OMI Commodities:
Il. Spread Options & Asset Valuation

René Carmona

Bendheim Center for Finance
Department of Operations Research & Financial Engineering
Princeton University

OMI June 13, 2011



The Importance of Spread Options

European Call written on

» the Difference between two Underlying Interests
» a Linear Combination of several Underlying Interests



Calendar Spread Options

» Single Commodity at two different times
E{(/(T2) - (Ty) - K)*}

» Mathematically easier (only one underlier)

» Amaranth largest (and fatal) positions

» Shoulder Natural Gas Spread (play on inventories)
» Long March Gas / Short April Gas

> Depletion stops in March / injection starts in April

> Can be fatal: widow maker spread



Seasonality of Gas Inventory

Weekly Storage in Billion
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What Went Wrong with Amaranth?

Shoulder Month Spread
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More Spread Options

» Cross Commodity
» Crush Spread
» between Soybean and soybean products (meal & ail)
» Crack Spread

> gasoline crack spread between Crude and Unleaded
> heating oil crack spread between Crude and HO

» Spark Spread

> between price of 1 MWhe of Electric Power , and Natural Gas needed
to produce it

S = FE(t) — HeffFG(t)
H.+ Heat Rate



(Classical) Real Option Power Plant Valuation

Real Option Approach
Lifetime of the plant [T3, Tz]

v

C capacity of the plant (in MWh)
H heat rate of the plant (in MMBtu/MWHh)
Py price of power on day t

K fixed Operating Costs

»
>
>
» G price of fuel (gas) on day ¢t
»
» Value of the Plant (ORACLE)

T2
C> e "E{(P.— HG:— K)"}

=T,

String of Spark Spread Options



Beyond Plant Valuation: Credit Enhancement

(Flash Back)

The Calpine - Morgan Stanley Deal
» Calpine needs to refinance USD 8 MM by November 2004
» Jan. 2004: Deutsche Bank: no traction on the offering
» Feb. 2004: The Street thinks Calpine is "heading South”

March 2004: Morgan Stanley offers a (complex) structured deal

» A strip of spark spread options on 14 Calpine plants
» A similar bond offering

» How were the options priced?

» By Morgan Stanley ?
» By Calpine ?

v



Calpine Debt
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Calpine Debt with Deutsche Bank Financing

Debt Distribution for Calpine
with Deutsche Bank Refinancing

Debt ($ Millions)
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Calpine Debt with Morgan Stanley Financing

Debt Distribution for Calpine
with Morgan Stanley Refinancing
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A Possible Model

Assume that Calpine owns only one plant
MS guarantees its spark spread will be at least « for M years

Approach a la Leland’s Theory of the Value of the Firm

V=v—pp +supE{/ e "5, dt}
0

T<T
where
5, {(Pt—H*Gt—K)\//s—ct fo<t<M
(Pe—H*xG— K)™ — ¢ fM<t<T
and
» v current value of firm’s assets
> po option premium
» M length of the option life
> k strike of the option
» ¢ cost of servicing the existing debt
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Plant Value

Plant Value as function of Coupon
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Debt Value

Debt Value as function of Coupon
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Spread Valuation Mathematical Challenge

p=eTE{(h(T)—-h(T)-K)"}

» Underlying indexes are spot prices

» Geometric Brownian Motions (K = 0 Margrabe)
» Geometric Ornstein-Uhlembeck (OK for Gas)
» Geometric Ornstein-Uhlembeck with jumps (OK for Power)

» Underlying indexes are forward/futures prices
» HJM-type models with deterministic coefficients
Problem

finding closed form formula and/or fast/sharp approximation for
E{(a€™ — 3”2 — k)*}
for a Gaussian vector (X1, Xz) of N(0, 1) random variables with correlation p.

Sensitivities?



Easy Case : Exchange Option & Margrabe Formula

p=eTE{(S(T) - Si(T))"}

» Si(T) and Sy(T) log-normal
» p given by a formula a la Black-Scholes

p= X2¢(d1) — X1 q)(do)

with

o InOe/x) 1 _ In(Ge/x1) 1
d1f07ﬁ+§oﬁ do—aiﬁ_éaﬁ

and:
x; = $1(0), xo = S»(0), % = 0% —2poi02 + 05

» Deltas are also given by “closed form formulae”.



