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Abstract

We study the large time behavior of the solutions of the Cauchy problem for the
Anderson model restricted to the upper half spate= Z¢! x Z, and/orD =
RI=1 x R, when the potential is a homogeneous random field concentrated on the
boundaryoD. In other words we consider the problem:

ou(t, z)
ot

= kAu(t,z) + £(z)u(t,z)  z=(z,y), with y > 0andt >0

with an appropriate initial condition. We determine the large time asymptotics of
the moments of the solutions as well as their almost sure asymptotic behavior when
t — oo and when the distance from the boundary, 4.e= y(¢) goes simultaneously

to infinity as a function of the timé. We identify the rates of escape gft) which
correspond to specific behaviors of the solutions and different types of dependence
upon the diffusivity constant. We also show that the case of the lattice differs
drastically from the continuous case when it comes to the existence of the moments
and the influence of. Intermittency is proved as a consequence of the large time
behavior of the solutions.
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1 Introduction

Throughout the paper we study the solutions of the following Cauchy problem, which
is known to play a crucial role in many problems appearing in the theory of disordered
systems and especially in chemical kinetics and solid state physics (see [10] for details):

du(t, z)
ot

= rkAu(t,z) +£(z)ult,z) z=(z,y),t>0 (1)

wherex € Z% 1, y € Z, in the lattice case and € R ! andy € R, in the contin-

uous space. We shall add an initial condition and boundary conditions as needed. We
call this problem th&oundary Anderson Problebecause the potentiglx) is assumed

to be a homogeneous random field concentrated on the bouadaryrhis “boundary
randomness” is the main originality (and the main thrust) of the paper.

Equation (1) as well as the Hamiltoniam\ + £(x) which appears in the right hand
side of equation (1) have been intensively studied, especially in the lattice case. Most
of these studies concern the case of a random potéitialhomogeneous in the whole
space (as opposed to a lower dimensional variety as we consider here). In this case, the
random self-adjoint operataA + £(z) is known to have almost surely dense pure point
spectrum in dimensiod = 1 and for potentials with large fluctuations in all dimensions.
These facts from the theory of quantum disordered systems are known under the name
of Anderson Localization Theognd are studied mathematically in the framework of the
spectral theory of random self-adjoint operators. The interested reader is refered to the
book [4] for details on this theory. The spectral theory of operators for which the ran-
domness is restricted to the boundary of the domain is not as advanced. See nevertheless

2].

The unusual spectral properties of random operators have an interesting counterpart
in the solutions of the corresponding heat equations. Indeed, their localization properties
(i.e. the existence of dense pure point spectrum) translates into the asymptotic intermit-
tency of the family of random fields solving the parabolic equations. This phenomenon
was analysed in details in [7] and [10] in the lattice case and in [5] in the continuous mod-
els when the potentidl(x) is a spatially homogeneous (Gaussian and shot-noise Poisson)
random field. The present paper is devoted to the analysis of the asymptotics of the solu-
tions of the parabolic equation (1), but when randomness is limited to the boundary of the
domain. The main thrust of the paper is twofold: 1) the presence of different asymptotic
regimes depending upon the rate at which the distance from the boundary increases, 2)
the important differences between the lattice and the continious models which are usually
assumed to be similar.



1.1 Notations and Assumptions for the Lattice Case

We consider the equation:

ou(t, z)
ot

with the initial condition:

= rkAu(t, z) + £(2)u(t, 2) z=(x,y) €D, t>0 (2)

up(0, 2) = up(2), zeD.

We are mostly interested in the case of a deterministic funetign) but we shall also
consider the case of a random initial conditiagn Here the Laplacian operatdx on
D =71 =7 x Z, is defined as:

Af(z)= Y [f()=F2), zeD (3)

|z—2'|=1,2"€D

This definition insures that the operatdr is self-adjoint with respect to the counting
measure. Also, this definition means that a motion driven by the equation (2) is a usual
random walk in the interior oD with the following boundary behavior. When a particle is

on the boundary, it chooses one ofdténeighbors with equal probabilities, jumps to this
neighbor if the latter is insid® or stays still if jumping would take the particle outside

of the domain.

The random potentig(z) is assumed to béexcept on the boundary:

§(2) = &(x,y) = (7, w)do(y) (4)

for a homogeneous random fiefd(x); + € 0D}. We further assume that tli¢z) are
independent and identically distributed random variables. For the distributiosa:-@f(0),
we only require a mild asymptotic condition on the tail:

—z*L(x)

P{¢ < x}~exp| 5

] asr — oo (5)

for somea > 1 and for some slowly varying functioh(x). Note that the case = 2
corresponds to the standart normal distribution; case 1 would correspond to the
exponential distribution. We do not consider this case on purpose because the solution of
the problem (1) does not exist (almost surely) for the exponentially distributed potential.
This fact is a simple consequence of the Feynman-Kac formula. We address the question
of existence of solutions in section 2.3.



Let us remark that, contrary to the homogeneous case treated in [7], we do not require
any specific assumptions on the negative part of the poteitial As it will be seen from
the proof, the main contribution to the value of the solution is given by a very special set of
trajectories in Feynman-Kac representation (8). In the homogeneous case, the restrictive
assumption on the lower tail of the marginal comes from the need to avoid strong negative
centers of the potential. In the random boundary model, a particle can easily avoid the
regions where the potential is negative by stepping out of the boundary and traveling
inside D as needed.

The initial conditionuy(z, y) is assumed to be nonnegative and, when it is random, it
Is assumed to be independentand homogeneous irn— variable.

1.2 Notations and Assumptions for the Continuous Case

We now consider the case of the Euclidean half space R¢! x R,. The boundary
Anderson problem is written in the form of the standard heat equation:

ou(t, z)
ot

with random boundary condition:

= rAu(t, z), z€D, t>0 (6)

ou(t,x,y)

+ &(x)u(t,z,0) = 0, r e R > 0. (7)
at y=0

Here,{¢(x); » € D = R4} is a homogeneous random field. Notice that the random-
ness of the medium enters only into the boundary condition but not in the equation (6).
This mixed boundary condition (sometimes called Robin condition) is considered to be
the best way to mimic the case of the lattice presented in the previous subsection.

