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Spread Options

European Call on the difference between two indexes
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Calendar Spread Options

@ Single Commodity at two different times
E{(/(T2) - (T1) = K)"}

@ Mathematically easier (only one underlier)

Amaranth largest (and fatal) positions

@ Shoulder Natural Gas Spread (play on inventories)
@ Long March Gas / Short April Gas

o Depletion stops in March / injection starts in April
o Can be fatal: widow maker spread
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Seasonality of Gas Inventory

U.S. Natural Gas Inventories 2005-6
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What Killed Amaranth

Shoulder Month Spread
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More Spread Options

@ Cross Commodity
o Crush Spread: between Soybean and soybean products (meal &
oil)
o Crack Spread:

@ gasoline crack spread between Crude and Unleaded
@ heating oil crack spread between Crude and HO

o Spark spread
St = Fe(t) — HexrFa(t)
H.# Heat Rate
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Synthetic Generation

Present value of profits for future power generation (case of one fuel)

T ~ ~
E{/O D0, t)(Ep(t,7) - H+ Fa(t, ) — K)* dt}

where
@ 7 > 0 fixed (small)
@ D(0,t) discount factor to compute present values

o Fp(t,7) (resp. Fg(t, 7)) price at time t of a power (resp. gas)
contract with delivery t + 7

@ H Heat Rate
@ K Operation and Maintenance cost (sometimes denoted O& M)
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Basket of Spread Options

Deterministic discounting (with constant interest rate)
D(t,T)=e """

Interchange expectation and integral

/OT e "E{(Fp(t,7) — H = Fg(t,7) — K)"} dt

Continuous stream of spread options
In Practice

@ Discretize time, say daily

T
Z e_”IE{(l:'p(t, 7') — H * ’Eg(t, T) — ’()+

t=0

@ Bin Daily Production in Buckets By’'s (e.g. 5 x 16,2 x 16,7 x 8,
settlement locations, .....).

Ze” (7= ZE{ FOtm) — HO « EO(t, 1) — KW) )

Basket of Spark Spread Options



Spread Mathematical Challenge

p=e TE{((T)— K(T)-K)"}

@ Underlying indexes are spot prices

o Geometric Brownian Motions (K = 0 Margrabe)
o Geometric Ornstein-Uhlembeck (OK for Gas)
o Geometric Ornstein-Uhlembeck with jumps (OK for Power)

@ Underlying indexes are forward/futures prices
e HJM-type models with deterministic coefficients
Problem

finding closed form formula and/or fast/sharp approximation for
E{(a@™ — pe"® — x)"}
for a Gaussian vector (Xi, X2) of N(0, 1) random variables with correlation p.

Sensitivities?
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Easy Case : Exchange Option & Margrabe Formula

p=e "TE{(S:(T) - Si(T))*}

@ Si(T)and Sy(T) log-normal
@ pgiven by a formula a /la Black-Scholes

p= X2N(d1) — X1 N(do)

with

_n(xe/xq) 1 _n(x/xq) 1
d1—o’7ﬁ+§0'ﬁ do— o-ﬁ1 —EO'\/T

and:
xi = S1(0), x2 = S»(0), 0% =02 —2poi02 + 05
@ Deltas are also given by “"closed form formulae”.
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Proof of Margrabe Formula

p= e TEa((S(T) - (7))} = B { (& 1) s(n)}

@ Q risk-neutral probability measure
@ Define ( Girsanov) P by:

aP| (1, X
(j(@]__T_S1(T)_eXp< 20'1T+0'1W1(T))
@ Under P,

o Wi(t) — oyt and Wa(t)
e S,/S; is geometric Brownian motion under P with volatility

2 2 2
0" =07 —2po102 + 05

o-son (3 ))

Black-Scholes formula with K = 1, o as above.
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Pricing Calendar Spreads in Forward Models

Model
n
dF(t, T) = F(t, T)[u(t, T)dt + Z ox(t, T)dWi(1)]

k=1

wu(t, T) and ok (t, T) deterministic so

forward prices are log-normal
Calendar Spread involves prices of two forward contracts with
different maturities
Si(t)=F(t, Tv) and So(t) = F(t, To),

