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Abstract

In this paper, we give existence and uniqueness results for backward stochastic differential
equations when the generator has polynomial growth in the state variable. We deal with the
case of fixed terminal time as well as the case of random terminal time. The need for this type
of extension of the classical existence and uniqueness results comes from the desire to provide
a probabilistic representation of the solutions of semilinear partial differential equations in
the spirit of a nonlinear Feynman-Kac formula. Indeed in many applications of interest, the
nonlinearity is polynomial, see e.g. the Allen-Cahn equation or the standard nonlinear heat
and Schrédinger equations.

1 Introduction

It is by now well-known that there exists a unique, adapted and square integrable, solution to a
backward stochastic differential equation (BSDE for short) of type

T T
Yt=5+/ f(s,Ys,Zs)ds—/ ZdW,, 0<t<T,
t t

provided that the generator is Lipschitz in both the variables y and z. We refer to the original
work of E. PARDOUX and S. PENG [13, 14] for the general theory and to N. EL KAROUI, S. PENG
AND M.-C. QUENEZ [6] for a survey of the applications of this theory in finance. Since the first
existence and uniqueness result established by E. PARDOUX and S. PENG in 1990, a lot of works,
including R. W. R. DARLING, E. PARDOUX [5], S. HAMADENE [8], M. KOBYLANSKI [9], J.-
P. LEPELTIER, J. SAN MARTIN [10, 11], see also the references therein, have tried to weaken the
Lipschitz assumption on the generator. Most of these works deal only with real-valued BSDEs [8,
9, 10, 11] because of their dependence on the use of the comparison theorem for BSDEs (see e.g.
N. Ev Karoui, S. PeENG, M.-C. QUENEZ [6, Theorem 2.2]). Furthermore, except in [11], the
generator is always assumed to be at most linear in the state variable. Let us mention nevertheless
an exception: in [11], J.-P. LEPELTIER and J. SAN MARTIN accomodate a growth of the generator
of the following type: C'(1+ |z||log|z||), C(1 + |z||log |log |z|||) .-

On the other hand, one of the most promising field of application for the theory of BSDEs is
the analysis of elliptic and parabolic partial differential equations (PDEs for short) and we refer
to E. PARDOUX [12] for a survey of their relationships. Indeed, as it was revealed by S. PENG [17]
and by E. PARDOUX, S. PENG [14] (see also the contributions of G. BARLES, R. BUCKDAHN,
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E. PArDOUX [1], PH. BRIAND [3], E. PARDOUX, F. PRADEILLES, Z. RA0 [15], E. PARDOUX,
S. ZHANG [16] among others), BSDEs provide a probabilistic representation of solutions (viscos-
ity solutions in the most general case) of semilinear PDEs. This provides a generalization to the
nonlinear case of the well known Feynman-Kac formula. In many examples of semilinear PDEs,
the nonlinearity is not of linear growth (as implied by a global Lipschitz condition) but instead,
it is of polynomial growth, see e.g. the nonlinear heat equation analyzed by M. ESCOBEDO,
O. KaviAaN and H. MATANO in [7]) or the Allen-Cahn equation (G. BARLES, H. M. SONER,
P. E. SOUGANIDIS [2]). If one attempts to study these semilinear PDEs by means of the nonlinear
version of the Feynman-Kac formula, alluded to above, one has to deal with BSDEs whose genera-
tors with nonlinear (though polynomial) growth. Unfortunately, existence and uniqueness results
for the solutions of BSDE’s of this type were not available when we first started this investigation,
and filling this gap in the literature was at the origin of this paper.

In order to overcome the difficulties introduced by the polynomial growth of the generator, we
assume that the generator satisfies a kind of monotonicity condition in the state variable. This
condition is very useful in the study of BSDEs with random terminal time. See the works of S.
PENG [17], R. W. R. DARLING, E. PARDOUX [5], PH. BRIAND, Y. Hu [4] for attempts in the
spirit of our investigation. Even though it looks rather technical at first, it is especially natural in
our context: indeed, it is plain to check that it is satisfied in all the examples of semilinear PDEs
quoted above.

The rest of the paper is organized as follows. In the next section, we fix some notation, we stae
our main assumptions and we prove a technical proposition which will be needed in the sequel.
In section 3, we deal with the case of BSDEs with fixed terminal time: we prove an existence
and uniqueness result and we establish some a priori estimates for the solutions of BSDEs in this
context. In section 4, we consider the case of BSDEs with random terminal times. BSDEs with
random terminal times play a crucial role in the analysis of the solutions of elliptic semilinear
PDEs. They were first introduced by S. PENG [17] and then studied in a more general framework
by R. W. R. DARLING, E. PARDOUX [5]. These equations are also considered in [12].

Acknowledgments. We are grateful to Professeur ETIENNE PARDOUX for several fruitful discus-
sions during the preparation of this manuscript. Also, the first named author would like to thank
the Statistics € Operations Research Program of Princeton University for its warm hospitality.

2 Preliminaries

2.1 Notation and Assumptions

Let (92, F,TP) be a probability space carrying a d-dimensional Brownian motion (W;);>0, and
(Ft) 5, be the filtration generated by (W;);>0. As usual we assume that each o-field F; has been

augmented with the IP-null sets to make sure that (.7-}) ¢>0 18 right continuous and complete. For

y € R, we denote by |y| its Euclidean norm and if z belongs to IR¥*?, |z| denotes {tr(zz*)}1/2.
For ¢ > 1, we define the following spaces of processes:

e 5, = {1/1 progressively measurable; 1 € RF;  |¢]% = ]E{ sup |1/Jt|q] < 00},
a 0<t<T

T /2
e H, = {’(/J progressively measurable; 1y € R¥*?; Il = ]E{(/O ||1/Jt||2dt)q } < oo},
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and we consider the Banach space B, = S, x H, endowed with the norm:
T N
.2l =B sup vilt|+|( [ 1z1Pa)").
0<t<T 0
We now introduce the generator of our BSDEs. We assume that f is a function defined on

Q x [0,7] x R* x R**? with values in R* in such a way that the process (f(t,y,z))lte[0 -

is progressively measurable for each (y,z) in RF x R¥*?, Furthermore we make the following
assumption.

(A'1). There exist constants v >0, u € IR, C > 0 and p > 1 such that IP — a.s., we have:
1. Vt, Vy, V(z,2"), |f(t,y,2) — ft,y,2")| < vlz—2'|;
2.9, V2, Y,y (y—y) - (F(ty,2) = F(t,y',2)) < —ply — o'
3.V, Yy, Vz, |f(ty,2)| < |f(£,0,2)|+C(1+ |y|P);
4. Vt, Vz, yv+— f(t,y,z) is continuous.

We refer to the condition (A 1).2 as a monotonicity condition. Our goal is to study the BSDE

T T
m=£+/ f(s,Ys,Zs)ds—/ Z,dW,, 0<t<T, (1)
t t

when the generator f satisfies the above assumption. In the classical case p = 1, the terminal
condition ¢ and the process ( f(t,0, 0)) T o assumed to be square integrable. In the nonlinear

case p > 1, we need stronger integrability conditions on both ¢ and (f(t, 0, 0))
that:

(A 2). ¢is an Fpr-measurable random variable with values in IR* such that

IE[|§|2P] +IE{(/OT|f(s,0,0)|2ds)p] < 0.

