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René Carmona

Bendheim Center for Finance
Department of Operations Research & Financial Engineering

Princeton University

Princeton, June 20, 2013



Optimal Execution Market Set-Up

R.C. - M. Li

Goal: sell v > 0 shares by time T > 0 (finite horizon)

I Pt mid-price (unaffected price),

Pt = P0 +

∫ t

0
σ(u)dWu , 0 ≤ t ≤ T ,

I V (t) volume traded in the market up to (and including) time t

I Market VWAP= 1
V

∫ T
0 Pt dV (t)

I Fraction of shares still to be executed in the market

X(t) =
V − V (t)

V
=

T − t
T

(deterministic V (t) used to change clock). Convenient simplification !



Broker Problem

vt volume executed by the broker up to time t

xt =
v − vt

v

fraction of shares left to be executed by the broker at time t

xt = 1− `t −mt

Where
I `t cumulative volume executed through limit orders
I mt cumulative volume executed through market orders

I Broker average liquidation price vwap= 1
v

∫ T
0

(
Pt − S

2

)
dmt +

(
Pt + S

2

)
d`t

I Objective: Minimize discrepancy between vwap and VWAP



Naive Model for the Dynamics of the Order Book

Controls of the broker:
I (mt )0≤t≤T non-decreasing adapted process
I (Lt )0≤t≤T predictable process

`t =

∫ t

0

∫
[0,1]

y ∧ Lu µ(du, dy) =

Nt∑
i=1

Yi ∧ Lτi

where
µ(du, dy)

point measure (Poisson) compensator νt (du)ν(t)dt .

xt = 1−
∫ t

0

∫
[0,1]

y ∧ Lu µ(du, dy)−mt = 1−
Nt∑

i=1

Yi ∧ Lτi −mt

So the dynamics of xt are given by

dxt = −
∫

[0,1]
y ∧ Lt µ(dt , dy)− dmt ,

with initial condition x0− = 1.



Optimization Problem

Goal of the broker

sup
(L,m)∈A

E
[

U(vwap− VWAP)

]
,

For the CARA exponential utility, approximately

inf
(L,m)∈A

E
[

exp
(
− γ

(
S
2

+

∫ T

0
[xL,m

u − X(u)]dPu − S dmu

)]
,

We will work with a Mean - Variance criterion

inf
(L,m)∈A

E
[ ∫ T

0
γ
σ(u)2

2
[xL,m

u − X(u)]2du + S mT

]
,

I S spread
I X(u) = (T − u)/T fraction of shares left to be executed in the market.



Stochastic Control Problem

Singular control problem of a pure jump process

Value function
J(t , x) = inf

(L,m)∈A(t,x)
J(t , x , L,m)

where

J(t , x , L,m) = E
[ ∫ T

t
γ
σ(u)2

2
[xL,m

u − X(u)]2du + SmT

]
.

J(t , x) is non-decreasing in t for x ∈ [0, 1] fixed. (A(t2, x) ⊂ A(t1, x) whenever
t1 ≤ t2)



Tough Luck: Problem is NOT Convex

The set A of admissible controls is not convex.

For any number ` ∈ (0, 1), the two controls (L1,m1) and (L2,m2) by:

L1
t = 1{t≤τ1} +

∞∑
k=2

xτk−1 1{τk−1<t≤τk}, and m1
t = xT−1{T≤t},

and:

L2
t =

`

2
1{t≤τ1} +

∞∑
k=2

xτk−1 1{τk−1<t≤τk}, and m2
t = xT−1{T≤t},

are admissible, but the pair (L,m) defined by

Lt =
1
2

(L1
t + L2

t ), and mt =
1
2

(m1
t + m2

t ),

IS NOT



Closest Related Works

I Poisson random measure µ(dt , dy) for claim sizes Yt

I insurer pays Yt ∧ αt up to a retention level αt

I re-insurer covers the excess (Yt − αt )
+

Wealth process of the Insurance Company

Xt = x +

∫ t

0
p(αs)ds −

∫ t

0
y ∧ αs µ(ds, dy)−

∫ t

0
dDs

I p(α) insurer net premium (after paying the reinsurance company)
I Dt cumulative dividends paid up to (and including) time t

sup
(αt )t ,(Dt )t

E
[ ∫ τ

0
e−rudDu

]

