Price Impact Models & Optimal Execution

René Carmona

Bendheim Center for Finance Department of Operations Research & Financial Engineering Princeton University

Princeton, June 18, 2013

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Queries

We already saw that we should split and spread large orders, so:

- split and spread large orders, so:
- How can we capture market price impact in a model?
- What are the desirable properties of a *Price Impact* model?
- How can we compute optimal execution trading strategies?

(ロ) (同) (三) (三) (三) (○) (○)

What happens when several execution strategies interact?

"Amlgren-Chriss Price Impact" Model

- Unaffected (fair) price given by a semi-maringale
- Mid-price affected by trading
 - Permanent price impact given by a function g of trading speed

$$dP_t^{mid} = g(v(t))dt + \sigma dW_t$$

Temporary price impact given by function h of trading speed

$$P_t^{trans} = P_t^{mid} + h(v(t))$$

- Problem: find deterministic continuous transaction path to maximize mean-variance reward.
 - Closed form solution when permanent and instantaneous price impact functions g and h are linear
 - Efficient frontier: Speed of trading and hence risk/return controlled by risk aversion parameter

Widely used in industry

Criticisms

Mid-price P^{mid} arithmetic Brownian motion + drift

- Can become negative
- Reasonable only for short times
- Possible issues with rate of trading in continuous time?
- Price impact more complex than instantaneous + permanent
- What is the link between Price Impact and LOB dynamics?
 - e.g. can we combine elegant description of risk-return trade-off in Almgren / Chriss with detail of Smith-Farmer type models?

(ロ) (同) (三) (三) (三) (○) (○)

 Empirical evidence that instantaneous price impact is stochastic in many markets

Optimal Execution

An execution algorithm has three layers:

- At the highest level one decides how to slice the order, when to trade, in what size and for how long.
- At the mid level, given a slice, one decides whether to place market or limit orders and at what price level(s).
- At the lowest level, given a limit or market order, one decides to which venue should this order be routed?

(日) (日) (日) (日) (日) (日) (日)

We shall not discuss the last bullet point here.

Optimal Execution Set-Up

Goal: sell $x_0 > 0$ shares by time T > 0

- $\underline{X} = (X_t)_{0 \le t \le T}$ execution strategy
- ► X_t position (nb of shares held) at time t. $X_0 = x_0$, $X_T = 0$
- Assume X_t absolutely continuous (differentiable)
- \tilde{P}_t mid-price (unaffected price), P_t transaction price, I_t price impact

 $P_t = \tilde{P}_t + I_t$

e.g. Linear Impact A-C model:

$$I_t = \gamma [X_t - X_0] + \lambda \dot{X}_t$$

• **Objective:** Maximize *some form of revenue* at time *T* Revenue $\mathcal{R}(\underline{X})$ from the execution strategy \underline{X}

$$\mathcal{R}(\underline{X}) = \int_0^T (-\dot{X}_t) P_t dt$$

Specific Challenges

First generation: Price impact models (e.g. Almgren - Chriss)

- ▶ Risk Neutral framework (maximize $\mathbb{E}\mathcal{R}(\underline{X})$) versus utility criteria
- More complex portfolios (including options)
- Robustness and performance constraints (e.g. slippage or tracking market VWAP)
- Second generation: Simplified LOB models
 - Simple liquidation problem
 - performance constraints (e.g. slippage or tracking market VWAP) and using **both** market and limit orders

(ロ) (同) (三) (三) (三) (○) (○)

Optimal Execution Problem in A-C Model

$$\mathcal{R}(\underline{X}) = \int_0^T (-\dot{X}_t) P_t dt$$

= $-\int_0^T \dot{X}_t \tilde{P}_t dt - \int_0^T \dot{X}_t I_t dt$
= $x_0 \tilde{P}_0 + \int_0^T X_t d\tilde{P}_t - C(\underline{X})$

with
$$\mathcal{C}(\underline{X}) = \int_0^T \dot{X}_t I_t dt$$
.

