochastic differential equation ofdifeusion form (i.e. Marko-
vian):

dry = p™ (t,ry) dt + o) (t,r) dW; (8)

where the drift and volatility terms are given by real-valfdeterministic) functions
(t,r) = pD(t,r) and (t,r) — o (t,r)

such that existence and uniqueness of a strong solution aldhe sake of illustra-
tion, we consider only one specific example. Indeed, the gfdls section is not to
present the theory of short rate models. They are mentiongdas motivation for
the introduction of the HIM modeling approach.

We choose th&asicek model because of its simplicity, but for the purpose of
the present discussionGIR model of the square root diffusion could have done as
well. In the case of the Vasicek model, the dynamics of thetstade are given by
the stochastic differential equation:

d’f‘t = (CY — ﬁ?‘t)dt + O'th. (9)

This equation is simple enough (linear) to be solved expfici he solution is given
by
t
re = e Plrg + (1 — efﬁt)% —|—/ e Pt ga,. (10)
0

{r:}+>0 is a Gaussian process whenevgris, and at each time > 0 there is a
positive probability that, is negative. Despite this troubling feature (not only can
an interest rate be negative in this model, but it is almostlgwnbounded below!),
this model is very popular because of its tractability anddose a judicious choice
of the parameters can make this probability of negative@sterate quite small. The
tractability of the model is due to the fact that the randomalde fot reds is Gaus-
sian with mean and variance which can be explicitly compérea the parameters
«, 8 ando of the model, and from this fact, one gets an explicit formfolathe
expectation (5) giving the price of the zero coupon bondsgéte

By (T) — eMT)+b(T)ro (11)

wherery is the current value of the short rate, and where the funstigfi) andb(T")
are given by:

b(T) = _% (1 e o7 (12)
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and

4af — 302 0% —20p3 o —af _BT o2 2T
a(T) = W + RE T+ 7 e - W@ . (13)

Alternatively, if we use the forward curve instead of theaweoupon bond curve we
get:

« o? 2

F(t,T) = re PT=D 4 5 (1 — e BT t>) o (1 — e BT t>) . Q4)
from which we get an expression for the initial forward cutve— f,(7") by setting
t = 0. Notice that such a forward curve converges to the conggant — o2) /23>
whenT — oo. This limit can be given the interpretation ofang rate(as opposed
to the short rate) whea? < 2a4. In any case, a Vasicek forward curves flattens
and becomes horizontal for large maturity The graph of a typical example of a
forward curve given by the Vasicek model is given in the lefhe of Figure 1. We
used the parametess= 13.06, § = 2.5 ando = 2 to produce this plot. We clearly
see the flattening of the curve on the right part of the plot.

Rigid Term Structures for Calibration

As we explained earlier, choosing values for the parameffetsee model &, 5 and
o in the Vasicek model discussed in this section) in ordertferrhodel to reproduce
the observed forward curve is what is usually called cafibreof the model. Since
the Vasicek model depends upon three parameters, threedqoiates, say3,(7}),
By(Tz) and By(T3) for three different maturitie$y, 7> andT5 should in principle
be enough to determine these parameters. But unfortungtelgurvel — By (T')
constructed from formulae (11), (12), and (13) and threampater values derived
from three bond prices does not always look like the curvelpced by the market
quotes, and most importantly, it changes with the choicasethree maturitied?,
T, andT3. For the sake of illustration, we give in the right pane ofufig 1 the plot
of the market zero-coupon forward curve on 3/28/1996, anduper-impose on the
same graph the plot of the best least squares fit among thiblgosward curves
produced by the Vasicek model. This optimal Vasicek forwardre was obtained
for the valuesy = 13.06, § = 2.401 ando = 1.724 of the parameters. The fact that
a Vasicek forward curves flattens for large maturity makegjitossible to match the
typical increase iff” found in most practical instances.

A Possible Fix

Several solutions have been proposed to the undesiraldéyigf the initial term
structure curves produced by the short rate models. The popstiar one is to force
some of the coefficients to be time dependent in order for thdaihto match any
market forward curvgd” — fo(7T'). This is especially simple and useful in the case
of the Vasicek model for if the time dependent coefficients deterministic, the
solution process remains Gaussian, and closed form sotufa the values of the
forward rates and zero coupon prices can still be derivedheTmore specific, for-
mula (10) becomes

t t
re=e .f() ﬂsds'r‘o + / 67‘[5 ﬁud"asds + / e 'fs ﬂuduades- (15)
0 0

and since the conditional distribution of the integfsél «du is Gaussian, bond prices
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Example of a Vasicek Forward Curve Forward Curve on 3/28/96 and calibrated Vasicek Forward Curve
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5.0
L

45
L

4.70
L
4.0
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Fig. 1. Typical forward curve produced by the Vasicek model (lefi)l alibrated Vasicek
forward curve (dotted line) to the zero-coupon forward euon 3/28/1996.

B(t,T) = E{e™ I 74| 7}

can still be derived from the expression of the Laplace fans of the Gaussian
distribution.

This strategy was successfully implemented in the casesoVaisicek model (9)
by Hull and White. These two authors proposed to leave theity o and the mean
reversion ratgl constant, and to replace the parametéy a deterministic function
t — «(t). In this case, the solution is given by the formula

t t
re = e Ptpg —|—/ e Bt ds + U/ e P9 qw,, (16)
0 0

and the forward rate is given by the formula

T 2
ft,T)=ePT0p, 4 / e P ds — ;—52[1 — e AT-D)2, (a7)
t
If we replace in this formula by 0 and7" — t by ¢, we get simple formulae for the
initial forward curve and its derivative. From there oneilgasees that it is possible
to choose the function — «(t) to obtain any given (smooth) forward curve. To
be specific, if we denote by, (7") the forward rate observed on the market at time
t = 0 for maturityT’, then choosing

e
26

will force the initial forward curvel” — f,(T') produced by the Vasicek model with
this time dependent coefficien{t) to coincide with the market (observed) forward
curveT — f,(T). The model is now compatible with the currettservedorward
curve, it iscalibratedto the market.

ar = f§(t) + Bfo(t) (1—e ") (Be " ~1)

Model calibration is everyday practice in quantitative fina, and the procedures
similar to the Hull-White modification of the Vasicek modetaegarded as useful.
But despite their popularity with practitioners, theselmaltion techniques remain
problematic for several reasons.

Firstly, this fix is short lived for in general the adequacytef modified model is
limited to a short period. Indeed, the next time we check ¢tin@érd curve given by
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the market, it will most likely not agree with the forward gaiimplied by the model,

hence the need to recalibrate and changing the stocha$ticeditial equation as we
need to change its coefficients. The relevant questioniis thieen to recalibrate, and
there is no theoretical answer to that question in genehad.chlibration procedure
described above limits the usefulness of the model to a simoet period, and de

facto, turns a dynamic model intooae period model

But there are other reasons to go beyond the short rate méatdded, specifying
a short rate model amounts to specifying the (stochastinpihjcs of the whole
forward curve by specifying the (stochastic) dynamics eflgft-hand point of the
curve. Indeedy; = f(t,t), and this rigidity is confirmed by the fact that given any
two maturitiesT; and7s the correlation coefficient between trendom variables
df (¢, Ty) anddf (¢, T) is necessarily equal td

Factor Models, Consistency and No-Arbitrage

Short rate models are particular cases of factor modelsdgtims structure of inter-
est rates. They correspond to the case when the numberoffésbne, and the sole
factor is the short interest rate itself. More general fantodels have been consid-
ered, and no-arbitrage conditions in the spirit of the dis@n of this section have
been derived at various levels of generality. See for exaff§lor Proposition 2.2.
of [24] for a sample condition.

Notation. We introduce a special notatian= T — ¢ for the time-to-maturity of
a bond, or yield, or forward, etc. The forward rates (as weliree bond prices) are
defined accordingly in terms of this new variable.

filr) = ft,t+7), T>0. (18)

Expressing the forward rates at tirhi terms of time-to-maturity instead of time-
of-maturity T" has the advantage of forcing all the forward curyeso be defined
on the same domaift), o0). This convenient notation is often called the Musiela
notation.

We concentrate later on the no-arbitrage condition for geridéJM models. For
the time being, we discuss it in the context of factor modei# from parametric
families of forward or yield curves. These families are ulsumtroduced in the
following way. We start from a functio from © x [0, o) into [0, c0) where©®
is an open set iiR¢ which we interpret as the set of possible values of a vettor
of parameter9, ---, 64. In this way, for eact¥ € © thecurveG(0, -) : 7 —
G(0, ) can be viewed as a possible candidate for the forward cuorahg sake of
illustration we give the classical example of the Nelsoegsi family defined by

G(0,7) =01 + (B2 +b37)e %7, 7>0. (19)

The parameter@, andé, are assumed to be positivl. represents the asymptotic
(long) forward ratef); + 605 gives the left end point of the curve, namely the short
rate, whiled, gives an asymptotic rate of decay. The@aif parameters is the subset
of R* determined by); > 0, 6, > 0 andf, + 6, > 0 since the short rate should not
be negative. The parametgris responsible for a hump whég > 0, or a dip when

03 < 0. Other parametric families have been used, the most popokabeing the
Svensson'’s family. See [9] and the references therein.

We now introduce factor models from the notion of paramdaily formalized
above. We assume that we are given a parametric fakhilg before and we suppose
that® = {6, }+>0 Is ad-dimensional semi-martingale with values in the parameter
spaced. We then set

11
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fi(r) = G(0s,7), t>0,7>0.

Recall thatr represents the time to maturity. Tﬁa:omponentﬁ-z of #, are inter-
preted as economic factors driving the dynamics of the tdroctire of interest
rates. Assuming further that is twice continuously differentiable in the variables
67, we can use Itd’s formula and derive the dynamicg;of).

As we assume that the measilitées the measure used by the market to compute
prices, in this context, the absence of arbitrage is eqemidb the the fact that all the
discounted bond pricgs3*(t, T') } +<[o,7] are local martingales. Recall the discussion
of Section 2. Here, the discounted bond price at tirf@ maturity 7" is given by

B*(t7 T) _ ﬁtB(t, T) _ eff(f rstB(t, T) _ effot f(s’s)dsefftT f(t,u)ds. (20)

since we are using the inverse of the bank account as distaxtot. For each fixed
T > 0, the proces§ B*(t,T)}o<i<r is a local martingale if the drift in its 1td’s
stochastic differential i8. Such a condition takes a particularly simple form in the
case of a factor model defined as above and when the fa#ttoem ad-dimensional
Markov diffusion. We refrain from giving the details as we @bout to discuss the
same condition in a more general setting. The interestatkbréareferred to [9] p.70
or [25] for details. In the literature on the classical HIMpegach to fixed income
markets, a paifG, ®) satisfying the no-arbitrage condition is said todmasistent
Again, see for example [25] and [9]. For the sake of conststéh), we use the same
terminology in the present situation. The context will makear whether we mean
consistency with a spot model or absence of arbitrage foctafanodel.

3.2 The Heath—Jarrow—Morton Approach

In the far reaching paper [14], Heath, Jarrow and Morton psep to solve the above
dilemma by modeling directly the dynamics of the entire testnucture of interest
rates, in other words, by modeling the dynamics of the fodaarrve. This seem-
ingly minor change has dramatic consequenitdstls two birds with one ston@
the sense that both bullet points of Subsection 2.3 are tedwenof by this change.
Indeed, calibration merely reduces to feeding the init@mhdition to the dynami-
cal equation (this takes care of the first bullet point), dmelttime evolution of the
conditional probabilitie®, follows from the same dynamical equation.

