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Emission Trading

SOx and NOx Trading
Have existed in the US for a long time
Liquidity and Price Collapse Issues

Cap & Trade for Green House Gases (Kyoto)
Carbon Markets (RGGI started Sept. 25 2008)
Lessons learned from the EU Experience

Mathematical (Equilibrium) Models
For emission credits only (RC-Fehr-Hinz)
Joint for Electricity and Emission credits (RC-Fehr-Hinz-Porchet)
Calibration & Option Pricing (RC-Fehr-Hinz)

Computer Implementations
Several case studies (Texas, Japan)
Practical Tools for Regulators and Policy Makers
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(Simplified) Cap-and-Trade Scheme: Data

Regulator Input at inception of program (i.e. time t = 0)
INITIAL DISTRIBUTION of allowance certificates θ0

Set PENALTY π per ton of CO2 equivalent emitted and NOT offset
by allowance certificate at time of compliance

Given exogenously
{Dt}t=0,1,·,T daily demand for electricity

{Cn
t }t=0,1,·,T production cost for 1MWh of electricity from nuclear

plant
{Cg

t }t=0,1,·,T production cost for 1MWh of electricity from gas plant
{Cc

t }t=0,1,·,T production cost for 1MWh of electricity from coal plant

Known physical characteristics
en emission (in CO2 ton-equivalent) for 1MWh from nuclear plant
eg emission (in CO2 ton-equivalent) for 1MWh from gas plant
ec emission (in CO2 ton-equivalent) for 1MWh from coal plant
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(Simplified) Cap-and-Trade Scheme: Outcome

{St}t=0,1,·,T daily price of electricity
{At}t=0,1,·,T daily price of a credit allowance
Production schedules

{ξn
t }t=0,1,·,T daily production of electricity from nuclear plant
{ξg

t }t=0,1,·,T production of electricity from gas plant
{ξc

t }t=0,1,·,T production of electricity from coal plant

Inelasticity constraint

ξn
t + ξ

g
t + ξc

t = Dt t = 0,1, · · · ,T

Daily Production Profits & Losses

ξn
t (St−cn

t )+ξg
t (St−cg

t )+ξc
t (St−cc

t ) =
(
DtSt − (ξn

t cn
t + ξ

g
t cg

t + ξc
t cc

t )
)

(possible) Pollution Penalty

π

(
T∑

t=0

(ξn
t en + ξ

g
t eg + ξc

t eg)− θ0

)+
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EU ETS First Phase: Main Criticism

No (Significant) Emissions Reduction
DID Emissions go down?
Yes, but as part of an existing trend

Significant Increase in Prices
Cost of Pollution passed along to the ”end-consumer”
Small proportion (40%) of polluters involved in EU ETS

Windfall Profits
Cannot be avoided
Proposed Remedies

Stop Giving Allowance Certificates Away for Free !
Auctioning
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What Happened? Falling Carbon Prices

Figure A:  M arket Price of the EUA from  Decem ber 2004 through Decem ber 2007 

(Pointcarbon) 
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More Historical Prices: CDM?
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Description of the Economy

Finite set I of risk neutral agents/firms
Producing a finite set K of goods
Firm i ∈ I can use technology j ∈ J i,k to produce good k ∈ K
Discrete time {0,1, · · · ,T}
Inelastic Demand

{Dk (t); t = 0,1, · · · ,T − 1, k ∈ K}.

· · · · · · · · · · · ·
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Regulator Input (EU ETS)

At inception of program (i.e. time t = 0)
INITIAL DISTRIBUTION of allowance certificates

θi
0 to agent i ∈ I

Set PENALTY π for emission unit NOT offset by allowance
certificate at end of compliance period

Variations (not discussed in this talk)

Risk aversion and agent preferences (existence theory easy)

Auctioning of allowances (redistribution of P&L’s)

Distributionover time of allowances (stochastic game theory)

Elastic demand (e.g. smart meters)

Multi-period period lending and borrowing (more realistic)

· · · · · · · · · · · ·
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Goal of Equilibrium Analysis

Find two stochastic processes
Price of one allowance

A = {At}t≥0

Prices of goods
S = {Sk

t }k∈K , t≥0

satisfying the usual conditions for the existence of a

competitive equilibrium

(to be spelled out below).
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Individual Firm Problem
During each time period [t , t + 1)

