
MATHEMATICS OF OPERATIONS RESEARCH

Vol. 33, No. 2, May 2008, pp. 446–460
issn 0364-765X �eissn 1526-5471 �08 �3302 �0446

informs ®

doi 10.1287/moor.1070.0301
© 2008 INFORMS

Optimal Multiple Stopping of Linear Diffusions

René Carmona, Savas Dayanik
Department of Operations Research and Financial Engineering, and the Bendheim Center for Finance,

Princeton University, Princeton, New Jersey 08544 {rcarmona@princeton.edu, sdayanik@princeton.edu}

Motivated by the analysis of financial instruments with multiple exercise rights of American type and mean reverting underly-
ers, we formulate and solve the optimal multiple-stopping problem for a general linear regular diffusion process and a general
reward function. Instead of relying on specific properties of geometric Brownian motion and call and put option payoffs as
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1. Introduction. The purpose of this paper is to contribute to the mathematical theory of optimal multiple
stopping, as motivated by the analysis of financial options with multiple exercises of the American type. It is
surprising that, despite a simple and intuitively natural formulation, this problem did not attract in the probability
literature the attention it deserves. Instruments with multiple American exercises are ubiquitous in financial
engineering. We find them in the design and analysis of executive stock option programs (see, for example,
Sircar and Xiong [31], Leung and Sircar [24], and the references therein), in the indentures of many over-the-
counter exotic fixed-income markets instruments (see, for example, Meinshausen and Hambly [28] for a Monte
Carlo analysis of multiple chooser swaps), or in the energy markets (see, for example, Jaillet et al. [17] for the
numerical analysis of energy swing contracts, and Carmona and Touzi [11] for their mathematical analysis in
the case of geometric Brownian motion).

In this paper, we investigate the multiple optimal stopping problem for general linear regular diffusion pro-
cesses. Even if geometric Brownian motion can be viewed as an appropriate model for some applications (e.g.,
executive stock option programs), it fails to capture important characteristic features of interest rates and com-
modities time series, mean-reversion being the most obvious. The interested reader is referred to Schwartz [29],
Jaillet et al. [17], Barlow [3], Dixit and Pindyck [14] for examples. Even if mean-reversion is only documented
for the historical statistics of the underlyers, all the pricing (i.e., risk-neutral) models used by financial engi-
neers account for this property. Therefore, pricing multi-exercise American-type options under diffusion models
beyond geometric Brownian motion is important. Finally, we stress the fact that our analysis is not limited to the
case of the hockey-stick payoff functions of the call and put options, because it handles general payoff functions.

First, we show as in Carmona and Touzi [11] that, by introducing appropriate Snell envelopes, the optimal
multiple-stopping problem can be reduced to a sequence of ordinary optimal stopping problems that can be
solved iteratively. Our result here is, however, stronger than theirs in several directions. Carmona and Touzi [11]
show it when (i) the payoff process has a.s. continuous sample paths, (ii) its supremum over the entire horizon
has some finite high-order moment, and (iii) it is adapted to a left-continuous filtration, all of whose martingales
must also have continuous sample paths. They impose those conditions in order to make sure that Snell envelopes
have a.s. continuous sample paths and are left-continuous in expectation. Their first and third conditions disallow
jump processes, which we also come across in the literature as proper models for the underlyers in pricing certain
financial options in energy markets. Moreover, their second condition excludes general payoff functions that are
encountered in the ever-expanding world of complex compounded financial and real options. Since Carmona and
Touzi [11] focus exclusively on pricing multiple-exercise put options (namely, options with bounded terminal
payoff functions), this compromise in their treatment of the general optimal multiple-stopping problem is suitable
for their purpose and allows them to avoid technical difficulties, which they call “beyond the scope of [their]
paper.” In this paper, one of our purposes is to price multiple-exercise options with general payoff processes,
and we are able to prove the key result, namely the reduction of general optimal multiple-stopping problems to
a sequence of ordinary optimal stopping problems, for payoff processes (i) with càdlàg (right continuous with
left limits) sample paths, (ii) without any conditions on the moments of the supremum of the payoff process,
and (iii) adapted to any filtration satisfying the usual conditions.
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Carmona and Touzi [11] show this key reduction result primarily for the infinite-horizon problems, which
immediately extends to finite-horizon problems after the following simple observation: every finite-horizon
problem may be turned into an infinite-horizon problem by simply setting the value of the payoff process
identically to zero after the maturity. Here we also limit the discussion to infinite-horizon optimal multiple-
stopping problems, but the same results extend to finite-horizon problems in the same trivial way. Now that we
prove here the key reduction result under more general conditions as described above, their numerical algorithms
for finite-horizon problems, based on time discretization and successive runs of backward-dynamic-programming
iterations, is unleashed from the restraints put on the payoff processes by those authors only to prove the same
key reduction result, and this provides the theoretical justification for applying the same numerical algorithms
to finite-horizon problems with much more general payoff processes.

