Heterogeneous Beliefs and HF Market Making

René Carmona

Bendheim Center for Finance
Department of Operations Research \& Financial Engineering
Princeton University

Princeton, June 21, 2013

The Agents

Market Maker

- Nasdaq definition: agent that places competitive orders on both sides of the order book in exchange for privileges.
- In this lecture: Liquidity provider, someone who posts an order book (equivalently, a transaction cost curve).
- Strategy: adapt pricing and volumes by reading client flows.

Clients

- In this lecture: Liquidity takers, agents who trade with the Market maker.
- Clients place market orders.
- Each client has his/her own information and acts accordingly.

Theoretical literature

- Early approaches: Hasbrouck(2007), Chakrborti - Toke Patriarca - Abergel(2011)
- Inventory models: Garman(1976), Amihud - Mendelson(1980)
- Informed trader models: Kyle(1985), O’Hara(1995)
- Zero-intelligence models: Gode - Sunder(1993), Maslov(2000), Cont(2008)
- Market impact models: Almgren - Chriss(2000), Bouchaud Potters (2006), Schied(2007)

Objective: Endogenous Order Book

Propose a stochastic, agent-based model in which existence and (tractable and realistic) properties of the LOB appear as a result of the analysis (not as hypotheses)

Client model

- Should capture the dependence between trades and price dynamics.

Market maker model

- Assumes the clients are rational, and optimizes his/her order book choice
R.C. - K. Webster (2012)

Setup: Heterogeneous Beliefs

Mathematically

1. $\left(\Omega, \mathcal{F}, \mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$ with W a \mathbb{P}-BM that generates \mathbb{F}.
2. $\mathbb{F}^{k} \subset \mathbb{F}$ generated by a \mathbb{P}-BM W^{k}.
3. \mathbb{P}^{k} s.t. $\left.\left.\mathbb{P}^{k}\right|_{\mathcal{F}_{t}^{k}} \sim \mathbb{P}\right|_{\mathcal{F}_{t}^{k}}$.
4. P_{t} an Itô process adapted to all $\left(\mathbb{F}^{k}\right)_{k=0 \ldots n}$.

NB

- Each agent has his /her own filtration \& probability measure.
- The filtrations (information structures) are potentially different,
- The price process is adapted to all of them (i.e each client sees the price)

Anatomy of a Trade

- Midprice P_{t} announced by the market at time t
- Market maker proposes an order book around P_{t}
- Market maker cannot differentiate clients pre-trade
- Client triggers a trade of volume I_{t}
- Client obtains volume I_{t} and pays cash flow $P_{t} I_{t}+c_{t}\left(I_{t}\right)$ ($\ell \hookrightarrow c_{t}(\ell)$ transaction cost function at time t)
- Market maker learns the identity of the client post-trade (assumption depends upon market, true for FX)

Setup: Transaction Costs

Agents behaviors

- Market maker controls transaction cost function $\ell \hookrightarrow c_{t}(\ell)$.
- Client i controls trading volumes/speeds I_{t}^{i}.

Hypotheses

1. Marginal costs are defined: $\ell \hookrightarrow c_{t}(\ell)$ is differentiable in ℓ.
2. Clients may choose not to trade, $c_{t}(0)=0$
3. The midprice is well defined, $c_{t}^{\prime}(0)=0$.
4. Marginal costs increase with volume: c_{t} is convex.
5. c_{t} has "compact domain" (∞ outside an interval)

Duality Relationship

Legendre transform

$$
\gamma_{t}(\alpha):=\sup _{I \in \operatorname{supp}\left(c_{t}\right)}\left(\alpha I-c_{t}(I)\right)
$$

Duality

c_{t} convex with compact domain $\Longleftrightarrow \gamma_{t}^{\prime \prime}$ is a positive finite measure.

- The distribution $\gamma_{t}^{\prime \prime}$ represents the order book formed by the orders of the market maker.
- If $\gamma_{t}^{\prime \prime}$ has a density $f(x)$, it is the shape function we used earlier.

Transaction costs

volume vs marginal costs

Legendre transform

marginal costs vs volume

Order book

Client Model

Disclaimer: We are NOT trying to implement an optimal trading strategy.

Assumptions

- The client only tries to predict, not cause price movements.
- The client's decision does not affect c_{t}.

