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Spread Options

European Call on the difference between two indexes
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Calendar Spread Options

Single Commodity at two different times

E{(I(T2)− I(T1)− K )+}

Mathematically easier (only one underlier)

Amaranth largest (and fatal) positions

Shoulder Natural Gas Spread (play on inventories)
Long March Gas / Short April Gas

Depletion stops in March / injection starts in April
Can be fatal: widow maker spread
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Seasonality of Gas Inventory

9 
 

There is a long injection season from the spring through the fall when natural gas is 

injected and stored in caverns for use during the long winter to meet the higher residential 

demand, as in FIGURE 2.1.  The figure illustrates the U.S. Department of Energy’s total 

(lower 48 states) working underground storage for natural gas inventories over 2006.   

Inventories stop being drawn down in March and begin to rise in April.  As we will see in 

Section 2.1.3.2, the summer and fall futures contracts, when storage is rising, trade at a 

discount to the winter contracts, when storage peaks and levels off.  Thus, the markets 

provide a return for storing natural gas.  A storage operator can purchase summer futures 

and sell winter futures, the difference being the return for storage.  At maturity of the 

summer contract, the storage owner can move the delivered physical gas into storage and 

release it when the winter contract matures.  Storage is worth more if such spread bets are 

steep between near and far months.    

2.1.3 Risk Management Instruments 

Futures and forward contracts, swaps, spreads and options are the most standard 

tools for speculation and risk management in the natural gas market.   Commodities market 

U.S. Natural Gas Inventories 2005-6
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FIGURE 2.1: Seasonality in Natural Gas Weekly Storage 
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What Killed Amaranth 43 
 

November 2006 bets were particularly large compared to the rest, as Amaranth accumulated 

the largest ever long position in the November futures contract in the month preceding its 

downfall.  Regarding the Fund’s overall strategy, Burton and Strasburg (2006a) write that 

Amaranth was generally long winter contracts and short summer and fall ones, a winning bet 

since 2004.  Other sources affirm that Amaranth was long the far-end of the curve and short 

the front-end, and their positions lost value when far-forward gas contracts fell more than 

near-term contracts did in September 2006. 

 From these bets, Amaranth believed a stormy and exceptionally cold winter in 2006 

would result in excess usage of natural gas in the winter and a shortage in March of the 

following year.  Higher demand would result in a possible stockout by the end of February 

and higher March prices.  Yet April prices would fall as supply increases at the start of the 

injection season.  In this scenario, there is theoretically no ceiling on how much the price of 

the March contract can rise relative to the rest of the curve.  Fischer (2006), natural gas 

trader at Chicago-based hedge fund Citadel Investment Group, believes Amaranth bet on 

similar hurricane patterns in the previous two years.  As a result, the extreme event that hurt 

Amaranth was that nothing happened—there was no Hurricane Katrina or similar 

Shoulder Month Spread
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FIGURE 3.1: Natural Gas March-April Contract Spread Evolution 
Carmona Energy Markets, Munich



More Spread Options

Cross Commodity
Crush Spread: between Soybean and soybean products (meal &
oil)
Crack Spread:

gasoline crack spread between Crude and Unleaded
heating oil crack spread between Crude and HO

Spark spread
St = FE (t)− Heff FG(t)

Heff Heat Rate
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Synthetic Generation

Present value of profits for future power generation (case of one fuel)

E
{∫ T

0
D(0, t)(F̃P(t , τ)− H ∗ F̃G(t , τ)− K )+ dt

}
where

τ > 0 fixed (small)
D(0, t) discount factor to compute present values

F̃P(t , τ) (resp. F̃G(t , τ)) price at time t of a power (resp. gas)
contract with delivery t + τ

H Heat Rate
K Operation and Maintenance cost (sometimes denoted O&M)
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Basket of Spread Options
Deterministic discounting (with constant interest rate)

D(t ,T ) = e−r(T−t)

Interchange expectation and integralZ T

0
e−rtE{(F̃P(t , τ)− H ∗ F̃G(t , τ)− K )+} dt

Continuous stream of spread options
In Practice

Discretize time, say daily

TX
t=0

e−rtE{(F̃P(t , τ)− H ∗ F̃G(t , τ)− K )+

Bin Daily Production in Buckets Bk ’s (e.g. 5× 16, 2× 16, 7× 8,
settlement locations, .....).