In order to be more specific, we consider a pricing mea&unee choose the
basic instruments to be at each instattie discounted bond pricdB* (¢, T) } >,
defined by equation (20) above, and we assume that for eachrfizwurity7’, these
discounted bond prices form a continuous local martingatéPf The martingale
property is our way to guarantee that such a market modeééesdf arbitrage op-
portunities. We explain below that enforcing this martilegaroperty in a model
leads to a constraint which is known under the name of drifidé@ton. In their orig-
inal proposal, Heath, Jarrow and Morton suggested to wotk thie forward rates
{f(t,T)}+ep0,r) instead of the actual bond prices. So instead of starting aly-
namical equation of the form

d
dB*(t,T) =Y _ 70 (t, T)aw,” (21)
=1

for some predictable processgs? (t, T') }+ejo,1), they assume that the dynamics of
the forward rateq f(¢,T') }+c[o,r] are given by stochastic differential equations of
the form

df(t,T) = a(t, T)dt + B(t,T) - AWy, (22)
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where the processesy(t,T') }icjo, ) and{B(t,T') }+cjo,7) are assumed to be pre-
dictable with respect to the filtration generated by the \Wigorocess. Notice that
both 3 andW can be multivariate (i.e. vector valued) in which case thevatequa-
tion can be understood in developed form as

d
df(t,T) = a(t,T)dt + Y _ g9, T)aw,”. (23)

J=1

Notice that, as we mentioned in the introduction, the thedigws ford = co. See
for example [8] or the contribution of Ekeland and Taflin tistliolume. Note also
that elementary stochastic calculus manipulations carsbd to derive an equation
of the form (23) from a starting point like (21), and convéysi is easy to go from
(21) to (23).

Finally, we note that the dynamics (23) are given by a largalmer of stochastic
equations, one for each maturity. Equivalently, this can be rewritten as a single
equation for a function df’, in other words a semi-martingale given by the solution
of a stochastic differential equation with values in a spafcinctions ofT". Still
another possibility is to view the forward rafét, T') as a random field parameterized
by t andT'. The reader interested in the interactions between these fioints of
view is referred to [8].

A Spot Consistency Condition

In most cases of interest, the lintitn7~ ; f(¢, ") exists almost surely for each fixed
t, and as we already mentioned, this limit can be naturallgtified with the short
interest rater,. Such a procesgr, },>( defined as the left hand point of the forward
curve is a semi-martingale and its stochastic differertidad resemble a stochastic
differential equation of the form we used to define shortrizderate models, though
it turns out that this is generally not the case. This de@nitf the short rate can also
be viewed as a consistency restriction between the spdficaf the dynamics of
the forward curve and the possible prescription of stodhagnamics for the short
rate. It is expressed as:

ry = f(t,1). (24)

The Original HIM Drift Condition

The discounted bond prices*(¢,T') can be written in terms of the instantaneous
forward ratesf (¢, T') as

B* (ta T) =e j‘: s d567 ftT f(tu) du

and computing their stochastic differentials using theadyit equation (23), and
setting the resulting drift to zero gives another reswoittdon the coefficients ands
of (23). As explained in most financial mathematics textsmtis constraint can be
written as:

T d ) T
ot )= 5.7 [ altsds =3 p0T) [ B0 sas @)
t = t

The above formula shows that the drift is completely detaadionce the volatilities
have been chosen. It was discovered by Heath, Jarrow an@ivVjdd4] and is widely
known as the HIM drift condition.

13
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Summary of the Approach

In order to highlight the main components of the HIM modelaiglosophy we
summarize the preceding discussion in a short list of a faletjoints.

e Atanytimet, we coded the prices of the liquidly traded instruments e zero
coupon bonds) by a forward curve.

e We prescribed stochastic dynamics for the elements of tHe-book under the
pricing measuré.

e We derived aonsistencgondition which holds if the model has to coexist with
a short rate model.

e We derived a condition guaranteeing the absence of arbitfng discounted
prices of all the liquidly traded instruments are local rmayales) which took the
form of adrift condition

These results are quite satisfactory from the theoreticatf view. However, the
business of choosing the numhérof factors and the actual volatility processes
B (t,T) still remains. This issue is especially thorny as the prifethe liquidly
traded instruments are supposed to go in the initial caydiind not in the choice
of the volatility factors. There is no generally accepteldison to this difficult prob-
lem. The most popular approach relies on prices of more ekwtruments and the
analysis in principal components for the determinatiod ahd the3?) (¢, T')'s. See
for example [9].

4 First Extensions to Equity Markets

Before switching gear and extending the HIM approach to wmrelex code-books
as in the case of credit and equity markets discussed in Hog/fog sections, we re-
view two extensions of the HIM approach to the equity mankéen the complexity
of the code-book is the same as in the classical case desdniltlee previous sec-
tion where the liquidly traded instruments were coded witheae one dimensional
curve.

4.1 Realized Variance and Variance Swaps

The goal of this first subsection is to illustrate the HIM feamork based on the
stochastic dynamics of a family of curves with the exampla offass of instruments
traded on equity desks. It appears that, when dealing witlityegnodels, both in
this section and in Section 6, discounting does not play amifgcant role except
for complicating the nature of the formulae. so without aoysl of generality, we
assume in both sections that the short interest rate is zetdv@nce that the bank
accountB; and the discount factat; are identically equal ta.

Variance swaps on a stock or an index promise the paymeneaétlized vari-
ance of the log-returns of the underlier to the holder of theps They are popular
ways for investors to gain pure exposure to variance, or dgéeolatility products.
Their prices are given by the expectation of this realizedavae up to maturity.
Assuming that they can be observed, instead of working framoéel of thespot
varianceitself, we follow the approach proposed in [5] by Buehler wttmoses
to work directly with the dynamics of the entire implied \aaice swap curve, very
much in the spirit of the HIM approach to the term structutiateirest rates reviewed
in the previous section.

To be specific, we define the annualized variance of a stoaldexiS = {5 };>0
over a period of, consecutive trading days=tg < t; < --- < t, = T by
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where252 represents the number of trading days in one year. We fohewrtarket
practice of not subtracting the mean of the daily log-resuffor that reasori/,, is
not exactly a variance. In any case, a (mean zero) varianag sith maturityl” and
strike K is a contract which payig, — K attimeT". Since the striké appears merely
as an additive factor, the following analysis will be donedasguming, without any
loss of generality, thak” = 0.

If we assume that the dateég t1,- - - ,t, form a partition of the fixed time in-
terval [0, 77, and that the mesh of this partition (i.e. the numbes,_; ... , [t; —

t;—1|) goes ta0, the realized varianck, converges towards the quadratic variation
(log S)r of the logarithm of the underlier. So for the purpose of thethramatical
analysis of these instruments, we assume that a variangevsitlamaturityl” pays
the realized quadratic variatidivg S)r, and we denote by, (T") the price at time

of such an instrument.

In this subsection, we assume that there exists a liquid enafkvariance swaps
on the underlief. This assumption may be far-fetched for most stocks, bstjtite
realistic for the major stock indexes. In particular, atditn= 0, the pricesV,(T)
of variance swaps for all maturitiés > 0 can be observed. At each timewe use
{V,(T); T > t} for the set of prices of the liquid instruments on which weebasr
financial market model, and we define a dynamic market modalplegifying the
stochastic time evolution of this set of prices.

If as before we assume that the market chose a pricing me#&swaned if the
underlier spot pric& satisfies

dSt = StUtdBt, t 2 0,

for some Wiener processB, }:>o and an adapted proce$s; };>o, then since we
assume that;(T) is the price of a liquidly traded instrument, requiring afse of
arbitrage implies that:

T
V(D) = E{log )i} = B{ | olds| ).

Throughout this paper, we assume that interest radgasd 3, = 1) whenever we
discuss equity markets.

As in the case of the HIM approach to the term structure oféstaates, we
assume that for each fixed V;(7T') is a smooth function of the maturity, and
we define the forward varianeg(7') as its derivative with respect to maturity. In
analogy with the term structure of interest rated was codethb instantaneous
forward curve, we capture the term structure of realizedavae by the forward
variance curvey; defined by:

T = (7)) = vt + 7), 7>0
where by definition, (T') = 07 V;(T'). Notice that
’l~}t(0) :’Ut(t):O't, P — a.s.

gives a simple form of the HIM spot consistency condition (24
Notice also that, with the above notation, for each fi¥&dle must have:

v (T) = 0rVi(T) = E{o%|F:}, 0<t<T,

15



16 R. Carmona

which shows that for each fixef, the procesgv,(T') }o<:<7 IS @ martingale. Con-
sequently, modeling its dynamics can be done by specifylirag it has a semi-
martingale decomposition of the form

dvy(T) = au(T)dt + B (T') dWy

with o4 (T') = 0. So in this particular case, the HIM drift condition takesi|
form.

The reader interested in factor models for the forward vaea, (7') and their
consistency with no-arbitrage, as well as pricing and haglgif variance swaps in
this setting is referred to [5].

Remark. The HIM framework also has bee applied to the commodity niswkieere
most of the trading is done via forward contracts. So likeniem¢ase of the fixed in-
come models reviewed in the previous section, the commdatityard markets can
be characterized by the set of liquidly traded instrumesrtsied by the forward con-
tracts with a specific set of maturities. So the term stractfrforward contracts is
captured by a code-book of curves (functions of the date adiritpof the contracts),
but since these forward contracts are traded, they must bengeeles under the pric-
ing measure chosen by the market and as in the case of theas@aswaps markets,
the HIM drift condition guaranteeing no-arbitrage is adviThe drift condition is
non-trivial only when the code-book is formed of non-tradestruments.

4.2 European Call Maturity Term Structure

The discussion of this subsection is motivated by the wogk {8 Schonbucher on
the term structure of implied volatility for a fixed strik€. Schénbucher’s results
were recently generalized in [42] by Schweizer and Wissdghtocase of a fixed
convex pay-off functiom, when the hockey-stick functioh(z) = (z — K)™ is
replaced by a general non-negative convex function. Weewetle main results of
this more general version which includes for example povaéioas whose pay-offs
are given by the functioh(z) = x” for somey > 1.

This analysis is made on the stochastic basis@&témensional Wiener process
W = {W, };> on which the dynamics of the underlying stock price are givgan
equation of the form

dSt = St [/Ltdt + O'tthl] (26)

wherelV;! denotes the first componentdf, € R? and where{yi; }+> and{o; }:>0
are adapted stochastic processes to be specified.

In this application, as explained earlier, we assume thanthrket of liquidly
traded instruments is formed by the contingent claims wistturity 7" > 0 and pay-
off h(St) whereh is a single non-negative convex function fixed once for ak W
denote byCy(T") the price of such a claim and b¥;(T") the corresponding implied
volatility. Under the assumption of zero interest rate,

Ct(T) = E{h(STﬂft}

and X (T') is the unique number which recovers the pric€(7T") from the Black-
Scholes formula, i.e. the solution of

Bh(tv Stv Ta 0) = Ct(T)

where B, (t, S, T,0) = E{h(Sr)|F:} and the expectation is over a geometric
Brownian motion with driftu, = » and volatility o, = o. The existence and the
unigueness of such.8;(T") are well known in the classical case of the hockey-stick
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pay-off functionh(z) = (z — K)*. We review these facts later in Section 6. In the
present situation of a general convex pay-off funcfiomwe need to use a simple no-
arbitrage argument which shows that the prices of the caibog to satisfy almost
surely:

Ci(Th) < Ci(T3) whenever < T; < Tb. (27)

Indeed, if this inequality is violated with positive probii, it is possible to set up
a costless portfolio at timéwhich can be re-balanced at tirig to provide risk-
less profit at timel,, with positive probability. See [42] Proposition 2.1 fortals.
Moreover,

h(S) < Ci(T) < h(0+) + Sih/(c0)  forallt < T,

the inequalities being strict i is not affine and the spot procegs; }.>( satisfies a
mild non-monotonicity condition. These properties guéearthe existence and the
uniqueness of the implied volatility in the general case.