Firm i ∈ I produces ξi,j,k
t of good k ∈ K with technology j ∈ J i,k

Firm i ∈ I holds a position θi
t in emission credits

LA,S,i (θi , ξi ) :=
X
k∈K

X
j∈J i,k

T−1X
t=0

(Sk
t − C i,j,k

t )ξi,j,k
t

+ θi
0A0 +

T−1X
t=0

θi
t+1(At+1 − At )− θi

T +1AT

− π(Γi + Πi (ξi )− θi
T +1)+

where

Γi random, Πi (ξi ) :=
X
k∈K

X
j∈J i,k

T−1X
t=0

ei,j,kξi,j,k
t

Problem for (risk neutral) firm i ∈ I

max
(θi ,ξi )

E{LA,S,i (θi , ξi )}
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In the Absence of Cap-and-Trade Scheme (i.e. π = 0)
If (A∗,S∗) is an equilibrium, the optimization problem of firm i is

sup
(θi ,ξi )

E

24X
k∈K

X
j∈J i,k

T−1X
t=0

(Sk
t − C i,j,k

t )ξi,j,k
t + θi

0A0 +

T−1X
t=0

θi
t+1(At+1 − At )− θi

T +1AT

35
We have A∗t = Et [A∗t+1] for all t and A∗T = 0 (hence A∗t ≡ 0!)

Classical competitive equilibrium problem where each agent maximizes

sup
ξi∈U i

E

24X
k∈K

X
j∈J i,k

T−1X
t=0

(Sk
t − C i,j,k

t )ξi,j,k
t

35 , (1)

and the equilibrium prices S∗ are set so that supply meets demand. For each time t

((ξ∗i,j,kt )j,k )i = arg max
((ξ

i,j,k
t )J i,k )i∈I

X
i∈I

X
j∈J i,k

−C i,j,k
t ξ

i,j,k
t

X
i∈I

X
j∈J i,k

ξ
i,j,k
t = Dk

t

ξ
i,j,k
t ≤ κi,j,k for i ∈ I, j ∈ J i,k

ξ
i,j,k
t ≥ 0 for i ∈ I, j ∈ J i,k
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Business As Usual (cont.)

The corresponding prices of the goods are

S∗kt = max
i∈I, j∈J i,k

C i,j,k
t 1{ξ∗i,j,k

t >0},

Classical MERIT ORDER
At each time t and for each good k

Production technologies ranked by increasing production costs C i,j,k
t

Demand Dk
t met by producing from the cheapest technology first

Equilibrium spot price is the marginal cost of production of the most
expansive production technoligy used to meet demand

Business As Usual
(typical scenario in Deregulated electricity markets)
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Equilibrium Definition for Emissions Market

The processes A∗ = {A∗t }t=0,1,··· ,T and S∗ = {S∗t }t=0,1,··· ,T form an
equilibrium if for each agent i ∈ I there exist strategies
θ∗i = {θ∗it }t=0,1,··· ,T (trading) and ξ∗i = {ξ∗it }t=0,1,··· ,T (production)

(i) All financial positions are in constant net supply∑
i∈I

θ∗it =
∑
i∈I

θi
0, ∀ t = 0, . . . ,T + 1

(ii) Supply of each good meets demand∑
i∈I

∑
j∈J i,k

ξ∗i,j,kt = Dk
t , ∀ k ∈ K, t = 0, . . . ,T − 1

(iii) Each agent i ∈ I is satisfied by its own strategy

E[LA∗,S∗,i (θ∗i , ξ∗i )] ≥ E[LA∗,S∗,i (θi , ξi )] for all (θi , ξi )
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Necessary Conditions

Assume
(A∗,S∗) is an equilibrium
(θ∗i , ξ∗i ) optimal strategy of agent i ∈ I

then
The allowance price A∗ is a bounded martingale in [0, π]

Its terminal value is given by

A∗T = π1{Γi +Π(ξ∗i )−θ∗i
T +1≥0} = π1{Pi∈I(Γi +Π(ξ∗i )−θ∗i

0 )≥0}

The spot prices S∗k of the goods and the optimal production
strategies ξ∗i are given by the merit order for the equilibrium
with adjusted costs

C̃ i,j,k
t = C i,j,k

t + ei,j,k A∗t
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Social Cost Minimization Problem

Overall production costs

C(ξ) :=

T−1X
t=0

X
(i,j,k)

ξ
i,j,k
t C i,j,k

t .