Price at time t of a calendar spread option with maturity T and strike
K

E{(F(T,T2) = F(T, T1) = K)"}
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Pricing Spark Spreads in Forward Models

Use formula for
E{(ae™™ — Be" — )"}

with

nooaT
a=e TRt T), B= \jZ/ ok(s, T2)?ds,
k=171

n T
v=e " FT), and &= JZ/ ok(s, T1)?ds
k=171t

and k = e~""=9 (1 = 0 per risk-neutral dynamics)

1 [T
p=— Z/ ok(s, T)ok(s, T2) ds
85 2~ ),
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Pricing Spark Spreads in Forward Models

Cross-commodity

@ subscript e for forward prices, times-to-maturity, volatility
functions, ... relative to electric power

@ subscript g for quantities pertaining to natural gas.
Pay-off
(Fo(T, To) = Hx Fy(T, Tp) — K) "

o T <min{Tg, Ty}
@ Heatrate H
@ Strike K given by O& M costs
Natural
@ Buyer owner of a power plant that transforms gas into electricity,
@ Protection against low electricity prices and/or high gas prices.
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Joint Dynamics of the Commaodities

{ dFe(t, Te) = Fo(t, Te)lpe(t, Te)dt + S 0_; oex(t, Te)dWi(t)]
dFy(t, Tg) Fo(t, To)lug(t, Tg)dt + > _s ogk(t, Tg)dWi(t)]

@ Each commodity has its own volatility factors

@ between The two dynamics share the same driving Brownian
motion processes Wy, hence correlation.
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Fitting Join Cross-Commodity Models

@ on any given day t we have

o electricity forward contract prices for N(® times-to-maturity
(e) (e) (e)

<75 0... < UNe
° natural gas forward contract prices for N@ times-to-maturity
< <9

Typlcally N = 12 and N9 = 36 (possibly more).
o Estimate instantaneous vols ¢®(t) & o(9(t) 30 days rolling window
o For each day t, the N = N(® + N9 dimensional random vector X(t)

(Iog Fo(t+1 ,T/F9>)_|og ﬁe(t,rjﬂe)) )
(e)
EOIN) e

X(1) = <Iog f:g(t+1,r](g))flog Fg(t,rl(g))>
€}
90 =1, N(©)

o Run PCA on historical samples of X(t)
@ Choose small number n of factors

o fork=1,....n
o first N(¢) coordinates give the electricity volatilities 7 < U,((e)(‘r) for
k=1,...,n
@ remaining N(9) coordinates give the gas volatilities 7 — o‘l((g)(r).
Skip gory details
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Pricing a Spark Spread Option

Price at time t
pr =€ T OB {(Fe(T, Te) — Hx Fy(T, Tg) — K)*}

Fe(T, Te) and Fy(T, Ty) are log-normal under the pricing measure calibrated
by PCA

Fuo(T, To) = Fol(t, To) exp[ Z/ ox(s, To) ds+z/ oox(s, To) de(s)]

and:

n

1
Fg(T, Tq) = Fq(t, Tg) eXp {2

T nooeT
/ oon(s Tyfds + 3 / ogk(S, Tg)de(s)}
t Pl

Set
Si(t) = Hx Fg(t, Ty) and So(t) = Fe(t, Te)
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Pricing a Spark Spread Option

Use the constants

=1

n T
a=e"TIF(tT,), and f[= \j / oex(s, To)2 ds
K t

for the first log-normal distribution,

n T
/ og.k(8, Tg)? ds
t

—1

v=He ""UF,(t, T,), and 4= J
k

for the second one, k = e~""~9K and

1 [T
P= 35 /t > oek(s, Te)og (s, Tg)ds
k=1

for the correlation coefficient.
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Approximations

@ Fourier Approximations (Madan, Carr, Dempster, .. .)
@ Bachelier approximation

@ Zero-strike approximation

@ Kirk approximation

@ Upper and Lower Bounds

Can we also approximate the Greeks ?
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Bachelier Approximation