The purpose of this subsection is to analyze dynamic modelgtiich the prices
of the liquidly traded instruments are coded by their reipedémplied volatility. In
other words, for each time> 0, we want to use the one-to-one correspondence

{CU(T); T >t} — {2(T); T >t}

as a code-book for these prices. We recast the current satthe HIM framework
described in the previous section by having the impliedarae X, (T')? play the

same role as the yield to maturity of a discount bond. So ihaoalogy with the

original HIM approach, we replace the implied volatilitydeobook by the code-
book offorward implied variances( (¢, T") defined by

X(1,7) = o (T = ) 2(T)?) (28)

so that we have the familiar expression
1 T
Yy(T)? = — [ X(t,u)du. (29)
T—1t ),

A dynamic model for our equity market is then determined bgspribing for each
maturity7’, the dynamics o (¢, T') in the form
dX (t,T) = aft, T)dt + B(t, T)dW,,  0<t<T. (30)

In the previous section, we emphasized the simplificatioogiged by a switch to a
notation system based on the time to maturity: 7' — ¢. With this in mind we set
Ci(1) = Cy(t 4+ 7) and X, (1) = X (t,t 4+ 7) and the dynamic model is defined for
each fixedr > 0 by:

dX(7) = &y (1)dt + By(T)dW;,  t>0. (31)

The fact that? is a pricing measure (by which we mean that the underlying spo
procesq S; }+>0 and price processd€’; (T') }o<¢ < Of the the liquid instruments are
both local martingales is essentially equivalent 8pat consistencgondition

oy = X(t,0), Pa.s. (32)

for all t > 0 (in full analogy with the classical HIM case), together wathrift
condition

17
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- o 82 Ct _ 8TTCt(T
(1) = — 0.Cu(r 515 / Bi(u 2 8 Ct ) T Xy (T |/ Bi(u du‘
_ aSTC’t( ) a1 _ 8
St () P (7) — Sidr (a Ct / i

Remarks. 1. We stated above that the spot consistency and the dridlitiams are
essentiallyequivalent to the absence of arbitrage because on the tapref Batural
technical assumptions, the proof also requires the smee#wf the pay-off function
h. See [42] for detalils.

2. Making explicit the deep and profound relationship betmvthe spot volatility,
and the implied volatility®’; was done in the more general setting of the full implied
volatility surface(T, K) — X4(T, K) by Durrleman in [20]. Despite the fact that
his goals were different, most of the computations involivethe derivations of the
results of [42] stated above can be found in one form or amath®urrleman’s
proofs.

3. The results reviewed in this subsection should also bBedirto a recent work
of Jacod and Protter who study in [27] the problem of the cetimh of a market
by adding derivative instruments. Indeed, in so doing. ttiegive conditions very
similar to the spot consistency and the drift conditionsewed aove. As an added
bonus, and if the equations were not technical enough, Jaub&rotter work in the
more general set-up of semi-martingale dynamics with jumps

4. The complexity of the drift condition (33) and the teclatites involved in its
derivation are the main reason why dynamic models for thieesimiplied volatility
surface have not been studied pursed. This is in fact th@meaky Schénbucher
in [39] and Schweizer and Wissel in [42] limit themselves ymamic models for
a cross section of the implied volatility surface. This coexiy is also at the root
of the point of view taken by Carmona and Nadtochiy in [7] weh#tey give up
on the implied volatility code-book and work with dynamic deds based on the
local volatility code-book instead. We review the main edsts of this approach in
Section 6.

5 The HIM Approach for Credit Markets

We now explain how the above modeling philosophy can be ustgkicase of credit
markets. For the sake of simplicity, we assume that the timkigon of the discount-
ing factor is independent of all the default processes uyidgrthe credit derivatives
we consider in this section. So for all practical purposescan assume thét; } ;>
and{B(t,T)}o<:<T are deterministic. The market of Collaterized Debt Obliyzd
(CDOs for short), and especially the market for single theascsynthetic CDOs saw
a tremendous growth in the last five years, and because ofiticegased liquidity,
they became a favorite testbed for quantitative reseancthéocredit markets. As
they were the main motivation for the works [26] and [41] whige draw from in
this section, for the sake of completeness, we review sontieeafbasic character-
istics. In this section, we concentrate on the analysisegehnstruments and when
we saycredit marketave mean the markets they span. They provide an appropriate
set-up in which we test the HIM approach advocated in thispdje reader inter-
ested in a broader perspective on the credit markets isreef¢éo the textbooks of
Schonbucher [40], Duffie and Singleton [18] or Lando [29].

5.1 Single Tranche Synthetic CDO Market Data

We review rapidly the major properties of Single TranchetB8gtic CDOs, often
abbreviated as STSCDOs. Not only this will serve as motivator the following
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developments, but it will also help us set the notation. Bhengh these instruments
are best understood as derivatives on a portfolio of Creeialit Swaps (known as
CDSs), for the sake of time and space, we introduce them erdigmtly.

Two parties are involved in any single STSCDO transacti@mounterparty seek-
ing protection against defaults of all or part of a set of firarsd a counterparty sell-
ing this protection. To be more specific, a CDO swap with mtdr and notional
N, on a tranche with attachment poihitand detachment poiidt, is a contract over
the period0, 7] whereby the protection seller will compensate the pravedbuyer
for all the default losses in the intervigh N, /5 N], in exchange for regular coupon
payments computed at a fixed rate (the so-called spread)@ssalépreciating no-
tional. We shall give a formal definition below.

But first, for the sake of illustration, we reproduce thedualing tables giving bid
and ask quotes on the 4th and 5th series of the CDX-IG trarmih&secember 19,
2005. A hand-picked board of professionals selected a fdwhts as a representa-
tive snapshot of an homogeneous slice of the market (heréalt@ls for Investment
Grade, but there exist indexes based on pools of high vibfdtiims, etc.), and port-
folios of credit losses are used to construct an index anetles which are traded
on the market. These indexes are maintained and updateafreiseries to the next.
Each series typically compride= 125 firms

1G4 0-3% 3-7% | 7-10% 10-15"/(15—30‘%1
5-year ||381/4-391/4{106-112 26-32| 11-16|6-71/2
7-year ||513/8-521/8/244 - 254 47 -54| 26-32|81/2-11
10-yeaf|571/2-591/8/598 - 611118 - 126 58 - 66 | 16 - 22

IG5 0-3% 3-7% | 7-10%|10-15% 15 -30%
5-year ||[411/4-421/4{1071/4-112] 26-29| 11-14|61/2-91/2
7-year ||543/4-555/8 290-300 | 45-51| 27-31| 7-10
10-yea1’|61 3/4-623/4 685-705 (118-124 61-66| 17-21

The interpretation of these figures is the following. Theteuor the equity tranche

(0 - 3%) is the upfront payment (as a percentage of the ndjidhat is paidin
additionto the minimal of500 basis points per year. Quotes for all other tranches are
in basis points per year.

We explain the meaning of these quotes by explaining in ditaicash flows
associated with one of these tranches. For the sake of @ef@sis we choose the
super-senior tranche with attachment poiftsand30% on the5yr CDX-IG index
series 4. Let us assume that this tranche tradedlasis points. In this case, the pro-
tection buyer is to pag.07% of the notional per year (in quarterly coupon payments
made in arrear). In return, she will be compensated for asyel® on the portfolio
during the five years that are betweki% and30% of the principal. The losses are
computed from the portfolio underlying the index at the oréd time of the trade.

The quotes for all the other tranches are defined similartgpifor the equity
tranche for which the buyer of protection pays an upfrontded a spread o300
basis points per year. The published quotes give the bid sikéba the upfront fee
expressed as a percent of the notional. The percent of tienabthat the protection
buyer of the equity-tranche has to pay on December 19, 208%e@mveen 38.25%
and 39.25% for five-year protection.

The index is also quoted to indicate the cost of buying futitpction against all
I =125 names.

19
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5.2 First Mathematical Model

As the largest volume of transactions involve derivativetcacts written on synthetic
portfolios identified and maintained by the Dow Jones (CD¥@mUS and iTraxx in
Europe), we restrict ourselves to a fixed credit portfolid éifms, and we denote by
7; the time of default of firm. In practice, one is limited to a finite horizdr* and
one only observes; A T*. Motivated by single tranche synthetic CDOs, we mostly
consider instruments with maturiti8ss, 7 or 10 years, sd* can safely be assumed
to be10.

We denote by{ L(¢) } ;>0 the cumulative portfolio loss (appropriately normalized)
up to and including time. We denote byV (¢) the nominal of the portfolio at time
so that/V(0) denotes the initial nominal. Note that(¢) is a non-increasing function
of time and that N
t
Lt)=1— —=%

is a non-decreasing function of time which satisfies
L(0)=0, and L(t) <1.

Since the purpose of the present paper is mostly pedagpgieahake several as-
sumptions with the mere intent to avoid unnecessary teahtigs and simplify the
notation.

Motivated by the example of the Dow Jones indexes, and ealpeby the ac-
tively traded Investment Grade (IG for short) North Ameiiicdex, we assume that
the portfolio is symmetric in the sense that the credit enposiue the possible de-
fault of any single firm does not change with the firm in questio typically, we
restrict ourselves to firms included in the CDX and I Traxxdres published by Dow
Jones, and when we discuss CDOs, we consider only singlehteaaynthetic CDOs
on these indexes. So not only do we assume that the indiviiderahominal amounts
are the same, but we also assume that the recovery ratessimftdsfault are also
deterministic, and the same for all the firms. So ignoringregiévant scaling factor,
for the sake of definiteness we assume that

1 1
L(t) =7 > Di(t)

whereD,;(t) is the default indicator of firni defined as:
Di(t) = i<ty

7; being the stopping time giving the time of default of fiimSee for example the
discussions in [18] and [29] for what kind of event can triggeconstitute default.
Defined in this way,L(t) represents the relative number of defaults prior to and
includingt, given the fact that there was no default at time 0. {L(¢); t > 0} is a
stochastic process with non-negative piecewise constahhan-decreasing sample
paths with values in the finite sét= {0,1/1,2/I,--- ,(I — 1)/1,1}.

CDO Mechanics and Liquidly Traded Instruments

Even though this is not exactly the case (as the memberstipese portfolios is
reviewed on a regular basis), we shall assume that the set fincluded in the
portfolio is fixed and does not change over the life of the\@gites we consider.
Moreover, for the sake of simplicity, we shall assume thatdlscounting factofir
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is deterministic (or independent of the default times) aedde, can be taken out of
the expectations.

The prices of the basic instruments playing the role of theegrof the zero
coupon bonds, are the tranche and index spreads. To be nemifipve shall as-
sume that for each= 0, 1, 2, 3, 4 the spread;, (1") is observable for each maturity
T =1,3,5,7,10. By convention, we assume thatis the spread on the indey, is
the spread on the equity tranche the index on the lower mezzanine trance, etc. In
order to explain how each spread is computed, we introdwectetior structure

T <Ty<---<Ty

of the days on which the coupon payments are to take placewarzbntinue the
analysis of the tranche with attachment pdinaind detachment poirt, introduced
earlier. Recall that we now assume that the portfolio nohfiaa been scaled down
to 1.

Let us denote by the rate of the coupon payments, and let us first evaluate the
protection payments received by the protection buyer. IR, each time a loss
L occurs, we assume that the p&% of the loss is recovered independently of the
existence of the protection contract.
For notational convenience, for each timeve define the quantity (¢, ¢1, ¢2)
by
L(t, 0y, 0e) = (L(t) — £1)" — (L(t) — £2)7.