The results concerning the models in the whole sp&tésee [5]) suggest that the
moment analysis, as well as the almost sure analysis, should be easiest in the case of
Gaussian and shot-noise Poisson fields. Unfortunately, the situation is quite different in
the random boundary case. Indeed, even though the solution of the parabolic equation
does exist for these standard models, we shall show below that these solutions do not
have statistical moments. In fact, we shall have to restrict ourselves to potentials having
a marginal distribution with smaller tails than the Gaussian tails. Moreover, in order to
analyze the large time behavior of the solutions we shall also have to assume that the
potential is piecewise constant. A need to impose the additional restrictions on the tails
shows that the continuous case is much different from and much more difficult to analyze
than the discrete case. This fact is usually denied by most of the workers in the field who
consider that the results should be the same in the lattice and in the continuous cases !!!
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1.3 Existence and Feynman-Kac Representations of the Solutions

The main purpose of this subsection is to derive the Feynman-Kac representations of the
solutions. They read:

?W%MIE%WM%M%NAH%%Mﬁ ®)

in the lattice case and:

ultyz.9) = B, (unlerv) x| [ €z )i} ©)

in the continuous case. In the former case the expectation is taken over the paths of the
continuous time random walk:; = (2, %;); t > 0} over the latticeZ? generated by the
operatorA defined above (recall the special boundary behavior!). In the latter case, the
expectation is taken over the sample paths of the Brownian motibn#nR? ! x R with
normal reflection when it hits the boundap = R?~! x {0} which we identify toR?~*.
This reflected Brownian motiofiz;; t > 0} is written in the formz;, = (z,y;) where
{z4; t > 0} is a(d — 1)-dimensional Brownian motion with varianeeand{y;; ¢t > 0}
is an independent one dimensional Brownian motioR jn= [0, co) with variancex and
reflection ab). L, is the local time of the-dimensional Brownian motion on the boundary
of the domain, and because of the special form @fcan be identified to the (usual) local
time of y; atO.

We state the following result, which repeats the corresponding result for the homoge-
neous case (see [5] and [7]), for the sake of completeness.

Theorem 1.1 Let us assume that the initial conditiag(z) is nonnegative and satisfies:

InInwuy(2)

lim sup <1 (10)

slooe N2
almost surely. Then the solutions of problems (2) and (6) exist with probabéityl are
given by the formulas (8) and (9) respectively.

1.4 Ljapunov Exponents and Intermittency

We now discuss the notion of intermittency. We adapt a discussion from [10] to the
present situation of the half-spa¢&and to the fact that the source of the randomness
concentrates on the boundary of the domain. Throughout this subsection we assume that,
for eacht > 0 { X, (z,y(t)); (z,y(t)) € D} is a homogeneous (with respect to the space
translations ob D) random field on a probability spa¢@, F, i1). We also assume that alll

the moments| X, (x, y(t))|’), p = 1,2,... are finite. We use the notatigX') to denote

the expectation of the random varial{ewith respect to the probability.
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Definition 1.2 If for some deterministic monotone increasidgt) (called scale) the
limit:
, 1
= m In(XP(x, y(1))) (11)
exists, theny, is called thep-th moment Ljapunov exponents (with respect to the scale
function A(t)).

This limit does not depend upon thevariable because of the homogeneity assump-
tion. In the case wheX,(x,y(t)) = u(t,x,y) andy is a constant independent ©fthe
lim in (11) will not depend upom either and we still can write,, for the p-th exponent.
We give the definition of intermittency in terms of the moment Ljapunov exponents.

Definition 1.3 The family{ X;(z,y(t)); (x,y(t)) € D} of random fields is said to be
asymptotically intermittent if:

71<%<?<... 12)

Notice that wide sense inequalities like (12) hold in full generality becausedtufats
inequality. Moreover these inequalities become strict inequalities as soon as one of them
is strict. In other words, intermittency is equivalent to the first enequality of the chain
being strict.

SupposeX,(z,y(t)) is ergodic in the following sense:

; 1 p — p
i L XG0 = (XE0. (e (13

Here || denotes the volume @). The above left hand side is called theh energy of
the the random field\,(z, y(¢)). The following result (see [7]) illustrates the notion of
intermittency.

Proposition 1.4 If the sequence (12) holds true, then the energy of d2d¥rX;(x, y(t))
concentrates on some random ggtwhose measure tends to zero when oo. In other
words, there exists a measurable subisebf the probability spacé€) such that:

lim u(E;) =0 (14)

t—o00

and:

. 1 2 .
Jlim m(Xt (z,y()g,) =1 (15)

where we use the notatidn for the indicator of the setl.
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The result of the above proposition is the mathematical counterpart of the physical
intuition behind the notion of intermittency: the overwhelming part of the energy concen-
trates on systems of ‘peaks’ the relative area of which going to zero whenc.

Sometimes it is convenient to use a weaker notion of intermittency.

Definition 1.5 The random familyX,(z, y(t)) is said to be weakly (asymptotically) inter-
mittent ast — oo if for any z:

(X(z,y(1)))* = o((X{ (2, y(1)))) as 1 — oo. (16)

The almost sure Ljapunov exponent is defined as follows.

Definition 1.6 If for some scale functioa(t) the limit

~v = lim L In X, (z,y(t)) (17)

=2 aft)
existsy, almost surely, it is called the almost sure Ljapunov exponent with respect to the
scale functioru(t).

For intermittent random fields the scale functiaf) is usually different fromA(t). As
in the case of the moment exponents, 30z, y(t)) = u(t, z,y) with constanty where
u(t, z,y) is a solution of (1);(y) turns out to be independent @f We shall denote i.