TX
t=0

e−r(T−t)
X

k

E{(F̃ (k)
P (t , τ)− H(k) ∗ F̃ (k)

G (t , τ)− K (k))+}

Basket of Spark Spread Options

Carmona Energy Markets, Munich



Spread Mathematical Challenge

p = e−rT E{(I2(T )− I1(T )− K )+}

Underlying indexes are spot prices
Geometric Brownian Motions (K = 0 Margrabe)
Geometric Ornstein-Uhlembeck (OK for Gas)
Geometric Ornstein-Uhlembeck with jumps (OK for Power)

Underlying indexes are forward/futures prices
HJM-type models with deterministic coefficients

Problem

finding closed form formula and/or fast/sharp approximation for

E{(αeγX1 − βeδX2 − κ)+}

for a Gaussian vector (X1,X2) of N(0, 1) random variables with correlation ρ.

Sensitivities?
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Easy Case : Exchange Option & Margrabe Formula

p = e−rT E{(S2(T )− S1(T ))+}

S1(T ) and S2(T ) log-normal
p given by a formula à la Black-Scholes

p = x2N(d1)− x1N(d0)

with

d1 =
ln(x2/x1)

σ
√

T
+

1
2
σ
√

T d0 =
ln(x2/x1)

σ
√

T
− 1

2
σ
√

T

and:

x1 = S1(0), x2 = S2(0), σ2 = σ2
1 − 2ρσ1σ2 + σ2

2

Deltas are also given by ”closed form formulae”.
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Proof of Margrabe Formula

p = e−rT EQ{
`
S2(T )− S1(T )

´+} = e−rT EQ

„
S2(T )

S1(T )
− 1
«+

S1(T )

ff

Q risk-neutral probability measure

Define ( Girsanov) P by:

dP
dQ

˛̨̨̨
FT

= S1(T ) = exp
„
−1

2
σ2

1T + σ1Ŵ1(T )

«
Under P,

Ŵ1(t)− σ1t and Ŵ2(t)
S2/S1 is geometric Brownian motion under P with volatility

σ2 = σ2
1 − 2ρσ1σ2 + σ2

2

p = S1(0)EP

„
S2(T )

S1(T )
− 1
«+ff

Black-Scholes formula with K = 1, σ as above.
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Pricing Calendar Spreads in Forward Models

Model

dF (t ,T ) = F (t ,T )[µ(t ,T )dt +
n∑

k=1

σk (t ,T )dWk (t)]

µ(t ,T ) and σk (t ,T ) deterministic so

forward prices are log-normal

Calendar Spread involves prices of two forward contracts with
different maturities

S1(t) = F (t ,T1) and S2(t) = F (t ,T2),

Price at time t of a calendar spread option with maturity T and strike
K

E{(F (T ,T2)− F (T ,T1)− K )∗}
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Pricing Spark Spreads in Forward Models

Use formula for
E{(αeγX1 − βeδX2 − κ)+}

with

α = e−r [T−t]F (t ,T2), β =

vuut nX
k=1

Z T

t
σk (s,T2)2ds,

γ = e−r [T−t]F (t ,T1), and δ =

vuut nX
k=1

Z T

t
σk (s,T1)2ds

and κ = e−r(T−t) (µ ≡ 0 per risk-neutral dynamics)

ρ =
1
βδ

nX
k=1

Z T

t
σk (s,T1)σk (s,T2) ds
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Pricing Spark Spreads in Forward Models

Cross-commodity
subscript e for forward prices, times-to-maturity, volatility
functions, . . . relative to electric power
subscript g for quantities pertaining to natural gas.

Pay-off (
Fe(T ,Te)− H ∗ Fg(T ,Tg)− K

)+
.