@ Generate xf”,xé”, e ,x,(\,” from N(u1,0?)

o Generate x\?, x{? ... x?) from N(y1,02)

@ Correlation p
@ Look at the distribution of

(2) (1) (2) (1)
T et e — e

e

(2) (1)
X|
- 4] e’
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Log-Normal Samples
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Histogram of the Difference between two Log-normals
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Bachelier Approximation

@ Assume (Sy(T) — S1(T) is Gaussian
@ Match the first two moments

p= (m( T) - Ke—rT) ® (m( T)S(—TI)(e"T) L s(T)e (m(TL(—T!)(e—’T>

with:
mT) = (e x)e T
S(T) = T [X12 (e”‘ZT - 1) — 2X1 % (e”‘”"?T _ 1) 12 (GUST _ 1)]

Easy to compute the Greeks !
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Zero-Strike Approximation

p=e "TE{(S:(T)~ Si(T) - K)*}

@ Assume Sy(T) = Fg(T) is log-normal

@ Replace S{(T) = Hx Fg(T) by $(T) = S(T) + K

@ Assume S;(T) and Si(T) are jointly log-normal

@ Use Margrabe formula for p = e "TE{(Sz(T) — 5:(T))*}
Use the Greeks from Margrabe formula !
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Kirk Approximation

g

In(—2— K In(—— K
~ 1+Ke—'T o _ +Ke—'T o
pK = X2¢) ((XKG) + 2) —(X1+Ke ’T)d) (()GKB) _ )

where

2
K_ | 2 X4 2 X4
o = \/02 —2p0102X1 Ko T + o5 <X1 m Ke—’T> .

Exactly what we called ”"Zero Strike Approximation”!!!
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Upper and Lower Bounds

+
n(aa 57 Y5 5a K, P) =E { (Oéeﬁ)ﬁiﬁz/z o 766)(2762/2 B H> }

where
@ «, 3,7, d and k real constants
@ X; and X, are jointly Gaussian N(0,1)
@ correlation p
a=x6"%" B=0VT yv=xe 9 §=0,VT and rk=Ke .
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Strategy for a Lower Bound

E{X"} = sup E{XY}
0<y<i

So in particular

]E{X+} > sup E{X1 {U1X1+U2X2§d}}
U1,U2,d€R

and we apply this to
X = aelXi—6/2 OXo—02/2

— e K

so everything can be computed!
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A Precise Lower Bound

p=xe 2o (d* + o cos(0* + ¢>)ﬁ) —xje" T (d* + o4 sing* ﬁ) —Ke~"To(d*)

where
@ 0* is the solution of
1 | (7 Brsin(0 + ¢) ) _dcosd
dcosé ~[Bsin(6 + ¢) — dsin 6] 2
_ 1 n (7 K sing ) _ Bcos(f +¢)
Bcos(6 + ¢) al[Bsin(0 + ¢) — dsind] 2
@ the angle ¢ is defined by setting p = cos ¢
@ Jd* is defined by

gt — 1 n X2~ %7 gy sin(0* + ¢)
ocos(0* —P)WT x1e=9 T gy sing*

) - % (02 cos(0*+¢)+01 cos 6*)VT

@ the angles ¢ and ¢ are chosen in [0, 7] such that:

g1 — PO
Cos¢ =p and cosw:w,
ag
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Remarks on this Lower Bound

@ pis equal to the true price p when

e K=0
o x1=0
0X2:0
o p=—1
e p=-+1

@ Margrabe formula when K = 0 because
0* = 7 41 = 7w + arccos (01_[)02> .
g

with:

o= \/012 —2po102 + 03
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Delta Hedging

The portfolio comprising at each time t < T
Ay =—-e %o (d* + o4 COS 0* ﬁ)

and
Ny =e" %0 (d* + oo cos(0* + qb)ﬁ)

units of each of the underlying assets is a sub-hedge

its value at maturity is a.s. a lower bound for the pay-off
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The Other Greeks