Proof of Margrabe Formula

p= e TE{(S:(T) — Si(T)) "} = e~ TEq { (gﬂ; - 1) S1(T)}

» Q risk-neutral probability measure
» Define ( Girsanov) P by:

arp| _ 15 3
J0 . = 5i(T) fexp< 201T+a1 W1(T))

» Under P,

» Wi(t) — oqt and Wa(t)
» S»/Si is geometric Brownian motion under P with volatility

2 2 2
0" =07 —2poi02 + 05

o-s0{ (55 ) )

Black-Scholes formula with K = 1, o as above.




Pricing Calendar Spreads in Forward Models

Involves prices of two forward contracts with different maturities, say
T1 and T2

Si(t)=F(t, Tq) and So(t) = F(t, To),
Remember forward prices are log-normal

Price at time t of a calendar spread option with maturity T and strike
K

N7
a=e TRt T), B= \JZ/ ok(s, T2)?ds,
k=171

n T
v=e " IF(t T), and &= JZ/ ok(s, T1)?ds
k=171

and k = e~""=9 (1, = 0 per risk-neutral dynamics)

1< [T
p= *Z/ ok(s, T1)ok(s, Tz) ds
86 = J;



Pricing Spark Spreads in Forward Models

Cross-commodity

» subscript e for forward prices, times-to-maturity, volatility
functions, ... relative to electric power

» subscript g for quantities pertaining to natural gas.
Pay-off
(Fo(T, Te) = Hx Fy(T, Ty) — K) "

» T <min{Te, Ty}
» Heat rate H
» Strike K given by O& M costs
Natural
» Buyer owner of a power plant that transforms gas into electricity,
» Protection against low electricity prices and/or high gas prices.



Joint Dynamics of the Commodities

dFe(t, Te) = Felt, To)[pe(t, Te)dt + zn:oe,k(t, Te)dWi(1)]

k=1

dFg(t, Tg) = Folt, To)lug(t, T)dt + > ogx(t, T)dWi(t)]
k=1

» Each commodity has its own volatility factors

» between The two dynamics share the same driving Brownian
motion processes W, hence correlation.



Fitting Join Cross-Commodity Models

» on any given day t we have
» electricity forward contract prices for N(® times-to-maturity
7'1(6) < Tz(e), < Tl(\lz)
» natural gas forward contract prices for N9 times-to-maturity

(9) (9) (9)
T < T < Thg)

Typically N(®) = 12 and N9 = 36 (possibly more).
» Estimate instantaneous vols ¢®(t) & ‘9 (t) 30 days rolling window
» For each day t, the N = N® + N(9 dimensional random vector X(t)

log Fe(t+1,7(%)—log Fe(t,7*)
0(9)(0

_ j=1,...,N(®)
X(1) = (Iog Fo(t+1,79)—log Fy(t,7(?) )
(0 j=1,...,N(9
» Run PCA on historical samples of X(t)
» Choose small number n of factors
» fork=1,...,n,
> first N(®) coordinates give the electricity volatilities 7 — crf(e)(r) for
k=1,...,n

» remaining N(9 coordinates give the gas volatilities 7 <> J(g)('r).
k

Skip gory details



Pricing a Spark Spread Option

Price at time t
p: = efr(T*t)Et {(Fe(Tv Te) —Hx Fg(T, Tg) - K)+}

Fe(T, Te) and Fy(T, Ty) are log-normal under the pricing measure calibrated
by PCA

1 T n T
Fuo(T, To) = Folt, To) exp [—22 / Cen(s, Tof2ds + 3 / cox(s, Te)de(s)]
k=171 k=171

and:

1 T n T
Fo(T. Ty) = Fy(t, Ty) exp {—2 / oou(s Tyfds + 3 / o k(S, Tg)de(s)}
t il

Set
Si(t) = Hx* Fy(t, Tg) and So(t) = Fe(t, Te)



Pricing a Spark Spread Option

Use the constants

nooLT
a=e""T-VF,(tTe), and fg= \j / oex(s, Te)2 ds
K t

=1

for the first log-normal distribution,

noo.T
v=He "TTVF,(t,T,), and 4= $Z / ogk(8s, Ty)? ds
k=171
for the second one, k = e """ K and

1 [T
b= /t S 0o (s, To)ogu(s, To)ds
k=1

for the correlation coefficient.



Approximations

Fourier Approximations (Madan, Carr, Dempster, Hurd et. al)
Bachelier approximation (Alexander, Borovkova)

Zero-strike approximation

Kirk approximation

CD Upper and Lower Bounds (R.C. - V. Durrleman)
Bjerksund - Stensland approximation

Can we also approximate the Greeks ?