Overall cumulative emissions

Γ :=
X
i∈I

Γi Π(ξ) :=

T−1X
t=0

X
(i,j,k)

ei,j,kξ
i,j,k
t ,

Total allowances
θ0 :=

X
i∈I

θi
0

The total social costs from production and penalty payments

G(ξ) := C(ξ) + π(Γ + Π(ξ)− θ0)+

We introduce the global optimization problem

ξ∗ = arg inf
ξmeets demands

E[G(ξ)],
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Social Cost Minimization Problem (cont.)

First Theoretical Result
There exists a set ξ∗ = (ξ∗i )i∈I realizing the minimum social cost

Second Theoretical Result
(i) If ξ minimizes the social cost, then the processes (A,S) defined by

At = πPt{Γ + Π(ξ)− θ0 ≥ 0}, t = 0, . . . ,T

and

S
k
t = max

i∈I, j∈J i,k
(C i,j,k

t +ei,j,k
t At )1{ξi,j,k

t >0}, t = 0, . . . ,T−1 k ∈ K ,

form a market equilibrium with associated production strategy ξ
(ii) If (A∗,S∗) is an equilibrium with corresponding strategies (θ∗, ξ∗),

then ξ∗ solves the social cost minimization problem
(iii) The equilibrium allowance price is unique.
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Effect of the Penalty on Emissions
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Equilibrium Sample Paths
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Costs in a Cap-and-Trade

Consumer Burden X
t

X
k

(Sk,∗
t − Sk,BAU∗

t )Dk
t .

Reduction Costs (producers’ burden)X
t

X
i,j,k

(ξi,j,k∗
t − ξBAU,i,j,k∗

t )C i,j,k
t

Excess ProfitX
t

X
k

(Sk,∗
t −Sk,BAU∗

t )Dk
t −

X
t

X
i,j,k

(ξi,j,k∗
t −ξBAU,i,j,k∗

t )C i,j,k
t −π(

X
t

X
ijk

ξijk
t eijk

t −θ0)+

Windfall Profits

WP =
T−1X
t=0

X
k∈K

(S∗kt − Ŝk
t )Dk

t

where
Ŝk

t := max
i∈I,j∈J i,k

C i,j,k
t 1{ξ∗i,j,k

t >0}.
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Costs in a Cap-and-Trade Scheme
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Histograms of the difference between the consumer cost, social cost, windfall
profits and penalty payments of a standard cap-and-trade scheme calibrated
to reach the emissions target with 95% probability and BAU.
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One of many Possible Generalizations
Introduction of Taxes / Subsidies

L̈A,S,i (θi , ξi ) = −
T−1∑
t=0

Gi
t +
∑
k∈K

∑
j∈J i,k

T−1∑
t=0

(Sk
t − C i,j,k

t − Hk
t )ξi,j,k

t

+
T−1∑
t=0

θi
t (At+1 − At )− θi

T AT

− π(Γi + Πi (ξi )− θi
T )+.

In this case
In equilibrium, production and trading strategies remain the
same (θ†, ξ†) = (θ∗, ξ∗)

Abatement costs and Emissions reductions are also the same
New equilibrium prices (A†,S†) given by

A†t = A∗t for all t = 0, . . . ,T (2)

S†kt = S∗kt + Hk
t for all k ∈ K , t = 0, . . . ,T − 1 (3)

Cost of the tax passed along to the end consumer
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Alternative Market Design

Currently Regulator Specifies
Penalty π
Overall Certificate Allocation θ0 (=

P
i∈I θ

i
0)

Alternative Scheme (Still) Controlled by Regulator
(i) Sets penalty level π
(ii) Allocates allowances

θ′0 at inception of program t = 0
then proportionally to production

yξi,j,k
t to agent i for producing ξi,j,k

t of good k with technology j

(iii) Calibrates y , e.g. in expectation.

y =
θ0 − θ′0PT−1

t=0

P
k∈K E{Dk

t }

So total number of credit allowance is the same in expectation, i.e.
θ0 = E{θ′0 + y

PT−1
t=0

P
k∈K Dk

t }
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Yearly Emissions Equilibrium Distributions
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Yearly emissions from electricity production for the Standard Scheme, the
Relative Scheme, a Tax Scheme and BAU.
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Abatement Costs
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Yearly abatement costs for the Standard Scheme, the Relative Scheme and a
Tax Scheme.
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Windfall Profits

��

����

����

����

��

����

�	 �� ��� ��	 ��� ��	

��
��
��
���
��


���
���������

�����
����������

��
��
���������
���
�����������
 
!�������
"#�����

����

�	

	