2 Moment Asymptotics in the Lattice Case

Let (-) denotes the expectation with respect to the random media, i.e. the distribution of
€.

Theorem 2.1 Letz = (z,y) € D = Z%, let us consider the family of random fields
u(t, x,y) solutions of (2) withu(x,y) = 1, and let us set:

o a—1
Y c= a 1
a—1 aa-TegaT

(18)

Let L(x) = co in (5). Then for any > 1 there exist three regimes fou’ (¢, z,y)) as
t — oo:

o If lim; @ = 0, then:

K

In(uP(t,z,y)) = cp™t" — p(n — Vylnt — k(2d — 1)pt + pIn y+o(t). (19)

Cnpnfl



y(@®)

o y(t)Int
=

. . n—1
o If limy_ oo oo andlim; .o, “77— < £—- then:

)+ 0(L) +3(1),

K y
In(uP (¢ = cp™"™ — p(n — Dylnt + pl — k(2d—1)pt + O
n(u’(t,z,y)) = cp p(n—1ylnt+p L K( ot + O

oL
(20)
o If lim, o, 200 > "2 then:
(WP(t,x,y)) =1+ 0(e™"") (21)
If lim, o, X012 — 2"~ and if x > cnp"~! the regime is (20), it < cnp™! the regime

Is (21), ifk = cnp™™ i then the regime is determined by the values of the parameters
or in other words, byx and p. Also, if0 < lzmtﬁw# < oo, the choice between the

regimes (19), (20) shoud be made based on the values of the parametets

Role of the diffusivity «

The above results illustrate the role of the diffusivity constait the asymptotic be-
havior of the solutions. Under the regime (19) the largeghe smaller the asymptotic
moments of the solutions. This type of behavior was typical in the analysis of the homo-
geneous random media considered in [7] and [10]. The reason can be best understood in
terms of the branching random walk. In order to contribute significantly to the value of
the solution, particles concentrate near strong potential centers (i.e. the high peaks of the
potential). Ast — oo, these peaks become higher, though at a large distance from each
other. The diffusivityx works in two opposite directions: the largethe easier a particle
reaches a strong center. But on the other hand, the lartjer easier the particle leaves
this center. The result (19) says that this latter factor is the dominant contribution in the
regime under condideration.

Under the regime (20) the situation is just opposite. Distance from the boundary starts
playing a role. It takes much longer to reach a strong potential center.

Finally, the regime leading to the asymptotic (21) is simple to understand because the
asymptotic behavior of the moments is as if the particle never hits the boundary.

Ljapunov exponents and intermittency

Theorem 2.1 proves asymptotic intermittency of the family, =, y(¢)) for the time
scale functionA(t) = ¢™ in the first two regimes (of course, there is no intermittency in
the regime (21)!) Indeed, with this choice of the scale, the moment Ljapunov exponents
are given by:

= 1p(e) = Jim s (e (0,7, )) = " 22)
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Since we consider only the case> 1, we haven > 1 and consequently:

W
p q

forp > ¢ (23)

Note that the property of intermittency is determined by the first term in the asymptotic
decomposition (19), which is not affected by changes.of

Random Initial Condition and Assumptions on the Tails

The result of Theorem 2.1 can be extended in a straightforward manner to the general
case of the initial condition which is homogeneous and to the general case of slowly
varying functionZ(x) in the assumption on the tails of the marginals of the potential. The
solution still has three different regimesias> oo,y = y(t) and the intermittency holds
for the first two of them.

Potential Distributions

Theorem 2.1 enlightens the effects of the thickness of the tails of the marginal distri-
butions of the potential. The restrictian> 1 in (5) corresponds to the condition< co
in (18). Its role is to guarantee the almost sure existence of the solution and the exis-
tence of the moments. In particular, moments of the solution do not exist if the potential
has exponential marginals that corresponds to the @asel. Notice thatn — 1 when
a — oo. In this regime, we expect thaj,/p converges toward a constant. Nevertheless
intermittency still holds, in the weak form given in Definition 1.5, as long as marginal
distributions are not compactly supported.

Gaussian Distributions

The Gaussian distributions satisfy condition (5) with= 2. In this case we have
n=2,¢c=1/2,and:

P22 P T
In(u? (t, z,y)) = =y Int +pln U k(2d — 1)pt + Q(t_Q) +0(t). (24)

"Time-dependent Initial Conditions”

As an easy consequence of the theorem 2.1, we get the following result which treats
the special case of initial data depending on time. The asymptotic behavior of the solution
is very similar, but the dependencewf(z,y) upont affects the second order terms of
the formulas. More precisely,

Proposition 2.2 Under the assumptions of Theorem 2.1 if wewgl, y) = 6, (y),
the momentsu? (¢, x, y)) have the (logarithmic) asymptotics (19)-(21) witreplaced by
Y + Yo-



3 The Continuous Case

We begin this section with two enlightening negative results. They show in a striking
manner that the mathematical problems of the continuous case can be very different from
the problems and the results of the lattice case. In particular, we show that the frequently
used models of random potentials given by homogeneous Gaussian fields and by shot
noise homogeneous fields constructed from a Poisson point process are not appropriate
as models for boundary potentials because the solutions of the corresponding Cauchy
problems fail to have moments!

3.1 The Case of Gaussian Potentials

Let us assume thdt(z); = € R4} is a homogeneous mean zero Gaussian field with
covariance:

v(x) = (£(2)(0)).

We shall assume that this covariance functjdn) is continuous at the origin. The Gaus-
sian fields form one of the most popular classes of models in the theory of disordered
media. See for example [5] for the analysis of the full space. They were included in
the analysis of the lattice case (the normal distribution correspondsst@) which we
presented in the previous sections.

We are going to show that these fields are not as convenient a model when the ran-

domness appears in the boundary condition. Indeed, in this case, all the moments of the
solution to the parabolic problem (6) are infinite.