Bachelier Approximation

Generate x\" x{" ... x{!) from N(y1,52)

v

Generate x1(2),x2(2), e ,x,(f) from N(u1,0?)
Correlation p
Look at the distribution of

v

v

v
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Log-Normal Samples
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Bachelier Approximation

» Assume (So(T) — S1(T) is Gaussian
» Match the first two moments

p%° = (m(T) — Ke) @ (m( - Ke_”) +s(T)g (m( Ll Ke_”)

s(T) s(T)
with:
m(T) = (xe—x)e* 7
£(1) = W7 [Xf (e"‘ZT - 1) — 2X1 X (e’”“’ZT — 1) +x2 (e"ST _ 1)]

Easy to compute the Greeks !



Zero-Strike Approximation

p=e"TE{(S:T)— Si(T) - K)"}

v

Assume Sy(T) = Fe(T) is log-normal
Replace Si(T) = H « Fg(T) by §(T) = S(T) + K
Assume S;(T) and 5;(T) are jointly log-normal

» Use Margrabe formula for p = e "TE{(Sx(T) — S5((T))"}
Use the Greeks from Margrabe formula !

v

v



Kirk Approximation

PF = e [xo®d(ch) — (x4 + K)P(dh)]
where
d = db— Uﬁ
& log(x2/(X1 + K)) + 02T /2)
> = T
and

2
Xq Xq
= 2_9 2
o \/02 X+ Kpomg + (X1 n K) 0]

Exactly what we called ”"Zero Strike Approximation”!!!



C-Durrleman Upper and Lower Bounds

+
n(a7ﬁ"y’ (5, 57p) = { (aeﬁ)ﬁ—BZ/Z _ ,yeﬁXZ—(SZ/Z _ K) }

where
> «, 3,7, d and k real constants
» Xi and Xz are jointly Gaussian N(0, 1)
» correlation p
a=xe® B=0cT y=xe % §= oVT and rk=Ke .



A Precise Lower Bound

f?CD _ Xzefquq) (d* + o2 cos(0” + ¢)ﬁ)
xe o (d* + oy sing* ﬁ) — Ke™"To(d")

where
» 0™ is the solution of

1 ( Brsin(d + ¢) ) 5cosf
n -
dcosé

~ ~[Bsin(6 + ¢) — dsind] 2
- 1 n (7 dksinf ) ~ Bcos(f + ¢)
~ pcos(d + ¢) a[Bsin(0 + ¢) — dsind] 2

» the angle ¢ is defined by setting p = cos ¢
» d* is defined by

" 1 | (Xge_q2T0'2 sin(6* + qﬁ))

Xx;e~%Tgqsinf*

~ ocos(6F — )T n 2

» the angles ¢ and v are chosen in [0, 7] such that:

cos¢=p  and cosw:m%paz,

1 (02cos(0"+¢)+01 cos 6



Remarks on this Lower Bound

» pis equal to the true price p when

» K=0
» x1 =0
>X2=0
> p=—1
>p:—|—1

» Margrabe formula when K = 0 because
0* = 7 + 1) = 7w + arccos <U10/m2> .

with:

o= \/012 —2p0102+0§



Delta Hedging

The portfolio comprising at each time t < T
Ay=—-e%To (d* + 0y cos 6* ﬁ)

and
Ny =e %o (d* + opcos(0” + ¢)ﬁ)

units of each of the underlying assets is a sub-hedge

its value at maturity is a.s. a lower bound for the pay-off



The Other Greeks

SO0 0

%4 and 9, sensitivities w.r.t. volatilities o1 and o2
x sensitivity w.r.t. correlation p

k sensitivity w.r.t. strike price K

© sensitivity w.r.t. maturity time T

Y = xe Ty (d* + 01 cos 0" ﬁ) cos6* VT

v = —xpe %y (d* + 02c08(0* + ¢) ﬁ) cos(6* +¢) VT
_ —qT « « sin 6*
X xie @(d + o4 cos 6 ﬁ)m Singbﬁ
k = —o(d)e T
0
e = L027927C]1X1A1 7C]2X2A27I’KI€

2T



Comparisons

— Lower bound
1 Bachelier's model
==+ Kirk's model

=== Kirk's model

Log Standard deviation of the Tracking error
Log Standard deviation of the Tracking error

35 L 3 L S
100 0 10000 10 100 1000 10000

100
Number of re-hedging times. Number of re-hedging times

Behavior of the tracking error as the number of re-hedging times increases.
The model data are x; = 100, xo = 110, 01 = 10%, 0o = 15% and T = 1.
p=0.9, K =30 (left) and p = 0.6, K = 20 (right).



