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Optimal Execution Market Set-Up

R.C.- M. Li

Goal: sell v > 0 shares by time T > 0 (finite horizon)

» P; mid-price (unaffected price),
t
P =Py +/ o(u)dWy, 0<t<T,
0

> V(t) volume traded in the market up to (and including) time ¢
> Market VWAP= |, [ P,aV(1)
» Fraction of shares still to be executed in the market

V-Vi) T-t

="y ="

(deterministic V/(t) used to change clock). Convenient simplification !



Broker Problem

v; volume executed by the broker up to time t

V—V
Xt = ——
4

fraction of shares left to be executed by the broker at time ¢
Xt = 1-— Zt — my

Where
» ¢; cumulative volume executed through limit orders
» m; cumulative volume executed through market orders

» Broker average liquidation price vwap= %fOT (P, — g) am; + (Pt + g) as;

» Objective: Minimize discrepancy between vwap and VWAP



Naive Model for the Dynamics of the Order Book

Controls of the broker:
> (m¢)o<i<T NON-decreasing adapted process
> (Lt)o<t<T predictable process

t
e,:/ ¥ A Ly p(du, dy) = ZYALT,
o o

where
w(du, dy)
point measure (Poisson) compensator v¢(du)v(t)adt.

t Nt
xt:1—/ Y ALy p(du,dy) —me=1—=>"Y; ALy, —m
0 J[o,1] P
So the dynamics of x; are given by
axt = — Y A Lt p(at, dy) — dmy,

[0,1]

with initial condition xp_ = 1.



Optimization Problem

Goal of the broker

sup E [U(vwap — VWAP)] ,
(L,meA

For the CARA exponential utility, approximately

(L,,i%feA]E{exp(y< / [ ]dPuSdmu>]

We will work with a Mean - Variance criterion

. T o(u)?

» S spread
> X(u) = (T — u)/T fraction of shares left to be executed in the market.



Stochastic Control Problem

Singular control problem of a pure jump process

Value function

J(t,x) = inf J(t, x,L,m
(t:) (L,m)e A(t,x) ( )
where ; )
stx. L) =5[ [ p" ~ Xl + Smr .
t

J(t, x) is non-decreasing in ¢ for x € [0, 1] fixed. (A(t, x) C A(t, x) whenever
t < b)



Tough Luck: Problem is NOT Convex

The set A of admissible controls is not convex.

For any number ¢ € (0, 1), the two controls (L', m') and (L2, m?) by:

L; =<y + ZXTk—11{Tk—1<ISTk}’ and m} =xr-Vr<ny,
k=2

and:

Z oo
L= SMism) T2 Xnc i Wney<isnys  and  mi =xr g7,
k=2

are admissible, but the pair (L, m) defined by
L=+, and  mo= (ml+ )

IS NOT



Closest Related Works

» Poisson random measure u(dt, dy) for claim sizes Y;
> insurer pays Y; A ot up to a retention level o;
» re-insurer covers the excess (Y; — a;)™

Wealth process of the Insurance Company
t t t
Xi = x +/ p(as)ds — / ¥y N as p(ds, dy) — / dDs
0 0 0

» p(«) insurer net premium (after paying the reinsurance company)
» D cumulative dividends paid up to (and including) time t

sup E[/ e"“dDu}
(aet)t, (Do)t 0

» time of bankruptcy = = inf{t > 0; X; < 0}

Jeanblanc-Shyryaev (1995) optimal dividend distribution for Wiener process,
Asmunssen- Hjgaard-Taksar (1998) optimal dividend distribution for diffusion,
Mnif-Sulem (2005) prove existence and uniqueness of a viscosity solution,
Goreac (2008) multiple contracts



Similarities & Differences

Similarities
> «; +» standing limit orders L;
» D; +» cumulative market orders m;

Differences
» We work in a finite horizon (PDEs instead of ODEs)
» We use a Mean - Variance criterion

» We exhibit a classical solution (as opposed to a viscosity solution)
» We derive a system of ODEs identifying

> the value function
> the optimal stratagy



Technical Assumptions

vi(dy)v(t)dt intensity of Poisson measure u(adt, dy) with v4([0,1]) = 1.

v

J) a(t)2at < oo
SUPg< <7 V(1) < 00

t— "V(('I))Z (X(t) — x) is increasing for each x € [0, 1]

v

v

v

t— ﬁut( -) is decreasing (in the sense of stochastic dominance)



Hamilton-Jabobi-Bellman Equation (QVI)

min [[A¢](t, ), dr¢(t, x) + [Bo](t, x)] = 0. |
where
[Ad](t, x) = S — Ixo(t, X)

and

a(t)? -

[B3](t, x) = v—[X( t) = xJ? + v(t) oglgfgx [0’1][¢>(T7X =y A L) = o(t, x)]vi(dy)

with terminal condition

o(T—, x) = Sx, (notice that ¢(T, x) = 0)

and boundary condition:

6(t,0) = / 270 (upo.