I time of bankruptcy τ = inf{t ≥ 0; Xt ≤ 0}
Jeanblanc-Shyryaev (1995) optimal dividend distribution for Wiener process,
Asmunssen- Hjgaard-Taksar (1998) optimal dividend distribution for diffusion,
Mnif-Sulem (2005) prove existence and uniqueness of a viscosity solution,
Goreac (2008) multiple contracts



Similarities & Differences

Similarities
I αt ↔ standing limit orders Lt

I Dt ↔ cumulative market orders mt

Differences
I We work in a finite horizon (PDEs instead of ODEs)
I We use a Mean - Variance criterion
I We exhibit a classical solution (as opposed to a viscosity solution)
I We derive a system of ODEs identifying

I the value function
I the optimal stratagy



Technical Assumptions

νt (dy)ν(t)dt intensity of Poisson measure µ(dt , dy) with νt ([0, 1]) = 1.

I
∫ T

0 σ(t)2dt <∞
I sup0≤t≤T ν(t) <∞

I t ↪→ σ(t)2

ν(t) (X(t)− x) is increasing for each x ∈ [0, 1]

I t ↪→ 1
ν(t)νt ( · ) is decreasing (in the sense of stochastic dominance)



Hamilton-Jabobi-Bellman Equation (QVI)

min
[
[Aφ](t , x), ∂tφ(t , x) + [Bφ](t , x)

]
= 0.

where
[Aφ](t , x) = S − ∂xφ(t , x)

and

[Bφ](t , x) = γ
σ(t)2

2
[X(t)− x ]2 + ν(t) inf

0≤L≤x

∫
[0,1]

[φ(t , x − y ∧ L)− φ(t , x)]νt (dy)

with terminal condition

φ(T−, x) = Sx , (notice that φ(T , x) = 0)

and boundary condition:

φ(t , 0) =

∫ T

t

γσ(u)2

2
X(u)du.



Classical Solution

Theorem
The value function is the unique solution of

− J̇(t , x) = min
[

inf
0≤y≤x

−J̇(t , x),

γ
σ(t)2

2
[X(t)− x ]2 + ν(t)

∫
[0,1]

[J(t , (x − y) ∨ L̃(t , y))− J(t , x)]νt (dy)

]
with

J(t , 0) = γ

∫ t

0

σ(u)2

2
X(u)2du, and J(T , x) = Sx

where
L̃(t , x) = arg min

0≤y≤x
J(t , y)

I J is C1,1

I x ↪→ J(t , x) convex for t fixed
I t ↪→ J(t , x) non-decreasing for x fixed

I ∂x J̇(t , x) ≥ 0



Free Boundary (No-Trade Region)

[0,T ]× [0, 1] = A ∪ B ∪ C

with
I A = {(t , x); ∂x J(t , x) < 0} = {(t , x); 0 ≤ t < τ`(x)}
I B = {(t , x); 0 ≤ ∂x J(t , x) ≤ S} = {(t , x); τ`(x) ≤ t ≤ τm(x)}
I C = {(t , x); ∂x J(t , x) = S} = {(t , x); τm(x) ≤ t}

where
I τ`(x) = inf{t > 0; ∂x J(t , x) ≥ 0}
I τm(x) = inf{t > 0; ∂x J(t , x) ≥ S}

τ`(x) ≤ T (1− x) ≤ τm(x)



Optimal Trading Strategy

I If t > τm(xt ) i.e. (t , xt ) ∈ C (never happens)
I place market orders

∆mt > 0 (just enough to get into B)
I If t = τm(xt ) i.e. (t , xt ) ∈ ∂C

I place market orders at a rate dmt = −τ̇m(xt )dt

(just enough so not to exit B)
I If τ`(xt ) ≤ t < τm(xt ) i.e. (t , xt ) ∈ B ∪ ∂A

I place Lt = xt − L̃(t) limit orders

(as much as possible without getting ahead too much)
I If t < τ`(xt ) i.e. (t , xt ) ∈ A (never happens)

I no trade



Special Case I: Large Fill Distribution

νt (dy) = δ1(dy): the crossings, when they occur, fill all the requested limit orders.