Generalization: European Basket Option

Black-Scholes Set-Up
» Multidimensional model
» nstocks Sy,..., S,
» Risk neutral dynamics

as;(t)
Si(t)

n
= rdt+ ) ojdB(t),
j=1

> initial values Si(0), ..., Sx(0)
» By,...,B,independent standard Brownian motions
» Correlation through matrix (o)



European Basket Option (cont.)

» Vector of weights (w;);=1,....» (most often w; > 0)
» Basket option struck at K at maturity T given by payoff

n +
(z wS(T) - K)
i=1

Risk neutral valuation: price at time 0

S

(Asian Options)



Down-and-Out Call on a Basket of n Stocks

Option Payoff

i +
(Z w;Si(T) — K) 1{inf,ST Si(ty>H}
i=1

Option price is

n +
1 2
ES (D exiet-iofe
(,-_0 iXj {infg§1x1ee1(9)71?°1292H} s
where

» e =+1,01 >0and H < x4

» {G(6);0 < 1}is a (n+ 1)-dimensional Brownian motion starting
from O with covariance X.



Price and Hedges

Use lower bound.

1.2
=SupkE cixie —2%11 .
P = sup {Z i {infegx1eG1(6’_%”1292H;u-G(1)<d}

d,u i—0

Girsanov implies

P = supZa,x, {|r§1f1 Gi(0)

du sy

+(Z/1012/2)92|n<)':) u-G1)<d— (= )}.



Numerical Results

o p H/ x4 n=10 n=20 n=30
0.4 0.5 0.7 0.1006 0.0938 0.0939
0.4 0.5 0.8 0.0811 0.0785 0.0777
0.4 0.5 0.9 0.0473 0.0455 0.0449
0.4 0.7 0.7 0.1191 0.1168 0.1165
0.4 0.7 0.8 0.1000 0.1006 0.0995
0.4 0.7 0.9 0.0608 0.0597 0.0594
0.4 0.9 0.7 0.1292 0.1291 0.1290
0.4 0.9 0.8 0.1179 0.1175 0.1173
0.4 0.9 0.9 0.0751 0.0747 0.0745
0.5 0.5 0.7 0.1154 0.1122 0.1110
0.5 0.5 0.8 0.0875 0.0844 0.0816
0.5 0.5 0.9 0.0518 0.0464 0.0458
0.5 0.7 0.7 0.1396 0.1389 0.1388
0.5 0.7 0.8 0.1103 0.1086 0.1080
0.5 0.7 0.9 0.0631 0.0619 0.0615
0.5 0.9 0.7 0.1597 0.1593 0.1592
0.5 0.9 0.8 0.1328 0.1322 0.1320
0.5 0.9 0.9 0.0786 0.0782 0.0780




Bjerksund-Stensland Approximation

Pf = xo®(dk) — x1®(dy) — K(d')

where
log(xz/a) — (02 — 2p0105 + bP0? — 2b02) T /2)
d =
oV'T
& = log(x2/a) + 02T /2)
2 T
& = log(X2/a) + (—o2 + b?02)T/2)
° VT
and

Xq
X+ K

o= \/ag—pra102+b2012, a=x+K, and b=



More on Existing Literature

Jarrow and Rudd
» Replace true distribution by simpler distribution with same first
moments
» Edgeworth (Charlier) expansions
» Bachelier approximation when Gaussian distribution used
SemiParametric Bounds (known marginals)
Fully NonParametric No-arbitrage Bounds (Laurence, Obloj)
» Intervals too large
» Used only to rule out arbitrage

Replacing Arithmetic Averages by Geometric Averages (Musiela)

v

v

v

v



Valuing a Tolling Agreement

Stylized Version

» Leasing an Energy Asset
» Fossil Fuel Power Plant
» Oil Refinery
» Pipeline
» Owner
» Decides when and how to use the asset (e.g. run the power plant)
» Has someone else do the leg work