Theorem 3.1 If the covariance of the homogeneous Gaussian figld); z € R?"'} is
continuous at the origin and if the initial conditiany(z, ) is bounded away frortion a
nonempty open set, then the first moment of the solution;, i) of (6) is infinite as soon
ast > 1/~(0).

Proof:

For the sake of simplicity we assume that the covarianeg is nonnegative. The
proof of the result in the general situation is more involved and not more instructive. Let
us assume for example that:

up(x,y) > ou >0, xreU (25)

for some nonempty open sEt and let us assume that> 0 and(z,y) € D are fixed.
Using the Feynman-Kac representation (9) of the solutignz, y) and Fubini’s theorem
we get:
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(ult, 2, 9)) = B yytto e, 1) exp / (e, 2)dLs)

Since for each fixed Brownian paglz,, y; ) is a mean zero Gaussian for ea(;lfg &(xs,ys)dLs
is also a mean zero Gaussian random variable. The formula for the Laplace transform
gives

(ult.2.9)) = Eoay {untare ) esp [5(( [ o) N}

1 t t
= E(:p,y){UO(iL't, yt) €xXp [5/ / 7($s - :Es’)dLdes’]}‘
0 0

Now we use continuity of/(z) at zero. Let us choosee (0,~(0)) and let us fixd > 0
small enough so that| < § = |y(z) — v(0)| < e. Then:

(ult..9)) = B funleruesply [ [ 2le = )dLaL1Ov))

7(0) — ¢ t/2  pt/2
> oy fesp /0 /0 AL AL I} (26)

where the se¥V = {supg<,<; 2 [vs — 20| < 9, (z,4:) € U}. Since the expectation is
taken over a set of paths which depends only upon:theomponent of z,, y5) and since
the local timeL. depends only upon thg-component, we get:

7(0)—e

(u(t,z,y)) > ouPo{W}E,exp 2

Lf/g. (27)

The probability in the right hand side above, 3ay, is the probability that &d — 1)-
dimensional Brownian motion remains inside the ball of radilsup to timet/2 and is
in U at timet. This probability can be estimated from below by:

c(9)

pé,t 2 ec1 (d)t (28)

ast — oo where the constamnt= ¢(¢) depends also upon the distance between) and
U andc; (d) > 0. Hence:

(ult, 2, y)) > By exp” 2 Ly (29)



for large timet. The remainder of the proof is based on the fact that, when the Brownian
path starts from the origin, the distribution of the local tifiels the same as that of the
running maximuma/,. We seta = % in order to simplify the notation. Now using
the strong Markov property at the stopping time:

10 = inf{s > 0, ys = 0} (30)

we get:

(ult,z,y)) > COR, {2}
> CCOR{e™ir—r0; 7 < 1/2}

t/2 00 5 22
~ eP®) / / expay Tt-m d$P0{7’0 S dT} (31)
0 —00

The right hand side of (31) iso because the inner integral is equabtofor all the values
of ¢ satisfyingt > 7 + 1/(a) and because the density of the stopping timie strictly
positive neaf. m

3.2 The Case of Poisson Shot-noise Potentials

The class of shot noise potentials is the second most popular model of random potentials
in the theory of random continuous media. We show that, as for the Gaussian poten-
tials, they are ill suited to the problems with random boundary conditions because the

corresponding solutions do not have statistical moments.

A shot-noise potential on the boundary is defined as:
&(x) = Z(p(x — ;) r € R (32)

where the points:; form a realization of a homogeneous Poisson point proce8din
which we identify withR?-!. Let us denote by the intensity of the point process.
We shall assume that the functiqriiz) (sometimes called the elementary potential) is
continuous and strictly positive at zero and satisfies a mild decay property at infinity so
that the infinite series defining ) via formula (32) does converge. See [5] for a detailed
discussion of the typical requirements ¢() in the homogeneous case. The Feynman-
Kac representation (9) and Fubini’'s theorem give:

wit.r)) = Edlexnl| 3 ola,—z)dL)}

= enh [ (o0l oo -l - 1)al @

R
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Now we use the continuity af(-) at zero as we did in the Gaussian case:

J
(u(t,z,y)) > E,{exp [)\/ exp PO =Lt _1y] sup |zs — x| < 5} (34)
t

Rd-1 7035_
Again, using the fact that the local timie has the same distribution as the running max-

imum maxp 4 |w;| when the path starts from the origin, we prove the divergence of the
expectation in the right hand side of (34.

3.3 Some Positive Results

We saw that the standard (continuous) models of random potentials were not appropriate
for the analysis ofdisorder on the boundaryWe now present a model for which the
analysis done in the discrete case can be extended to the case of half a Euclidean space.
More precisely, we consider a random fi€ld:, w) such that:

if|z| <4
otherwise

2
(o) = @) = { (35)
and such that condition (5) satisfied together witlx) = 1, which we assume for sim-

plicity of formulas, for somev > 2. We introduce the parameter:

(36)
Theorem 3.2 If a random potentiak(x) satisfies the above conditions, there exist two

asymptotic regimes for the solutiatit, x, y) of (6) withuy(z,y) = 1 whent — oo:
o If limy oo y(t)/t"2 < 7 then:

In(u(t,z,y)) = at™ — byt™T + 5(ytmTfl) (37)

o If limy o y(t)/t"™ > ¢ then:

(uP(t,z,y)) =1+ 0(1). (38)

wherea = %ijc%mﬂmﬁm, b= am_ 4 viam(l), 3 — e andcwas defined in (18).

This result holds true for more general initial conditions, such as those used in the
theorem 3.1 and in the Proposition 2.2.

13



The new role of the diffusivity « in the continuous case.

The diffusivity x appears in the first term of the asymptotics. The reason for this im-
portant difference can be explained by a simple argument in terms of a brownian particle.