�

�

���������������
�
�
�

Histograms of the yearly distribution of windfall profits for the Standard
Scheme, a Relative Scheme, a Standard Scheme with 100% Auction and a
Tax Scheme
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Japan Case Study: Windfall Profits
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Histograms of the difference of consumer cost, social cost, windfall profits
and penalty payments between BAU and a standard trading scheme scenario
with a cap of 300Mt CO2. Notice that taking into account fuel switching even
a reduction to 1990 emission levels is not very expensive (below
2Dollar/MWh). (Rene: Japan is discussing to change their reduction target to
a reduction relative to their 2005 emission level. Due to extra coal fired
production they had a huge increase in emissions since 1990 and are afraid
that their target which means a 20percent reduction from todays emission
level is too expensive). The low reduction costs and windfall profits compared
to Texas are due to a downsloping linear trend of fuel switch prices. Today the
price is 85$ per MWh in average. With todays down-sloping trend it will be 50
$ per MWh in 2012.
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Japan Case Study: More Windfall Profits

��

����

����

����

��

����

����

�	 �� ��� ��	 ��� ��	

�
��
�
�
�
��
��
�


���
���������

���������
�����������������

��������������
����
�������
�����
����������
���
�� ��
 �����

����

�	

	

�

�

����������������
�
�
�

Histograms of the consumer cost, social cost, windfall profits and penalty
payments under a standard trading scheme scenario with a cap of
330MtCO2.
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Japan Case Study: Consumer Costs
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Histogram of the yearly distribution of consumer costs for the Standard
Scheme, a Relative Scheme and a Tax Scheme. Notice that the Standard
Scheme with Auction possesses the same consumer costs as the Standard
Scheme. Carmona Energy Markets, Munich



Numerical Results: Windfall Profits
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More Numerical Results: Windfall Profits
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Equilibrium Models: (Temporary) Conclusions

Market Mechanisms CANNOT solve all the pollution problems
Cap-and-Trade Schemes CAN Work!

Given the right emission target
Using the appropriate tool to allocate emissions credits
Significant Windfall Profits for Standard Schemes

Taxes
Politically unpopular
Cannot reach emissions targets

Auctioning
Fairness is Smoke Screen: Re-distribution of the cost

Relative Schemes
Can Reach Emissions Target
Possible Control of Windfall Profits
Minimize Social Costs

Extensions of the Present Work (Sharpening the Tools
Including Risk Averse Agents and Inelastic Demands
Statistical Analysis of Equilibrium Prices
Exogenous Prices and Large Scale Case Studies
Other Schemes (e.e. California Low Emissions Fuel Standards)
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Reduced Form Models & Option Pricing

Emissions Cap-and-Trade Markets SOON to exist in the US
Option Market SOON to develop

Underlying {At}t non-negative martingale with binary terminal
value
Can think of At as of a binary option
Underlying of binary option should be Emissions

Need for Formulae (closed or computable)
for Prices
for Hedges

Reduced Form Models
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Reduced Form Model for Emissions Abatement

{Xt}t actual emissions at time t
dXt = σ(t ,Xt )dWt − ξtdt

ξt abatement (in ton of CO2) at time t
Xt = Et −

R t
0 ξsds

cumulative emissions in BAU minus abatement up to time t

π(XT − K )+ penalty
T maturity (end of compliance period)
K regulator emissions’ target
π penalty (40 EURO) per ton of CO2 not offset by an allowance
certificate

Social Cost E{
∫ T

0 C(ξs)ds + π(XT − K )+}
C(ξ) cost of abatement of ξ ton of CO2
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Representative Agent Stochastic Control Problem

Informed Planner Problem

inf
ξ={ξt}0≤t≤T

E{
∫ T

0
C(ξs)ds + π(XT − K )+}

Value Function

V (t , x) = inf
{ξs}t≤s≤T

E{
∫ T

t
C(ξs)ds + π(XT − K )+|Xt = x}

HJB equation (e.g. C(ξ) = ξ2)

Vt +
1
2
σ(t , x)2Vxx −

1
2

V 2
x
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Calibration

Emission Allowance Price

At = Vx (t ,Xt )

Emission Allowance Volatility

σA(t) = σ(t ,Xt )Vxx (t ,Xt )

Calibration (σ(t) deterministic)
Multiperiod (Cetin. et al)
Close Form Formulae for Prices
Close Form Formulae for Hedges
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