Theorem
The value function solves

−J̇(t , x) = min
[

inf
0≤y≤x

−J̇(t , x), γ
σ(t)2

2
[X(t)− x ]2 + ν(t)[J(t , L̃(t , x))− J(t , x)]

]
with

J(t , 0) = γ

∫ t

0

σ(u)2

2
X(u)2du, and J(T , x) = Sx



Special Case II: Arrival Price Benchmark

This specific model corresponds to the case X(τ) = 0 for all τ ∈ [0,T ].

Theorem
The value function is the unique solution of

−J̇(t , x) = min
[

inf
0≤y≤x

−J̇(t , x), γ
σ(t)2

2
x2 + ν(t)

∫
[0,1]

[J(t , (x − y)+)− J(t , x)]νt (dy)

]
with

J(t , 0) = γ

∫ t

0

σ(u)2

2
X(u)2du, and J(T , x) = Sx



Special Case III: Stationary Approximation

When (t , x) is far enough from the corners (0, 1) and (T , 0), J looks like a function of
x − X(t) (deviation from the benchmark).
Stationarity assumption

I ν1(dt) = λdt for some constant λ > 0
I νt (dy) = ν(dy) for all t ∈ [0,T ].
I σ(t) = σ for all t ∈ [0,T ]

Look for an approximation of the form

J(t , x) ≈ α+ βx + w(x − X(t))

for some function w to be determined.

True in the Large Fill case (use the Lambert function)



The Discrete Case and Approximation Results

I The integer v denotes the quantity of shares (expressed as a number of lots) the
broker has to sell by time T ,

I Trades can only be in multiples of one lot.
I t ↪→ xt looks like a staircase starting from x0 = 1 and ending at xT = 0.
I In units of v lots, the measures νt (dy) are supported by the grid
{1/v , 2/v , · · · , (v − 1)/v , 1}

I The process x = (xt )0≤t≤T . and the controls L = (Lt )0≤t≤T and m = (mt )0≤t≤T
take values in the grid Iv := {0, 1/v , · · · , (v − 1)/v , 1}.

I The sets of admissible controls are defined accordingly.

I Identify functions ϕ on the grid Iv with finite sequence (ϕi )0≤i≤v where
ϕi = ϕ(i/v).

I Denote by Iϕ the piecewise linear continuous function [0, 1] 3 x ↪→ [Iϕ](x) which
coincides with ϕ on the grid Iv and which is linear on each interval [i/v , (i + 1)/v ].

I (ϕi )0≤i≤v is said to be convex if Iϕ is convex
I For any integers v and v ′, and functions ϕ and ϕ′ on the grids Iv and Iv′ , we

have:

‖Iϕ− Iϕ′‖∞ = sup
x∈[0,1]

|[Iϕ](x)− [Iϕ′](x)| = sup
x∈Iv∪Iv′

|[Iϕ](x)− [Iϕ′](x)|.



Characterization of the Solution
The operators A and B become

[Aϕ]i (t) = S − ϕi (t) + ϕi−1(t), i = 1, · · · , v ,
and

[Bϕ]i (t) = γ
σ(t)2

2
[X(t)− i/v ]2 + ν(t) min

0≤`≤i

v∑
j=1

[ϕi−j∧`(t)− ϕi (t)]νt (j/v)

so the HJB QVI remains the same:

min
[
[Aϕ]i (t), ϕ̇i (t) + [Bϕ]i (t)

]
= 0, i = 1, · · · , v .

As before we have existence and uniqueness of a C1 functions of t ∈ [0,T ] satisfying

ϕi (t) = Si/v +

∫ T

t
min

0≤j≤i
[Bϕ]i (u)du, i = 0, 1, · · · , v .

Interpreting the solution ϕ as a function on [0,T ]× Iv defined by ϕ(t , i/v) = ϕi (t),
since ϕi (T ) = Si/v and:

ϕ̇i (t) = − min
0≤j≤i

[Bϕ]j (t)

we get
ϕ̇i (t) + [Bϕ]i (t) ≥ 0, i = 0, 1, · · · , v

and
ϕ̇i (t) = max

0≤j≤i
∂tϕj (t)

so that i ↪→ ϕ̇i (t) is non-decreasing and

−ϕ̇i (t) = min
[

min
0≤j≤i

−ϕ̇j (t), [Bϕ]i (t)
]
.