Remark. We consider here only the case p > 1 since the case p = 1 is treated in the works of
R. W. R. DARLING, E. PARDOUX [5] and E. PARDOUX [12].

+€[0,T] .We suppose

2.2 A First a priori Estimate

We end these preliminaries by establishing an a priori estimate for BSDEs in the case where & and
f(¢,0,0) are bounded. The following proposition is a mere generalization of a result of S. PENG [18,
Theorem 2.2] who proved the same result under a stronger assumption on f namely,

Viy,z,  |f(ty,2)| < a+vlyl + k|2

Our contribution is merely to remark that his proof requires only an estimate of y - f(¢,y, z) and
thus that the result should still true in our context. We include a proof for the sake of completeness.

Proposition 2.1 Let ((Y3, Z;))
that for each t, y, z,

tefo,1] € Bs be a solution of the BSDE (1). Let us assume moreover

y-fty,2) <olyl+vlyl® + &yl - 2], and, €)oo < 6.

Then, for each € > 0, we have, setting 8 = ¢ + 2v + K2,

2
sup |Y;|? S&QGﬁT—Fa—(eﬁT—l).
0<t<T el
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Proof. Let us fix t € [0,7], 8 will be chosen later in the proof. Applying Itd’s formula to
e?=1|Y,|? between t and T, we obtain:

T T
|Y;|2+/ P (BIY5]? + [ Zs)?) ds = |€]?eP T +2/ PE=0Y, - f(s, Yy, Zg)ds — My,
t t

T
provided we write M; for 2/ Py, . Z . dW,. Using the assumption on (&, f) it follows that:
t

T T
|Yt|2 _+_/ eBls—t) (5|Ys|2 + ||Zs||2)ds < (52€BT—|—2/ eﬁ(sft){a|ys| +V|Ys|2 +I€|Ys| . ||Zs||}d8—Mt.
t t

Using the inequality 2ab < “72 + nb?, we obtain, for any £ > 0,

T T 2
|th|2+/ eﬁ(s—t)(6|y's|2 +||Zs||2)d8 < 626ﬁT+/ eﬁ(s—t){% +(6+2I/+n2)|Ys|2}ds
t t

T T
+/ B Z, |2 ds — 2/ B0y, . ZdWy,
t t
and choosing 3 = € + 2v + x? yields the inequality

2 T
[Vi|? < 6%e5T + ?—ﬁ(eﬁT 1) - 2/ Py, - ZdWs.
t

Taking the conditional expectation with respect to F; of both sides, we get immediately that:
o2
Vte[0,T), |V <27 + —ﬂ(eBT - 1),
€

which completes the proof. O

3 BSDEs with Fixed Terminal Times

The goal of this section is to study the BSDE (1) for fixed (deterministic) terminal time 7' under
the assumption (A 1) and (A 2). We first prove uniqueness, then we prove an a priori estimate and
finally we turn to existence.

3.1 Uniqueness and a priori Estimates

This subsection is devoted to the proof of uniqueness and to the study of the integrability properties
of the solutions of the BSDE (1).

Theorem 3.1 If (A 1).1-2 hold, the BSDE (1) has at most one solution in the space B>.

Proof. Suppose that we have two solutions in the space By, say (Y'!,Z!) and (Y2, Z2). Setting
Y =Y! —Y?and 6Z = Z' — Z? for notational convenience, for each real number « and for each
t € [0,T1], taking expectations in It6’s formula gives:

T T
IE [ 6Y;[? +/ €10 Z,|ds| ZJE[/ e {20, - (£(5, Y2, Z1) = (5, Y2, 22)) — aldV;[*}ds|.
t t
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The vanishing of the expectation of the stochastic integral is easily justified in view of Burkholder’s
inequality. Using the monotonicity of f and the Lipschitz assumption, we get:

T
]E[e“t|6Yt|2 +/ e“s||6Zs||2ds] < ]E[Qy/
t t

Hence, we see that

T T
e*®0Y5||0Zs|ds — (a + 2u) / eo‘s|6Ys|2ds].
¢

T

T T
1
B [e |5, +/ 152, %ds) < (24 —2u—a)IE[/ |6V, ds] + 515:[/ ARl
t t t
We conclude the proof of uniqueness by choosing a = 2v2 —2u + 1. O

We close this section with the derivation of some a priori estimates in the space B,. These
estimates give short proofs of existence and uniqueness in the Lipschitz context. They were intro-
duced in a “LP? framework” by N. EL KAroul, S. PENG, M.-C. QUENEZ [6] to treat the case of
Lipschitz generators.

Proposition 3.2 Fori = 1,2 we let (Y, Z%) € Ba, be a solution of the BSDE

T
=&+ /fs,Y;, ds—/ ZidWs, 0<t<T,
t

where (£, f1) satisfies the assumptions (A1) and (A 2) with constants ~y;, p; and C;. Let ¢ such
that 0 < e <1 and a > (11)?/e — 2p1. Then there exists a constant K which depends only on p
and on € such that:

T p T N 2p
]E{ sup ePot|ay; |2 + (/ e |07, dt) } < K;]E[e“pT|6£|2”+ (/ #1651, |ds) }
0 0

0<t<T

where 66 = 1 —€2,6Y =Y -Y2,6Z =7 -Z% and 6f = f*(-,Y2,Z2)— f2(-,Y2,Z?). Moreover,
if a > (1)?/e — 2u1, we have also, setting v = — (71)?/e + 2u1,

T » KS T 2
at 2 P apT 2p 38
IE[(/O et|8Y, | dt)]g—VpIE{e 16¢| +(/0 e |6fs|ds) ]

Proof. As usual we start with Itd’s formula to see that:

T T
e oYy +/ e**|0Z|*ds = 6"T|5€|2+2/ ™0y - (f1(s,Yy, Z;) — £7(s,Y7, Z7) ) ds
t t

T
—/ e |8Y,|2ds — M;
¢

T
where we set M; = 2/ e*?0Y; - 6 Z;dWy for each ¢ € [0,T]. In order to use the monotonicity of
t
f! and the Lipschitz assumption on f!, we split one term into three parts, precisely we write:
0Ys - (f1(s,YS,Z5) = f2(s, Y2, Z7)) = 0Ys- (fl(s,YS, Z;) = f1(s, Y7, Zy)
+0Ys - (f1(s, Y2, Z5) = f1(s5,Y7, Z)))
+6Y-s . (f (57 Ysz) Zg) - f2(S,Y;2, Z?));
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and the inequality 2v1|Ys| - | Zs| < ((71)?/€)|Ys]? + €] Zs|? implies that:

T

T 2
e 5Y;|? +(1—8)/ e |0 Zs|?ds < eD‘T|5§|2+/ e { —a—2u +%}|(5Ys|2ds
t t

T
+2/ e*?|0Ys| - |0 fslds — M.
t

Setting v = a + 2u1 — (71)?/e, the previous inequality can be rewritten in the following way

T T
e”‘t|6Yt|2+(1—5)/ eas||6Zs||2ds+V/ 5|5V, 2ds < eoTIGER — M,
t t ., )
+2/ 5|5V, - 0, |ds.
t

Taking the conditional expectation with respect to F; of the previous inequality, we deduce since
the conditional expectation of M; vanishes,