Plant Operation Model: the Finite Mode Case

R.C - M. Ludkovski

» Markov process (state of the world) X; = (X{", x® ...)
g XV=pP, XP =G, X® =0 foradualplant)
Plant characteristics

v

» Zy = {0,--- , M — 1} modes of operation of the plant

> Ho, Hy--- , Hy_1 heat rates

> {C(i,})}ijez, regime switching costs (C(/,j) = C(i,£) + C(¢,))
> i(t, x) reward at time t when world in state x, plant in mode i

v

Operation of the plant (control) u = (&, 7) where

> & € Zy={0,--- ,M— 1} successive modes
> 0 < 74—1 < 7 < T switching times

v

T (horizon) length of the tolling agreement

v

Total reward

)
H(x, i, [0, T}; u)(w) é/o (8, X5)ds — S O(tn, -, us,)

7"<T



Stochastic Control Problem

» U(t)) acceptable controls on [t, T]
(adapted cadlag Zy-valued processes u of a.s. finite variation on [t, T])

Optimal Switching Problem
J(t, x,i) = sup J(t, x,i;u),

ueU(t)

where

J(t,x,i;u) = E[H(x,i,[t, T u)| X; = x, uy = ]

T
E[/O wus(s7 XS) ds — Z C(UTk—’ uTk)| X[ =X,U = I]

< T



lterative Optimal Stopping

Consider problem with at most k mode switches
U 2, T)eU(t): 7o =Thorl > k+1}

Admissible strategies on [¢t, T| with at most k switches

;
Ji(t, x, i) = esssupueuk(t)E[/ bus(8, Xs) ds— Y CUr, —, Ur,)
t

1< <T

Xt:X,Ut:I'].



Alternative Recursive Construction

SOt x, i) 2 /’L/J,SXS ds‘Xt_x}

JA(t, x, i) £ sup E 1/1,-(3, Xs) ds + MR (7, X;)
TES: t

X[ ES X] .
Intervention operator M
k,i A k—1 i
’ =maxq—Ci; +J 7 (t, X, f) ¢
Mt x) ,-f,-x{ Cij+ (t,x j)}

Hamadeéne - Jeanblanc (M=2)



Variational Formulation

Notation

» Lx X space-time generator of Markov process X; in R?

> Mo(t, x, i) = maxi.i{—C;; + ¢(t, x, )} intervention operator
Assume

> ¢(t,x,i)inC"2(([0, T] x RY)\D) nc"'(D)

> D=uU{(t,x): ¢(t,x,i) = Mo(t, x,i)}

> (QVI) foralli € Zy:

1. ¢ > Mo,

2. B[ oo dt] =0,

3. Lxo(t, x, i)+ i(t, x) <0, o(T,x,i)=0,

4, (£X¢(t X, 1) + i(t, x))( o(t, x, i) — Mao(t, x, /))
Conclusion

¢ is the optimal value function for the switching problem



Reflected Backward SDE'’s

Assume
> Xo = x & 3(Y*,Z*, A) adapted to (FY)

T
E[ sup |Y,"|2+/ 12|12 dt + |Ar[2] < oo
0

o<i<T

and

T T

V= [ sy ds A A [z oW,
t t

Y= ME(t X,

T
| o= M X =0. a0,
0
Conclusion: if Y} = JX(0, x, i) then

Y = Kt X )



System of Reflected Backward SDE’s

QVI for optimal switching: coupled system of reflected BSDE’s for
( Yi)/EZm!

T T
Y[:/ w;(s,Xs)ds+A'T—A§—/ Zi W,
t t
Y{ = max{~Ci;+ Yi}.
JF#i

Existence and uniqueness Directly for M > 27
M = 2, Hamadéne - Jeanblanc use difference process Y' — Y2.



Discrete Time Dynamic Programming

» Time Step At = T/M¢
» Time grid S& = {mAt, m=0,1,..., M*}
» Switches are allowed in S

DPP

For &y = mAt, & = (m+ 1) At consecutive times

7 .
S, X, i) = max(E[ Bi(s, Xs) ds + J (b, Xiy, 1)| F ], MS(t1, X, ))
]

= (it X) At +E[S (. X )| Fy]) v (max{=Ciy+ I (0. %, )}).
(1)

Tsitsiklis - van Roy



Longstaff-Schwartz Version

Recall

-k

J(mAt, x, i) [Zw,um Xiae) At + MO (KA X ipg)| Ximat = x]

/ m
Analogue for 7:

T*((M+ 1) At X(ny1yar; 1), NO switch;
m, switch,

(MAL, Xpoar, i) = { )

and the set of paths on which we switch is given by {¢: *(mAt; i) # i} with
7 (t; 1) = argmax (—Cij + (1 xi. 1), it XA+ By [ (D] (1) ).