The remainder of Carmona and Touzi’s [11] work is exclusively on pricing infinite-horizon multiple-exercise
put option for geometric Brownian motion, whereas we deal in this paper with infinite-horizon multiple-exercise
options with general payoff functions for general regular linear diffusions. The boundedness of the put option’s
terminal payoff function allows them to use the basic reduction result; as argued above, the limitations of
their result limit the application of the same idea to more general (e.g., unbounded) payoff functions—even
when the underlyer is a geometric Brownian motion. Since the put option’s payoff function is also decreasing
and vanishes for large values of the underlyer, the optimal strategy is rather obvious (namely, exercise every
right—whenever it is allowed—as soon as the underlyer is found below a suitable threshold). Therefore, the
majority of their remaining work is to verify the correctness of this guess. For more general payoff functions,
it is often difficult to even guess an optimal exercise strategy, as illustrated by some examples in Dayanik
and Karatzas [13] and Dayanik [12]. Verification of a good guess is also very demanding in general; very
popular variational formulation, also hinted at by Carmona and Touzi [11], typically writes down a series of
free-boundary second-order ordinary differential equations (one for each disconnected continuation region), tries
to solve them simultaneously, and uses various techniques to show that one of the solutions indeed coincides
with the value function of the optimal stopping problem. This procedure requires that one pay close attention to
each special feature of the underlying problem and that special skills and tools (such as viscosity solutions of
differential equations) be used, because the variational methods do not offer constructive algorithms. Carmona
and Touzi [11] manage to avoid this burden of variational formulation and verify the correctness of their guess
rather easily, thanks to very explicit formulas for the Laplace transforms of (geometric) Brownian motion’s
one-sided exit times. For general payoff functions or diffusion processes, or both, those advantages disappear,
and, unfortunately, one cannot go far enough with variational methods, either.

Instead, in this paper we use constructive potential-theoretic solution methods developed by Dayanik and
Karatzas [13] and Dayanik [12] for optimal stopping of linear diffusions. We show how to construct the value
function of an optimal multiple-stopping problem with general payoff function and general underlying linear
diffusion. We describe when optimal multiple-stopping strategies exist and how to find them. We illustrate the
methods on several examples. We show that exercise boundaries of perpetual call and put options are given by
a sequence of points. We analyze several explicit diffusion models for which we give algorithmic constructions
of these exercise boundaries.

The reduction of optimal multiple-stopping problem to a sequence of ordinary optimal stopping problems
reminds similar approaches implemented in the literature to reduce optimal singular/impulse control and switch-
ing problems to a sequence of optimal stopping problems; see, for example, Karatzas and Shreve [18, 19],
Boetius and Kohlmann [5], Boetius [4], Yushkevich [32, 33], Cairoli and Dalang [8, Chapter 10], Mandelbaum
and Vanderbei [26, 27], Mandelbaum et al. [25], Carmona and Ludkovski [10, 9]. The common trait of our
paper and these works is in the reinterpretation of dynamic-programming equation, which may be described in
the following general terms. For a general stochastic control problem with finite number of control actions, one
can identify multiple-stopping problems after writing down the dynamic-programming equation. The state space
of the controlled process can often be divided into disjoint subsets in which taking a specific control action is
optimal. Then the original control problem may be seen as a sequence of optimal stopping problems, which
determine switching times between different control actions.