T
Y < E{eaﬂssﬁ o [ ey 5silas \ft},
0

and since p > 1, Doob’s maximal inequality implies:

T
E| sup e”“t|6Yt|2p] < Kp]E[epaT|6£|2p+(/ eas|6Ys|-|6fs|ds)p]
0<t<T 0
T
< K,,IE[@”“T|6§|2”+ sup {e(”a/z)t|(5Yt|p}(/ e(a/2)s|5fs|ds)p].
0<t<T 0

where we use the notation K, for a constant depending only on p and whose value could be
changing from line to line. Thanks to the inequality ab < a?/2 + b%/2, we get

T 5 1
]E{ sup epat|5Yi|2p] < KE {eapT|5f|2p+ (/ e("/2)s|5fs|ds) p] +—]E[ sup epat|6Yt|2”],
0<t<T 0 2 lo<i<T
which gives
T 2p
JE{ sup emtwm??} ng]E{eD‘pT|6£|2”+ (/ e(o‘/2)3|6fs|ds) } (3)
0

0<t<T

Now coming back to the inequality (2), we have since € < 1,

T T
(e“T|6f|2 +2/ 3 |5Y,] - |6fs|ds—2/ e“s6Ys-6stWS),
0 0

T 1
/ e®*|0Z,|%ds <
0 1

and by Burkholder-Davis-Gundy’s inequality we obtain

T
E (/ e‘”||6ZS||2ds)p < KIS [T |5er + (/
0 0

T /2
ri | ([ emiovpiszpas)™),

T

P
27|84 - 0l ds) }
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and thus it follows easily that:

T p T p
E (/ 9z ds)"| < KR |e7TISEPT + sup {e<m/2>t|5y;|P}(/ elo/2%]5 | ds)
0 0<t<T 0

T p/2
+K;]E[ sup {e@a/?)twmp}( / e”‘s||6Zs||2ds) ]
0<it< 0

which yields the inequality, using one more time the inequality ab < a?/2 + b?/2,

2p

T p T
E (/ e”‘s||5Zs||2ds) < KIE[e®T|56% + sup e”“t|6Yt|2p+(/ e(o‘/2)3|6fs|ds)
0 0<t<T 0

+%]E{(/0Te“s||6Zs||2ds)p}

Taking into account the upper bound found for ]E[SUPogth ep“t|6Yt|2p] given in (3), we derive

from the above inequality,

T T 9
E (/ e“s||6Zs||2ds)p < KB |77 |56 + (/ (/27 51, |ds) ",
0 0

which concludes the first part of this proposition. For the second assertion we simply remark
that (2) gives

T
1// e®*|6Y, 2 ds < (eC'T|(5£|2 + 2/
0 0

A similar computation gives:

T T
e |3Y, | - |6fs|ds—2/ 2?5V, -6stWs),
0

T p T 2p
V”]E[(/O e‘”|(5Ys|2ds) } < K;]E[e“pT|6f|2p+021£)Temt|6Yt|2p+ (/0 e(a/2)3|5fs|ds) ]

+%]E[(/OT e“||6Zs||2ds)p],

which completes the proof using the first part of the proposition already shown and keeping in
mind that if @ > (y1)%/e — 2u1 then v > 0. O

Corollary 3.3 Under the assumptions and with the notation of the previous proposition, there
exists a constant K, depending only on p, T, uy and v such that:

T P T 2p
B[ s 157+ ([ lozpa)’] < ks ([ lonias)”].
0<t<T 0 0
Proof. From the previous proposition, we have (taking ¢ = 1/2):
T

T
JE[ sup eP!|gY; | + (/ e“t||6Zt||2dt)p] < Kp]E[e“pT|5£|2p+ (/
0 0

0<t<T

o 2p
%6, /ds ) ]
and thus

—pTa~ 2 T 2 .\ Tat 2 T 2P
| sup 6V + (/ zi2dt)”| < e B jogl + (/ 6£,las) "
0 0

0<t<
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It is enough to set K = ep|a‘TKp to conclude the proof. O

Remark. Tt is plain to check that the assumptions (A1).3-4 are not needed in the above proofs of
the results of Proposition 3.2 and its corollary.

Corollary 3.4 Let ((Yt’Zt))o<t<T € Bs, be a solution of the BSDE (1) and let us assume that
€ € L?? and assume also that there exists a process (fi)o<t<T € 7{2p(]Rk) such that

V(S)yaz) € [O)T] X Rk X RkXda Y- f(syyaz) < |y| ) |fS| - ,LL|y|2 +’Y|y| ) "Z”

Then, if 0 < e < 1 and a > > /e — 2u, there exists a constant K, which depends only on p and on
€ such that:

T P
B[ sup i+ ([ eizia)| < gmleiger ([
0 0

0<t<T

T

e%s|fs|ds) zp} ,

Proof. As usual we start with Itd’s formula to see that

T T
e*’Ys - f(s,Ys, Zs)ds — / e |Y,|?ds — My,
t

T
:eat|Y;|2 +/ eas"Zs"2ds — eaT|€|2 +2/
t t
T
provided we set M; = 2/ Yy - ZsdWsy for each t € [0,T]. Using the assumption on y - f(s,y, 2)
t
and then the inequality 2v|Y;| - | Zs| < (v%/e)|Ys|* + ]| Zs|?, we deduce that

T

T 2
P2 [ ezl < eTieP s [ e - am ot Dyvilds
t t

T
+2/ eas|Ys|'|fs|d5_Mt-
t

Since a > 2 — v2 /e, the previous inequality implies

T T
Y2 + (1 - 5)/ e | Z,)Pds < e®T|€|* + 2/ e*’|Ys| - | fslds — M.
t t

This inequality is exactly the same as the inequality (2). As a consequence we can complete the
proof of this as in the proof of Proposition 3.2. O

3.2 Existence

In this subsection, we study the existence of solutions for the BSDE (1) under the assumptions
(A1) and (A2). We shall prove that the BSDE (1) has a solution in the space B,. We may
assume, without lost of generality, that the constant u is equal to 0. Indeed, (Y%, Zt):e[o, 1) solves
the BSDE (1) in By, if and only if, setting for each t € [0, 7],

?t = C_utYVt, and 7t = e_“tZt,

the process (Y, Z) solves in B, the following BSDE:

T T
Ti=€+ [ T6V.Zyis- [ Zaw., 0s<i<T,
t t
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where £ = e7#T¢ and f(t,y,z) = et f(t, ety ettz) + py. Since (€, f) satisfies the assumption
(A1) and (A2) with 7y =, m=0and C = Cexp (T{(p — 1)u* + p=}) + ||, we shall assume
that ¢ = 0 in the remaining of this section.

Our proof is based on the following strategy: first, we solve the problem when the function f
does not depend on the variable z and then we use a fix point argument using the a priori estimate
given in subsection 3.1, Proposition 3.2 and Corollary 3.3. The following proposition gives the first
step.