(3)
The full recursive pathwise construction for J¥ is

Vi(MAL, Xpag) At + J((M+ 1) At X 090 1), NO switch;
_Ci,j + Jk71 (mAt7 XéAtaj)v SWitCh to /
(4)

Jk(mAta Xl€7Ata I) = {



Remarks

» Regression used solely to update the optimal stopping times 7*
» Regressed values never stored
» Helps to eliminate potential biases from the regression step.



Algorithm

1. Select a set of basis functions (B;) and parameters At, ME NP K, 6.

2. Generate NP paths of the driving process: {Xg:}m—o.1, . mz for£=1,2,...,NP
with fixed initial condition x§ = Xo.

3. Initialize the value functions and switching times J*(T, x£, i) = 0,
Tk(T, x’;, i) = Mt Vi, k.

4. Moving backward in time with t = mAt, m= M!, ..., 0 repeat:

» Compute inductively the layers k = 0,1,..., K (evaluate
E[J*(mAt + At, -, i)| Fmat] by linear regression of
{JK(mAL + At Xonriar 1)} against {B,-(xém)},"’j, then add the
reward 1;(MAL, x4 - Af)
» Update the switching times and value functions
5. end Loop.
6. Check whether K switches are enough by comparing JK and JK-1 (they should
be equal).
Observe that during the main loop we only need to store the buffer
J(t,-),...,d(t+6,-);and 7(t,-), - ,7(t+ 0,).



Convergence

» Bouchard - Touzi
» Gobet - Lemor - Warin



Example 1

aX; =2(10 — X;) dt + 2 dW,, Xo =10,

Horizon T = 2,

Switch separation § = 0.02.

Two regimes

Reward rates o(X;) = 0 and 1(X;) = 10(X; — 10)
Switching cost C = 0.3.

vV v.v vy



Value Functions

Value Function for successive k

o 0.5 1 1.5
Years to maturity

JK(t, x,0) as a function of ¢



Exercise Boundaries

115 ; ; ; - 115

Switching boundary
=
s
Switching boundary
=
s

95 95

85 : : 85 . : t
0.5 1 15 2 0 0.5 1 15

Time Units Time Units

k =2 (left) k =7 (right)
NB: Decreasing boundary around t = 0 is an artifact of the Monte Carlo.



One Sample

State process and boundaries
12

Cumulative wealth

—2> . .
o 0.5 1 1.5 2
Time Units




Example 2: Comparisons

Spark spread X; = (P;, G;)

log(P:) ~ OU(k = 2,0 =log(10),0 = 0.8)
log(G;) ~ OU(k = 1,0 =log(10),0 = 0.4)

v

Py =10,Gy, =10,p=0.7
Agreement Duration [0, 0.5]
Reward functions

v

v

Yo(X) = 0O
Xi 10(P; — Gy)
va(Xt) = 20(P;—1.1Gy)

N—r
I

v

Switching costs
Cij=0.25]i — j|



Numerical Comparison

Method Mean  Std. Dev  Time (m)
Explicit FD 5.931 — 25
LS Regression 5.903 0.165 1.46
TvR Regression  5.276 0.096 1.45
Kernel 5.916 0.074 3.8
Quantization 5.658 0.013 400*

Table: Benchmark results for Example 2.



Example 3: Dual Plant & Delay

log(P;) ~ OU(k = 2,6 = log(10),0 = 0.8),
log(Gi) ~ OU(k = 1,6 = log(10),0 = 0.4),
log(Or) ~ OU(k = 1,6 =log(10),0 = 0.4),.

> Po=Go= 0o =10, ppg = 0.5,pp0 = 0.3, pgo =0
» Agreement Duration T =1
» Reward functions
’L/)o(Xt) = 0
Pvi(Xe) = 5-(P—Gi)
Yo(Xt) = 5-(P— O,
Y3(Xt) = 5-(BP:—4G)
va(Xt) = 5-(BP—40)
» Switching costs C;; = 0.5

v

Delay 6 = 0,0.01,0.083 (up to ten days)



Numerical Results

Setting No Delay 6 =0.01 6 =0.03
Base Case 13.22 12.03 10.87
Jumps in P; 23.33 22.00 20.06

Regimes 0-3 only 11.04 10.63 10.42
Regimes 0-2 only 9.21 9.16 9.14
Gasonly: 0,1,3 9.53 7.83 7.24

Table: LS scheme with 400 steps and 16000 paths.