The proofs of Theorems 2.1 and 3.2 show that the only significant contribution to the
solutionu(t, x, y) comes from the paths which are well localized in space. More precisely,
in the case of the lattice, the first term of the asymptotics is obtained by considering only
the paths staying at the same point (potential peak) after they reach this peak. In the
continuous case, the main contribution comes from the paths which stay inside a small
ball near a high point of the potential. But in the lattice case, when a particle remains
at the same point, the role of diffusivity reduces to the probability not to jump. This
affects only the lower order terms of the asymptotics. The situation is very different in
the continuous case. A particle needs not only to stay inside a small ball, but it also needs
to spend some time on the boundary to get a contribution from the localltiraed this
new phenomenon is what brings the diffusivityin the first term. We do not have this
effect in the lattice!

Remark on the potential distributions.

Theorem 3.2 shows that, in the continuous case we still have different regimes for the
asymptotic behavior of the solutions. These regimes are similar to those of the lattice
case. But the class of distributions for which these asymptotics can be derived is much
smaller:a needs to be greater thanThis is clear because we hayvt the power

«

m = a instead of n= .
a—2 a—1

in the leading term of the asymptotic (37).

4 Almost Sure Asymptotics

We first consider the lattice case.

Theorem 4.1 Let us assume that the random potential satisfies (5) and that the initial
conditionuy(z, y) satisfies (10) and (25). Then the solutioft, =, y) of the problem (2)
has the following almost sure logarithmic asymptotics:

. (t)In f(Int) .
o lf hthoo tyf((d—m < 1then:

Inu(t,z,y) =tf((d—1)Int) — k(2d — 1)t —yIn f((d — 1) Int) + ylnk +o(t) (39)
o If lim, .., % > 1 then:

u(t, z,y) =1+ 0(e 7)) (40)

14



wheref(t) is the inverse of the functiart L(¢) and L(¢) is defined in (5).
The caséim;_., ., % = 1 belongs to either of the regimes depending upon the
value ofx: if x > 1 we are in the regime (39), £ < 1 we are in the regime (40).

The corresponding result in the continuous case is as follows:

Theorem 4.2 The solutionu(¢, z, y) of the problem (6) with potential satisfying (5) and
initial condition satysfying (10) and (25) has the following almost sure logarithmic asymp-
totics ast — oo:

o If lim, . tfyé?t) < Ik then:

MU@xy%:%mﬁ«d—th%ﬂj«d—DM®+5@ﬂM—lﬂm» (41)

o If lim; o % > 1r then:

u(t,r,y) =1+0(1) (42)

Role of the diffusivity

As in the moment analysis in the lattice case, (39) contains two different regimes.

The first one lim; ., @ = 0, is such that the smaller the diffusivity the larger the

solution. The other regiméim, .., @ = o0, is such that the larger the diffusivity the

larger the solution. The cage < lim; . @ < oo belongs to one of these regimes

depending on the values afandd. The situation is different in the continuous case.
Indeed, the diffusivity always appears in the first term, and an increase of the diffusivity
always implies an increase of the statistical moments of the solutions as well as of its
almost sure behavior.

Gaussian potential

In the case of Gaussian potentjgh) ~ N (0, 1), f(t) = (2t)"/* and

Inu(t,z,y) =t/2(d — 1) Int — k(2d — 1)t — %yln Int + y(lnk —In(2(d — 1))) + o(t)(43)

for the lattice and

Inu(t,z,y) = (d—rtlnt—yt)(2(d—1)Int)2 +o(y(Int)?) (44)

for the continuous cases.
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5 Proof of the Moment Asymptotics in the Lattice Case

The proof of the theorem 2.1 is divided into several propositions. First we reduce the
problem to the particular cage= 0. Then we derive the lower bound fpr= 1 and
y = 0. The third step gives the upper bound for this particular case. This step requires the
spectral analysis estimates analogous to those given in [10] for the homogeneous case.
Next step of the proof comprises the extension of these estimates to higher moments. The
last step finishes the proof for the general casey(t) > 0.

The following proposition holds for both, discrete and continuous cases.

Proposition 5.1
U(t, z, y) = ]P){TO > t} + IE1:’(7'0) [U,(t — 70,7, 0)7 To < ﬂ (45)

almost surely with respect to the distributionsofThe hitting timery was defined in (30).
E (-, stands for the expectation with respect to the distribution,oRlso

(u(t,z,y)) =P{ro >t} + E(TO)<[u(t — 70, 2,0); 79 < t]> (46)

Proof:

(45) is an immidiate implication of the strong Markov property@in Feynman-Kac
formulas (8), (9) and the fact that a particle does not face nonzero potentiaturfdb)
is a consequences of (45) and Fubini’s theoram.

Note that (46) can not be directly extended to the higher moments.

The next lemma is computational. It provides the logarifmic asymptotics for the den-
sity p., (t) of 7o for y = y(t).

Lemmabs.2
If @ — oo then

Inp,(t)~ oo —ylny +ylnt +y(1l +1Ink) — 2kt + 0(t). 47
If lim@ = ¢g < oo then
Inpr (t)~i—oo(c1(co) — 26)t +0(t) (48)

wherec, < 2k.

Now we derive certain estimates fou(t, z,0)) leaving the casg = y(t) > 0 to
the end of this section. To get the lower estimate(faf, =, 0)) , we consider only the
trajectories of the random walk, y,) that remain at the starting point until tine
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Proposition 5.3

In(u(t,z,0)) > ct" — (2d — 1)kt (49)

Proof:

(u(t,z,0)) > (Eo,) expfot 5(9”5’3/5)‘13; Ty = x,5 € [0,t]) = <expt5(0’0))]P’{N(t) =0} (50)

where N (¢) is the number of jumps before timteprovided a particle is on the bound-
ary 0D. N(t) has Poisson distribution with parametérl — 1)x, and this proves the
proposition.m

Next proposition reduces the problem (2) to the problem in a bounded domain.
Proposition 5.4
t
(u(t, z,0))~t—o0(E(z0) exp | / §(2s, ys)ds|; {N(t) < tlnt}) (51)
0

where N (t) is the number of jumps of the random walk, y,) started from(x,0)
before timet.