It gives at timef, the cumulative losses in the tranche. Indeed, it is equalftthere
were not enough losses to affect the tranche (i.&(i) < ¢;), it is equal to the
tranche nominal, — ¢; if the tranche was wiped out by losses (i.eLift) > (2),
and it gives the lost part of the tranche nominal (L&:) — ¢1) in the remaining cases
(i.e. whent; < L(t) < {5). So the expected present value (at titne 0) of all the
default losses recovered under the protection contract is

PL=(1-R)Y_ Br,[B{L(T;, 01,62)} — B{L(Ti-1. 01, 62)}]  (33)

=1

We now consider the cashflows to the protection seller. A @acpon payment
dateT;, she should receive the interest accumulated over thedrio,, 7;] com-
puted on the remaining tranche nomi& — ¢,) — L(T;, {1, ¢2). So the expected
present value (at time= 0) of all these coupon payments is

IL =5 Br,(Ti = T;-1)B{(f2 — (1) — L(Ti, 1, £5)} (34)
i=1

The (fair) spread of the tranche at time- 0 is the break even value efmaking the
expected present values of the two legs (34) and (33) eqealdo other. Hence, the
spread is given by the formula:

Sor B E{L(T;, 1, 02) — L(T;—1, 01, 02)}

PO S T - T B — ) - LT, 6))

(35)

Since we want to work with as many tranches as possible at arecgive up our
notation?; < /5 for the attachment/detachment points limiting the traneimel for
the sake of convenience, we shall from now on use the notéatienkK, < K; <
-+ < K} = 1for the end points of the tranche intervals.

Our goal is to extract the values of all the expectations

21
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CZJ:E{(L(E)_KJ)+}7 12172, , 1, ]:13 7k; (36)

from the values at time = 0 of the spreads for all the available maturities (typically
1 =1,7 =3,73 =5,74 = 7,andr; = 10 years) on the index and all the liquidly
traded tranches. This problem is not well posed as there ang more expectations
than spread quotes. We use a simple form of regularizatidghadeo extract a set
of expectations from the set of observable spreads. Thisstark contrast with the
situation encountered next section when we discuss dynawmiels for the equity
markets. There, the expectations are directly observable.

The simplest regularization method leads to the least sguestimation We esti-
mate them by solving the least squares minimization problem
C = [Ci,j]i,j g arguclf (37)

;21 P1ilCii = Cijo1 = Cim1j + Cic1j1] o
D wyelsy () — R == 2
T Yot Br(L = Tima)(Kj — Kjo1 — Cy 5 + Ci 1)

whereR’ = 1 — R, and where for each maturity, and tranche label, the weights
wj,;; are chosen to be increasing in liquidity and decreasingdrsite of the bid-ask
spread. Unfortunately, this naive idea is unrealistic hseaof the large discrepancy
between the number of reliable observationg,) and the number of desired;;.
Even Levenberg-Marquard algorithms cannot provide a stablution. The only
known fixes are based on hand-waiving arguments and th&bilitly is question-
able. See nevertheless [35] or [36]. Despite all that, ibimimon to assume that the
numbers

Ci7j:/(x_Kj)duTi(x)’ 1=1,2,---,n, j=1,--- K, (38)

are known! Here we use the notatips for the distribution of the cumulative loss
L(T). As we already mentioned, for any measprehecall transformC,, defined

by
K —C,(K)= /(:v — K)tdu(x), (39)

completely determines the measurdn general, a measugecannot be completely
recovered from the mere knowledge@f (K') for a small number of values df,
unless extra information omis available, e.gu is a finite sum of point masses.

As we will see in the next section, there are many ways to patede these values
of C; ; in between the attachment points to obtain for €ach convex function of
the continuous variabl& which coincides with the values derived above for all the
K = K;. We postpone the discussion of this point to the review oftuglenown in
the case of equity options in Section 6 below.

So itis commonly assumed that at time- 0, one knows the values of all the ex-
pectation&{(L(T;)— K)*} forall K > 0 which is equivalent to the full knowledge
of the marginal distributions of the cumulative Ia5€T;) at all the coupon payment
timesT; under the distributiof?. This is the common starting point of the two papers
on dynamic credit portfolio models which we review in thigten.

Loss Distribution Dynamics

Having a hold of the marginal distributions 6{7;) is enough to price many instru-
ments consistently with the spreads quoted on the marketapn & 0. However,
this may not be enough fdorward starting contractsLet us consider for example
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the case of a tranche swaption, i.e. an option to enter aleaswap contract (with
maturity7’ and attachment/detachment poifits< ¢-) at a later time) < 7, < 7" at
a spread leved fixed today at time = 0. The value today of such an option is given
by
Br,E{PL(Ty) — IL(To)}

Here, the protection le@L(7Ty) is the random variable equal to the value/oL
computed from formula (33) provided we replace in formuld)(@e expectations
E{-} by conditional expectatiori®;, = E{ - |Fz, } with respect to the sigma-field
Fr, of the information which will be available at tinig,. Similarly, the investment
leg I L(Tp) is the random variable equal to the valuel@f computed from formula
(34) for the spread = s and the conditional expectatidiy, = E{ - |Fr,} instead
of the plain expectation with respectlto

So attempting to price forward starting contracts requioesach future time
t > 0, to go through the calibration procedure described eaali¢imet = 0 for
the probability structure given by the (unconditional)gorg measuré®, using all
the information available at timeby replacingP by its conditional versior?; =
P{-[F¢}.

The above discussion justifies the introduction of the feilm notation which will
be needed to describe dynamical models. For each”, we denote by?, (T, - ) the
distribution of the cumulative loss(T) conditioned byF;. In other words,

Pi(T,z) = P{L(T) < a|F:}, z € [0,1].

Since L(T') takes only finitely many values, the+ 1 valuesxz = i/I for i =
0,1,---,1 to be specific, we can talk about its density. We shall use aloase to
denote this density

pi(T,x) =P{L(T) = x| F:}, z € [0,1].

These distributions will be called the forward loss digitibns.

5.3 Two Different Approaches

It is important at this stage to emphasize the main diffeedretween the approach
of [26] and the one of [41], as this main difference lies in theice of the filtration
{F:}+. In [41], the filtration{ F; }, is the full filtration containing all the information
available at time, including both the economic factors and the default infation.

In these conditions, even after conditioning By, the above marginal probabilities
of the loss distribution are discrete and can take only finiteany values between
L(t) and 1, typically the numberd.(¢), L(t) + 1/1I, ---, 1. However, in [26] the
filtration used for conditioning in the definition of the foawd loss distributions is
a smaller filtration, sayf.M, };, which at each time contains only information on
economic factors and not necessarily on the actual defendsst Intuitively, if one
thinks of an intensity model for the time of defaujt the knowledge ofM,; will
determine the intensity; (¢) at timet, but no information on the exponential random
variable needed to compute the probability of arrival ofitle default. This lack of
information on the default arrival forces an integratiothwespect to the exponential
random variable in order to compute the forward loss prdhisi as defined by
conditioning with respect toV,, and this integration justifies the assumption that
the forward probabilities as defined above are smooth fanstof the variable:.
The densitiep, (T, x) then appear to play the same role as the instantaneous tbrwar
rates in the classical HIM theory as they are derivativelseofdrward rates given by
the loss cumulative distribution functions. We come bacthis approach at the end
of this subsection.
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In any case, for each fixed and for eaci” > ¢, we denote by 1 the dis-
tribution of L(T") under the conditional probabilif;, and as usual, we denote by
7 = T —t the time to maturity. Since the sample paths of the prof&és+ 7)},>0
are non-decreasirng, — almost surely, for each fixedd the measure$ji 4+ }->0
are non-decreasing in the balayage order in the sense thaatdoy convex function
o, it holds

/¢(I)dﬂt,t+n (dr) < /¢(I)dﬂt,t+r2 (dx)

wheneverr; < 7. A classical result of Kellerer [28] implies the existendeao
Markov procesqY; },>( with the marginal distribution$/i; ¢+ - } ->0. Notice that
this process depends upgrbut for the sake of notation we shall not emphasize this
fact.

Schénbucher’s Approach

In the case of the full filtratioq F;}+, the Markov proces$Y; }, has finite state
space. Hence its distribution is entirely captured by ifslitesimal generator. The
latter is a family of (I + 1) x (I + 1) Q-matrices indexed by > 0 as the
Markov process is not necessarily time homogeneous. Ntitatewe use the finite
set{0,1/1,2/I,---,(I —1)/I,1} as common state space for all these Markov pro-
cesses instead of limiting the state space to the small¢rgex, L(¢t)+1/1,---,1}
which depends upon the realization of the random Ib&9. Our choice is justi-
fied by the need to define dynamic equations which are morby estiated if all the
Markov processes have the same state space.

We denote by{ A,(7); 7 > 0} the infinitesimal generator of the Markov process
{Y>}7>0, and we denote bya:(7,7,v)} 2 yefo,1/1,2/1,- (1-1)/1,1} the entries of
the Q-matrixA;(7). We shall use this family of Q-matrices as a code-book for the
information contained in the forward stochastic model &sgbylP; once calibrated
to the observable quotes at tirhe

A classical fact from the theory of finite state Markov pramssays that for each
T > 0, the off-diagonal entries; (7, x, y) are non-negative far # y as they have the
interpretation of rate of jump from staieto statey. Because of this interpretation, as
the sample paths di(t + 7) are non-decreasing, the rate$r, =, y) should be zero
whenevery < z, which implies that the matriced, () are upper diagonal. Notice
that the last row is identically zero since the stafgorresponding to the default of
all the firms in the portfolio) is absorbing. Finally, the fabat the matricesi(r)
form the infinitesimal generator of a Markov process alsolyntipat

a(r,z) ==Y alrzy), we{0,1/1,2/I,--- (I-1)/1,1},
y#T

which shows that the only entries that matter in the charetiéon of the code-book
are the entries in each row, to the right of the diagonal.

Notice that the transition probabilities
pi(m1,72,2,y) = P{L(t+ m2) =y [L(t + 1) = x}

contain the same information as the infinitesimal generagtrices{ A;(7); 7 > 0}
as the two sets of matrices are related by the forward Kolmmgequations which
read:
9 I
—pt(ﬁ, T2, T, y) - Zpt(Tlv T2,, k/I)at(Tlv k/Iv y) (40)
(97'2 =0

with initial condition
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pt(TlvTQa z, y)|7'2:7'1 = 1{1:"/} :

Using now the fact that we restrict ourselves to upper tiigaagQ-matrices, and the
fact that the diagonal element of each row is the negativé@fsum of the other
elements of the row, we see that:

9 yl—1
8—721915(71,72,&6,,@): Z pe(m1, 2,2, k/Day(r1,k/1,y)
k=xI
I
= pe(T1, 72,2, Y) Z ai(t1,y, k/1). (41)
k=yIl+1

Finally it is easy to see that, once in the form (41), theseagqus can be solved
inductively for the transition probabilities. One gets:

pt(713727x7y) = (42)
0 ify<ax
eXpU:—z at(Tl,S,(E,{E)dS] |fy:.1'

Z](cy:;ll Ly pt(Tla S, T, k/I) exp[fSTz at(Tla 5,1, y)dS] if y>x

T1

Notice that for each fixed > 0, the connection between the forward loss distri-
butionsP,{L(t+7) = - } = p¢(7, - ) and the transition probabilitieg (71, 72, -, - )
of the Markov proces§Y; },>¢ is given by the relation

pi(1,2) = pe(0, 7, L(t), x), xe{0,1/1,2/1,---,(I —1)/I}
since the marginal distributions of the Markov procé€¥s} .~ are{fi, i+ }+>o-

In order to avoid obscuring the main ideas by technicalitiesshall assume that
the occurrence of more than one default at a time is impassithlis implies that the
cumulative portfolio loss procegd.(t + 7)} >0 can only jump by the amouny/ I,
and consequently the Q-mattik () are bi-diagonal in the sense that the only non-
zero terms are the diagonal entrigér, x, ) and their neighbors; (7, z,z + 1/1)
aslong as < 1. So under this assumption, the code-book reduces to a seacthe
I functions of time (to maturity) namely

{as(r,2); 7 > Oucqo,1/1,2/1,- (1-1)/1} (43)

where we used the notatian(, ) = —a:(7, z, z) = a(7,x, 2 + 1/1).