T < min{Te,Tg}
Heat rate H
Strike K given by O& M costs

Natural
Buyer owner of a power plant that transforms gas into electricity,
Protection against low electricity prices and/or high gas prices.
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Joint Dynamics of the Commodities

{
dFe(t ,Te) = Fe(t ,Te)[µe(t ,Te)dt +

∑n
k=1 σe,k (t ,Te)dWk (t)]

dFg(t ,Tg) = Fg(t ,Tg)[µg(t ,Tg)dt +
∑n

k=1 σg,k (t ,Tg)dWk (t)]

Each commodity has its own volatility factors
between The two dynamics share the same driving Brownian
motion processes Wk , hence correlation.
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Fitting Join Cross-Commodity Models

on any given day t we have
electricity forward contract prices for N(e) times-to-maturity
τ

(e)
1 < τ

(e)
2 , . . . < τ

(e)

N(e)

natural gas forward contract prices for N(g) times-to-maturity
τ

(g)
1 < τ

(g)
2 , . . . < τ

(g)

N(g)

Typically N(e) = 12 and N(g) = 36 (possibly more).
Estimate instantaneous vols σ(e)(t) & σ(g)(t) 30 days rolling window
For each day t , the N = N(e) + N(g) dimensional random vector X(t)

X(t) =

2664
„

log F̃e(t+1,τ (e)
j )−log F̃e(t,τ (e)

j )

σ(e)(t)

«
j=1,...,N(e)„

log F̃g (t+1,τ (g)
j )−log F̃g (t,τ (g)

j )

σ(g)(t)

«
j=1,...,N(g)

3775
Run PCA on historical samples of X(t)
Choose small number n of factors
for k = 1, . . . , n,

first N(e) coordinates give the electricity volatilities τ ↪→ σ
(e)
k (τ) for

k = 1, . . . , n
remaining N(g) coordinates give the gas volatilities τ ↪→ σ

(g)
k (τ).

Skip gory details
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Pricing a Spark Spread Option

Price at time t

pt = e−r(T−t)Et
{

(Fe(T ,Te)− H ∗ Fg(T ,Tg)− K )+
}

Fe(T ,Te) and Fg(T ,Tg) are log-normal under the pricing measure calibrated
by PCA

Fe(T ,Te) = Fe(t ,Te) exp

"
−1

2

nX
k=1

Z T

t
σe,k (s,Te)2ds +

nX
k=1

Z T

t
σe,k (s,Te)dWk (s)

#

and:

Fg(T ,Tg) = Fg(t ,Tg) exp

"
−1

2

nX
k=1

Z T

t
σg,k (s,Tg)2ds +

nX
k=1

Z T

t
σg,k (s,Tg)dWk (s)

#

Set
S1(t) = H ∗ Fg(t ,Tg) and S2(t) = Fe(t ,Te)

Carmona Energy Markets, Munich



Pricing a Spark Spread Option

Use the constants

α = e−r(T−t)Fe(t ,Te), and β =

vuut nX
k=1

Z T

t
σe,k (s,Te)2 ds

for the first log-normal distribution,

γ = He−r(T−t)Fg(t ,Tg), and δ =

vuut nX
k=1

Z T

t
σg,k (s,Tg)2 ds

for the second one, κ = e−r(T−t)K and

ρ =
1
βδ

Z T

t

nX
k=1

σe,k (s,Te)σg,k (s,Tg)ds

for the correlation coefficient.
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Approximations

Fourier Approximations (Madan, Carr, Dempster, . . .)
Bachelier approximation
Zero-strike approximation
Kirk approximation
Upper and Lower Bounds

Can we also approximate the Greeks ?
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Bachelier Approximation

Generate x (1)
1 , x (1)

2 , · · · , x (1)
N from N(µ1, σ

2
1)

Generate x (2)
1 , x (2)

2 , · · · , x (2)
N from N(µ1, σ

2
1)

Correlation ρ
Look at the distribution of

ex (2)
1 − ex (1)

1 ,ex (2)
2 − ex (1)

2 , · · · ,ex (2)
N − ex (1)

N

Carmona Energy Markets, Munich



Log-Normal Samples
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Bachelier Approximation

Assume (S2(T )− S1(T ) is Gaussian
Match the first two moments

p =
(

m(T )− Ke−rT
)

Φ

(
m(T )− Ke−rT

s(T )

)
+ s(T )ϕ

(
m(T )− Ke−rT

s(T )

)

with:

m(T ) = (x2 − x1)e(µ−r)T

s2(T ) = e2(µ−r)T
h
x2

1

“
eσ

2
1T − 1

”
− 2x1x2

“
eρσ1σ2T − 1

”
+ x2

2

“
eσ

2
2T − 1

”i
Easy to compute the Greeks !
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Zero-Strike Approximation

p = e−rT E{(S2(T )− S1(T )− K )+}

Assume S2(T ) = FE (T ) is log-normal

Replace S1(T ) = H ∗ FG(T ) by S̃1(T ) = S1(T ) + K
Assume S2(T ) and S1(T ) are jointly log-normal

Use Margrabe formula for p = e−rT E{(S2(T )− S̃1(T ))+}
Use the Greeks from Margrabe formula !