We close this introduction summarizing the content of the paper. First, we give an overview of the infinite-
horizon optimal stopping problem for general continuous-parameter processes in §2. In §3, we formulate the
optimal multiple-stopping problem for general continuous-parameter processes and show that it can be reduced
to a sequence of ordinary optimal stopping problems. Then we specialize to standard Markov processes in §4
and describe the solution in terms of excessive functions. We revisit the same problem for one-dimensional
time-homogeneous diffusions in §5, and illustrate the methods on examples in §6.
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2. Optimal stopping theory: A short review. As we introduce the notation used throughout the paper, we
summarize the main results of Karatzas and Shreve [21, Appendix D] on optimal stopping for a continuous-
parameter process. Let �Y �t���t� 0 ≤ t ≤ T 	 be a nonnegative process with right-continuous paths and Y �T �≤
limt↑T Y �t� a.s., defined on a probability space �
�� ���, and adapted to a filtration � � ��t	0≤t≤T that satisfies
the usual conditions. We shall assume that � �0� contains the sets of probability zero or one. The time horizon
T ∈ �0�+�� is a constant. If T =+�, then �� � ��

⋃
0≤t<+��t� and Y �+��� limt→+� Y �t�. Let � be the

collection of �-stopping times with values in �0� T �, and �� � �� ∈� � � ≥ �	 for every � ∈� . The classical
optimal stopping problem is to compute

Z1�0�� sup
�∈�

Ɛ�Y ���	�

and to find �∗ ∈� at which the above supremum is attained, if such a stopping time exists. For each stopping
time � ∈� we introduce the random variable

Z1���� ess sup
�∈��

Ɛ�Y ��� ���	�

Under the assumption that Z1�0� is finite, the following results hold:

Proposition 2.1. The process �Z1�t�� 0 ≤ t ≤ T 	 has a modification �Zr
1�t�� 0 ≤ t ≤ T 	 that is a super-

martingale with càdlàg paths. Moreover, Zr
1���=Z1��� a.s. for every � ∈� .

Let �Xi�t�� 0 ≤ t ≤ T 	, i = 1�2 be two arbitrary processes. One says that the process X1 dominates the
process X2 if ��X1�t�≥ X2�t� for every 0 ≤ t ≤ T 	= 1. This notion is needed to guarantee the uniqueness of
the process Zr

1�·� identified in Proposition 2.1; see Proposition 2.2 below. It is called the Snell envelope of
�Y �t�� 0 ≤ t ≤ T 	.

Proposition 2.2. The process Zr
1�·� dominates Y �·�, and if X�·� is another càdlàg supermartingale domi-

nating Y �·�, then X�·� also dominates Zr
1�·�.

Lemma 2.1. Let � ∈� and ��k�k≥1 ⊂�� be such that �k ↓ � almost surely. Then∫
A
Zr

1���d� = lim
k→�

∫
A
Zr

1��k�d� a�s�� A ∈�� �

Proof. Fix any A ∈ �� . Since Zr
1�·� has right-continuous paths, Fatou’s lemma implies

∫
A
Zr

1���d� ≤
lim

∫
A
Zr

1��k�d� . On the other hand,
∫
A
Zr

1���d� ≥ lim
∫
A
Zr

1��k�d� by optional sampling, since Zr�·� is a
nonnegative �-supermartingale. �

Proposition 2.3. A stopping time �∗ is optimal if and only if (i) Zr
1��

∗�= Y ��∗� a.s., and (ii) the stopped
supermartingale �Zr�t ∧ �∗�� 0 ≤ t ≤ T 	 is a martingale.

3. Multiple-stopping problem. In the remainder of this paper, we introduce and study perpetual optimal
multiple-stopping problems; namely, we set T = +�. Let � > 0 be a given constant and let us define � n

� �

���1� � � � � �n�� �1 ∈��� �i ∈��i−1+�� i= 2� � � � � n	, n≥ 1 for every stopping time � ∈� , and

Zn�0�� sup
��1� � � � ��n�∈� n

0

Ɛ�Y ��1�+ · · ·+ Y ��n��� n≥ 1� (1)

The number Zn�0� is the maximum expected payoff of a multiple-stopping option if it gives to the holder n≥ 1
rights to mark the underlying reward process, and if the holder is not allowed to mark more than once within
any time window of size less than �. The constant �> 0 is sometimes called a refracting time. For example, in
swing options a refracting time is the minimum time a seller needs in order to fulfill an unscheduled delivery
of additional commodity. It is usually determined by the technological constraints on the production facilities or
transmission networks; see, for example, Jaillet et al. [17], Carmona and Touzi [11].