It is explained in [41] that this assumption can be restrectt times, and work-
arounds are proposed to develop the same theory withowghismption. However,
for the sake of simplicity, we restrict ourselves to modeithaut simultaneous de-
faults in order to streamline the presentation of this syrve

HJM Dynamics

As explained in the previous section, the crux of the HIM apph to dynamic
modeling is the choice of the dynamics of a code-book for theket data in the form
of a set of Itd’s stochastic differential equations, anduke of observable market
data to feed these dynamic equations with an initial coolitOnly then should the
modeler worry about the consistency of such a model with ehsistic model for
the portfolio loss process, and about the existence of plessibitrages in the model
specified in this way. Recall the list in the summary at the @rslubsection 3.2.
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These last two issues are considered in the following tweettipns. For the
time being, we define the dynamics of the code-book by assuthit the forward
default rates satisfy the following system b§tochastic differential equations

day(1,2) = au(r,2)dt + Bi(1, z)dW; (44)

wherez varies inz € {0,1/1,2/I,---,(I —1)/1,1} and where for each > 0
andz, {a;(7,z)}; and{pB;(r,z)}; are adapted processes with valueRiandR?
respectively.

A Spot Consistency Condition

Consistency holds if the dynamics given by equation (44) aaexist with a top
down model where the time evolution of the system is derivechfthe dynamics
of the cumulative loss procesd.(¢)}; specified first. The following result gives a
necessary condition for this to hold.

Proposition 1. Let us assume that the procdss= { L(¢) },>o of cumulative portfo-
lio losses admits transition rates which only jumplbyrhen when viewed as a point
processL has an intensitf A1, (¢) }:>0 given almost surely by the formula:

AL(t) = a(0,L(t)),  t>0. (45)

The consistency condition (45) is a direct consequence eh&Avtheorem [2] and
our implicit smoothness assumption on the forward defaiés. We reproduce the
proof given in [41]. If we fixt > 0 ande > 0 we have:

%Et{L(t—i— o) — L)}

1

=13 - Lomilen)
n=L(t)
I n 1
- Z (T — L(t))z[pt(O,e,L(t),n)
n=L(t)+1
I

- (% - L(t))%[pt(o, 0,L(t),n) + €d-p:(0,0, L(t),n) + o(e)]

= (7 = L()[=a:(0,m)pi (0,0, L(t), n)

+ a:(0,n — 1)p+(0,0, L(t),n — 1) + O(1)]
=a;(0,L(t)) + O(1)

where we used Kolmogorov’s equatioll.

Remark. The result of Proposition 1 shows that the jump times of trec@ssL
(i.e. the default times of the portfolio components) araltgtinaccessible. So even
though such an assumption was never stated explicitly, eaetually working in
the framework of reduced form models (i.e. intensity based@is) as opposed to
structural models for which the time of default are typigalhnounced by increasing
sequences of stopping times. See also the discussion oPthesproach below.
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The HJIM Drift Condition

Let us assume that for each> 0 andz € {0,1/1,2/1,---,(I —1)/I} the stochas-
tic processe$a: (T, z)}+ is a non-negative semi-martingales with a decomposition of
the form (44).

For each fixed > 0, we can viewa, (7, - ) as the negative of the diagonal ele-
ments of a bidiagond)-matrix and by solving the forward Kolmogorov equations as
before, we can derive expressions for the transition priibed p; (71, 72, -, - ) of a
Markov process whose marginal distributignér, =) = p.(0, 7, L(t), «) we would
like to coincide with the forward loss distributioff§ L (¢ + 7) = x|F; }. Notice that
in this case, if we fixI' = ¢t + 7 and varyt in [0, 7], the latter are martingales by
construction since they are conditional expectations ofedfrandom variable.

If we start from prescription (44) the explicit formulae §4@r the transition
probabilities can be used to prove that (0, T, x, y) }o<:<r IS @ Semi-martingale for
each default levels < y, and we can compute its bounded variation and quadratic
variation parts. Substituting(¢) for =, one can show that;(0, 7, L(t), ) also is
a semi-martingale, and one can derive its bounded variatidnguadratic variation
parts in terms of the drift; (7, ) and volatility 3; (7, 2:) of a;(r, ). Now recall that,
if the forward default rates; (7, ) come from arunderlyingloss procesé.(t), then
as we already explained,

p+(0, 7, L(t),2) = pe(t + 7, 2) = P{L(t + 7) = z|F:}

is necessarily a martingale. Stating that its bounded tianigpart vanishes leads to
the following conclusion.

Proposition 2. If for eachr > 0 andz € {0,1/1,2/I,---,(I —1)/I} the stochas-
tic processeda: (7, x)}; is a non-negative semi-martingale satisfying (44), then th
forward loss distributiong p; (7', z) }o<:<7 are martingales if and only if

pt(0, T — ¢, L(t), 2)ar (T, x) = —Be(T, x)v: (0, T — t, L(t), z), (46)

forz € {0,1/I1,2/1,---,(I —1)/I} wherev, (1,72, z,y) is the volatility of the
semi-martingale decomposition of the transition probi&pjb. (71, 72, z, y) as given
by the solution of the forward Kolmogorov’s equation.

We refer the interested reader to [41] for the details of #évetion. Condition (46)
is called the HIM drift condition because of its striking Barity with the original
HJM drift condition (25). However, a crucial difference ndeeto be emphasized.
While the classical drift condition (25) gives explicitlye drift o, (7") of the code-
book in terms of its volatility3; (T'), the above drift condition merely states a relation
between drift and volatility of the codg (T, x). Indeed, the term, (0, T'—t, L(t), x)
which appears in the right hand side of (46) is a function ef¢bde, and hence of
its bounded variation part. In other words, the drift tefp{T’, ) is present in the
right hand side of (46) which is only an implicit equation foy(7, z). We shall
encounter the same problem in our discussion of the HIM agprio equity market
models in the next section. However, the situation is edseg. Indeed, because of
the finite nature of the state space of the loss process, aadide of our assumption
of the upper-diagonal nature of the Q-matrices and the Fetttheir last rows are
identically zero, these implicit equations can be solvedcty after finitely many
iterations. We refer the interested reader to the detadigiged in [41].

Volatility Structure Calibration

One of the goals of this review is to emphasize how an HIM ningl@pproach
resolves the calibrationissue by encapsulating the mprlaats of the liquidly traded
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instruments in the initial condition of the dynamic modatdahow the resulting
dynamic specifications can be restricted to the volatignt as the drift can be
determined from the volatility and the observed marketgwidecause everything
rides on the particular choice of a volatility structutgr, =) for the forward default
rates, the actual volatility specification is of crucial ianfance. Unfortunately, it still
remains gouchy businesas there is no clear algorithm providing such a volatility
structure, even if it is easy to understand the practicabequences of; (7, z) =

0, or B;(r,x) having a constant sign, or being very largexok: L(t) and small
otherwise,. . . etc. Unfortunately, this difficulty cannot be resolved waitth further
information about the desired market model, whether tHisrination comes from
from prices of exotic derivatives or more qualitative prajess that the model should
reproduce. We refer to our discussion of the same issue itioBe2 in the case of
the fixed income markets.

The SPA Approach

If we use the smaller market filtration\, }+ to condition the time evolutions of the
forward loss distributions, then the

The idea of the SPA approach is to treat the values of the farleas cumulative
distribution functions?, (T, =) as a family of zero coupon bond prices parameterized
by the loss levek, in which case it is natural to introduce the equivalent sfamta-
neous forward rates by defining

aiTPt(Ta ‘T)

0
ft(Tvx) = _ﬁlogpt(Tvx) = - Pt(T (E)

(47)
and to construct a dynamic portfolio loss model by specdgyanset of stochastic
differential equations for these forward loss rates in trenf

d f(T,x) = (T, z)dt + By(T, x)dW; (48)

in full analogy with the HIJM prescription (22) used in the fixemcome markets.
Even though the notation of this approach follow more clpské notation of the
classical HIM approach reviewed in Section 3, it is not asmhgs the more in-
volved approached based on Markov process codes discussgd. dndeed, the
latter will generalize in a straightforward manner to theecaf the equity markets
discussed in the next section. Moreover, the former canmaskd without introduc-
ing an extra layer of technical derivations involving Mavkoss processes, obscur-
ing their original claims of simplicity. The interested dea is referred to [26] for
details.

6 The HIM Approach to Equity Markets

This section is devoted to the derivation of arbitrage frgmasnic stochastic models
for the equity markets. We try to incorporate standard femtwf these markets,
and in so doing, we put ourselves in a situation amenablegdHtiM philosophy

highlighted in the previous sections. This approach to dyinaequity models was
originally advocated by Derman and Kani in [17]. The presdistussion is based
on the recent work of Carmona and Nadotchyi [7] where exfiicmulae, rigorous

proofs and numerical examples are given.

So as in the cases of fixed income and credit market modeBwediin Section
3, we first identify a set of instruments liquidly traded toialhthe model needs to
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be calibrated. The goal of our modeling effort is to chanazésmportant properties
(such as for example absence of arbitrage) of the pricingsme® used by the

market by studying the dynamics of these liquidly tradedrimaents instead of the
dynamics of the instruments underlying them. In this walipcation is taken care
of by merely using observed prices as initial conditiongffierdynamical equations.
As before, the dynamics of the prices of the basic instrus@@ given by an infinite
dimensional stochastic differential equation, or eqemdly by a random field.

6.1 Description of the Market

As always, we consider an economy with a perfect frictionlesrket without bid-
ask spreads, with short sales of call and put options allowedbitrary sizes, with-
out taxes, etc. In such an idealized market model, it is matorchoose for the set
of liquidly traded securities, the ensemble of all the Eeap call options written
on underlying instruments spanning the market. For the sélsémplicity, we as-
sume that one single underlyer (e.gstack spans the market under consideration.
Choosing more underlyers would force the price process toligvariate and make
the notation unnecessarily complicated without changinghnto the nature of the
results.

Let us denote by S, },>¢ the price process underlying the derivative instruments
forming the market. As stated above, for the sake of sintglive assume that the
market comprises only derivatives written on a single ulyiteg instrument, in other
words, we assume tha} is univariate. Again, for the sake of simplicity, we assume
that the discount factor is one, i.8, = 1, or equivalently that the short interest
rate is zero, i.er; = 0, and that the underlying risky asset does not pay dividends.
These assumptions greatly simplify the notation withoteaing the generality of
our derivations.

We assume that in our idealized market, European call optidall strikes and
maturities are liquidly traded, and that their prices areesizable. We denote by
Cy(T, K) the market price at time of a European call option of strik& and ma-
turity ' > t. We assume that today, i.e. on day= 0, all the pricesCy (T, K) are
observable. According to the philosophy adopted in thisepagt any given time,
instead of working directly with the pric&, of the underlying asset, we concentrate
on the set of call price§C,(T, K)}r x as our fundamental market data. This is
partly justified by the well documented fact that many obsdreption price move-
ments cannot be attributed to changesinand partly by the fact that many exotic
(path dependent) options are hedged (replicated) witifgims of plain (vanilla)
call options.