Interpretation

- $x_0 \tilde{P}_0$ (initial) face value of the portfolio to liquidate
- ∫₀^T X_t d P
 ^T volatility risk for selling according to <u>X</u> instead of immediately!
- $C(\underline{X})$ execution costs due to market impact

Special Case: the Linear A-C Model

$$\mathcal{R}(\underline{X}) = x_0 \tilde{P}_0 + \int_0^T X_t d\tilde{P}_t - \lambda \int_0^T \dot{X}_t^2 dt - \frac{\gamma}{2} x_0^2$$

Easy Case: Maximizing $\mathbb{E}[\mathcal{R}(X)]$

$$\mathbb{E}[\mathcal{R}(\underline{X})] = x_0 P_0 - \frac{\gamma}{2} x_0^2 - \lambda \mathbb{E} \int_0^T \dot{X}_t^2 dt$$

Jensen's inequality & constraints $X_0 = x_0$ and $X_T = 0$ imply

$$\dot{X}_t^* = -rac{X_0}{T}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

trade at a constant rate independent of volatility ! Bertsimas - Lo (1998)

More Realistic Problem

Almgren - Chriss propose to maximize

 $\mathbb{E}[\mathcal{R}(\underline{X})] - \alpha \mathsf{var}[\mathcal{R}(X)]$

(α risk aversion parameter – late trades carry volatility risk)

For **DETERMINISTIC** trading strategies X

$$\mathbb{E}[\mathcal{R}(\underline{X})] - \alpha \operatorname{var}[\mathcal{R}(X)] = x_0 P_0 - \frac{\gamma}{2} x_0^2 - \int_0^T \left(\frac{\alpha \sigma^2}{2} X_t^2 + \lambda \dot{X}_t^2\right) dt$$

maximized by (standard variational calculus with constraints)

$$\dot{X}_t^* = x_0 rac{\sinh \kappa (T-t)}{\sinh \kappa T}$$
 for $\kappa = \sqrt{rac{lpha \sigma^2}{2\lambda}}$

For **RANDOM** (adapted) trading strategies <u>X</u>, **more difficult** as *Mean-Variance not amenable to dynamic programming*

Maximizing Expected Utility

Choose $U : \mathbb{R} \to \mathbb{R}$ increasing concave and

maximize $\mathbb{E}[U(\mathcal{R}(\underline{X}_T)]]$

Stochastic control formulation over a state process $(X_t, R_t)_{0 \le t \le T}$.

$$v(t, x, r) = \sup_{\underline{\xi} \in \Xi(t, x)} \mathbb{E}[u(R_T) | X_t = x, R_T = r]$$

value function, where $\Xi(t, x)$ is the set of admissible controls

$$\left\{\underline{\xi} = (\xi_s)_{t \le s \le T}; \text{progressively measurable}, \ \int_t^T \xi_s^2 ds < \infty, \ \int_t^T \xi_s ds = x\right\}$$

$$X_s = X_s^{\underline{\xi}} = x - \int_t^s \xi_u du, \qquad \dot{X}_s = -\xi_s, \ X_t = x$$

and (choosing $\tilde{P}_t = \sigma W_t$)

$$R_{s} = R_{s}^{\xi} = R + \sigma \int_{t}^{s} X_{u} dW_{u} - \lambda \int_{t}^{s} \xi_{u}^{2} du, \quad dR_{s} = \sigma X_{s} dW_{s} - \lambda \xi_{s}^{2} ds, \quad R_{t} = r$$

Finite Fuel Problem

Non Standard Stochastic Control problem because of the constraints

$$\int_0^T \xi_s ds = x_0.$$

Still, one expects

- ► For any admissible $\underline{\xi}$, $[v(t, X_t^{\underline{\xi}}, R_t^{\underline{\xi}})]_{0 \le t \le T}$ is a super-martingale
- ► For some admissible $\underline{\xi}^*$, $[v(t, X_t^{\underline{\xi}^*}, R_t^{\underline{\xi}^*})]_{0 \le t \le T}$ is a **true** martingale