Proposition 3.5 Let the assumptions (A1) and (A 2) hold. Given a process (Vi)o<i<T in the

space Hop, there exists a unique solution ((Yt, Zt))te[[) 7 in the space Ba, to the BSDE

T T
m:g+/ f(s,Ys,Vs)ds—/ Z,dW,, 0<t<T. (4)
t t

Proof. We shall write in the sequel h(s,y) in place of f(s,y,Vs). Of course h satisfies the
assumption (A 1) with the same constants as f and (h(, 0)) belongs to H.2, since f is Lipschitz with
respect to z and the process V belongs to Hs,. What we would like to do is to construct a sequence
of Lipschitz (globally in y uniformly with respect to (w, s)) functions h,, which approximate h and
which are monotone. However, we only manage to construct a sequence for which each h, is
monotone in a given ball (the radius depends on n). As we will see later in the proof, this “local”
monotonicity is sufficient to obtain the result. This is mainly due to Proposition 2.1 whose key
idea can be traced back to a work of S. PENG [18, Theorem 2.2].

We shall use an approximate identity. Let p : R¥ — IR; be a nonnegative C*° function
with the unit ball for support and such that [ p(u)du = 1 and define for each integer n > 1,
pn(u) = np(nu). We denote also, for each integer n, by ©, a C* function from IR¥ to IR, such
that 0 < 0, <1, O,(u) =1 for |u] <n and O,(u) =0 as soon as |u| > n + 1. We set moreover

3 if [§] < n, h(s,y) if |h(s,0)| < n,
fn - £ . and; hn(syy) = n
n— otherwise

g : (s 0)] &Y

otherwise.

Such an h,, satisfies the assumption (A1) and moreover we have |€,| < n and |h,(s,0)| < n.
Finally we set g(n) = [61/2(71 + 26’)\/1+—TQ} + 1 where [r] stands as usual for the integer part of
r and we define

hn(s,) = pn * (Ogmy41hn(s,)) s €0, 7).

We first remark that h,(s,y) = 0 whenever |y| > ¢(n) + 3 and that h,(s, ) is globally Lipschitz
with respect to y uniformly in (w, s). Indeed, h,(s,) is a smooth function with compact support
and thus we have sup,, ¢ g» |th(s, y)| = SUDP|y|<q(n)+3 |th(s, y)| and, from the growth assumption

on f (A 1).3, it is not hard to check that |h,(s,y)| < n A |h(s,0)| + C(1+ |y[’) which implies that

|Vh sy| ( {n+C(+207 yP)} + C20” 1)/|Vp |du

As an immediate consequence, the function h,, is globally Lipschitz with respect to y uniformly in
(w,s). In addition |&,| < n and |h,(s,0)] < nA|h(s,0)] +2C and thus Theorem 5.1 in [6] provides
a solution (Y, Z™) to the BSDE

T T
Y =¢, +/ hn(s,Y)ds — / ZydWs, 0<t<T, (5)
t t
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which belongs actually to Bq for each ¢ > 1. In order to apply Proposition 2.1 we observe that,
for each y,

Y- ha(s,y) = /pn(U)G)q(mH(y —w)y - hn(s,y —u)du

/ﬁameﬂmH@—uw-wa&y—m—ﬁa&—wﬁm

+ /pn(u)Gq(n)+1(y —u)y - hyp(s, —u)du.

Hence, we deduce that, since the function (s, -) is monotone (recall that x = 0) in this section)
and in view of the growth assumption on f we have:

V(s,y) €Qx[0,T],  y-hals,y) < (nAh(s,0)] +2C)[yl. (6)

This estimate will turn out to be very useful in the sequel. Indeed, we can apply Proposition 2.1
to the BSDE (5) to show that, for each n, choosing ¢ = 1/T,

sup |V} < (n + 20)e/?\/1+ T2 (7)

0<t<T

On the other hand, the inequality (6) allows one to use Corollary 3.4, to obtain, for a constant K,
depending only on p:

T T
n|2 ni2 p 2 2p
SIEIHBIE{OE?E Y+ (/0 |2} Pat) } SKPE{MI ”+(/0 {In(s,0)] +2C}ds) ] (8)

It is worth noting that, thanks to |h(s,0)| < |f(s,0,0)| + | Vs|, the right hand side of the previous
inequality is finite. We want to prove that the sequence ((Y",Z”))IN converges towards the
solution of the BSDE (4) and in order to do that we first show that the sequence ((Y™,Z2")) is
a Cauchy sequence in the space I35. This fact relies mainly on the following property: h,, satisfies
the monotonicity condition in the ball of radius ¢(n). Indeed, fix n € IN and let us pick y,y’ such
that |y| < ¢(n) and |y'| < ¢(n). We have:

=y (ha(s,y) —ha(s,y') =  (—y)- /pn(U)Gq(n>+1(y — u)h(s,y — u)du

4y—y»/}umewmay—uﬂa&y—um%

But, since |y|, |y'| < ¢(n) and since the support of p,, is included in the unit ball, we get from the
fact that ©,(,)4+1(z) = 1 as soon as |z| < g(n) + 1,

=y - (ha(s,y) = ha(s,y') = /pn(U)(y —y") - (hals,y —u) = ha(s,y' — u))du.
Hence, by the monotonicity of ﬁn, we get

Vy,y' € B(0,q(n)), (y=y") - (hn(s,y) = ha(s,y") <O0. 9)

We now turn to the convergence of ((Y ) . Let us fix two integers m and n such that m > n.
It6’s formula gives, for each t € [0,T],

T T T
|6Y;]? + / 16Z,|*ds = |6¢)* + 2/ 6Y - (han(s,Y)") — hn(s,Y]"))ds — 2/ 0Ys - 0Z,dWs,
t t t



BSDEs with polynomial generators 11

where we have set 0§ = &, — &, Y = Y™ — Y™ and 672 = Z™ — Z™. We split one term of the
previous inequality into two parts, precisely we write:

§Ys - (hin(8,Y") = hou(5,Y)) = 6Ys - (hn(8,Y™) — hn(8,Y)) + 0Yy - (B (8, YY) — ha(s,Y)).

But in view of the estimate (7), we have |Y"| < g(m) and |Y]*| < ¢(n) < ¢(m). Thus, using the
property (9), the first part of the right hand side of the previous inequality is non-positive and it
follows that

T T T
|6Yt|2+/ 107, |2ds < |5§|2+2/ |6Ys|-|hm(s,Ys")—hn(s,Ys")|ds—2/ 5Y, - 62,dW,. (10)
t t t

In particular, we have

T T
JE[/ ||6Zs||2ds] < 2]E[|6£|2 +/ 1] - [ (5, V) —hn(s,YS")|ds],
0 0

and coming back to (10), Burkholder’s inequality implies

T T 1/2
IE{ sup |6Yt|2] < KIE{|6§|2+/ 0Ys| - [Pm (5, Y3*) = han(s5, Y |ds + (/ |6Y3|2||6Zs||2ds) }
0 0

0<t<T

and then using the inequality ab < a?/2 + b*/2 we obtain the following inequality:

T
B[ sup [P] < KB[OP + [ 18] (s, Y2) ~ bl V2]
0<t<T 0

5] s e+ [ [ 1]

from which we get, for another constant still denoted by K,

T T
B[ sup |6+ [ 16ZPds] < KSR + [ 10Vl - (. Y7) = (s, Y7 ds].
<t<T 0 0

0

Obviously, since & € L?P, 6¢ tends to 0 in L? as n,m — oo with m > n. So, we have only to prove
that

T
]E[/0 16Ys| - |ham (5, Y3) — hn(s,YS”)|ds] — 0, as n — 00.