Carmona Energy Markets, Munich



Kirk Approximation

p̂K = x2Φ

 ln
(

x2
x1+Ke−rT

)
σK +

σK

2

−(x1+Ke−rT )Φ

 ln
(

x2
x1+Ke−rT

)
σK − σK

2



where

σK =

√
σ2

2 − 2ρσ1σ2
x1

x1 + Ke−rT + σ2
1

(
x1

x1 + Ke−rT

)2

.

Exactly what we called ”Zero Strike Approximation”!!!
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Upper and Lower Bounds

Π(α, β, γ, δ, κ, ρ) = E
{(

αeβX1−β2/2 − γeδX2−δ2/2 − κ
)+
}

where
α, β, γ, δ and κ real constants
X1 and X2 are jointly Gaussian N(0,1)

correlation ρ
α = x2e−q2T β = σ2

√
T γ = x1e−q1T δ = σ1

√
T and κ = Ke−rT .
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Strategy for a Lower Bound

E{X +} = sup
0≤Y≤1

E{XY}

So in particular

E{X +} ≥ sup
u1,u2,d∈R

E{X1{u1X1+u2X2≤d}}

and we apply this to

X = αeβX1−β2/2 − γeδX2−δ2/2 − κ

so everything can be computed!
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A Precise Lower Bound

p̂ = x2e−q2T Φ
“

d∗ + σ2 cos(θ∗ + φ)
√

T
”
−x1e−q1T Φ

“
d∗ + σ1 sin θ∗

√
T
”
−Ke−rT Φ(d∗)

where
θ∗ is the solution of

1
δ cos θ

ln
„
−

βκ sin(θ + φ)

γ[β sin(θ + φ)− δ sin θ]

«
−
δ cos θ

2

=
1

β cos(θ + φ)
ln
„
−

δκ sin θ
α[β sin(θ + φ)− δ sin θ]

«
−
β cos(θ + φ)

2

the angle φ is defined by setting ρ = cosφ

d∗ is defined by

d∗ =
1

σ cos(θ∗ − ψ)
√

T
ln

 
x2e−q2Tσ2 sin(θ∗ + φ)

x1e−q1Tσ1 sin θ∗

!
−

1
2

(σ2 cos(θ∗+φ)+σ1 cos θ∗)
√

T

the angles φ and ψ are chosen in [0, π] such that:

cosφ = ρ and cosψ =
σ1 − ρσ2

σ
,
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Remarks on this Lower Bound

p̂ is equal to the true price p when
K = 0
x1 = 0
x2 = 0
ρ = −1
ρ = +1

Margrabe formula when K = 0 because

θ∗ = π + ψ = π + arccos
(
σ1 − ρσ2

σ

)
.

with:
σ =

√
σ2

1 − 2ρσ1σ2 + σ2
2

Carmona Energy Markets, Munich



Delta Hedging

The portfolio comprising at each time t ≤ T

∆1 = −e−q1T Φ
(

d∗ + σ1 cos θ∗
√

T
)

and
∆2 = e−q2T Φ

(
d∗ + σ2 cos(θ∗ + φ)

√
T
)

units of each of the underlying assets is a sub-hedge

its value at maturity is a.s. a lower bound for the pay-off
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The Other Greeks

� ϑ1 and ϑ2 sensitivities w.r.t. volatilities σ1 and σ2
� χ sensitivity w.r.t. correlation ρ
� κ sensitivity w.r.t. strike price K
� Θ sensitivity w.r.t. maturity time T