If v is smooth, and we set $V_t = v(t, X_t^{\xi}, R_t^{\xi})$, Itô's formula gives

$$dV_t = \left(\partial_t v(t, X_t, R_t) + \frac{\sigma^2}{2} \partial_{rr}^2 v(t, X_t, R_t) -\lambda \xi_t^2 \partial_r v(t, X_t, R_t) - \xi_t \partial_x v(t, X_t, R_t)\right) dt + \sigma \partial_x v(t, X_t, R_t) dW_t$$

Hamilton-Jabobi-Bellman Equation

One expects that v solves the **HJB** equation (nonlinear PDE)

$$\partial_t \mathbf{v} + \frac{\sigma^2}{2} \partial_{xx}^2 \mathbf{v} - \inf_{\xi \in \mathbb{R}} [\xi^2 \lambda \partial_r \mathbf{v} + \xi \partial_x \mathbf{v}] = \mathbf{0}$$

in some sense, with the (non-standard) terminal condition

$$v(T, x, r) = \begin{cases} U(r) & \text{if } x = X_0 \\ -\infty & \text{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Solution for CARA Exponential Utility

For $u(x) = -e^{-\alpha x}$ and κ as before

$$v(t, x, r) = e^{-\alpha r + x_0^2 \alpha \lambda \kappa \coth \kappa (T-t)}$$

solves the HJB equation and the unique maximizer is given by the **DETERMINISTIC**

$$\xi_t^* = x_0 \kappa \frac{\cosh \kappa (T-t)}{\sinh \kappa T}$$

Schied-Schöneborn-Tehranchi (2010)

- Optimal solution same as in Mean Variance case
- Schied-Schöneborn-Tehranchi's trick shows that optimal trading strategy is generically deterministic for exponential utility
- Open problem for general utility function
- Partial results in infinite horizon versions

Shortcomings

- Optimal strategies
 - are DETERMINISTIC
 - do not react to price changes
 - are time inconsistent
 - are counter-intuitive in some cases
- Computations require
 - solving nonlinear PDEs
 - with singular terminal conditions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Recent Developments

Gatheral - Schied (2011), Schied (2012)

In the spirit of Almgren-Chriss mean-variance criterion, maximize

$$\mathbb{E}\bigg[\mathcal{R}(\underline{X}) - \tilde{\lambda} \int_0^T X_t P_t dt\bigg]$$

- The solution happens to be ROBUST
 - $ightarrow \tilde{P}_t$ can be a semi-martingale, optimal solution does not change

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Recent Developments Almgren - Li (2012), Hedging a large option position

g(t, P
_t) price at time t of the option (from Black-Scholes theory)
 Bevenue

$$\mathcal{R}(\underline{X}) = g(T, \tilde{P}_T) + X_T \tilde{P}_T - \int_0^T \tilde{P}_t \dot{X}_t dt - \lambda \int_0^T \dot{X}_t^2 dt$$

Using Itô's formula and the fact that g solves a PDE,

$$\mathcal{R}(\underline{X}) = R_0 + \int_0^T [X_t + \partial_x g(t, \tilde{P}_t)] dt - \lambda \int_0^T \dot{X}_t^2 dt \qquad R_0 = x_0 \tilde{P}_0 + g(0, \tilde{P}_0)$$

▶ Introduce $Y_t = X_t + \partial_x g(t, \tilde{P}_t)$ for hedging correction

$$\begin{cases} d\tilde{P}_t = \gamma \dot{X}_t dt + \sigma dW_t \\ dY_t = [1 + \gamma \partial_{xx}^2 g(t, \tilde{P}_t)] dt + \sigma \partial_{xx}^2 g(t, \tilde{P}_t) dW_t \end{cases}$$

Minimize

$$\mathbb{E}\left[G(\tilde{P}_{T}, Y_{T}) + \int_{0}^{T} \left(\frac{\sigma^{2}}{2}Y_{t}^{2} - \gamma \dot{X}_{t}Y_{t} + \lambda \dot{X}_{t}^{2}\right)dt\right]$$

Explicit solution in some cases (e.g. $\partial_{xx}^2 g(t, x) = c$, *G* quadratic)