For any nonnegative number k, we write
T
Smo = JE[/ Ly v <k|0Ys] - [ (8, Y) = (s, st)|ds],
0

T
RT = IE[/ Ly iz 0Vl - (5, V) = (s, V7))
0
and with these notations we have
T
IE[/ 8%l - (s, ¥2) = ho(s, Y| ds] = S + R
0

and hence, the following inequality:

T T
IE|:/ |6Ys| - |hm(37st) - hn(S:st)|ds:| < kIE[/ sup |hm(s,y) - hn(s,y)|ds} + Ry (11)
0 0 |y|<k
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First we deal with R} and using Ho6lder’s inequality we get the following upper bound:
T £ T, P
R < {IE[/ ]l|ysn|+ysm|>kd8]} {IE[/ 16|75 [ (5, V) —hn(s,Ys”)|P+1ds]} :

0 0

T » 2p
Setting A" = ]E[/ |6Y; |77 | P (5, Y") = hn (5, Y1) | 77T ds] for notational convenience, we have
0

p—1

T o5
R < {/ P(YR + V] > k)ds} A
0

and Chebyshev’s inequality yields:

1— T 2p % ptl
k P{/ B[ (1] + ;") ]ds} A
0

p—1

p= 2r ja
2pT2_pl{ sup IE[ sup |Yt”|2p] } klprnmzLPl. (12)
nelN  lo<t<T

Rm

IN

IN

We have already seen that sup,,cn ]E[SUPogth |Yt”|2”] is finite (cf. (8)) and we shall prove that

A" remains bounded as n, m vary. To do this, let us recall that

n

T 2p 2p_
A7 =B [ 18V (5,17 — a5, Y] 7],
0

and using Young’s inequality (ab < 1a"+ L b whenever £ +-L = 1) with r = p+1and r* = ”%1,
we deduce that

Am < L]E[/T |6Y|2pds] + L]E[/TUL (5, Y1) — hu(s Y”)|2ds].
n _p+1 o s p+1 o m\°yLg n\°)Lg

The first part of the last upper bound remains bounded as n,m vary since from (8) we know that
SUP, N E[SUPogth |Yt”|2p} is finite. Moreover, we derive easily from the assumption (A 1) that
|hn(s, )| < nA|h(s,0)| +2°C(1 + |y[*), and then,

[P (5, Vi) = B (5, Y1) | < 2|R(s,0)| + 27T C(1 + [Y*]P),

which yields the inequality, taking into account the assumption (A 1).1,
T ) T
B [ s, Y7) = a5, Y ds] < K[ [ (£, 0.0F + [V + L [y 7))
0 0

Taking into account (8) and the integrability assumption on both V' and f(-,0,0), we have proved
that sup,,<,, A™ < co.

Coming back to the inequality (12), we get, for a constant k, R < kk!~P  and since p > 1,
R can be made arbitrary small by choosing k large enough. Thus, in view of the estimate (11),
it remains only to check that, for each fixed & > 0,

T
B [ sup [hn(s.0) = b(s.)|ds]
0 |yl<k
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goes to 0 as n tends to infinity uniformly with respect to m to get the convergence of ((Y”, Z ”))
in the space Bs. But, since h(s,-) is continuous (IP — a.s., Vs), hy(s,-) converges towards h(s, -)
uniformly on compact sets. Taking into account that supj, < |hn(s, y)| < |h(s, 0)| + 2”0(1 + kp)
Lebesgue’s convergence theorem gives the result.

Thus, the sequence ((Y”, Z ”))lN converges towards a progressively measurable process (Y, Z)
in the space Bz. Moreover, since ((Y™,2")), is bounded in By, (see (8)), Fatou’s lemma implies
that (Y, Z) belongs also to the space Ba,.

It remains to check that (Y, Z) solves the BSDE (4) which is nothing but

IN

T T
m:g+/ h(s,Ys)ds—/ Z,dW,, 0<t<T.
t t

Of course, we want to pass to the limit in the BSDE (5). Let us first remark that &, — £ in
T T

L% and that for each t € [0, T, / Z3dWs — / ZsdWy since Z™ converges to Z in the space
t t

Ho(RF*%). Actually, we only need to prove that for ¢ € [0, 77,

T T
/ hn(s, Y )ds — / h(s,Ys)ds, asn — 0o.
t t

For this, we shall see that h,(-,Y.®) tends to h(-,Y.) in the space L'(Q x [0,T7]). Indeed,

IE[/OT|hn(s,YS”)—h(s,Ys)|ds] < E[/0T|hn(s,st)—h(s,y;n)ws] +E[/0T|h(s,y;")—h(s,Ys)|ds].

The first term of the right hand side of the previous inequality tends to 0 as n goes to oo by the
T

same argument we use earlier in the proof to see that IE| 16Y5] - [hn (s, V") — hao(s, Y,")|ds] goes

0
to 0. For the second term, we shall firstly prove that there exists a converging subsequence. Indeed,
since Y™ converges to Y is the space S5, there exists a subsequence (Y ™) such that P-a.s.,

Vte[0,T], Y —Y;.

Since h(t,-) is continuous (PP-a.s., Vt), P-a.s. (Vt, h(t,Y;"") — h(t,Y;)). Moreover, since
Y € Ssp and (V) is bounded in S, ((8)), it is not hard to check from the growth assumption
on f that
r 2
sup IE[/ |h(s,YS"J') - h(s,Ys)| ds} < 00,
jEN 0
and then the result follows by uniform integrability of the sequence. Actually, the convergence

hold for the whole sequence since each subsequence has a converging subsequence. Finally, we can
pass to the limit in the BSDE (5) and the proof is complete. O

With the help of this proposition, we can now construct a solution (Y, Z) to the BSDE (1). We
claim the following result:

Theorem 3.6 Under the assumptions (A 1) and (A 2), the BSDE (1) has a unique solution (Y, Z)
in the space ng.

Proof. The uniqueness part of this statement is already proved in Theorem 3.1. The first step
in the proof of the existence is to show the result when T is sufficiently small. According to
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Theorem 3.1 and Proposition 3.5, let us define the following function ® from Bs, into itself. For
(U, V) € Bay, ®(U,V) = (Y, Z) where (Y, Z) is the unique solution in 5, of the BSDE:

T T
Yt=s+/ f(s,Ys,vs)ds—/ ZudW., 0<i<T.
t t

Next we prove that ® is a strict contraction provided that T is small enough. Indeed, if (U*, V")
and (U?,V?) are both elements of the space Bs,, we have, applying Proposition 3.2 for (Y*, Z%) =
QUL V), i=1,2,

2 T 2 .. \? T 2 1,1 2 1,2 2p
IE[ sup (Vi + ([ 157l dt)}sz(pﬂa[(/ £ Y2, VD) = £, Y2, V21ds) }
0 0

0<t<

where Y = Y1 —-Y?2 6Z = Z' — Z? and K, is a constant depending only on p. Using the Lipschitz
assumption on f, (A 1).1, and Holder’s inequality we get the inequality

T P T P
]E{ sup |0Vi]* + (/ ||6Zt||2dt) } < KW?PTP]E{(/ [V —V3||2ds) }
0 0

0<t<T

Hence, if T is such that K,y??T? < 1, ® is a strict contraction and thus ® has a unique fixed
point in the space By, which is the unique solution of the BSDE (1). The general case is treated
by subdividing the time interval [0,7] into a finite number of intervals whose lengths are small
enough and using the above existence and uniqueness result in each of the subintervals. O

4 The Case of Random Terminal Times

In this section, we briefly explain how to extend the results of the previous section to the case of
a random terminal time.