Proof:

P{N(t) > tint} < P{m(2dkt) > tInt} ~; . exp[—tIntinint] (52)
and so

(0 {explo €408 N (£) > tInt}) < B g {(exp™@O); N(¢) > tlnt} < expt—HIntinint

(53)
Because of the lower bound (49) it gives (513.
Corollary 5.5
(u(t,z,0))~oe(u (£, 2,0)) (54)
whereu (t, z, y) is the solution of the problem
WD) waft, o)+ €@u(ts) 2= () 120y €S (69)

uw(0,z,y) =1 St = {(z,y) : |z| <tlnt,0 <y < tint}

with zero boundary conditions.
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Problem (55) is a problem in a bounded domé&jfi. The evolution operator
H=rA+¢ (56)
has a discrete spectrufi, ;, & = 1,7;} and the orthonormal basia/;.,(z,y)}. The
volumev, of S** is of orderct? Int, and so
(u (t,z,0)P) < (exp (pt max Ey.+)) exp (O(Int)) (57)

The following proposition gives an upper bound in terms of the greatest eigenvalue
h = hy(a) of the operatorHy = kA + ado)(r,y), (z,y) € SiT,a > 0 with zero
boundary conditions.

Proposition 5.6
(u (t,2,0)) <o (exp [pH(E2) + helEr) — E2))]) exp (O(Int)) (58)
where
)y > €@ > - S > (59)
is a variational series of the set of random variab{ggz), » € S/}

The proof follows from the fact that the upper eigenvaluéias bounded from above

by the upper eigenvalue of the operaggy + Héé(”*g(”). N
Lemma 5.7 If lim; ., a(t) = co then
d 1
hel@) =1 @ — (2d — 1)+ & C;’” +0(5) (60)

Proof:
Let g(x,y) be the eigenfunction oHé“) corresponding tdy,(a). We apply Fourier
transform to the eigenfunction equation fdr, y) forth and back to get

9(0,0) = Z expi®?) ag(0,0) + g(0,0)r(exp™ +1)
) (n+1)(2n)*! hy(a) 4 2dr — 2k Y20 cos A,

~d+
A€S

(61)

~d+
wheres = fld—;t Then using Jensen’s enequality we get a lower bound of the form:

hi(a) > a—(2d — 1)k (62)
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Note that, contrary to the homogeneous case, we haveé2d — 1)~ on the right hand

side of (62) instead ai — 2dx (ref.[10]). This is due to the fact that nonzero potential

is located on the boundatyD and boundary points have orilyi — 1 neighbors inD.

Now we expand the right hand side of (61) in a trigonometric series, which converges for
sufficiently biga due to the lower bound (62). The first terms in this expansion constitute
formulae (60).n

Proposition 5.8

<eXpt(§(2) +he(§1)—E(2)) ) ~ioo echt"—(2d—1)nt (63)

Proof:
Denote byp;(z, y) the joint density 0f 1), {2) and byp,(z) the density of. Then

pul@,y) = vy — D)[P{E0) <y} pe(®)pe(y) ~imoo Pe(@)pe(y)O(tInt),  (64)

Using the assumption (5) on the tailsfive get

<expt(§(2)+hz(§(1)5(2))>§// ) +// 1 eXp[t(erht(m*y))*‘rQ*ya} dxdy
le—y|>dta—T |z—y|<dta—T

(65)

Picking0 < § < —= e see that the second integral above is asymptotically small
(less tharexp*” wherecl < ¢). Since the quantity we are estimating serves as an upper
bound of the solution(¢, ,0), and because of the lower bound (49), we conclude that
only the first integral in (65) is essential. For this integral we use lemma 5.7 to finish the
proof. m

Proposition 5.8 together with (58) and (50) gives the required upper bouadon;, 0))
and proves theorem 2.1 fpr= 1,y = 0.

To prove the general cage > 1,y = 0, we use the following representation of

(uP(t, x,0)):

(W (t,,0)) = (Eguo) exp Z / £(=®, y)ds]), (66)

where(z{”, 4" - p independent copies of a random wélk, y). Consider(u”(t, z,0)).

The lower estimate is immidiate due to (50). It lets us use the problem in a bounded
domain S instead of the original problem i to estimate the—th moment of the
solution (see the proof of proposition 5.4). Now proposition 5.6 and lemma 5.7 give the
desired upper bound.
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Proposition 5.9 If lim,_,., X212t <« 2" then:

tm n—1

2
In(uP(t, z,y)) = cp"t” —p(n — 1)yInt + pln cn;—ly — k(2d — 1)pt + Q(L_l) + Q(::_”) +0(t).

tn
(67)

. n—1
If lim, o YO0 > 2" then:

(uP(t,x,y)) =1 —l—g(e’tnt).

Proof:
Only the first asymptotic needs a proof. Usingléer's inequality we may derive
from (45) a lower bound for the higher momefits> 1) of the form

(u(t,z,y)*)y > <E(T0)<u(t —70,%,0); 79 < t))p (68)

If we optimize the hitting time at the right hand side of (68) (see the end of the proof
of this proposition), we get a lower bound of the form (67) with the only difference that
the first term on the right readst” instead ofcp™t”.

To improve this rough lower bound we use representation (66) to generalize formulae
(46) for (u(t, z,y)) to the higher moments. Denote by the hitting time of(2(", y®).