ϑ1 = x1e−q1Tϕ
(

d∗ + σ1 cos θ∗
√

T
)

cos θ∗
√

T

ϑ2 = −x2e−q2Tϕ
(

d∗ + σ2 cos(θ∗ + φ)
√

T
)

cos(θ∗ + φ)
√

T

χ = −x1e−q1Tϕ
(

d∗ + σ1 cos θ∗
√

T
)
σ1

sin θ∗

sinφ

√
T

κ = −Φ (d∗) e−rT

Θ =
σ1ϑ1 + σ2ϑ2

2T
− q1x1∆1 − q2x2∆2 − rKκ
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Comparisons

Behavior of the tracking error as the number of re-hedging times increases.
The model data are x1 = 100, x2 = 110, σ1 = 10%, σ2 = 15% and T = 1.
ρ = 0.9, K = 30 (left) and ρ = 0.6, K = 20 (right).
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Tolling Agreements?

Stylized Version
Leasing an Energy Asset

Fossil Fuel Power Plant
Oil Refinery
Pipeline

Owner of the Agreement
Decides when and how to use the asset (e.g. run the power plant)
Has someone else do the leg work
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Power Plant Valuation

The Classical (Real Option) Approach
Lifetime of the plant [T1,T2]

C capacity of the plant (in MWh)

H heat rate of the plant (in MMBtu/MWh)

Pt price of power on day t

Gt price of fuel (gas) on day t

K fixed Operating Costs

Value of the Plant (ORACLE)

C
T2X

t=T1

e−rtE{(Pt − HGt − K )+}

String of Spark Spread Options
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Plant Operation Model: the Finite Mode Case

Markov process (state of the world) Xt = (X (1)
t ,X (2)

t , · · · )
(e.g. X (1)

t = Pt , X (2)
t = Gt , X (3)

t = Ot for a dual plant)

Plant characteristics
ZM

M
= {0, · · · ,M − 1} modes of operation of the plant

H0,H1 · · · ,HM−1 heat rates
{C(i , j)}(i,j)∈ZM regime switching costs (C(i , j) = C(i , `) + C(`, j))
ψi (t , x) reward at time t when world in state x , plant in mode i

Operation of the plant (control) u = (ξ, T ) where
ξk ∈ ZM

M
= {0, · · · ,M − 1} successive modes

0 6 τk−1 6 τk 6 T switching times

T (horizon) length of the tolling agreement
Total reward

H(x , i , [0,T ]; u)(ω)
M
=

∫ T

0
¬ψus (s,Xs) ds −

∑
τk<T

C(uτk−,uτk )

Carmona Energy Markets, Munich



Stochastic Control Problem

(Ω,F ,F = (FX
t ),P) (risk neutral) stochastic basis

U(t)) acceptable controls on [t ,T ]

adapted càdlàg ZM -valued processes u of a.s. finite variation on
[t ,T ]

Optimal Switching Problem

J(t , x , i) = sup
u∈U(t)

J(t , x , i ; u),

where

J(t , x , i ; u) = E
[
H(x , i , [t ,T ]; u)|Xt = x ,ut = i

]
= E

[∫ T

0
¬ψus (s,Xs) ds −

∑
τk<T

C(uτk−,uτk )|Xt = x ,ut = i
]

Carmona Energy Markets, Munich



Iterative Optimal Stopping

Uk (t) M
= {(ξ, T ) ∈ U(t) : τ` = T for ` > k + 1}

Admissible strategies on [t ,T ] with at most k switches

Jk (t , x , i) M
= esssupu∈Uk (t)E

hZ T

t
¬ψus (s,Xs) ds−

X
t6τk<T

C(uτk−, uτk )
˛̨̨
Xt = x , ut = i

i
.

Alternative recursive construction

J0(t , x , i) M
= E

[∫ T

t
¬ψi (s,Xs) ds

∣∣∣Xt = x
]
,

Jk (t , x , i) M
= sup
τ∈St

E
[∫ τ

t
¬ψi (s,Xs) ds +Mk,i (τ,Xτ )

∣∣∣Xt = x
]
.

Intervention operatorM

Mk,i (t , x)
M
= max

j 6=i

{
−Ci,j + Jk−1(t , x , j)

}
.