Client Optimization Problem

- Exogeneous state variables
- P_{t} non-negative Itô process
- c_{t} (random adapted) convex function in a fixed domain
- Endogeneous state variables

$$
\left\{\begin{aligned}
d L_{t}^{i} & =l_{t}^{i} d t \\
d X_{t}^{i} & =L_{t}^{i} d P_{t}-c_{t}\left(l_{t}^{i}\right) d t
\end{aligned}\right.
$$

- I_{t}^{i} rate at which client trades (control variable).
- L_{t}^{i} volume or total position of the client
- X_{t}^{i} wealth, marked to the mid-price.
- Objective function

$$
J^{i}=\mathbb{E}_{\mathbb{P}^{i}}\left[U^{i}\left(X_{\tau^{i}}^{i}, P_{\tau^{i}}\right)\right]
$$

- U^{i} utility function
- τ^{i} stopping time

Optimal Trading Strategy

Theorem

Under suitable integrability assumptions on U^{i} and τ^{i}, the optimal strategy is

$$
\alpha_{t}^{i}:=c_{t}^{\prime}\left(l_{t}^{i}\right)=\mathbb{E}_{\mathbb{Q}^{i}}\left[P_{\tau^{i}}-P_{t} \mid \mathcal{F}_{t}^{i}\right]
$$

with $\frac{d \mathbb{Q}^{i}}{d \mathbb{P}^{i}}=\frac{\partial_{\chi} U^{i}\left(X_{\tau}^{i}, P_{\tau^{i}}\right)}{\mathbb{E}_{\mathbb{P}^{i}}\left[\partial_{\chi} U^{i}\left(X_{\tau}^{i}, P_{\tau^{i}}\right)\right]}$.

Testing the Client Model

Hypotheses

- Under $\mathbb{Q}^{i}, \tau^{i} \sim \exp \left(\beta^{i}\right)$ independent of P_{t}.
- $\sigma_{t}^{i}:=|\underbrace{c_{t}^{\prime}\left(l_{t}^{i}\right)}_{\text {Implied alpha }}-\underbrace{\left(p_{\tau^{i}}-P_{t}\right)}_{\text {Realized alpha }}| \leq \frac{s p r e a d}{2}$

This leads to a two parameter model linking trade to price dynamics: (β^{i}, σ^{i}).

Testing the hypotheses on data

- Assume all clients have one of two time scales.
- choose (β_{1}, β_{2}) that minimizes error between implied and realized alpha.

Source

- Nasdaq 'fullview' data: all public quotes, all trades, nanosecond timestamps.
- Long parsing time: Data goes from 7:00-10:00am.

Two Time Scales

- L^{1} regression used.
- Time scales: 9 (≈ 0.5 seconds) and 158 ticks.
- Mean error: 0.026.
- Mean half-spread: 0.063 .
- Lower bound on error: 0.005.

Market Maker Optimization Problem

With primal variables

$$
\left\{\begin{array}{l}
d L_{t}=-\frac{1}{n} \sum_{i} l_{t}^{i} d t \\
d X_{t}=L_{t} d P_{t}+\frac{1}{n} \sum_{i} c_{t}\left(l_{t}^{i}\right) d t
\end{array}\right.
$$

Recall $\alpha_{t}^{i}=c_{t}^{\prime}\left(l_{t}^{i}\right)$ so equivalently $l_{t}^{i}=\left[c_{t}^{\prime}\right]^{-1}\left(\alpha_{t}^{i}\right)=\gamma_{t}^{\prime}\left(\alpha_{t}^{i}\right)$

With dual variables

$$
\left\{\begin{aligned}
d L_{t} & =-\frac{1}{n} \sum_{i} \gamma_{t}^{\prime}\left(\alpha_{t}^{i}\right) d t \\
d X_{t} & =L_{t} d P_{t}+\frac{1}{n} \sum_{i}\left[\alpha_{t}^{i} \gamma_{t}^{\prime}\left(\alpha_{t}^{i}\right)-\gamma_{t}\left(\alpha_{t}^{i}\right)\right] d t
\end{aligned}\right.
$$

We assume the market maker is risk-neutral

Model for the α_{t}^{i}

- Notation

We will denote by $\mu_{t}(\alpha)$ the client belief distribution, that is, the empirically observed distribution of the $\left(\alpha_{t}^{i}\right)$.

- Microscopic model(SDE)

$$
d \alpha_{t}^{i}=-\rho \alpha_{t}^{i} d t+\sigma d B_{t}^{i}+\nu d B_{t}
$$

mean reversion corresponds to decay of information.