Classical Solution

Theorem
The value function is the unique solution of

— J(t,x) =min [og‘?fgx —J(t, x),

a(t)? 2 7
T—5 [X(t) — x] +V(1)/ [J(t, (x = y) V L(L, ) — J(, x)]ve(dy)
[0,1]

)

with
t 2
J(t,0) = ~ /0 ”(:) X(u)2du,  and  J(T,x)= Sx
where
L(t,x) = arg min_J(t,y)
> Jis C11

v

x — J(t, x) convex for t fixed
t — J(t, x) non-decreasing for x fixed
xJ(t,x) >0

v

v



Free Boundary (No-Trade Region)

[0,T] x[0,1]=AUBUC
with
» A= {(t,x); 0xJ(t,x) <0} = {(t,x); 0 < t<7(x)}
> B={(t,x);0 < dxJ(t,x) < S} = {(t, x); 7e(x) <t < 7m(x)}
> C={(t;x); 0xJ(t,x) = S} = {(t, x); Tm(x) <t}
where
> 1o(x) = inf{t > 0; OxJ(t, x) >0}
> Tm(x) = inf{t > 0; OxJ(t,x) > S}

To(x) < T(1 = x) < mm(x)




Optimal Trading Strategy

v

If t > tm(xt) i.e. (t, xt) € C (never happens)
» place market orders
Am; > 0 (just enough to get into B)
If t = Tm(xt) i.e. (t,xt) € 8C
> place market orders at a rate dm; = —7m(x;)dlt
(just enough so not to exit B)
If T[(Xt) <t< Tm(Xg) i.e. (t, Xz) € BUOA
> place L; = x; — L(t) limit orders
(as much as possible without getting ahead too much)
If t < 710(x¢) i.e. (£ x¢) € A (never happens)
> no trade

\{

v

v



Special Case I: Large Fill Distribution

vi(dy) = é1(dy): the crossings, when they occur, fill all the requested limit orders.

Theorem
The value function solves

—J(t,x) = min [0<iry1< —J(t, x), y"(’) X(t) — xI? + v()[J(t, L(t, x)) — J(t, X)]

with

J(t,0) = v /0 IG(S)ZX(U)Zdu, and  J(T,x)=



Special Case Il: Arrival Price Benchmark

This specific model corresponds to the case X(7) = 0 for all = € [0, T].

Theorem
The value function is the unique solution of

a 3 ] 3 a(t)? , +
—J(t, x) = min [Oglggx—J(t,x),'y 5 X +u(t)/[o1][J(t, (x—y)") —J(t, x)]ve(dy)

with

J(t,0) = 'y/ot 0(5)2 X(u)?du, and J(T,x) = Sx



Special Case lll: Stationary Approximation

When (t, x) is far enough from the corners (0,1) and (T, 0), J looks like a function of
x — X(t) (deviation from the benchmark).

Stationarity assumption
> vq(dt) = Adt for some constant A > 0
> v(dy) = v(dy) forall t € [0, T].
> o(t)y=ocforallt€[0, T]

Look for an approximation of the form

J(t, x) = a+ Bx + w(x — X(t))

for some function w to be determined.

True in the Large Fill case (use the Lambert function)



The Discrete Case and Approximation Results

» The integer v denotes the quantity of shares (expressed as a number of lots) the
broker has to sell by time T,

» Trades can only be in multiples of one lot.

» t < x; looks like a staircase starting from xo = 1 and ending at x;7 = 0.

> In units of v lots, the measures v;(dy) are supported by the grid
{1/‘/,2/‘/1"' 7(V_ 1)/‘/11}

> The process x = (xt)o<¢<7- and the controls L = (Lt)o<¢<7 and m = (m¢)o<i<T
take values in the grid Zy := {0,1/v,--- ,(v—1)/v,1}.

» The sets of admissible controls are defined accordingly.

> ldentify functions  on the grid Z, with finite sequence (;)o<i<v Where
wi = i/ V).
» Denote by /¢ the piecewise linear continuous function [0, 1] 3 x < [l¢](x) which
coincides with ¢ on the grid Z, and which is linear on each interval [i/v, (i+1)/v].
> (wi)o<i<y is said to be convex if Iy is convex

» For any integers v and v/, and functions ¢ and ¢’ on the grids Z, and Z,,, we
have:

e — Illco = le[f)pﬂ |l (x) — [l 1) = sup_ |[lel(x) — [Ie"](x)].

XEIVUIV/



Characterization of the Solution
The operators A and B become

[AZi(t) = S—wilt) + pia (D), i=1,,v,
and

1Be) =L 0x() i/ 4+ 0(t) min. S i ne(D) — DG/ Y)
L2

so the HJB QVI remains the same:
min [[Ag]i(1), ¢i(t) + [Beli()] =0,  i=1,--,v.
As before we have existence and uniqueness of a C' functions of t € [0, T] satisfying

:
ailt) =Sifv+ [ min [Balw)du,  i=0.1. v,

Interpreting the solution ¢ as a function on [0, T] x Z, defined by ¢ (t,i/v) = ¢;(t),
since ¢;(T) = Si/v and:
@i(t) = —Org/!g/[Bso],-(t)
we get
@i(t) + [Beli(t) >0,  i=0,1,---,v
and
@i(t) = 0"%?%(/8&0/(1’)
so that i < ¢;(t) is non-decreasing and

—;(t) = min Og}gi_‘:bj(t)’[B@]i(t) :



Characterization of the Value Function in the Discrete Case

Theorem

The value function J of the problem can be identified to the sequence (J;)o<1<v Of C!
functions of t € [0, T] satisfying:

do(t) = [T 22X, J(T)=Si/v, i=0,1, v

OpJ;(t) = min | 9tJ;_1 (1),

V(1) Sl loy i o () — @il Olnl) + 2L X(t) — i/ v

where .
Bi(t) = min{t @e(t) = min (1)}



Optimal Solution in the Discrete Case

> M =inf{t € [0, T]; Ji(t) — Ji—1(t) < S/v}
» 7l =inf{t € [0, T]; Ji(t) — Ji_1(t) < O}

M < Tx(i - §) <7