Remarks. 1. It is well known that in order to avoid arbitrage (at leaggiast
static strategies) the observed call pri¢g$7’, K') should be increasing ifi, non-
increasing and convex i, that they should converge tcas K — oc and that they
should recover the underlying priég for zero strike wherk’ — 0. We shall implic-
itly assume that the observed surface of initial call swefeatisfies these properties.
2.A More Realistic Set-Up. In the description of our idealized market, we assumed
that European call options of all strikes and all maturitiese liquidly traded. This
assumption is very convenient, though highly unrealidtideed, the knowledge of
all the pricesC:(T, K') determine all the marginal distributions of the underlying
instruments under the pricing meastiteThis information is not available in real
life. In practice, the best one can hope for is, for a finitecfediscrete maturities
Ty < Ty, < --- < Ty, one has quotes for the prices of a finite set of call optiams. |
other words, for each = 1,2,--- ,n one has the prices of cals;(T;, K;;) for a
finite setk;; < Ko < -+ < Kip, .
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This more realistic form of the set-up has seen a recent réreinterest starting
with the work of Laurent and Leisen [30]. Our interest in thi®blematics was
triggered by the recent technical reports by Cousot [13] Buehler [6] who use
Kellerer [28] theorem in the same spirit as the present dsom, and by the recent
work of Davis and Hobson [15] which relies instead on the 8taar-Stein-Blackwell
theorem [43, 44, 4].

We refer the interested reader to [15] and to the referemezsin.

From now on, we denote by= T — ¢ the time to maturity of the option and we
denote byC;(r, K) the priceCy (T, K). In other words

Ct(T,K):Ct(t+T,K), 7>0.K>0.

We assume that the markatices by expectatiom the sense that the prices of the
liquid instruments are given by expectations of the pregelutes of their cashflows
with respect to a probability measure. So saying thsta pricing measure used by
the market implies that for each time> 0 we have

Co(r, K) = E{(St4r — K)V|F} = B {(Spyr — K)*}.

where we denote b¥; a regular version of the conditional probability Bfwith
respect taF;. We denote byi, ;.- the distribution ofS;, . for the conditional dis-
tributionP;. It is anF;- measurable random measure. With this notation

Ci(r, K) = /Ooo(x — K)* dfiy,p1-(dx)

and for each fixed- > 0, the knowledge of all the priceé‘t(T,K) completely
determines the distributiofy ;- on [0, 0o).

Remarks. 1. Notice that we do not assume uniqueness of the pricingune&sin
other words, our analysis holds in the case of incompleteatsaas well as complete
models.

2. Notation Convention. In order to help with the readability of the paper, we use
a notation without a tilde or a hat for all the quantities egsed in terms of the
variablesT” and K. But we shall add a tilde for all the quantities expresse&ims

of the variables and K, and a hat when the strike is given in terms of the variable
xz=logK.

6.2 Implied Volatility Code-Book

In the classical Black-Scholes theory, the dynamics of tidedying asset are given
by the stochastic differential equation

dSt = StUth, SO = S0

for some univariate Wiener proceSd’; }: and some positive constantin this case,
the priceCy(r, K) of a call option is given by the Black-Scholes formula

BS(S,7,0,K) = Si(dy) — K&(ds) (49)
with
& = —log My + 10%/2 & — —log My — 70%/2
1= O'\/7_' ) 2 — O'\/F

whereM,; = K/S, is the moneyness of the option. We use the notadidor the
cumulative distribution of the standard normal distribuatii.e.
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1 x
&(z) = \/?/ e Y2y, xR

The Black-Scholes price is an increasing function of theapeaters when all the
other parameters are held fixed. As a consequence, for eamumber” (think of
such a number as a quoted price for a call option with time twritg ~ and strikek’)
in the interval betweefS; — K)* andS, there exists a unique numbeifor which
ét(77 K) = C. This unique value o& given by inverting Black-Scholes formula
(49) is known as the implied volatility and we shall denoté)y'rti‘t(T,K). This
quantity is extremely important as it is used by most if nbhadrket participants
as thecurrencyin which the option prices are quoted. This practice showoldbe
construed as an endorsement of Black-Scholes model. Intmrdemphasize this fact,
| cannot resist the temptation to characterize the impl@dtility by the following
statement borrowed from Rebonato’s book [37]:

the wrong number to put in the wrong formula to get the right@r

For each time > 0, the one-to-one correspondence
{Cy(r,K); 7> 0,K >0} = {Z(r,K); 7> 0,K >0}

offers a code-book translating without any loss all the iinfation given by the call
prices in terms of implied volatilities, and which we caletBlack-Scholes or im-
plied volatility code-book. While Black-Scholes theonegicts a flat profile for the
implied volatility surface, one has plenty empirical evide of the contrary. We refer
the reader interested in the empirical properties of thdigdpvolatility surface to
the thorough discussion in Rebonato’s book [37] and to tfereaces therein. The
mathematical analysis of this surface is based on a subtiraiof empirical facts
and arbitrage theories, and it is rather technical in naftine literature on the sub-
jectis vast and it cannot be done justice in a few refereri@iesosing a few samples
for their relevance to the present discussion, we invitariterested reader to con-
sult [10],[20],[31], [33],[21] and the references ther&inget a better sense of these
technicalities.

Valuation and risk management of complex option positi@tgiire models for
the time evolution of implied volatility surfaces. [34] afitl] are examples of at-
tempts to go beyond static models, but despite the fact tiegt tonsider only a
cross section of the surface (say farfixed), the works of Schénbucher [39] and
Schweizer and Wissel [42] are more in the spirit of the HIMrapph which we
advocate in this section.

At any given timet, absence of (static) arbitrage imposes conditions on the su
face of call option prices. As we already mentioned, theaae{C, (7, K)}, x
should be increasing im, non-increasing and convex ifi, it should converge to
0 as K — oo and recover the underlying pricg, for zero strike whenk’ — 0.
Because of the one-to-one correspondence between calbspaia implied volatili-
ties, these conditions can be expressed in terms of prep@ftthe implied volatility
surface{ ¥, (r, K)}, x at timet. However inverting Black-Scholes formula (49) is
not simple and these conditions become unnecessarilyitad¢hmhis is one of the
reasons why we search for another way to capture the infewmat the surface of
call option prices.

6.3 Choosing another Option Code-Book

As in the standard framework of the Black-Scholes theorysteet from the dy-
namics of the underlying asset and we try to identify a codekifor the traded
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instruments in such a way that the dynamics of the codes dmikehsily manipu-
lated and most importantly, could be used as a starting poidéefine the dynamics
of the market. Since we assume that the filtration is Brownidthout any loss of
generality we can assume

dSt = Sta't thl, SQ = S0

for some adapted non-negative procé&ss}:>o. If t > 0 is fixed, for anyr; andr,
such that) < 7, < 7, and for any convex functiog on [0, o) we have

/OOO G(@)fit,prr, (dz) = BT {$(Spyry )}

= EPt{QS(EPt{St-FTz']:H-Tl})}
< Ept {EP'{¢(S,5+-,—2)|]:,5+7—1})}
= E " {¢(Srir)}

- / " (@) ity (d2)
0

from which we see that for any given> 0, the probability measurel§i; 4+ }->0
are non-decreasing in the balayage order. This implies tistemace of a Markov
martingale{Y> } ->o with marginal distributiong i; 1+ }r~0. Since the knowledge
of all the call prices{C(7, K)}~0. x>0 is equivalent to the knowledge of all the
distributions{/i; ¢+ } r>0, the Markov martingalé¢Y> },>¢ is a way to encapsulate
the information given by the market at timby providing the call prices. Obviously,
the proces$Y; } > contains more information than the mere marginal distidns
{fi,1++ } >0 determined by the call option prices. This process can be tasprice
contracts with path dependesiotic pay-offs whose values are not uniquely deter-
mined by thestate price densitiesf the marginal distributions. The procedure which
we just outlined captures perfectly the philosophy and tiaetice of the market par-
ticipants: include all the information about the liquidhadied instruments in a model
that reproduces all of these prices, and use such a modet®exotic derivatives
which cannot be synthesized from the liquid instrumentdalvie for trade. As such
a model is not uniquely determined by the market pricesgtlen lot of freedom
in choosing it, and many factors enter the final decisionsipaony, common sense,
versatility, basic principles (e.g. maximum entropy, mioim least squares, .) but

in any case, once the choice is made, the only thing léfofge for the best

Notice that, if the proces§Y; },>¢ is realized on a Wiener space, then the mar-
tingale representation theorem in Brownian filtrationsegithatY,. can be written
as

Y, =Y, +/ Y.i(s) dB,
0

and that, because of the Markov property, the predictallegss{a(s)}s>o can be
chosen to be of the for@(s, w) = a.(s, Ys(w)) for some functior(s, y) — a.(s,y)
of (s,y) € [0,00) x [0,00) and whose graph can be viewed as a surface over the
quadrant0, co) x [0, 00). Notice that this surface changes witim an F;-measurable
way. At each time, we can choose this surfae, (7, K')} >0 x>0 as an alternative
code-book for the information contained in the optionsqesi{ﬁ(ﬂ K)}r>0,K50-
This code-book is different from the Black-Scholes impliealatility code-book
{Z:(7, K)}»>0.5>0 given by the implied volatilities of the European call opiso
in question. The deterministic version of the surfaae(r, K)} >0, x>0 Was intro-
duced in a static framework (i.e. for= 0) simultaneously by Dupire [19] and Der-
man and Kani [16] though with a different definition, as aealative to the implied
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volatility surface. The surfacéa, (1, K)}->0,x>0 has been called the local volatil-
ity surface for reasons which will become clear later in tapgr. From our point of
view, the main reason to work with the local volatility suréainstead of the implied
volatility surface is the ease with which one can check thes@nce or absence of
static arbitrage. Indeed, as we shall see below, the foutitons (increasing in,
increasing and convex ift', plus the two boundary conditions) guaranteeing the ab-
sence of static arbitrage become merely positivity of thelersa, (7, K). Replac-
ing difficult conditions to check by such a simple one becoaxtemely convenient
when we deal with dynamic models. The interested readevitethto consult [32]
for a thorough discussion of the connections between lawimaplied volatility in
the static framework (i.e. at time= 0) of stochastic volatility models.

A dynamic version of local volatility modeling was later ted by Derman and
Kani in a paper [17] mostly known for its discussion of implizee models. Mo-
tivated by the fact that the technical parts of [17] dealinthveontinuous models
are rather informal and lacking mathematical proofs, Caranand Natodchy actu-
ally develop the program outlined in [17]. While providingigorous mathematical
derivation of the so-called drift condition, they also diss concrete examples and
provide calibration and Monte Carlo implementation resipe

We now derive the property of the local volatility surfaceigdhgot us interested
in its dynamics. Notice that the following derivation is @owhen the time > 0
and the past up to and including timare fixed. We give details in the case where
for example, we assume that the above marginal distribsifign, - have for each
T > 0 a positive density, (7, z) (continuous as a function of > 0), which oncer
is held fixed, are continuously differentiable in the valéah Then we can conclude
that for each there exists functiolr, K') — a.(r, K) such that the process

dY; = Y;a,(1,Y;)dB,, 7>0 (50)
with initial condition
Yo = S

is well-defined and has marginal distributigis; ;- .