¥4 and Y sensitivities w.r.t. volatilities oy and o2
x sensitivity w.r.t. correlation p

k sensitivity w.r.t. strike price K

© sensitivity w.r.t. maturity time T

S 000

vy = xe 9Ty (d* + o1 COS 0" ﬁ) cos6* VT

9 = —xe ®Typ (d* + 02c08(0" + ) ﬁ) cos(0* +¢) VT
o a—aT " . sin 6*

Y = —Xxe <p(d + o1 c0S 0 ﬁ)m sinq&ﬁ

ko= —o(d)e T

© = %—Q1X1A1 — XxoAr — 1Kk
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Comparisons

~

o
L

— Lower bound
Bachelier's model
-+ Kirk's model

— Lower bound
05 Bachelier's model
-=- Kirk's model
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&
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Log Standard deviation of the Tracking error
- 5
o @
.

Log Standard deviation of the Tracking error

S

o
o

0 100 1000 10000 “o 100 1000 10000
Number of re-hedging times Number of re-hedging times

Behavior of the tracking error as the number of re-hedging times increases.
The model data are x; = 100, x2 = 110, 01 = 10%, 02 = 15% and T = 1.
p=0.9, K =230 (left) and p = 0.6, K = 20 (right).
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Tolling Agreements?

Stylized Version
o Leasing an Energy Asset
o Fossil Fuel Power Plant
o Oil Refinery
o Pipeline
@ Owner of the Agreement

o Decides when and how to use the asset (e.g. run the power plant)
@ Has someone else do the leg work
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Power Plant Valuation

The Classical (Real Option) Approach
@ Lifetime of the plant [T3, T2]

C capacity of the plant (in MWh)

H heat rate of the plant (in MMBtu/MWh)

P: price of power on day ¢

G; price of fuel (gas) on day t

K fixed Operating Costs

Value of the Plant (ORACLE)

T2
C> e "E{(P:— HG: — K)*}

=Ty

String of Spark Spread Options
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Plant Operation Model: the Finite Mode Case

@ Markov process (state of the world) X; = (Xt“), X,(Z), o)
g X" =P, Xx?P=aG, X® =0 foradualplant)
@ Plant characteristics
o Zy= {0,---, M — 1} modes of operation of the plant
o Ho,Hi--- , Hy_1 heat rates
o {C(i,))}jyez, regime switching costs (C(i,j) = C(i,¢) + C(¢,j))
o (t, x) reward at time t when world in state x, plant in mode i
@ Operation of the plant (control) u = (¢, 7) where

o & €Zm={0,---,M— 1} successive modes
0 0 < 7m_1 < 7% < T switching times

@ T (horizon) length of the tolling agreement
o Total reward

-
H(x,i,[0, T]; u)(w) = /0 “thuy(8, Xs) 05 — Y C(ur, —, Uy,)

< T
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Stochastic Control Problem

o (Q,F,F = (F¥),P) (risk neutral) stochastic basis
@ U(t)) acceptable controls on [t, T]
o adapted cadlag Zuy-valued processes u of a.s. finite variation on

[t, 7]
Optimal Switching Problem

J(t,x,i) = sup J(tx,i;u),
ueuU(t)

where

J(t,x,i;u) = E[H(x,i[t T u)| X; = x, uy = |

T
]E[/ ﬁz/JuS(s’Xs) ds_ Z C(u'rk*7 UTK)|XI = X? Uf = I:|
0

"< T
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lterative Optimal Stopping

U 2 (&, T)eU(t): 7o =Thorl > k+1}

Admissible strategies on [t, T] with at most k switches

JA(t, x, i) = esssupueuk(,)E[/ —thye (S, Xs) ds— Z CUry—, Uz )| Xe = X, Ut = /}
< <T
Alternative recursive construction
T
Pitx) B[ [ s ds| X = x],
t
St x.i) £ sup / (s, Xs) ds + M7, X)| X, = x].
TGS[ t

Intervention operator M
MKt x) 2 max{ Cij+ Jk—1(t,x,j)}.

Studied mathematically by Hamadeéne - Jeanblanc (M = 2).