Transient Price Impact

Flexible price impact model

- ▶ Resilience function $G: (0,\infty) \to (0,\infty)$ measurable bounded
- ► Admissible $\underline{X} = (X_t)_{0 \le t \le T}$ cadlag, adapted, **bounded variation**
- Transaction price

$$P_t = \tilde{P}_t + \int_0^t G(t-s) \ dX_s$$

Expected cost of strategy <u>X</u> given by

$$-x_0P_0+\mathbb{E}[\mathcal{C}(\underline{X})]$$

where

$$C(\underline{X}) = \int \int G(|t-s|) dX_s dX_t$$

(ロ) (同) (三) (三) (三) (○) (○)

Transient Price Impact: Some Results

- No Price Manipulation in the sense of Huberman Stanzl (2004) if G(| · |) positive definite
- Optimal strategies (if any) are deterministic
- Existence of an optimal $\underline{X}^* \Leftrightarrow$ solvability of a Fredholm equation
- Exponential Resilience $G(t) = e^{-\rho t}$

$$dX_t^* = -\frac{x_0}{\rho T + 2} \left(\delta_0(dt) + \rho dt + \delta_T(dt) \right)$$

• \underline{X}^* purely discrete measure on [0, *T*] when $G(t) = (1 - \rho t)^+$ with $\rho > 0$

•
$$dX_t^* = -\frac{x_0}{2} [\delta_0(dt) + \delta_T(dt)]$$
 if $\rho < 1/T$

• $dX_t^* = -\frac{\overline{x}_0}{n+1} \sum_{i=0}^n \delta_{iT/n}(dt)$ if $\rho < n/T$ for some integer $n \ge 1$

Obizhaeva - Wang (2005), Gatheral - Schied (2011)

Optimal Execution in a LOB Model

- Unaffected price \tilde{P}_t (e.g. $\tilde{P}_t = P_0 + \sigma W_t$)
- Trader places only market sell orders
 - Placing buy orders is not optimal
- ▶ Bid side of LOB given by a function $f : \mathbb{R} \to (0, \infty)$ s.t. $\int_0^\infty f(x) dx = \infty$. At any time *t*

$$\int_{a}^{b} f(x) dx =$$
bids available in the price range $[\tilde{P}_{t} + a, \tilde{P}_{t} + b]$

The shape function f does not depend upon t or P_t

Obizhaeva - Wang (2006), Alfonsi - Fruth - Schied (2010), Alfonsi - Schied - Schulz (2011), Predoiu - Shaikhet - Shreve (2011)

Optimal Execution in a LOB Model (cont.)

▶ Price Impact process $\underline{D} = (D_t)_{0 \le t \le T}$ adapted, cadlag At time *t* a market order of size *A* moves the price from $\tilde{P}_t + D_{t-}$ to $\tilde{P}_t + D_t$ where

$$\int_{D_{t-}}^{D_t} f(x) dx = A$$

• Volume Impact $Q_t = F(D_t)$ where $F(x) = \int_0^x f(x') dx'$.

J

▶ LOB **Resilience**: Q_t and D_t decrease between trades, e.g.

$$dQ_t = -\rho Q_t dt$$
, for some $\rho > 0$

At time t, a sell of size A will bring

$$\int_{D_{l-}}^{D_{t}} (\tilde{P}_{t} + x) f(x) dx = A \tilde{P}_{t} + \int_{D_{t-}}^{D_{t}} x dF(x)$$
$$= A \tilde{P}_{t} + \int_{Q_{t-}}^{Q_{t}} \psi(x) dx = A \tilde{P}_{t} + \Psi(Q_{t}) - \Psi(Q_{t-})$$

if
$$\psi = F^{-1}$$
 and $\Psi(x) = \int_0^x \psi(x') dx'$.