- Macroscopic model(SPDE)

$$
d \mu_{t}(\alpha)=\left[\frac{1}{2}\left(\sigma^{2}+\nu^{2}\right) \Delta \mu_{t}(\alpha)+\rho \nabla\left(\alpha \mu_{t}(\alpha)\right)\right] d t-\nu \nabla \mu_{t}(\alpha) d B_{t}
$$

What does that tell us about P_{t} ?

- Intuition
- Do not want to make an explicit model for the price process.
- Instead, would like to infer the price from client trades.
- Implied alpha relationship

$$
\alpha_{t}^{i}:=c_{t}^{\prime}\left(l_{t}^{i}\right)=\mathbb{E}_{\mathbb{Q}^{i}}\left[\int_{t}^{\infty} e^{-\beta^{i}(t-s)} d P_{s} \mid \mathcal{F}_{t}^{i}\right]
$$

- Price Proxy

$$
d P_{t}^{\lambda}:=\sum_{i=1}^{n} \lambda^{i}\left(\beta^{i} \alpha_{t}^{i} d t-d \alpha_{t}^{i}\right)
$$

for any set of weights λ^{i} s.t. $\sum \lambda^{i}=1$.

Estimation Result

Entropic feedback

There exists λ s.t.

$$
\mathbb{E}\left|P_{t}-P_{t}^{\lambda}\right|^{2} \leq \epsilon^{2} \frac{1}{n} \sum_{i} E\left(\mathbb{Q}^{i}, \mathbb{P}\right) \approx-\epsilon^{2} \int_{0}^{t}\left\langle\log \left(\frac{\gamma_{s}^{\prime \prime}}{\mu_{s}}\right), \mu_{s}\right\rangle d s
$$

with E the relative entropy (Kullback - Leibler) and

$$
\epsilon=\sqrt{\frac{n}{\sum_{i}\left(\sigma^{i}\right)^{-2}}} \leq \frac{1}{n} \sum_{i} \sigma^{i}
$$

Approximate Control Problem

State variables

$$
\begin{cases}d L_{t} & =-\left\langle\gamma_{t}^{\prime}, \mu_{t}\right\rangle d t \\ d \mu_{t}(\alpha) & =\left[\frac{1}{2}\left(\sigma^{2}+\nu^{2}\right) \Delta \mu_{t}(\alpha)+\rho \nabla\left(\alpha \mu_{t}(\alpha)\right)\right] d t-\nu \nabla \mu_{t}(\alpha) d B_{t}\end{cases}
$$

Objective function

$$
J^{\lambda}=\int_{0}^{\infty} e^{-\beta t} \mathbb{E}\left[L_{t}\left\langle i d,(\beta \lambda)_{t}\right\rangle+\left\langle-L_{t} \beta i d+\left(i d-\bar{\alpha}_{t}\right) \gamma_{t}^{\prime}-\gamma_{t}, \mu_{t}\right\rangle\right] d t
$$

under the constraint $\int_{0}^{\infty}\left\langle e^{-\beta t} \log \left(\frac{\gamma_{t}^{\prime \prime}}{\mu_{t}}\right), \mu_{t}\right\rangle d t \leq C$.

(Pontryagin) Stochastic Maximum Principle

BSDE

The solution to the Pontryagin BSDE gives rise to the market maker's 'shadow alpha':

$$
\alpha_{t}^{*}=\left\langle i d, \lambda_{t}+\frac{(\beta \lambda)_{t}-\beta \mu_{t}}{\beta+\rho}\right\rangle
$$

Hamiltonian

$$
\mathcal{H}\left(\gamma, \mu, \alpha^{*}\right)=\left\langle\left(i d-\alpha^{*}\right) \gamma^{\prime}-\gamma+\epsilon \log \gamma^{\prime \prime}, \mu\right\rangle
$$

Result

Profitability of an order without feedback

Define

$$
m(\alpha)=\underbrace{\left(\alpha-\alpha^{*}\right)}_{\text {spread }} \cdot \underbrace{\int_{\alpha}^{\infty} \mu}_{\text {filling probability }} \text { if } \alpha \geq 0
$$

then we have:

$$
\mathcal{H}\left(\gamma, \mu, \alpha^{*}\right)=\left\langle\gamma^{\prime \prime}, m\right\rangle+\epsilon\left\langle\log \gamma^{\prime \prime}, \mu\right\rangle
$$

Optimal Strategy with Feedback

$$
\frac{\gamma^{\prime \prime}(\alpha)}{\mu(\alpha)}=\frac{\epsilon}{C-m(\alpha)}
$$

where C is a renormalization constant.

Simulation Example

Figure : Blue: Optimal order book $\gamma^{\prime \prime}$. Green: Client alpha distribution μ.