Alternative Formulations

@ Variational Formulation and Viscosity Solutions of PDEs

@ System of Reflected Backward Stochastic Differential Equations
(BSDEs)
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Discrete Time Dynamic Programming

o Time Step At = T/M?
@ Time grid S& = {mAt, m=0,1,... M}
@ Switches are allowed in S&

DPP

For ty = mAt, t, = (m+ 1)At consecutive times

b )
(1 X 1) = max (B | 0 (6,X6) 05 + (ke X ] Fi . M/ (11 X,)

t
= (4t X)) Bt + B[S (2, X, 1) 7] ) v (nl]#aix{—C,-J + I (0, X))
(1)

Tsitsiklis - van Roy
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Longstaff-Schwartz Version

Recall

ok

J(mAt, x, i) [Z Gi(IAL, Xine) At + MO (75 AL X )| Xt = x]

/ m
Analogue for 7:

K (M + 1) At X(ny1)ar, 1), N0 switch;
m, switch,

Tk(mAt> XanAh ’) = { (2)

and the set of paths on which we switch is given by {¢: 7*(mAt; i) # i} with
F(t; i) = arg mjax(—C,-,,- + (b, xe L)), il xe)At+ B [J (B, - )] (X )).

©)
The full recursive pathwise construction for J* is

Yi(MAL, Xpa) At + J((M+ 1)At XG4 4yar 1), NO switch;
_Ci,j + Jk_1 (mAt7 Xrl;']Atvj)7 switch to j
(4)

Carmona Energy Markets, Munich
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@ Regression used solely to update the optimal stopping times 7%
@ Regressed values never stored
@ Helps to eliminate potential biases from the regression step.
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Algorithm

@ Select a set of basis functions (B;) and algorithm parameters

At, M* NP K 6.
@ Generate N” paths of the driving process: {x4a;, m=0,1,..., M*,
¢=1,2,..., NP} with fixed initial condition xg = Xo.

@ Initialize the value functions and switching times J*(T, x¢, i) = 0,
(T, x4, i) = M* Vi, k.

@ Moving backward in time with t = mAt, m= M*, ..., 0 repeat the Loop:

o Compute inductively the layers k = 0,1,..., K (evaluate
E[Jk(mAt + At, -, i)| Fmat] by linear regression of
{JK(mAL + At Xonriar 1)} against {B,(x,‘i,m)}j’\ﬂ, then add the
reward o;(MAL, Xfp;) - Ab)
o Update the switching times and value functions
@ end Loop.

@ Check whether K switches are enough by comparing JK and JK— (they
should be equal).

Observe that during the main loop we only need to store the buffer
J(t,-),...,d(t+46,-);and 7(t,-),...,7(t+ 6, ").
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Example 1

dXt:2(10—Xt)dt+2th, X0:10,

@ Horizon T = 2,

@ Switch separation 6 = 0.02.

@ Two regimes

@ Reward rates o(X;) = 0 and ¢¢(X;) = 10(X; — 10)
@ Switching cost C = 0.3.
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Value Functions

Value Function for successive k

o 0.5 1 1.5 2
Years to maturity

JK(t, x,0) as a function of t
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Exercise Boundaries

115 T T T 115
/ /
— / / /

11/ \I\’\J\// 1t Vi
»105 > 105}
o} ]
T T
c c
5 5
H] 8
> 10 > 10
< £
< £
£ L
H H
? 95 ? 95p

9 \_/\__/_///\ ’
85 ! . : 85 ! . :
0 0.5 1 15 2 0 05 1 15 2
Time Units Time Units
k = 2 (left) k = 7 (right)

NB: Decreasing boundary around t = 0 is an artifact of the Monte Carlo.
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One Sample

State process and boundaries
12

Cumulative wealth

2> . L
o 0.5 1 1.5
Time Units




Example 2: Comparisons

Spark spread X; = (P;, G)

log(P:) ~ OU(k = 2,0 =log(10),0 = 0.8)
log(G;) ~ OU(k = 1,0 = log(10), 0 = 0.4)
@ P, =10, Gy =10, p=0.7
@ Agreement Duration [0, 0.5]
@ Reward functions