Studied mathematically by Hamadène - Jeanblanc (M = 2).
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Alternative Formulations

Variational Formulation and Viscosity Solutions of PDEs
System of Reflected Backward Stochastic Differential Equations
(BSDEs)
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Discrete Time Dynamic Programming

Time Step ∆t = T/M]

Time grid S∆ = {m∆t , m = 0,1, . . . ,M]}
Switches are allowed in S∆

DPP

For t1 = m∆t , t2 = (m + 1)∆t consecutive times

Jk (t1,Xt1 , i) = max
“

E
ˆZ t2

t1

¬ψi (s,Xs) ds + Jk (t2,Xt2 , i)| Ft1

˜
,Mk,i (t1,Xt1 )

”
'
“
ψi (t1,Xt1 ) ∆t + E

ˆ
Jk (t2,Xt2 , i)| Ft1

˜”
∨
“

max
j 6=i

˘
−Ci,j + Jk−1(t1,Xt1 , j)

¯”
.

(1)

Tsitsiklis - van Roy
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Longstaff-Schwartz Version
Recall

Jk (m∆t , x , i) = E
h τkX

j=m

ψi (j∆t ,Xj∆t ) ∆t +Mk,i (τ k ∆t ,Xτk ∆t )
˛̨
Xm∆t = x

i
.

Analogue for τ k :

τ k (m∆t , x`m∆t , i) =

(
τ k ((m + 1)∆t , x`(m+1)∆t , i), no switch;
m, switch,

(2)

and the set of paths on which we switch is given by {` : ̂`(m∆t ; i) 6= i} with

̂`(t1; i) = arg max
j

“
−Ci,j + Jk−1(t1, x`t1 , j), ψi (t1, x`t1 )∆t + Êt1

ˆ
Jk (t2, ·, i)

˜
(x`t1 )

”
.

(3)

The full recursive pathwise construction for Jk is

Jk (m∆t , x`m∆t , i) =

(
ψi (m∆t , x`m∆t ) ∆t + Jk ((m + 1)∆t , x`(m+1)∆t , i), no switch;
−Ci,j + Jk−1(m∆t , x`m∆t , j), switch to j .

(4)
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Remarks

Regression used solely to update the optimal stopping times τ k

Regressed values never stored
Helps to eliminate potential biases from the regression step.
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Algorithm

1 Select a set of basis functions (Bj ) and algorithm parameters
∆t ,M],Np, K̄ , δ.

2 Generate Np paths of the driving process: {x`m∆t , m = 0, 1, . . . ,M],
` = 1, 2, . . . ,Np} with fixed initial condition x`0 = x0.

3 Initialize the value functions and switching times Jk (T , x`T , i) = 0,
τ k (T , x`T , i) = M] ∀i , k .

4 Moving backward in time with t = m∆t , m = M], . . . , 0 repeat the Loop:

Compute inductively the layers k = 0, 1, . . . , K̄ (evaluate
E
ˆ
Jk (m∆t + ∆t , ·, i)| Fm∆t

˜
by linear regression of

{Jk (m∆t + ∆t , x`m∆t+∆t , i)} against {Bj (x`m∆t )}NB

j=1, then add the
reward ψi (m∆t , x`m∆t ) ·∆t)
Update the switching times and value functions

5 end Loop.

6 Check whether K̄ switches are enough by comparing J K̄ and J K̄−1 (they
should be equal).

Observe that during the main loop we only need to store the buffer
J(t , ·), . . . , J(t + δ, ·); and τ(t , ·), . . . , τ(t + δ, ·).
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Example 1

dXt = 2(10− Xt ) dt + 2 dWt , X0 = 10,

Horizon T = 2,
Switch separation δ = 0.02.
Two regimes
Reward rates ψ0(Xt ) = 0 and ψ1(Xt ) = 10(Xt − 10)

Switching cost C = 0.3.
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Value Functions
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Exercise Boundaries
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NB: Decreasing boundary around t = 0 is an artifact of the Monte Carlo.
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One Sample
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Example 2: Comparisons

Spark spread Xt = (Pt ,Gt ){
log(Pt ) ∼ OU(κ = 2, θ = log(10), σ = 0.8)

log(Gt ) ∼ OU(κ = 1, θ = log(10), σ = 0.4)

P0 = 10, G0 = 10, ρ = 0.7
Agreement Duration [0,0.5]