The optimal multiple-stopping problem is to find the maximum expected reward Zn�0�, and an optimal
exercise strategy ��1� � � � � �n� ∈� n

0 that attains the supremum in (1), if one exists. We shall show that Zn�0� can
be calculated by solving n optimal stopping problems sequentially. Let us introduce

Z0���≡ 0� and Zn���� ess sup
��1� � � � ��n�∈� n

�

Ɛ

{ n∑
i=1

Y ��i�

∣∣∣∣��

}
� � ∈� � (2)

We will assume that Z1�0� is finite. Since, as it is easily seen, Zn�0�≤ nZ1�0�, every Zn�0�, n≥ 1 will also be
finite.
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Lemma 3.1. For every � ∈� , the family � � �Ɛ�
∑n

i=1 Y ��i� � �� �� ��1� � � � � �n� ∈� n
� 	 is directed upwards,

and there exists a sequence ���k
1 � � � � � �

k
n �	k≥1 ⊂ � n

� such that Zn��� = limk→� ↑ Ɛ�
∑n

i=1 Y ��
k
i � � �� � almost

surely.

Proof. For ��1� � � � � �n� and ��1� � � � ��n� in � n
� , define the event

A�

{
Ɛ

[ n∑
i=1

Y ��i� ���

]
≥ Ɛ

[ n∑
i=1

Y ��i� ���

]}
�

and the stopping times �i � �i1A +�i1
\A, i= 1� � � � � n. Then ��1� � � � � �n� ∈� n
� , and

Ɛ

[ n∑
i=1

Y ��i�

∣∣∣∣��

]
=max

(
Ɛ

[ n∑
i=1

Y ��i�

∣∣∣∣��

]
�Ɛ

[ n∑
i=1

Y ��i�

∣∣∣∣��

])
�

Hence, � is directed upwards, and the second part follows from the properties of an essential supremum; see,
e.g., Karatzas and Shreve [21, Appendix A]. �

Lemma 3.2. If n≥ 0, � ∈� , and � ∈�� , then Ɛ�Zn��� ���	≤Zn��� almost surely.

Proof. Let ���k
1 � � � � � �

k
n �	k≥1 ⊂� n

� be as in Lemma 3.1. Then we have

Ɛ�Zn��� ���	= lim
k→�

Ɛ

{ n∑
i=1

Y ��k
i � ���

}
≤Zn���

almost surely by the monotone convergence theorem for conditional expectations. �

Proposition 3.1. For every � ∈� and n≥ 0, we have

Zn+1���= ess sup
�∈��

Ɛ�Y ���+ Ɛ�Zn�� + �� ��� � ���	 a�s� (3)

Proof. Fix �1 ∈�� . By Lemma 3.1, there exists a sequence ���k
2 � � � � � �

k
n+1�	k≥1 in � n

�1+� such that Zn��1+��

= limk→� ↑ Ɛ�
∑n+1

i=2 Y ��
k
i � � � ��1 + ��	 almost surely. For every k≥ 1, we have ��1� �

k
2 � � � � � �

k
n+1� ∈� n+1

� , and,
by the monotone convergence theorem,

Zn+1��� ≥ lim
k→�

Ɛ

{
Y ��1�+

n+1∑
i=2

Y ��k
i �

∣∣∣∣��

}

= Ɛ

{
Y ��1�+ lim

k→�
Ɛ

{ n+1∑
i=2

Y ��k
i �

∣∣∣∣� ��1 + ��

}∣∣∣∣��

}
= Ɛ�Y ��1�+Zn��1 + �� ���	

= Ɛ�Y ��1�+ Ɛ�Zn��1 + �� �� ��1�� ���	�

Since �1 ∈�� is arbitrary, this implies that Zn+1��� is greater than or equal to the right-hand side of (3) almost
surely. On the other hand, for every ��1� � � � � �n+1� ∈� n+1

� , we have �1 ∈�� and ��2� � � � � �n+1� ∈� n
�1+�, and

Ɛ

{
Y ��1�+

n+1∑
i=2

Y ��i�

∣∣∣∣��

}
= Ɛ

{
Y ��1�+ Ɛ

{ n+1∑
i=2

Y ��i�

∣∣∣∣��1+�

}∣∣∣∣��

}

≤ Ɛ�Y ��1�+Zn��1 + �� ���	= Ɛ�Y ��1�+ Ɛ�Zn��1 + �� ���1
	 ���	

≤ ess sup
�∈��

Ɛ�Y ���+ Ɛ�Zn�� + �� ��� � ���	�

which proves the opposite inequality. �

Let us now introduce the random variables

�Zn�t�� Ɛ�Zn�t+ �� ��t�� t ≥ 0� n≥ 0� (4)