4.1 Notation and Assumptions

Let us recall that (W;);>0 is a d-dimensional Brownian motion, defined on a probability space
(Q, F,1P) and that (F;),., is the complete o-algebra generated by (Wy);>o-

Let 7 be a stopping time with respect to (.7-})t>0 and let us assume that 7 is finite IP-a.s. Let us

consider also a random variable ¢ F,-measurable and a function f defined on @ x IRy x R¥ x IRF*¢
with values in IR¥ and such that the process (f(, Y, z)) is progressively measurable for each (y, z).
We study the following BSDE with the random terminal time 7:

A f(s,YS,Zs)ds—/ Z,dW,,  t>0. (13)

tAT tAT

By a solution of this equation, we always mean a progressively measurable process ((Y{t, Zt))t>0

with values in R* x IR¥*? such that Z; = 0 if ¢ > 7. Moreover, since 7 is finite IP-a.s., (13) implies
that Y; =& if ¢t > 7.

We need to introduce further notation. Let us consider ¢ > 1 and a € IR. We say that a
progressively measurable process v with values in IR" belongs to H?(]Rn) if

IE[( / h eatnwtu?dt)"”} <.
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Moreover, we say that 1 belongs to the space SZ"T(]R") if
E supe(q/2)"(t”)|¢t|q < 0.
£>0

We are going to prove an existence and uniqueness result for the BSDE (13) under assumptions
which are very similar to those made in section 2 for the study of the case of BSDEs with fixed
terminal times. Precisely, we will suppose in the framework of random terminal times the following
two assumptions:

(A 3). There exist constants v > 0, p € R, C >0, p > 1 and & € {0,1} such that IP — a.s., we
have:

LVt Yy, V(z,2"), |f(ty,2)— Ft,y,2)| <Az =2
2.Vt, Yz, Y(y,y'), (w—y) (ft,y,2)— f(ty',2) < —ply —y'|%
3.V, Yy, Vz, | f(ty,2)| <|F(0,2)| + Cls + |ylP);

4. Vt, Vz, yr+— f(t,y,z) is continuous,

(A 4). ¢is F,-measurable and there exists a real number p such that p > 7? — 2y and

E|kef” + {e“ + el”pT}|f|2‘0 + (/T eps|f(s,0,0)|2ds)p + (/T e(p/2)3|f(s,0,0)|ds)2p] < 00.
0 0

Remark. In the case p < 0, which may occur if 7 is an unbounded stopping time, our integrability
conditions are fulfilled if we assume that

IE[ePT|§|2P + (/T e(P/2)8|f(s,0,0)|2ds)p] < 0.
0

For notational convenience, we will simply write, in the remaining of the paper, SZ’T and 7{2
instead of S'"(IR¥) and H/ (IR**%) respectively.

4.2 Existence and Uniqueness

In this section, we deal with the existence and uniqueness of the solutions of the BSDE (13). We
claim the following proposition.

Proposition 4.1 Under the assumptions (A 3) and (A 4), there exists at most a solution of the
BSDE (13) in the space 857 x H5.

Proof. Let (Y',Z') and (Y2, Z?) be two solutions of (13) in the space S5 x H5. Let us notice
first that Y,! = Y> =¢ift > 7 and Z! = Z? = 0 on the set {t > 7}. Applying Ito’s formula, we
get

PN |8Y;,, % + / 52 Pds = 2 / e6Y, - (f(s,Y), Z) — f(s, Y2, 22))ds
t

tAT AT

—/ pel?|8Y, |2 ds — 2/ e”?8Yy - 6 ZsdWs,
t

AT tAT
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where we have set Y = Y! —Y? and §Z = Z! — Z2. It is worth noting that, since f is Lipschitz
in z and monotone in y, we have, for each € > 0,

V(t,y,y',z,z'), 2(y_y,) ! (f(t)yaz) _f(taylazl)) S (_2:u+72/6)|y_yl|2 +6"Z—ZI”2‘ (14)
Moreover, by Burkholder’s inequality the continuous local martingale
tAT
{ / P 8Y, - 52 dW,, t> o}
0

is a uniformly integrable martingale. Indeed,

At 1/2 T 1/2
B[( [ eovz,am.) E|( [ esv.ploz.as)
0 0 0

KIE[( sup ept|5yt|2)l/2(/T eps||6Zs||2ds)1/2],
0

0<t<t

IN

and then,

At 1/2 K . ) T )
E </ e"séYs-(SstWs> < SE| sup e”|sY]| +/ e |02 |2ds|,
0 0

oo 0<t<r

which is finite since (§Y,6Z) belongs to the space 85" x H5. Thanks to the inequality p > v —2u,
we can choose € such that 0 < e < 1 and p > y*/e —2u. Using the inequality (14), we deduce that,
the expectation of the stochastic integral vanishing in view of the above computation, for each ¢,

N e A AR
tAT

which gives the result. O

Before proving the existence part of the result, let us introduce a sequence of processes whose
construction is due to R. W. R. DARLING and E. PARDOUX [5, pp. 1148-1149]. Let us set

A = ~%/2 — p and let (?”,/Z\") be the unique solution of the classical (the terminal time is
deterministic) BSDE on [0, n]

}7;” =E{e"¢ |fn} +/ {e*sf(s,e*“z”,efksfg) - )\?S”}ds —/ ngWs.
¢

AT t

Since IE [62p>‘7|§|2p] < IE[e”pT|§|2p] and since

]E[(/OTezxs|f(s,0,0)|2ds)p] gJE[(/OTePS|f(s,0,0)|2ds)p],

the assumption (A4) and Theorem 3.6 ensure that ()7",2”) belongs to the space B2, (on the
interval [0,n]). In view of [12, Proposition 3.1], we have

Y™(tar) =Y*, and, ZP =0on {t >}

Since e*7¢ belongs to L2P(F;) there exists a process (n) in Hg such that n =0 if ¢ > 7 and

eME = ]E[e)‘Tf] +/ NsdWs.
0
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We introduce still new notation. For each t > n we set:

V' =EB{ME|Fe} =G, and, ZP =n,
and for each nonnegative t:

Y'tn — ef)\(t/\‘r)i}tn, and, Ztn — ef)\(tAT)/Z\tn‘

This process satisfies ¥, = Y;* and Z}* = 0 on {¢t > 7} and moreover (Y, Z") solves the BSDE

Yo — ¢4 fn(s,Ys”,Z;‘)ds—/ Zraw,, >0, (15)

tAT tAT

where f,(t,y,2) = Li<nf(t,y,2) + LisnAy (cf [5]). We start with a technical lemma.
Lemma 4.2 Let the assumptions (A 8) and (A 4) hold. Then, we have, with the notation