Remarks
» High ¢ lowers profitability by over 20%.

» Removal of regimes: without regimes 3 and 4 expected profit drops from
13.28 t0 9.21.



Example 4: Exhaustible Resources

Include I; current level of resources left (/; non-increasing process).
J(t, x,c, i) 7supIE / »i(8, Xs) ds + J(7, Xe, I, j) — Cij| Xe = X, |y = c]

(5)

© Resource depletion (boundary condition) J(t, x,0,/) = 0.
o Not really a control problem /; can be computed on the fly

Mining example of Brennan and Schwartz varying the initial
copper price Xy

Method/ Xy 0.3 0.4 0.5 0.6 0.7 0.8
BS ’85 1.45 4.35 8.11 12.49 17.38 22.68
PDE FD 1.42 4.21 8.04 12.43 17.21 22.62

RMC 1.33 4.41 8.15 12.44 17.52 22.41




Extension to Gas Storage & Hydro Plants

v

Accomodate outages
Include switch separation as a form of delay
Was extended (R.C. - M. Ludkovski) to treat
» Gas Storage
» Hydro Plants
More (rigorous) Mathematical Analysis

» Porchet-Touzi (BSDEs)
» Forsythe-Ware (Numeric scheme to solve HJB QVI)
» Bernhart-Pham (reflected BSDEs)

v

v

v



What Else Needs to be Done

limprove delays
Provide convergence analysis
Finer analysis of exercise boundaries

Duality upper bounds

we have approximate value functions

we have approximate exercise boundaries

so we have lower bounds

need to extend Meinshausen-Hambly to optimal switching set-up

vV vy Vv oy

vVYyVvVvey



Financial Hedging

Extending the Analysis Adding Access to a Financial Market

Porchet-Touzi

Same (Markov) factor process X; = (Xtm, X,(Z), ---) as before
Same plant characteristics as before

Same operation control u = (£, T) as before

Same maturity T (end of tolling agreement) as before
Reward for operating the plant

vV v.v. vy

H(x,i, T; u)( / Yu (8, Xs) ds — Y C(Uy,—, Uy,)

7<T



Hedging/Investing in Financial Market

Access to a financial market (possibly incomplete)
» y initial wealth
» 7 investment portfolio
> Y¥’” corresponding terminal wealth from investment
» Utility function U(y) = —e™"Y
» Maximum expected utility

v(y) = sup E{U( Yr)}



Indifference Pricing

» With the power plant (tolling contract)

V(x,i,y) = supE{U(Y7™ + H(x,i, T; u))}
u,m

INDIFFERENCE PRICING

p=p(x,i,y) =sup{p = 0; V(x,i,y — p) = v(y)}

Analysis of
» BSDE formulation
» PDE formulation



Implied Correlation

Given market prices of
» Options on individual underlying interests
» Spread options
INFER / IMPLY a (Pearson) correlation and
» Smiles
» Skews
in the spirit of implied volatility

Major Difficulty:
» Data NOT available !
» Need to rely on trader’s observations / speculations



Implied Correlation

R.C.-Y. Sun

Given market prices of
» Options on individual underlying interests
» Spread options
INFER / IMPLY a (Pearson) correlation and
» Smiles
» Skews
in the spirit of implied volatility

Major Difficulty:
» Data NOT available !
» Need to rely on trader’s observations / speculations



Clean Spark Spread

Given
» P(t) sale price of 1 MWhr of electricity
» G(t) price of 1 MBtu natural gas
» A(t) price of an allowance for 1 ton of CO; equivalent
compute
e TE{(P(T) — HenG(T) — ecA(T))"}

where eg is the emission coefficient of the technology.

Requires
» Joint model for {(P(t), G(t), A(t)}o<i<T



Clean Spark Spread

R.C. - M. Coulon - D. Schwarz

Given
» P(t) sale price of 1 MWhr of electricity
» G(t) price of 1 MBtu natural gas
» A(t) price of an allowance for 1 ton of CO, equivalent
compute
e TE{(P(T) — HenG(T) — ecA(T))"}

where eg is the emission coefficient of the technology.

Requires
» Joint model for {(P(t), G(t), A(t) bo<t<T
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