Po(Xy) = 0

10(P: — Gy)
Pa(Xt) = 20(P;—1.1Gy)

<
x
I

@ Switching costs
Cij=0.25[i — j|
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Numerical Comparison

Method Mean Std. Dev  Time (m)
Explicit FD 5.931 — 25
LS Regression 5.903 0.165 1.46
TvR Regression 5.276 0.096 1.45
Kernel 5.916 0.074 3.8
Quantization 5.658 0.013 400*

Table: Benchmark results for Example 2.
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Example 3: Dual Plant & Delay

log(P;) ~ OU(k = 2,0 = log(10),0 = 0.8),
log(Gt) ~ OU(k = 1,0 =1og(10),0 = 0.4),
log(Or) ~ OU(k = 1,6 =log(10),0 = 0.4),.

@ Py=Go= 0y =10, ppg = 0.5,pp0 = 0.3, pgo =0
@ Agreement Duration T = 1
@ Reward functions

vo(Xt) = 0

vi(X) = 5-(Pi—Gy)
Yo(Xe) = 5-(Pi— O,
P3(Xy) = 5-(8P:—4G)
Ua(X) = 5-(3Pi—40)

@ Switching costs C;; = 0.5
@ Delay § = 0,0.01,0.03 (up to ten days)
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Numerical Results

Setting No Delay 6 =0.01 0=0.03
Base Case 13.22 12.03 10.87
Jumps in P; 23.33 22.00 20.06
Regimes 0-3only  11.04 10.63 10.42
Regimes 0-2 only 9.21 9.16 9.14
Gasonly: 0,1,3 9.53 7.83 7.24

Table: LS scheme with 400 steps and 16000 paths.

Remarks
@ High ¢ lowers profitability by over 20%.

@ Removal of regimes: without regimes 3 and 4 expected profit drops from
13.28 t0 9.21.
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Example 4: Exhaustible Resources

Include I; current level of resources left (/; non-increasing process).
J(t,x, ¢, i) = sTulpIE[/tT (5. X5) 05+ J(r. Xe, 1) — Cig Xe = x. ) = ]
| (5)
o Resource depletion (boundary condition) J(t, x,0,i) = 0.

< Not really a control problem /; can be computed on the fly

Mining example of Brennan and Schwartz varying the initial
copper price X

Method/ X 0.3 04 0.5 0.6 0.7 0.8

BS ’85 145 435 8.11 1249 1738 22.68
PDE FD 142 421 804 1243 1721 22.62
RMC 1.33 441 815 1244 1752 22.41
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Extensions

@ Extension to Gas Storage valuation
@ Extension to Hydro valuation
@ Improve the theoretical results
o Need to improve delays
Need convergence analysis

Need better analysis of exercise boundaries
Need to implement duality upper bounds

@ we have approximate value functions

@ we have approximate exercise boundaries

@ so we have lower bounds

© 6 o
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Financial Hedging

Extending the Analysis Adding Access to a Financial Market

Porchet-Touzi

@ Same (Markov) factor process X; = (Xtm, Xt(z), ---) as before
@ Same plant characteristics as before

@ Same operation control u = (£, 7) as before

@ Same maturity T (end of tolling agreement) as before

@ Reward for operating the plant

H(x,i, T; u)(w) /OTﬁwus(s,Xs)ds— > C(ur, -, ur,)

< T
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Hedging/Investing in Financial Market

Access to a financial market (possibly incomplete)
@ y initial wealth
@ ; investment portfolio
@ Y7 corresponding terminal wealth from investment
o Utility function U(y) = —e=Y
@ Maximum expected utility

v(y) = sup E{U( Yr)}
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Indifference Pricing

@ With the power plant (tolling contract)

V(x,i,y) = SUp E{U(YL™ + H(x, i, T; 1))}
u,m

INDIFFERENCE PRICING

p=p(x,i,y) =sup{p > 0; V(x,i,y) > v(y)}

Analysis of
@ BSDE formulation
@ PDE formulation

Carmona Energy Markets, Munich
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