Then

p

(WP(t,z,y) =Ep .. B (] Jult — 7, 2%, 0)) (69)

i=1

In the last expectation we consider only the indicator of the set of trajectafieg) )
such that hitting point:sx(fi), yf)) are all equal to each other. Since we have the lower
bound on(u?(t, x,y)), we fjse Othe finite box argument (see proposition 5.4) to show that
the asymptotic behavior qf” (¢, =, y)) coincides with itself provided a particle is inside
the box of radius, saynax(y,t"). The size of such a box is asimptotically small, as
well as the number of possible combinations {aﬁé,z’ = 1...p} provided that all of

these points belong to the box. This means that we can substitute(69) by 0. If
we consider the set of trajectories such that the hitting times are close to each other, say
{ri € B(14,0),i=1...p,6 >0} we get

(@(t,2,y)) ~ / (u(t — 6,0,0)7)2. (6)d0 (70)
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which is trivially a lower bound and is also an upper bound because the contribution
of all other trajectories is logarifmically insignificant.

(70), lemma 5.2 and the asymptotic representatiou6f, x, 0)?) (propositions 5.3-
5.8) imply

t
(u(t, £, 9)") ~ioo exp Py Imytpy(l+in H)—(Qd—l)ﬂpt/ exp" (t=0)"+pyInb-+xp(2d-3)0 79 (71)

o

The idea is to substitute the integrand by its maximum which is attained for

emaz ~t—o0

y ( (n -1y y? 1 )
Cnpn_lt”_l + Cnpn—ltn + :< t2n> + :( $2(n—1) ) ’

This means that for the whole segment, say of thegi@é; + 5moy) We attain a maxi-

mum times, of course, some correction which can be estimated. Since the total length of
the segment of integratianis logarifmically insignificant and:D(t%—i + tz(n%l)) is logar-
ifmically insignificant in the first regime, the asymptotic behavior of the integral coincides
with that of the maximum of the integrand (logarifmically). Computation of the under-
lined maximum and estimation of all the corrections gives (67) and proves the final result
of the theorem 2.1n

6 Proof of the Almost Sure Asymptotics in the Lattice
Case

We are going to use the following result which is an application of Borel-Cantelli lemma.

Lemma 6.1 Leté;, i = 1, n be independent identically distributed random variables with
distribution function satisfying (5). Lef'™ > ¢2m > > ¢(n) pe a variational
series of the random sequengg, i = 1,n}. Then forn — oo, for any0 < § < 1 almost
surely

max§; = f(lnn) + 0 (&%) (72)
€0 = f((1=8)Inn) + O (%) (73)

Proposition 6.2 At the conditions of the theorem 4.1
Inu(t,z,0) > tf((d—1)Int) — k(2d — 1)t + o(t) (74)

almost surely ag — oo.
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Proof:
First consider the case, = 1. Let B((?l) be the ball with centefz,,0) and radius

REt_)l) = ﬁ We count only those paths that stay at the p6irit 0), which is chosen to
be a maximum of the potentiglin the ball 3", after time 1.

U(t, xz, y) Z IE’(O,O) {expj‘ot £(Is,ys)ds; Zs = Vsy S € [OJ 1]7 Rl4s = 21,8 S [07t - 1]}

wherey,) is the shortest path in the interior ffrom (z,, 0) to (z*,0), z = (z,y). Thus,
§(7s) = 0.

Substitutingé (z, ys) by its maximum in the baIB((t_)l) we use lemma 6.1 to get an
almost sure asymptotic of this maximum. Then estimating the lepdth- =, | by the
diameter ofB((t_)l) , using (52) forP{N(1) = |z* — x|} and strong Markov property we
finish the proof for the case, = 1.

To prove the general case of(z,y) satisfying (25) we should consider the paths
which go fromz* to U whent € [t — 1,¢]. n

Proposition 6.3 At the conditions of the theorem 4.1
Inu(t,z,0) < tf((d—1)Int) — k(2d — 1)t + o(t) (75)

almost surely ag — oo.

Proof:
Using the lower bound (74) and lemma 6.1 we derive the almost sure ’finite box’
argument:

u(t, z,0)~ oo U (t, 2,0) (76)

almost surelyy (¢, z, 0) is the solution of the finite problem (55) [
We are going to exploit the fact that

U (1,2, y) < exp!mEkELAOMNY (77)

whereR,, is the collection of eigenvalues of the operafgr xA+ E (z),z € S&F,
where¢ (z) = max{{(x), (1 —€)f((d — 1)Int)}.
Operator]} has the following structure:

Ne,t

H=(1—-f(d-)nt)+H, H=krA+Y aid,(z) (78)

i=1
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where

Koo o € S5, €w) > (1 - f(d— 1) InD))
Ne,t - #{Xe,t}a a; = g(l’z,O) - (1 - E)f<<d - 1) 1nt)

The following lemma is computational. It contains information about the structure of
the setX ;.

Lemma 6.4
max a; ~¢—o €f((d—1)Int) — oo (79)
Ne,t ~t oo [#(Sg;;t)r ~ te(d—l)(ln t)2e(d71) (80)
: | > 1,247\9
1§z’;§]1'1§n1v€7t, |z, — x| 2100 (H'In"t)) (81)

(a.s) ford < 1—2¢, Wheresg;;t is the boundary part ofg;t, {t' — oo} is a subsequence
of {t}.

The proof of the following lemma, which uses path expansion of the resolvent, can be
found in [10].

Lemma 6.5 LetH = kA+) ", a;0,,(x) defined orLy(S) is such thainf,; |z; — z;| = B,a; >
0,sup; a; = A Then forve > 0 3A,, By such that forA > Ay, B > B, the resolvent
(H — AE)"" is analytic in the domait\ > A — (2d — 1)k + 4, i.e.

Sp(H) < A—(2d—1)k+46 (82)

Moreover, if the parameterssS|, A, B are all functions of t, then if

S AT s (83)
n=0
converges, the result (82) is still true.
Note that, as a consequence of lemma 32, 1 appears at the right hand side of

(82).
Lemma 6.4 shows that the conditions of lemma 6.5 are satisfied and so

mkaxﬁk,t <A—-(2d—-1)k (84)
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where{E,;} denote the collection of eigenvalues of the operaforThis, together with
(76) and (78), implies the upper boundoft, =, 0) which coincides with the lower bound
(74).