Reward functions

ψ0(Xt ) = 0
ψ1(Xt ) = 10(Pt −Gt )

ψ2(Xt ) = 20(Pt − 1.1 Gt )

Switching costs
Ci,j = 0.25|i − j |
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Numerical Comparison

Method Mean Std. Dev Time (m)
Explicit FD 5.931 − 25
LS Regression 5.903 0.165 1.46
TvR Regression 5.276 0.096 1.45
Kernel 5.916 0.074 3.8
Quantization 5.658 0.013 400∗

Table: Benchmark results for Example 2.
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Example 3: Dual Plant & Delay


log(Pt ) ∼ OU(κ = 2, θ = log(10), σ = 0.8),

log(Gt ) ∼ OU(κ = 1, θ = log(10), σ = 0.4),

log(Ot ) ∼ OU(κ = 1, θ = log(10), σ = 0.4), .

P0 = G0 = O0 = 10, ρpg = 0.5,ρpo = 0.3, ρgo = 0

Agreement Duration T = 1

Reward functions

ψ0(Xt ) ≡ 0

ψ1(Xt ) = 5 · (Pt −Gt )

ψ2(Xt ) = 5 · (Pt −Ot ),

ψ3(Xt ) = 5 · (3Pt − 4Gt )

ψ4(Xt ) = 5 · (3Pt − 4Ot ).

Switching costs Ci,j ≡ 0.5

Delay δ = 0, 0.01, 0.03 (up to ten days)
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Numerical Results

Setting No Delay δ = 0.01 δ = 0.03
Base Case 13.22 12.03 10.87
Jumps in Pt 23.33 22.00 20.06

Regimes 0-3 only 11.04 10.63 10.42
Regimes 0-2 only 9.21 9.16 9.14
Gas only: 0,1,3 9.53 7.83 7.24

Table: LS scheme with 400 steps and 16000 paths.

Remarks
High δ lowers profitability by over 20%.

Removal of regimes: without regimes 3 and 4 expected profit drops from
13.28 to 9.21.
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Example 4: Exhaustible Resources
Include It current level of resources left (It non-increasing process).

J(t , x , c, i) = sup
τ,j

E
hZ τ

t
¬ψi (s,Xs) ds + J(τ,Xτ , Iτ , j)− Ci,j |Xt = x , It = c

i
.

(5)

� Resource depletion (boundary condition) J(t , x ,0, i) ≡ 0.
� Not really a control problem It can be computed on the fly

Mining example of Brennan and Schwartz varying the initial
copper price X0

Method/ X0 0.3 0.4 0.5 0.6 0.7 0.8
BS ’85 1.45 4.35 8.11 12.49 17.38 22.68

PDE FD 1.42 4.21 8.04 12.43 17.21 22.62
RMC 1.33 4.41 8.15 12.44 17.52 22.41
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Extensions

Extension to Gas Storage valuation
Extension to Hydro valuation
Improve the theoretical results

Need to improve delays
Need convergence analysis
Need better analysis of exercise boundaries
Need to implement duality upper bounds

we have approximate value functions
we have approximate exercise boundaries
so we have lower bounds
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Financial Hedging

Extending the Analysis Adding Access to a Financial Market

Porchet-Touzi

Same (Markov) factor process Xt = (X (1)
t ,X (2)

t , · · · ) as before
Same plant characteristics as before
Same operation control u = (ξ, T ) as before
Same maturity T (end of tolling agreement) as before
Reward for operating the plant

H(x , i ,T ; u)(ω)
M
=

∫ T

0
¬ψus (s,Xs) ds −

∑
τk<T

C(uτk−,uτk )
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Hedging/Investing in Financial Market

Access to a financial market (possibly incomplete)
y initial wealth
πt investment portfolio
Y y,π

T corresponding terminal wealth from investment
Utility function U(y) = −e−γy

Maximum expected utility

v(y) = sup
π

E{U(Y y,π
T )}
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Indifference Pricing

With the power plant (tolling contract)

V (x , i , y) = sup
u,π

E{U(Y y,π
T + H(x , i ,T ; u))}

INDIFFERENCE PRICING

p = p(x , i , y) = sup{p ≥ 0; V (x , i , y) ≥ v(y)}

Analysis of
BSDE formulation
PDE formulation
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