Now, as in the continuous case, we can introduce a notation which will help simplify the
definition of the operator B and identify the optimal controls. We define ˆ̀i (t) by i − ˜̀i (t)
where

˜̀i (t) = min{`; ϕ`(t) = min
0≤j≤i

ϕj (t)}

so that, using the convexity of the ϕi ’s we get:

[Bϕ]i (t) = n(t)
v∑

j=1

[ϕ(i−j)v∨ ˜̀i (t)(t)− ϕi (t)]νt (i/v) +
γσ(t)2

2
[X(t)− i/v ]2. (1)

Our next step is to identify ϕ to the value function J of the stochastic optimization
problem in the discrete case considered in this section. Going once more to the
derivation of the verification theorem given in the appendix, if one uses inequality ?? in
??, we see that the first expectation in the right hand side is non-negative whatever the
admissible controls are. Moreover, since we are now dealing with controls m’s without
a continuous component, one can sum the remaining two expectations in this right
hand side to get

Et

[ ∑
t≤u≤T

[φ(u, xu− −∆mu)− φ(u, xu−) + S∆mu

]
(2)

which is non-negative as well. Indeed

S/v − ϕi (t) + ϕi−1(t) ≥ 0, t ∈ [0,T ], i ∈ {1, · · · , v} (3)

as we can see by subtracting ?? to itself after replacing i by i − 1. So as before, ϕ is a
lower bound for the value function J. In order to prove equality, we construct specific
controls (L̂, m̂) which saturate the inequalities in ??. First, we characterize the no-push
region as the union of its cross sections for x fixed, by defining for each i = 1, · · · , v ,
the stopping times:

τm,i = inf{t ∈ [0,T ]; ϕi (t)−ϕi−1(t) ≥ S/v}, τL,i = inf{t ∈ [0,T ]; ϕi (t)−ϕi−1(t) ≥ 0}.
(4)

Recall that ϕi (t)− ϕi−1(t) is non-decreasing in t so that τL,i ≤ τm,i . Moreover, if L̂ is
defined as L̂t = ˆ̀i (t) whenever xt− = i/v and t ≥ τL,i and as 0 otherwise, we have:

ϕ̇i (t) + n(t)
v∑

j=1

[ϕ(i−j)∨ ˜̀i (t)(t)− ϕi (t)]νt (j) +
γσ(t)2

2
[X(t)− i/v ]2 = 0,

so if we let m̂t jumps upward by the amount 1/v whenever t ≥ τm,i and xt− = i/v ,
then it is plain to check that equality holds in ??, proving that ϕ is in fact equal to the
value function of the problem. Rewriting ?? as

− ϕ̇i (t) = min
[

min
0≤j≤i

−ϕ̇j (t), [Bϕ]i (t)
]
. (5)

we summarized what we proved as follows:



Characterization of the Value Function in the Discrete Case

Theorem
The value function J of the problem can be identified to the sequence (Ji )0≤1≤v of C1

functions of t ∈ [0,T ] satisfying:

J0(t) =
∫ T

t
γσ(u)2

2 X(u)2, Ji (T ) = Si/v , i = 0, 1, · · · , v

∂t Ji (t) = min
[
∂t Ji−1(t),

ν(t)
∑v

j=1[ϕ(i−j)∨ ˜̀i (t)(t)− ϕi (t)]νt (j) + γσ(t)2

2 [X(t)− i/v ]2
]

where
˜̀i (t) = min{`; ϕ`(t) = min

0≤j≤i
ϕj (t)}



Optimal Solution in the Discrete Case

I τm
i = inf{t ∈ [0,T ]; Ji (t)− Ji−1(t) < S/v}

I τ l
i = inf{t ∈ [0,T ]; Ji (t)− Ji−1(t) < 0}

I τm
i ≤ Tx(i − 1

2 ) < τ l
i


