Optimal Execution:
 III. Game Theory \& Predatory Trading

René Carmona

Bendheim Center for Finance
Department of Operations Research \& Financial Engineering
Princeton University

Purdue June 21, 2012

Premises for Predatory Trading

- Large Trader facing a Forced Liquidation
- Especially if the need to liquidate is known by other traders
- hedge funds with (nearing) margin call
- traders who use portfolio insurance, stop loss orders, . . .
- some institutions / funds cannot hold on to downgraded instruments
- Index-replication funds (at re-balancing dates) e.g. Russell 3000

Forced liquidation can be very costly because of price impact

Business Week

...if lenders know that a hedge fund needs to sell something quickly, they will sell the same asset, driving the price down even faster. Goldman Sachs and other counter-parties to LTCM did exactly that in 1998.

When you smell blood in the water, you become a shark when you know that one of your number is in trouble . . . you try to figure out what he owns and you start shorting those stocks . . .

Cramer (2002)

Typical Predatory Trading Scenario

- Distressed trader needs to unload a large position
- Size will have impact on price
- Predator initially trades in the same direction as the prey
- Effect is to withdraw liquidity
- Market impact of the liquidation becomes greater
- Price fall is exaggerated (over-shooting)
- Predator reverses direction, profiting from the over-shoot
- Predator closes position for a profit.

Optimal Portfolio Liquidation: Multi-Player Case

- New issues when other market participants know that our client is selling:
- The market impact of our client creates a drift in the market price
- This drift can be exploited by the other market participants
- Since we know about this danger, we will adjust our strategy
- Brunnermeier and Pedersen (2005),
- Carlin, Lobo, and Viswanathan (2005)
- SChied, Schöneborn (2008)

Game Model

- One risk free asset and one risky asset
- Trading in continuous time, interest rate $r=0$
- $n+1$ strategic players and a number of noise traders
- $X_{0}(t), X_{1}(t), \cdots, X_{n}(t)$ risky asset positions of the strategic players
- Trades at time t are executed at the price (Chriss-Almgren price impact model)

$$
P(t)=\tilde{P}(t)+\gamma \sum_{i=0}^{n}\left[X_{i}(t)-X_{i}(0)\right]+\lambda \sum_{i=0}^{n} \dot{X}_{i}(t)
$$

where $\tilde{P}(t)$ is a mean zero martingale (say a Wiener process).

Goal of the Mathematical Analysis

- Understand predation
- Illustrate benefits of
- Stealth trading
- Sunshine trading

Modeling extreme markets

- Elastic (truly illiquid) markets:
- temporary impact $\lambda \gg$ permanent impact γ
- Plastic (nervous) markets:
- permanent impact $\gamma \gg$ temporary impact λ

Assumptions of the One Period Game

- Each strategic player $i \in\{0,1, \cdots, n\}$ knows
- all other strategic players initial asset positions $X^{j}(0)$
- Their target $X_{j}(T)$ at some fixed time point $T>0$ in the future
- Objective (all players are risk neutral)
- Players maximize their expected return by choosing an optimal trading strategy $X_{i}(t)$ satisfying their constraints $X_{i}(0)$ and $X_{i}(T)$
One distressed trader / prey (e.g seller), player 0

$$
X_{0}(0)=x_{0}>0, \quad X_{0}(T)=0
$$

n predators players $1,2, \cdots, n$

$$
X_{i}(0)=X_{i}(T)=0, \quad i=1, \cdots, n
$$

Optimization Problem

A strategy $X_{i}=\left(X_{i}(t)\right)_{0 \leq t \leq T}$ is admissible (for player i) if it is an a

- adapted process
- with continuously differentiable sample paths

Given a set $\underline{X}=\left(X_{0}, X_{1}, \cdots, X_{n}\right)$ of admissible strategies

- Each player $i \in\{0,1, \cdots, n\}$ tries to maximize his expected return

$$
J^{i}(\underline{X})=\mathbb{E}\left[\int_{0}^{T}\left(-\dot{X}_{i}(t)\right) P(t) d t\right]
$$

under the constraint

$$
P(t)=\tilde{P}(t)+\gamma \sum_{i=0}^{n}\left[X_{i}(t)-X_{i}(0)\right]+\lambda \sum_{i=0}^{n} \dot{X}_{i}(t)
$$