◆□▶ ◆□▶ ◆三≯ ◆三≯ ● ● ● ●

Stochastic Control Formulation

Holding trajectories / Trading strategies

$$\Xi(t, x) = \left\{ (\Xi_s)_{t \le s \le T} : \text{ càdlàg, adapted, bounded variation, } \Xi_t = x \right\}$$
$$\Xi_{ac}(t, x) = \left\{ (\Xi_s)_{t \le s \le T} : \Xi_s = x + \int_t^s \xi_r dr \text{ for } (\xi_s)_{t \le s \le T} \text{ bounded adapted } \right\}$$
$$\begin{cases} dX_t &= -d\Xi_t \\ dQ_t &= -d\Xi_t - \rho Q_t dt \\ dR_t &= -\rho Q_t \psi(Q_t) dt - \sigma \Xi_t dW_t \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Value Function Approach

State space process $Z_t = (X_t, Q_t, R_t)$, value function

$$v(t, x, q, r) = v(t, z) = sup_{\xi \in \Xi(t, x)} \mathbb{E}[U(R_T - \Psi(Q_T))]$$

First properties

►
$$U(r - \Psi(q + r)) \le v(t, x, q, r) \le U(r - \Psi(q))$$

• $v(t, x, q, r) = U(r - \Psi(q + r))$ for x = 0 and t = T

Functional approximation arguments imply

$$\begin{aligned} v(t, x, q, r) &= \sup_{\xi \in \Xi(t, x)} \mathbb{E}[U(R_T - \Psi(Q_T)]] \\ &= \sup_{\xi \in \Xi_{ac}(t, x)} \mathbb{E}[U(R_T - \Psi(Q_T)]] \\ &= \sup_{\xi \in \Xi_{d}(t, x)} \mathbb{E}[U(R_T - \Psi(Q_T)]] \end{aligned}$$

QVI Formulation

As before

- Assume v smooth and apply Itô's formula to v(t, Xt, Qt, Rt)
- ▶ $v(t, X_t, Q_t, R_t)$ is a super-martingale for a typical ξ implies

$$\partial_t \mathbf{v} + \frac{\sigma^2}{2} \mathbf{x}^2 \partial_{rr}^2 \mathbf{v} - \rho \mathbf{q} \psi(\mathbf{q}) \partial_r \mathbf{v} - \rho \mathbf{q} \partial_q \mathbf{v} \ge \mathbf{0}$$

$$\partial_x v - \partial_q v \ge 0$$

QVI (Quasi Variational Inequality) instead of HJB nonlinear PDE

$$\min[\partial_t v + \frac{\sigma^2}{2} x^2 \partial_{rr}^2 v - \rho q \psi(q) \partial_r v - \rho q \partial_q v, \partial_x v - \partial_q v] = 0$$

(ロ) (同) (三) (三) (三) (○) (○)

with terminal condition $v(T, x, q, r) = U(r - \Psi(x + q))$

Existence and Uniqueness of a *viscosity solution* R.C. - H. Luo (2012)

Special Cases

Assuming a flat LOB f(x) = c and U(c) = x

$$v(t, x, q, r) = r - \frac{q^2(1 - e^{-2\rho s})}{2c} - \frac{(x + qe^-\rho s)^2}{c(2 + \rho(T - t - s))^2}$$

with $s = (T - t) \land \inf\{u \in [0, T]; (1 + \rho(T - t - u))qe^{-\rho u} \le x\}$

Still with f(x) = c but for a CARA utility $U(x) = -e^{-\alpha x}$

$$v(t, x, q, r) = -\exp\left[-\alpha r - \frac{\alpha}{2c}(\alpha c\sigma^2 x x^2 + q^2(1 - e^{-2\rho s}) + \varphi(t + s)(x + q e^{-\rho s})^2\right]$$

where φ is the solution of the Ricatti's equation

$$\dot{\varphi}(t) = \frac{\rho^2}{2\rho + \alpha c \sigma^2} \varphi(t)^2 + \frac{2\rho \alpha c \sigma^2}{2\rho + \alpha c \sigma^2} \varphi(t) - \frac{2\rho \alpha c \sigma^2}{2\rho + \alpha c \sigma^2}, \qquad \varphi(T) = 1$$

and

$$s = (T - t) \wedge \inf\{u \in [0, T]; \ (\alpha c \sigma^2 + \rho \varphi(t + u))x \ge \rho(2 - \varphi(t + u))q e^{-\rho u}\}_{\text{result}} \in \mathbb{R}$$