Suppose that, for some k≥0, � �Zk�t�� t≥0	 has an adapted càdlàg modification �Zr
k�·�, and that Ɛ�Zk��+�� ���	

= �Zr
k��� a.s. for every � ∈� . Then it follows from Proposition 3.1 that Zk+1���= ess sup�∈��

Ɛ�Y ���+ �Zr
k��� ���	

a.s., or
Zk+1���= ess sup

�∈��

Ɛ�Yk+1��� ���	 a.s., � ∈� � (5)
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where the payoff process is Yk+1�t� � Y �t�+ �Zr
k�t�, t ≥ 0. Since Yk+1�·� is a nonnegative �-adapted process

with right-continuous sample paths, Proposition 2.1 implies that the Snell envelope Zr
k+1�·� of the process

�Yk+1�t�� t ≥ 0	 exists, and Zk+1���=Zr
k+1��� a.s. for every � ∈� .

Using the Snell envelope Zr
k+1�·�, we can show that �Zk+1�·� has an adapted càdlàg modification �Zr

k+1�·� such
that Ɛ�Zk+1�� + �� � ��	 = �Zr

k+1��� a.s. for every � ∈ � . We then proceed in the same manner as before. In
the meantime, since Z0�·�≡ 0 is itself the Snell envelope of Y0�·�≡ 0, we can take k = 0 at the beginning of
the previous paragraph and characterize Zn�·� for every n≥ 0 in terms of the Snell envelopes of a sequence of
reward processes.

Lemma 3.3. The process � �Zn�t���t� t ≥ 0	, n≥ 0 of (4) is a supermartingale.

Proof. For 0 ≤ s ≤ t, Ɛ� �Zn�t� � �s	= Ɛ�Zn�t+ �� � �s	= Ɛ�Ɛ�Zn�t+ �� � �s+�	 � �s	≤ Ɛ�Zn�s+ �� � �s	=�Zn�s� by Lemma 3.2. �

Proposition 3.2. For every n≥0, �Zn�·� of (4) has an adapted càdlàg modification �Zr
n�·�, and Ɛ�Zn��+�� ���	

= �Zr
n��� a.s. for every � ∈� . Furthermore,

Zn+1���= ess sup
�∈��

Ɛ�Yn+1��� ���	 a�s� ∀� ∈� � (6)

where Yn+1�t�� Y �t�+ �Zr
n�t�, t ≥ 0 is an �-adapted càdlàg process.

Remark 3.1. Proposition 2.1 implies that, for n≥ 0 the Snell envelope Zr
n�·� of the process �Yn�t�� t ≥ 0	

exists, and
Zn���=Zr

n��� a.s. ∀� ∈� � (7)

Moreover, Ɛ�Zr
n�� + �� ���	= �Zr

n��� a.s. for every � ∈� .
Proof of Proposition 3.2. Since Z0�·� ≡ 0, we can take �Zr

0�·� ≡ 0. Moreover, Y1�t� = Y �t�, t ≥ 0 is
�-adapted with right-continuous sample paths, and the claims hold for n= 0.

Let us assume that the proposition holds for n− 1 and prove it for n. By hypothesis, �Zr
n−1 exists. Therefore,

Yn�t�� Y �t�+ �Zr
n−1�t� is adapted to � and has right-continuous sample paths. By Remark 3.1, the Snell envelope

Zr
n�·� of Yn�·� exists, and

Ɛ� �Zn�t�	= Ɛ�Zn�t+ ��	= Ɛ�Zr
n�t+ ��	� t ≥ 0� (8)

For every �tk�k≥1 ⊂� such that tk ↓ t, let � ≡ t and �k ≡ tk +� and A=
 in Lemma 2.1. From (8), we obtain
limk→� Ɛ� �Zn�tk�	= limk→� Ɛ�Zr

n�tk+��	= Ɛ�Zr
n�t+��	= Ɛ� �Zn�t�	; namely, t �→ Ɛ� �Zn�t�	 is right continuous.