- Search for Nash Equilibrium

Deterministic Strategies

If we restrict the admissible strategies $\underline{X}=\left(X_{0}, X_{1}, \cdots, X_{n}\right)$ to be DETERMINISTIC

$$
J^{i}(\underline{X})=\mathbb{E}\left[\int_{0}^{T}\left(-\dot{X}_{i}(t)\right) P(t) d t\right]=\mathbb{E}\left[\int_{0}^{T}\left(-\dot{X}_{i}(t)\right) \bar{P}(t) d t\right]
$$

where

$$
\bar{P}(t)=P(0)+\gamma \sum_{i=0}^{n}\left[X_{i}(t)-X_{i}(0)\right]+\lambda \sum_{i=0}^{n} \dot{X}_{i}(t)
$$

THE SOURCE OF RANDOMNESS IS GONE!
Carlin, Lobo, and Viswanathan (2005) Schied, Schoenborn (2008)

Solution in the Deterministic Case

Unique Optimal Strategies

$$
X_{i}(t)=a e^{-\frac{n}{n+2} \frac{\gamma}{\lambda} t}+b_{i} e^{\frac{\gamma}{\lambda} t}
$$

where

$$
\begin{aligned}
a & =\frac{n}{n+2} \frac{\gamma}{\lambda}\left(1-e^{-\frac{n}{n+2} \frac{\gamma}{\lambda} T}\right)^{-1} \frac{1}{n+1} \sum_{i=0}^{n}\left[X_{i}(T)-X_{i}(0)\right] \\
b_{i} & =\frac{\gamma}{\lambda}\left(e^{\frac{\gamma}{\lambda} T}-1\right)^{-1}\left(X_{i}(T)-X_{i}(0)-\frac{1}{n+1} \sum_{i=0}^{n}\left[X_{i}(T)-X_{i}(0)\right]\right)
\end{aligned}
$$

Carlin, Lobo, and Viswanathan (2005)

$n=1$ predator, $\gamma / \lambda=0.3$

Holdings of Distressed Trader \& Predator

$n=1$ predator, $\gamma=\lambda$

Holdings of Distressed Trader \& Predator

$n=1$ predator, $\gamma=15.5 \lambda$

Holdings of Distressed Trader \& Predator

Holdings of the Distressed Trader \& Predator
Holdings of Distressed Trader \& Predator

Fancy Plots of the Holdings of the Distressed Trader \& Predator

Impact of the Number of Predators: $\gamma=\lambda$

Holdings of Distressed Trader \& 1 Predator

Holdings of Distressed Trader \& 50 Predators

Impact of the Number of Predators: $\gamma=15.5 \lambda$

Holdings of Distressed Trader \& 1 Predator

Holdings of Distressed Trader \& 50 Predators

Expected Price: $\gamma=\lambda$

Expected Price for 1 Predator

Expected Price for 50 Predators

Expected Price: $\gamma=15 \lambda$

Expected Price for 1 Predator

Expected Price for 50 Predators

Impact of Nb of Predators on Expected Returns

Expected Returns of Distressed Trader GOL=1 \& GOL=15

Two Period Model

- Prey has to liquidate $X_{0}>0$ by time T_{1}, i.e. $X_{0}\left(T_{1}\right)=0$
- Predators can stay in the game longer $X_{i}(0)=X_{i}\left(T_{2}\right)=0$ for some $T_{2}>T_{1}$ for $i=1, \cdots, n$
- Prey does not trade in second period [T_{1}, T_{2}], i.e. $X_{0}(t)=0$ for $T_{1} \leq t \leq T_{2}$.
Markovian Structure \Longrightarrow
Solution determined by predators' positions at time T_{1}

Nash Equilibrium for Deterministic Strategies

UNIQUE Nash Equilibrium

- ALL Predators have the same position at time T_{1}

$$
X_{i}\left(T_{1}\right)=\frac{A_{2} n^{2}+A_{1} n+A_{0}}{B_{3} n^{3}+B_{2} n^{2}+B_{1} n+B_{0}} X_{0}, \quad i=1, \cdots, n
$$

- Coefficients depend upon n but converge as $n \rightarrow \infty$
- Asymptotic formulas for expected returns
- Asymptotic comparison of Stealth versus Sunshine trading for some regimes of γ / λ
Schöneborn - Schied (2008)