The almost sure behavior oft, =, y), as stated in the theorem 4.1, follows from the
formulae (45) and optimization of the hitting timeg by the same argument used in the
proof of proposition 5.9a

Let us note that the (a.s) existence of the solutions given by (8) and (9) is equivalent to
the finiteness of the functionals at the right hand side of these formulas fotteach)
D ([7], [12], [14]). Thus the upper bound (75) proves the existence in the lattice case.

7 Proofs for the Continuous Case

7.1 Moment Asymptotics
Proposition 7.1

In(u(t, z,y)) < exp”="" p.,(0)do (85)

asymptotically when — oo, wherem, a, 3 were introduced in the theorem 3.2.

Proof:

The special form of the potential (35) lets us consider the set of péints{x,,,n =
1,2,...} which are the centers of the boxes where potertia) is constant. Using
Feynman-Kac formulae (9) andditier's enequality we get

Tn Tn B
(WP (t,z,y)) < <E(a:,y) epranec &(@n,0) L} >> ~Ey) H ech(pLE ) < Ey) expc(PLz)ﬁ’
zn€C

(86)

whereL{"™ is the local time a particle spends in the §pt — z.,| < 8,y < €}. The last
inequality in the chain (86) is due to the fact tivat- 1.

Since the distribution of ; coincides with that oMt(f)To, maximum of a one-dimensional

Brownian motion with diffusivityx started from zero, we get

(<) > e(pz)P— 22
(w’(t,z,y)) < EYEexp™=o ~ E{Y / exp™™) TR dr (87)
0

t o0 8 12 t 8 z%na:c
:/ / eXpC(WJ) T2i-0)r dxpT()(Q)dQ ~ / eXpC(pwmaz) T20-0)r pm(e)de
0 JO 0
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where

1
2-p

A )) (88)

which implies (85). n
Proposition 7.2

In(u(t, z,y)) > exp“™" p. (0)d0 + O(t) (89)
asymptotically when — oc.

Proof:
For the lower bound we need to consigemdependent brownian motions, and a
representation

(w1, 7,9)) = (B exp [3 /0 £,y aro]y. (90)
i=1

where L!” is the local time at zero of the-th brownian motionz®, y). Using the
argument of proposition 5.9 we get

WPt z,y)) > BO{E o) exp? s o, — | < 5/2,5 € [0, ]} (91)
Using the fact that thg—component of the brownian motion is independent of the
x—components and the estimate (28) we finish the proof of the proposition as ira(87).

Propositions 7.1, 7.2 and a well known formulae for the densit{f) of the hitting
time of the brownian motiom, imply

t ) )
(WP (t,z,y)) ~ / eXpa(t_e)m_y%(? df ~ exp“(t_em”)m_zeymﬁn
0

where

2

y (m— 1)y y
emaz = T (1 + m + Q >
Vacantm " gy " L)

This proves theorem 3.4
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7.2 Almost Sure Asymptotic

Proposition 7.3 At the conditions of the theorem 4.2
1
Inu(t,z,0) < §I{tf2((d— 1)Int) (92)

almost surely wheh — oc.

Proof:
o Lt maXB<t) f
u(t,z,0) < Eqy) Z max ug(z, y) exp ntt P{max zs > R,}  (93)
— 7(31 s€[0,t]
whereB n =0,1,... isa system of balls ifR¢~! with centers atx, 0) and radiuses

Ry =0, Ry(t) =tlnt, ... R, (t) =tln"t,....
Using the estimate (72) fanax ;) ¢ and the following estimate for the maximum of
n+1
the (d — 1)-dimensional brownian motion

P{max 2, > R,} ~y.0o exp ™! (94)
s€[0,t]

we conclude that only the first term in decomposition (93) matters and

U(t, xz, O) < IE(O,O) eXthf((dil) lnt)7 (95)

asymptotically when — oo. Distribution of L, is the same as that df[t(”) and so

2

u(t, z,0) §/ exp® (=D =2 g (96)
0

logarifmically. Optimization inz in the integrand gives (92n
Note that formulae (92) proves the existence of the solution in the Feynman-Kac form

(9).

Proposition 7.4 At the conditions of theorem 4.2
1
Inu(t,z,1) > §/<¢tf2((d— 1)Int) + O(t) 97)
almost surely wheh — oc.
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Proof:
The case of compactly supported initial conditiog(z,y) is reduced to the case

uo(z,y) = 1 as in the proposition 6.2. Far(z,y) = 1, consider a baIJB((t_)l) around
point (x, 1) of radiusRE’?l) = ¢,

Let us consider the set of patiis= {7, : |y, —7°| < %,s € [0,1]}, wherey® is
the path in the interior op such that the distande? — 9D| > £, s € [, 1] for smalle,
and shortest among those, connectirend the)—neighbourhood of*, the center of the
plato of maxima of the potentidlin the baIIB((t_)l). We count only those paths that hit
the boundary in thé —neighbourhood of* in 0D and stay in this neighbourhood since
then.

u(t,z,y) > EyEO{eXpH 5(’”5’y5)dLlS; zs €5 €[0,1]; 25 € Os(x"), s € [1,t]} (98)

where we used., instead ofL; because the starting point is 1. However, asymptotically,
the distributions of.), and L, are indistinguishable. Using the independence of the com-
ponents of(z, y,), formulae (72) for the maximum of the potentiahx ;) £, estimate

-1

(28) forP{{zs € Os(z*), s € [1,t]} and the similar estimate fd{z, € I', s € [0, 1]} we
finish the proof of the propositiora

For the casg = y(¢) > 0 we use representation (45) of the solutign, x, y) and the
fact that the distributions of, and; are asymptotically the same to get the logarifmic
asymptotic

L a0 ((d=1) In(—0))— O
u(t, @, y) ~ exp? 305 df (99)
0

and then we optimize the integranddno get (41). Theorem 4.2 is proven.
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