We first recall the Breeden-Litzenberger argument whichéxsic to thehockey-
stick pay-off function of the European call options. Since thaapprice with strike
K and time to maturity is given by

Co(r, K) = /OOO (z — K)* (7, 0)dz

we can differentiate both sides twice with respeckt@nd get:
0% 1 Ci(1, K) = gi(7, K). (51)

Next we apply It6-Tanaka’s formula to (50) and the functjdn) = (y — K)™ (see
for example [38]). Note that this functiofiis convex. It is infinitely differentiable
everywhere except at = K where it has a left and a right derivatives. Obviously
f'ly) =0ify < Kandf'(y) = 1if y > K. Moreover, the second derivative
1" (y) in the sense of distributions is the Dirac point mas&dglso called thelelta
functionat K). We get:

T 1
(Y'r - K)+ = (Yb - K)+ +/ 1[K,oo)(}/;)dys + §L7{<
0
where for eachw € R, {L{};>( is the local time of the semi-martingafé’ },>( at

a. Using the fact that” is a martingale satisfyind(Y,Y), = Y.2a(s, Ys)?ds, by
definition of the local time it holds:
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K — lim — W d{Y,Y)s
6]\1%26/ (K- eKJre) ) < 5 >

—lim— [ ¥
gl\I‘I(lJ E/ (K— eKJre)(Y)Y at(s Y) d

and takingE, - expectations on both sides we get:

1

Co(r,K) = (S; — K)* 521\10%£/ / Wk —e ik +o)@)yPac(s,y)2ge(s, y)dyds

= (S — K)" + 5/ K?2a(s, K)%gs(s, K) ds.
0
whereg:(s,y) is the density ofY for P, which is assumed to be continuousgn

which justifies taking the limit as \, 0. Finally, taking derivatives with respect to
on both sides we get:

0-Cy(1,K) = %KQat(T, K)2§,(1, K). (52)

Equating the expressions of the dengityr, K) obtained in (51) and (52) we get the
following expression for the local volatility:

20, Cy (1, K)

(T, K)? = —
KQa%(KCt(T K)

(53)

Equation (53) determines the local volatility surféeg(r, K)}, x from the values
of the call priceqC; (7, K)} . x. Conversely, if we were to start from a prescription
giving the local volatility surfacea,(r, K)} - x, we would derive the set of call
option prices{C(r, K)}..x by solving the partial differential equation (PDE for
short)

0.C(1,K) = %K%Q(T, K)0%,C(1,K), 71>0, K>0 (54)
C0,K) = (S, — K)T

which is sometimes called the Dupire’s PDE because it wasafihgocated by Bruno
Dupire in his groundbreaking work [19] on the volatility deniWe call the one-
to-one correspondence given by (53) and (54) the local libfatode-book. The
correspondence

{Ci(r,K); 7>0,K >0} = {a(r,K);7>0,K>0}

defining our code book is analog, though different from theespondence given by
the Black-Scholes code-book. Indeed, to compute the cade fne option prices,
we need to compute the right hand side of (53) instead of atialy the Black-

Scholes formula, while in order to recover the option prites the code we solve
the partial differential equation (54) instead of invegtihe Black-Scholes formula.

Remark: Statistical Estimation. Recalling the discussion of the remark on a "More
Realistic Model", on most every day the available data are in the form of a fi-
nite set of prices”,(T;, K; ;) (or possibly of implied volatilities”, (T}, K; ;)) on

an irregular grid in thT', K')-plane. The challenge is to construct a smooth sur-
face{C\(T, K)}r>i, k>0 Or { Z(T, K)} > k>0 through the observations over the
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finite grid. This problem is discussed with great care in theals book [23] by
Flenger, while the book [1] addresses the same problems @ssadtatistical and
more computational spirit. The interested reader is reteto the review [11] writ-
ten by Carter and Fouque of Fengler's book for an indepenglerspective on its
content. The word of practitioners and academics is dividemltwo camps neatly
delineated by irreconcilable differences. The first canguas that, in order to rule
out any static arbitrage, the price surfde&, (T, K)}r>¢ x>0 heeds to go through
all the observed market pricés (T;, K, ;). The second camp does make this strict
requirement, claiming that because these prices are nao¢djab the same time of
the day (i.e. for different values of, portfolios leading to arbitrage can in principle
be constructed mathematically, but they cannot be impléadein practice because
of the lack of simultaneity of the quotes, preventing W@nnabearbitrager to set
up the arbitrage portfolio identified by the mathematicaltty. Both arguments are
reasonable and quite convincing, and we will not try to takie ®n this difficult
issue.

We can now hint at our implementation of the HIM philosophyhia case of
equity markets: as usual, instead of choosing the dynanfiteainderlyerS; and
then deriving a set of equations for the prices of the liquidhded instruments (the
European call option prices in our case), we model direbtydlynamics of the prices
of the liquidly traded instruments by choosing the dynaroics specific code-book,
and in the present situation, we choose the local volatlige-book.

Another reason for choosing the local volatility code-bamnder the implied
volatility code-book is the fact that the four conditionsded to rule out static arbi-
trage take a very simple form in the case of the local votgtilndeed, it is enough
to make sure that, (r, K) is positive to guarantee thé}, (7, K ) is increasing irl’,
increasing and convex ik and satisfies the two boundary conditions already dis-
cussed. This advantage is priceless when it comes to defitonfastic dynamics.

Remark. As a last remark, we show that, whenever the underlyingasvkrto satisfy
an equation of the form
dSt = StO't th (55)

for some Wiener proceq3V; }; and some adapted non-negative prodess$:, then
at each time, the local volatilitya,(r, K') can be viewed as the current expected
variance for time to maturity and strikeX'. More precisely, this means that:

a(t, K)?* = E{o}, . |Stsr = K}. (56)

In order to prove this result, it is enough to retrace the stafpthe above deriva-
tions of (52) and (53) using, . and its dynamics (55) instead &f and its own

dynamics. This formula is often called Dupire’s formulaidtat the origin of the
terminology local volatility surface.

6.4 Code-Book Dynamics

We postulate the dynamics of the local volatility surfacénpdy point. For each
fixedT > 0 andK > 0, we assume that the procegs (T, K)}o<;<7 iS a semi-
martingale with decomposition:

day(T, K) = oy (T, K)dt + B,(T, K)dW,, 0<t<T. (57)

for somed-dimensional Wiener proce$$V, },~(, and some real valued adapted pro-
cess{au (T, K)}o<i<T andd-dimensional adapted proce§s; (T, K) }o<i<r Satis-
fying some mild hypotheses to be specified later. Equivbleahe could specify
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the dynamics of the local volatility surface parameteribgdhe time to maturity-
instead of the time of maturity'. In this case, we would assume that

day (1, K) = éy (7, K)dt + B (, K)dW, (58)

Using the generalized Tto formula, we see that these twapp®ns are equivalent
if and only if

dt(T,K):Oét(t+T,K)+aTa(t+T,K), and ﬁt(T,K):ﬁt(t-i-T,K).

(59)
The results of [7] which we review in this section are provewler the following
assumption:

Assumption A

For any fixedr > 0 andK > 0, {a:(7, K)}i>0 € Hi.(R) and{3;(1, K)}i>0 €

H3 .(RY). Moreover, we assume thit almost surely, for everyy > 0, the functions

(1,K) — ay(r,K) and(r, K) — f(r, K) (and hencdr, K) — a,(r, K)) are

once continuously differentiable inand twice continuously differentiable i.
Also, P - almost surely

1) for everyt > 0 and all non-negative numbersand K

|at(7—7 K)' + Hﬁt(Tv K)” < /\1(W7t)

¢ ¢
0 < A(w,t) < / o, (1, K)du +/ Bu (1, K)dW,, < As(w,t)
0 0

for some positive adapted processesAs and ;.

First Technical Results

The first technical result we need to prove before going anhéu is the fact that
for eachr > 0 andK > 0, the proces$C;(r, K)};>0 is a semi-martingale. This
result is quite natural. However, its proof is more techhikan we would like, and
for the purpose of this presentation, we merely outline tlagomsteps of the proof.
Complete details can be found in [7].

Under Assumption A, for each fixeld> 0, the stochastic differential equation
(50) has a unique solution which we dendtg, . } .>¢. Moreover, sincé, (7, K) is
bounded above and below away framfrom Feynman-Kac formula antheorem
1.3 of [22], the transition density oflog Y -} is the fundamental solution of the
backward Kolmogorov’s equation
az(r,e®)0? u(r,z) —

Oru(t,x) = az(r, e®)0pu(T, ), T>0,z€eR

N —
|~

From this we conclude that densiy(r, x) of Y; .., is the fundamental solution of
1
Oru(r,z) = 5 - K24y (71, K) O eulr, K), - 7>0, K >0

and the price of the vanilla call option is the solution ofribarproblem (54). It is
well defined, since after the change of variables

C(r,z):=C(r,expz), T>0,z€R (60)
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the option partial differential equation becomes

~

aC(r,z) 1., . o~ 1., .00t
g = 2at(77e YJAC(T, x) 2(1,5(7'76 ) Era

with initial condition

T>0,zeR (61)

C0,z) = (S; — e*)*.
The proof that option prices are semi-martingales is doneansteps.

1. We first proof the result by replacing the hockey-stickdtion appearing in the
initial condition by a smooth function. In this case, theutimin of equation (61)
appears as the uniform limit of the results of a finite diffexe scheme. It is
plain to show that any such explicit scheme provides us dt st&p with a semi-
martingale. The convergence being strong enough, one cat@#he limit and
prove that the solution of (61) is also a semi-martingale.

2. The general result is obtained by controlling the limittloé solution of (61)
when we approximate the hockey-stick initial condition tsnaooth regulariza-
tion.

The details of these arguments are given in [7].

The conclusion of this subsection, and the starting poith@hext one are cap-
tured by the fact that for each > 0 and K > 0 there exist continuous adapted
processes$/i, (7, K)}i>0 and{z (7, K) },>0 such that the following decomposition
holds:

dCy(r, K) = jig(r, K)dt + (7, K)dBy. (62)
Moreover, the random field§i, (7, K)}..- k and{z,(7, K)}, - k satisfy the same
assumptions as the random fields (7, K) }+ -k and{5,(7, K) }..- xk appearingin
the decomposition of the local volatilitya, (7, K) }+ - .

6.5 The HIM Drift Condition

The main goal of this subsection is to derive the followinglag of the HIM no-
arbitrage analysis.

Theorem 1 (Drift and Consistency Conditions).The dynamic model of the local
volatility surface given by the system of equations

day (1, K) = éy (7, K)dt + B4 (1, K)dW,, t>0, (63)

with coefficients satisfying assumption A is consistert avgpot price model of the
form
dSt = StcrtdBt

for some Wiener proceds3; };, and does not allow for arbitrage if and only if the
following conditions are satisfied a.s. for alt> 0:

.at(o, St) =0t (64)
0d-a:(1, K)0k k Ce (1, K) = (65)
_ - LK)|? ~ d . ~
(autr )autr, 1) + PPN o o 1) 4 50 PP, G )
where we use the notatioh- - ); for the quadratic covariation of two semi-

martingales.
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Proof:
By construction of the local volatility surfacgi; (7, K)}r>0,x>0 We have the
equality . )
K?a; (1, K) 0% Ci (1, K ) = 20, Cy(1, K)

which we can rewrite as
K22(T —t, K)0% 1 Co(T — t, K) = 20,Cy(T — t, K) (66)

for 0 < t < T. Both sides are semi-martingales. We use 1to’s rule to caenfhe
differential ofa? (7, K).

da; (v, K) = 2a,(r, K)day (7, K) + || B (7, K) || *dt
= (2a(7, K)au(r, K) + [|Be(7, K)||?)dt + 2a (7, K) By (7, K)dWy,
However, we also have
da2(T —t,K) = (=2a,(T — t, K)d,ar(T — t, K) + 2a,(T — t, K)a (T — t, K)
+1Be(T — t, K)||?)dt + 2a,(T — t, K)3(T — t, K)dW,(67)

because the effect of replacingby 7' — t in a stochastic differential is merely an
argument substitutionr(by 7' — t) in the local martingale part, while a new term,
typically a partial derivative with respect tg is also added to the drift or bounded
variation part of the differential. Consequently

d (dt(T —t, K)202% . Cy(T — 1, K))
= 02, Co(T — t, K)da2(T — t,K) + &(T — t, K)d (a%mét(T —t, K))
+d(a*(T — -, K),0%xC.(T — -, K))); (68)