K(, f) = KE [e”“l&FP + (/T eP/2s f(s, 0,0)|ds)2p} :
0

T p
sup]E{supepp(t”)DQ"Fp + (/ e"s|YS"|2ds) + (/
N >0 0 0

oo

ez pas)’| <xE.H. (9

and, also, for o = p — 2,

IE[sup arenigpr+ ([Ceriaras) + ([ e”nnsn%s)p] <KE[jg”]. ()
0 0

t>0

Proof. Firstly, let us remark that Z* = n, = 0if ¢t > 7 and, since ¥} = £ if ¢ > 7, we have
SUpysq €PPEAT) [V 2P = supge,o. €PPt|Y;??P. Moreover, since p > 2\ we can find ¢ such that
0 <e<1landp>~v%/e—2u. Applying Proposition 3.2 (actually a very mere extension to deal
with bounded stopping times as terminal times), we get

nAT p
IE[ sup PP Y|P + (/ e”S|Ys"|2ds) + (/
o0<t<nAT 0 0

<KE [e”p("”)|Y"(nA7)|2p + (/ Te(p/2)3|f(s,0,0)|ds)2p}.
0

NAT

2 p
e | 20| ds )

We have Y = Y = e A" E{e*¢ | Fu-} and then we deduce immediately that, since
p/2 — X > 0 and using Jensen’s inequality,

E epp(nAT)|Yn(nAT)|2p] ]E|:|]E{€(p/27)‘)(n/\7-)6)‘7-£ |-7:n/\‘r}|2pj|

(18)

IN

E [eppf|g|2p] .

Hence, for each integer n,

NnAT p
IE{ sup ePPHYPP + (/ eps|Ys”|2ds) + (/
0<t<naT 0 0

It remains to prove that we can find the same upper bound for

2 ! 2 7. \” !
IE| sup ePPHYPP + (/ e”*|Y ] ds) + (/

nAT<t<t nAT nAT

NAT

|27 Pas)| < K6

2 p
|20 P ds) |
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But the expectation is over the set {n < 7} and coming back to the definition of (Y,, Z,) for t > n,
it is enough to check that

T P T P
E Supep(072)\)(t/\‘r)|ct|2p+ (/ 6(072)\)5|Cs|2ds) + (/ e(ﬂ*2>\)s"n5”2ds) :| SK]E[eppT|f|2p]
>0 0 0

to get the inequality (16) of the lemma and thus to complete the proof since, in view of the
definition of o, the previous inequality is nothing but the inequality (17). But, for each n, (¢, 7n)
solves the the following BSDE:

G = E{eM¢ | Fnr } —/t nsdW, 0<t<nmn,

and by Proposition 3.2, since 0 = p — 2\ > 0,

NnAT p NnAT P
E sup epat|<-t|2p+ (/ eas|cs|2ds) + (/ 605”773"2d8) :| < KIE[ePJ(nAT)KnATFP:I_
0 0

o0<t<nAT

We have already seen (cf (18)) that IE[eP?(""7)|(,,,,|?*] < IE[eP?T|£|*P] and thus the proof of this
rather technical lemma is complete. O

With the help of this useful lemma we can construct a solution to the BSDE (13). This is the
aim of the following theorem.

Theorem 4.3 Under the assumptions (A 3) and (A 3), the BSDE (13) has a unique solution (Y, Z)
in the space 85" x Hb which satisfies moreover

T P e P
IE | sup e?? ("], P + (/ eps|Ys|2ds) + (/ e”s||Zs||2ds) } <K(@Ef).
0 0

>0

Proof. The uniqueness part of this claim is already proved in Proposition 4.1. We concentrate
ourselves on the existence part. We split the proof into the two following steps: first we show that
the sequence ((Y”, Z”))IN is a Cauchy sequence in the space SQ’T X Hg and then we shall prove
that the limiting process is indeed a solution.

Let us first recall that for each integer n, the process (Y, Z") satisfies Y7, =Y, and Z’ =0
on {t > 7} and moreover solves the BSDE (15) whose generator f, is defined in the following
way: fn(t,y,2) = Licnf(t,y, 2) + LispAy. If we fix m > n, Itd’s formula gives, since we have also
ym o =Ym=Yn  =Yn=e NmTIC for t <m,

MAT MAT

mAT mAaT
e’ 5T 0r P + / e 16Z,|7ds = 2 / P4 8Yy - (fm(s, YT, ZI) — fuls, Y, Z2))ds
t

tAT AT

—/ pel®|6Y, > ds — 2/ e??0Y; - 6 Z;dWs,
t

AT tAT

where we have set §Y = Y™ —Y" §Z = Z™ — Z". 1t follows from the definition of f,,

MmAT MAT
N |5Yy o [ +/ e”*6Z:|*ds = 2/ "0, (f(s, Y, Z7) — f(5,Y", Z7))ds
t

tAT AT

mAT mAT
—/ pel?|6Y,|*ds — 2/ eP?8Y, - 60 Z,dW
t

AT tAT

+2/ 1,5,e°%0Y - (f(s, Y Z7) — /\st)ds.
t

AT
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Since p > ¥2 — 2u, we can find € such that 0 < e < 1 and v = p — v%/e + 2u > 0. Using the
inequality (14) with this e, we deduce from the previous inequality,

eP?|6Y, > ds — 2/ eP?8Y, - 6 Z,dW

tAT

mAT MmAT

eﬂ(t/\r)|5y'tAT|2 +(1— 5)/

tAT

e®|6Z,)* }ds < —I//

tAT

+2/ e"s|6Ys|.|f(s,Y;”,Zg) —)\Ys”|ds.
(

tvn)AT

Now, using the inequality 2ab < wa? + b?/w for the second term of the right hand side of the
previous inequality, with @ < v, we get, for each ¢ < m, noting 8 = min(1 —¢,v — w) > 0,
mAT 1 mAT 5
ep(t’\r)|5YtM|2 + 0 eps{|6Ys|2 + ||5Zs||2}ds < — eps|f(s,YS”,Z;l) - )\YS"| ds
tAT W Jnar (19)
mAT
— 2/ eP?8Ys - 6 ZdWs.
t

AT

In particular, we have, the expectation of the stochastic integral vanishes (cf Lemma 4.2),

[ et s el <] [ oz -zl
0

NAT

Coming back to the inequality (19), Burkholder’s inequality yields

MmAT

IE{ sup e”t|5Yt|2} gKIE{/

MmAT 1/2
eps|f(s,YS”,ZQ)—AYS"|2ds+(/ €|V, 167, | ds) }
o<t<mar 0

AT

But, by an argument already used,

MAT 1/2 1/2 MAT 1/2
KIE{(/ ers|6Ys|2||6Zs||2ds) } < KIE{( sup ept|5yt|2) (/ e”s||6Zs||2ds) }
0 0<t<maTt 0
1 t o] K? T s 2
< ZE| sup e7)0Y)°| + = e?|0Z; | ds]|.
2 0<t<mnat 2 0

As a consequence we obtain the inequality:

MAT

IE{ sup e”t|6Yt|2+/ eps{|5Ys|2+||5Zs||2}ds] < KIE[/
0 n

o |f(s, Y, 27 - AYS"Fds} ,
o<t<mar

AT

and since Y™ = V" if t > m, Y! = £ on {t > 7} for each i, Z" = Z = n; as soon as t > m and
7t = 0 on {t > 7} we deduce from the previous inequality

]E[supep(t”)|6Yt|2+/ e"s|6Ys|2ds+/ eps||6Zs||2ds} <T,, (20)
0 0

t>0

where we have set I'), = ]E[/ e"s|f(s, Y, Z0) — /\YS”|2ds]. But the growth assumption on f

(A 3).3 implies that, up to a constant, I';, is upper bounded by

IE[/ e {[£(5,0,0)" + &+ [V + 1221 + v Y ds|.