SinceC;(r, K) is a semi-martingale for every fixed> 0 and K > 0, if we write
its decomposition as (recall formula (62))
dCy(, K) = fiy(, K) dt + iy(7, K)dW,

then for each fixedX > 0, {C,(T,K) = Ci(T — t,K)}o<i<7 is also a semi-

martingale and its decomposition is given by

dCy(T,K) = dCy(T —t,K) = [ju(T —t, K) — 8;Cy(T — t, K)]dt + i, (1, K )dW,.
(69)

1). Let us first assume absence of arbitrage. As we explaiadieére what we
mean by that is the fact that the prices of all the liquidlyd&ad assets are lo-
cal martingales. In particular, for every fixel > 0 and K > 0, the process
{CU(T,K) = C(T —t,K)}o<i<r is alocal martingale. On one hand, this implies
thato, C:(T — t, K) is a local martingale, and on the other hand that the bounded

variation part of the left hand side of equation (66) is edaodl. Since developing
(68) using (67) gives:

d (dt(T — t, K202 Cy(T — t, K))
= 02, CT — t, K)da2(T — t, K) + &(T — t, K)d (8§<K@(T —t, K))
AT — - K), 03 CAT — - K))),
= 0% C{(T —t, K) (2a4(T — t, K) [ (T — t, K) — 0-a,(T — t, K)]
H BT = 4, K)|?) de + d@ (T — - K), 0 C.(T = - K))),
+ d(local martingalg,
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and setting the drift component@agives (65).
2). Let us now prove the consistency condition (64). Usiregftitt that

li{%ét(T, K)= (S, - K)" as.

one can prove that

t t
lim ﬁu(T,K) qu = / Suo'u]-{SufK>0}dBu
7\.0 0 0 -
for the uniform convergence in probability. This impliesathhere a.s. exists a se-
quence{r, }2° , decreasing to for which

t

t
lim Du(Tn,K) . qu = / Suo'ul{SufKZO}dBu
0

n—oo 0

which shows that (again because of Tanaka’s formula) that

t
lim fig (T, K)du = Ay(K), forany K >0andt € |0,1]

n—oo 0

where A,(K) denotes the local time of; at K. SinceC,(T — t, K) is a local-
martingale inf, we have

- 1 -
(T, K) = 0, Cy (10, K) = 51{2&3(7”,1()6?“0“(7”,1()

which in turn implies that for any continuous functibrwith compact support, we
have:

t
/ h(S.)S2[02 — a%(0,S,)]du =0
0

from which we can deduce the consistency condition sinisearbitrary.

3) We now consider the converse. As for the proof of the dipact, the details are
technical, so we limit our discussion to the main steps/rigfg the interested reader
to [7] for details. If we denote the drift af, (T — ¢, K) by 6, (T, K ), smoothness of
Ci(.,.), fue(.,.) andz,(.,.) guarantee the required’-2 smoothness ofy(.,.). Our
goal is to show that, (., .) vanishes identically. In order to do so, we first prove that
it is the solution of a parabolic partial differential egoat and then we check that
the initial condition it satisfies is identically The first step is rather straightforward.
By differentiation in the same way as in the first part of theqfy and using the fact
thatd, = ji, — 0-C,, we obtain

1
0-0y (1, K) = 5K263(T, K)0% oy (1, K),  7>0,K >0.

For the remainder of the proof we show that it is possible alrearely to construct a
subsequence, \ 0 such that:(r,, - ) — 0 weakly as functions of. Uniqueness
of weak solutions of the above partial differential equatiparantees that we have
o (1, K) = 0forall 7 > 0 andK > 0. This implies thatC,(T — ¢, K) is a local
martingale int for any7 > 0 andK > 0, and since’; < S, is square integrable we
can conclude tha{tC‘t(T —t,K)}o<i<r is a bona fide martingale.

Monte Carlo Implementation

We now explain how the drift condition (65) can be used to getrbitrage-free
dynamic models for the local volatility surface. As we attgaxplained, we are
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not able to use (65) to derive a formula in close form to expthe drift surface
{a,(r, K)}, x as a function of the volatility surfacgs,(r, K)},.x. However, it is
possible to use a discretized version, in the spirit of thieEscheme for ordinary
stochastic differential equations, to constructivelyivieMonte Carlo samples of the
volatility surface from the mere knowledge p@t(n K)}r k.

e Start from a model fop, (7, K) (say a stochastic differential equation);
e GetSyandCy (7, K) from the market and comput¥. ,-Co, ag and3, from its
model;

e Loop:fort =0, At,2A¢,---
1. Getay(r, K) from the drift condition (65);
2. Use Euler to get
— ai+2c(7, K) from the dynamics of the local volatility given by (63);
—  Siya¢ from S, Dynamics;
—  Bira¢ fromits own model;
6.6 Examples.

This last subsection is devoted to the applications of ttevalapproach to two of
the most popular spot models.

Markovian Spot Models

Let us first consider the simplest case= 0. In this case
t
a(t, K) = ag(1, K) —|—/ as (7, K)ds
0
and in particular we have
(7, K) = a7, )
t\T, - dt t\T, .
In the present situation, the drift condition (65) reads

afdt(Tv K) = dt(Tv K)

and putting the two together we get
Oray (7, K) = i (1, K)
Ta\T, = Eﬂt T,

which shows that for fixeds the functiona, (7, K), as a function of andr, is the
solution of a plain (hyperbolic) transport equation whoskeison is given by:

a(r, K) = ao(t +t, K)
and the consistency condition forces the special form
or = ap(t, St)
of the spot volatility. Hence we proved:

Proposition 3. The local volatility is a process of bounded variation focha and
K fixed if and only if it is the deterministic shift of a constahtipe and the under-
lying spot is a Markov process.
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Stochastic Volatility Models

Next we attempt to bridge our analysis of the dynamics of twall volatility with
stochastic volatility models widely used in the industry ¥art with an explicit form
for the dynamics of the stock and spot volatility under a-nglutral measure, and
we derive arexplicit form for the local volatility surface together with the ramd
fieldsay(.,.), B:(.,.) at each fixed time.

For the sake of illustration, we consider a simplified vansibthe SABR model
with a stochastic volatility given by a geometric Browniantion. To be specific we
assume that

dSt == StcrtdBtl
doy = 0,6dB?

with initial conditionsSy, = S andog = o. Here, g > 0 is a constant (usually called
the vol-vol) and{ B} }:>o and{ B?}:>( are standard Wiener processes. If we also

assume that these two Wiener processes are independemndyianing onFB*
we can easily obtain a closed form formula for the call prigetsme zero:

BS (S,T,”l/ agdu7K>]
T Jo

where the notatiorBS(S, 7, o, K) for the Black-Scholes price of a European call
option was introduced in (49). We can then compute the paltidavatives with re-
spect tor and K passing the derivatives under the expectation and get B3irtkie
following formula for the local volatility

g E [(203/01 — ) e—d?/ﬂ

Co(T,K):E

ag(r, K) = i B 0] (70)
where
5= )2 /T o2du (71)
T Jo
e log(5/K) + 0,212 )
dy = JT and dy =dy — G-/T. (72)

The independence assumption is often made for the compusatid be easier,
but it is not necessary. Indeed, similar formula can be abthif we assume that
the two Wiener processes are correlated, say if they satiBfyd B? = pdt. In this
case, the formula for the price of a call option becomes

~ po ~ 2 —
Co(r,K)=E {BS (Seffo(”T_l)_”g%TU%,K, 7,4/ 1 — pQan'T)]
whereq; is defined as above in (71), add = 0:/09. It now holds

E [az/a}e’d%/ﬂ

~2 _ 2
ao(T,K)—ao\/l—mW (73)
whered; is now defined by
 log(S/K) + p2(5, — 1) + (0.5 = p*)agazT -

1=
V1= pQUoéT\/F

Example of these local volatility surfaces are given in [7].
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6.7 Factor Models and Consistency

In our discussion of the classical HIM approach to the fixedrme markets in Sec-
tion 3, we explained the important role played by the use abfamodels based on
parametric families of forward curves. Motivated by the gutations of the previ-

ous subsection, we single out a simple parametric familwofdimensional surfaces
which appear to give a reasonable parametric family for leaatility surfaces. This

family is given by the local volatility surfaces of stochastolatility models where

the stochastic volatility is restricted to take only thréffedlent values.

Example of a Parametric Family of Local Volatility Surfaces

Parametric families of forward curves have played a crucia in the major devel-
opments in the econometric analysis of interest rate dataeder, they were also
a major impetus in some of the recent the formulation and dhe&ien of the con-
sistency problem. As far as we know, parametric familieooél volatility surfaces
have not been introduced and systematically studied, stt\th the same intensity,
and at least in the academic literature. For the sake of tkfieés we introduce a
simple example of such a family. For each (multivariate ppagter

0= (05017027131,]92)

suchasr > 0,01 > 0,02 > 0,p1 > 0, p2 > 0, and also satisfying; + p2 < 1, we
use formula (53) to define a surfagg(, K') from a call functionC; (r, K ) obtained
by randomization of the volatility assuming that it takes #aluesr;, o ando, with

probabilitiesp;, 1 — p; — p2 respectively. Consequently,

p10:C(01) + (1 = p1 — p2)0:-C(0) + p20-C(02)
P15 C(01) + (1 = p1 — p2)0%  C(0) + p205 ;c C(02)
where we use the notati@i(5) for the Black-Scholes pric€ (7, K) if the volatility

parameter ig. Now, using the following expressions for the partial datives of the
Black-Scholes price

ao(r, K)? = (75)

VSK g 67(logS/K)2/20277702/8
V2r 2T

\ SK 1 e—(lOgS/K)2/202T—TU2/8

V2 o\T
we get the following formula for the definition of our local latility parametric
family:

0.B(S,K,T,0) =

and
K?0%B(S,K,7,0) =

(27'%2 ) —703/8

2 —z?/
2 Zi:opiaie
O) =
“ (7'7557 ) Z?ZO(pi/o'i)eim2/(270’?)770’?/8

(76)

where we use the variable for the log-moneyneskg(S/K) and where we set
po = 1 — p1 — p2 andoy = o to simplify the form of the formula. Figure 2 gives an
example of such a surface.

This plot clearly hints at one of the major shortcomings aé tamily: the singular
behavior of the surface for short time to maturity, i.e. fox, 0. Indeeda?(7, z, ©)
converges toward the maximum of the thegema; whenr \ 0 andx # 0, while
the same limit is strictly smaller (a weighted average of #hs) whenz = 0.
Possible fixes to this problem include the choice of time ddpat volatilitiess;,
and a solution in this spirit is implemented in [7] where datiént parametric family
is proposed.
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Fig. 2. Parametric local volatility surface from the family deded in the text. We used the
parametergo = 0.4, 01 = 0.3, 02 = 0.6, po = 0.3, andp; = 0.5.

6.8 Local Volatility Factor Models

Studying the consistency of local volatility factor models very interesting prob-
lem, and as far as we know, such a problem is completely opsrexfilained in
Section 3, factor models are based on the choice of a pararfeetrily as defined
in (76) for example. So if we assume that we are given a paranfamily G as
before and if we suppose th@ = {6, },>¢ is ad-dimensional semi-martingale with

values in the parameter spa®@ethen consistency of the factor model means that the
random field

ai(t, K) = G0, 1, K), t>0,7>0, K>0.

gives a local volatility model satisfying the no-arbitragmndition.
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