AT
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Since, by assumption (A 4), IE [/ e’®| f(s,0, 0)|2ds} and IE[re’T| are finite, the first two terms of
0

the previous upper bound tends to 0 as n goes to co. Moreover, coming back to the definition of
(Y”, Z") for t > n, we have

B[ [ prp iz has] <[ [ e ),

AT NAT

and by Lemma 4.2 (cf (17)) the quantity above tends also to 0 with n going to co. It remains to
check that the same is true for

IE[/T e"s|Ys”|2pds] :IE[/T e(pf2p)‘)s|g“s|2pds],

AT NnAT

where, let us recall it, {; means ]E{e)‘Tf |.7-'s}. By Jensen’s inequality, it is enough to show the
following;:

]E[/ e(p*2Ap)s]E{ep)‘T|f|p |.7-'s}2ds] — 0, as n — 00.

If p > 2p), since E[e?P*7[¢]?P] < E[eP’T|€[?P] < oo and E[e’7[¢[*’] < oo, Lemma 4.1 in [5]
gives

]E[/ e(p—2>\p)s]E{ep>\r|£|P |.7:s}2ds} < 00,
0
from which we get the result.

Now, we deal with the case p < 2pA which implies 0 < 2\ < p < 2pA < pp. Using once more
time Jensen’s inequality, we have

IE[/T e(p_QAp)SIE{epAT|§|p |fs}2ds]

IN

IE[/T IE{erAT|§|2p |fs}ds]

IE[/T Ili]{e(”‘_p)‘”e”’”|§|2‘0 |fs}ds},

IN

and since p > 2\ we have IE{e(A=PPTerem |2 | F} < eGA-rran)E{eprT|¢|?P | F,}. Hence, it
follows,

IE[/T 6<p—2>‘p)sIE{ep>‘T|§|p |fs}2ds]

IN

IE[/T e(”‘_p)]”sI[*]{e‘””T|§|2‘0 |fs}ds]

< ]E[eppr|£|2p]/ e(2A=p)ps 1o

n

Since 2\ — p < 0 and [E[eP*7|¢|?P] < oo, we complete the proof of the last case. Thus we have
shown that T';, converges to 0 as n tends to oo and coming back to the inequality (20), we get

T [ee]

]E{sup e |5y +/ e |6 ds +/ eps||6Zs||2ds] — 0,
£>0 0 0

as n tends to oo, uniformly in m. In particular the sequence ((Y™", Z"))  is a Cauchy sequence in

S5 x HY and thus converges in this space to a process (Y, Z). Moreover, taking into account the
inequality (16) of Lemma 4.2, Fatou’s lemma implies

IE{supe”’p(“T)|Yt|2‘0 + (/ eps|Ys|2ds)p + (/ e”s||Zs||2ds)p} <K& f). (21)
0 0

>0



BSDEs with polynomial generators 21

It remains to check that the process (Y, Z) solves the BSDE (13). To do this, we follow the
discussion of R. W. R. DARLING, E. PARDOUX [5, pp. 1150-1151]. Let us pick a real number «
such that a < 0 A p/2 A pp (this implies that @ < p) and let us fix a nonnegative real number ¢.
Since (Y,,, Z,,) solves the BSDE (15), we have, from It6’s formula, for n > ¢,
ea(t/\‘r)y;;n — ea‘r&- + / eas{f(S’ st’ Z;L) _ aY'sn}ds _ / easz;deS
t

AT tAT

+/ eas{AY;n —f(s,Y;n,Z:)}ds,

AT

and we want to pass to the limit in this equation knowing that

]E[sup Py, — Y +/ eV, — Y 2ds + / "\ Zy — Zg||2ds] — 0.
0 0

t>0

We have, e®(""7)Y;» — (7)Y, in L2. Moreover, Holder’s inequality gives

r T 1/2 T 1/2
IE[/O e’V —Ys|ds} < {IE[/O e’y —YS|2ds}} {IE[/O e(2a_p)sds]}

T T

e*?Y'ds tends to / e**Ysds in L. We remark

tAT

from which we deduce, since 2a < p, that /

tAT

.
also that / e**ZdW converges to e** Z,dW, in L? since, thanks to 2a < p,
t

AT tAT

]E“/ e (20 = Z,) - dW,
tAT

2 T
} < JE[/ eS| Zn — Zs||2ds].
0
Using Holder’s inequality, we have

T 1/2
\/ﬁ{]E[/ 6p8|>\YSn—f(S,YSn,Z;L)|2dS:|} 5

and we have already proved that the right hand side tends to 0 (see the definition of T';). It

IE[/T AV —f(s,YS",Zg)|ds} <

remains to study the term f(s,Y*, Z™)ds. But, since f is Lipschitz in z, we have
tAT

T

r 1/2
IE[/ | f(s, Y, Z0) — f(s,YS",ZS)|ds} < L{E[/ eS| Zn — Zs||2ds}} :
t n

AT vp_QOé

and thus goes to 0 with n. So now, it suffices to show that

AT

]E[/T €| f(5, Y7, Zy) —f(s,Ys,Zs)|ds] —0,
0

to control the limit in the equation. We prove this by showing that each subsequence has a
subsequence for which the above convergence hold. Indeed, if we pick a subsequence (still denoted
by Y™), since we have IE[sup,~, e”""7)[V; — Y;*|?] — 0 there exist a subsequence still denoted
in the same way such that P-a.s. (Vt, Y/ — ;). By the continuity of the function f, IP-a.s.
(Vt, f(t, Y, Z) — f(t, Y1, Zy)). If we prove that

sup]E[/T e“s|f(s,Ys”,Zs) — f(s,Ys,Zs)|2ds] < 00,
N 0
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then the sequence |f(-, Y™, Z.) — f(;,Y, Z)| will be a uniformly integrable sequence for the finite
measure e**1,<,ds @ dIP (remember that o < 0)and thus converging in L*(e®*1,<,ds ® dIP) which
is the desired result. But from the growth assumption on f, we have

i s n 2 T s n
E[ [ e, 20 - o Yo Z)fds] < KE[ [ {175,002 + |22 + 121 }ds]
0 0
+K1E[/ ek + |1g"|2p+|ys|2p}ds].
0

Since p > «, the inequalities (16)—(21), implies that

sup [ [ e {175,000 + w+ 1211 + 12, s

N 0
is finite. Moreover,

T (oo}
IE[/ eas|Ys"|2pds§IE[ sup eppt|Yt"|2p}/ ela—pP)s g
0 0

0<t<r

Since pp > «, we conclude the proof of the convergence of the last term by using the first part of
the inequalities (16)—(21). Passing to the limit when n goes to infinity, we get, for each ¢,

T T

eas{f(37YS7ZS) —CEYs}dS—/ eOstdes-

tAT

ea(tAT)Yi — e‘”f—f-/

tAT

It then follows by It6’s formula that (Y, Z) solves the BSDE (13). O
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