Since � �Zn�t�� t ≥ 0	 is also a supermartingale by Lemma 3.3, �Zn�·� has an �-adapted càdlàg modification �Zr
n�·�;

see Karatzas and Shreve [20, Theorem 3.13].
The process � �Zr

n�t�� t ≥ 0	 is a supermartingale with càdlàg paths. Thus, for every � ∈ � and for every
sequence ��k�k≥1 ⊂�� such that �k ↓ � , one can check as in Lemma 2.1 that

∫
A

�Zr
n���d� = lim

k→�

∫
A

�Zr
n��k�d� a.s.� A ∈�� � (9)

For every k≥ 1 and t ∈�, define �k�0�� 0 and �k�t�� ki/2k if k�i− 1�/2k < t ≤ ki/2k for some i≥ 1. For
every stopping time � ∈� , �k � �k��� is a stopping time that takes countably many distinct values, and �k ↓ �
almost surely. Thus ∫

A

�Zr
n��k�d� =

∫
A
Ɛ�Zn��k + �� ���k

	d�

=
∫
A
Zn��k + ��d� =

∫
A
Zr
n��k + ��d� a.s.� A ∈�� � (10)

since �� �Zr
n�t�= Ɛ�Zn�t+�� ��t	�= 1 for every t ≥ 0, and (7) holds. By taking the limits of both sides in (10),

we obtain ∫
A

�Zr
n���d� =

∫
A
Zr
n�� + ��d� =

∫
A
Zn�� + ��d� a.s.� A ∈�� � (11)

following from (9), Lemma 2.1, and (7). Finally, (11) implies �Zr
n���= Ɛ�Zn�� + �� � ��	 almost surely. The

remainder follows from Proposition 3.1. �
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4. Markovian case. Let X = �X�t���t��x� be a standard Markov process on a semicompact state space
�E���. Let h# E �→ �0�+�� be a measurable C0-continuous function; i.e., limt↓0 h�X�t��= h�X�0�� a.s., and
let % denote the risk-free interest rate. The reward process Y �t�� e−%th�X�t��, t ≥ 0 of the previous section is
nonnegative �-adapted and right continuous, and the value functions Vn are defined on the state space by

Vn�x�� sup
��1� � � � ��n�∈� n

0

Ɛx

{ n∑
i=1

e−%�ih�X��i��

}
� x ∈E� n≥ 1� (12)

In this section, we characterize Vn�·� of (12) in terms of the %-excessive functions of the Markov process.
Recall that a measurable function f # E �→ �−��+�� is said to be %-excessive for X, if for every x ∈E

f �x�≥ Ɛx�e
−%tf �X�t��	� t ≥ 0� and f �x�= lim

t↓0
Ɛx�e

−%tf �X�t��	� (13)

The following results are well known; see, e.g., Shiryaev [30, pp. 116–117] and Fakeev [15]:
E.1. A nonnegative %-excessive function is C0-continuous.
E.2. If f �·� is a finite %-excessive function, then e−%tf �X�t��, t ≥ 0 is a càdlàg �-adapted supermartingale.
E.3. If g# E �→ �0�+�� is measurable and C0-continuous, then the smallest %-excessive majorant of g�·�

exists.
E.4. If g�·� is the same as in E.3, then V �x� � sup�∈� Ɛx�e

−%�g�X����	, x ∈ E is the smallest %-excessive
majorant of g�·�. For every t ≥ 0,

ess sup
�∈�t

Ɛx�e
−%�g�X���� ��t	= e−%tV �X�t��� �x-a.s.

If V is finite, then �e−%tV �X�t��	t≥0 is the Snell envelope of �e−%tg�X�t��	t≥0.

Proposition 4.1. Suppose V1 is finite. Let V0 ≡ 0, and define for every n≥ 1

gn�x�� Ɛx�e
−%�Vn�X����	 and hn+1�x�� h�x�+ gn�x�� x ∈E� (14)

Then Vn is the smallest %-excessive majorant of hn for every n≥ 1, and for t ≥ 0

ess sup
��1� � � � ��n�∈� n

t

Ɛx

{ n∑
i=1

e−%�ih�X��i��

∣∣∣∣�t

}
= e−%tVn�X�t��� �x-a.s. (15)

Proof. The proposition is true for V1 by E.4. We shall assume that it is true for n, and prove it for n+ 1
by using Proposition 3.2.

Let Zn and �Zn be as in (2) and (4), respectively. By induction hypothesis and (15), we have Zn�t� =
e−%tVn�X�t�� a.s. for every t ≥ 0. Therefore,

�Zn�t�= Ɛx�Zn�t+ �� ��t	= Ɛx�e
−%�t+��Vn�X�t+ ��� ��t	= e−%tgn�X�t��� a.s.

for every t ≥ 0. By Proposition 3.2, Vn+1�x�= sup�∈�0
Ɛx�Yn+1���	, where

Yn+1�t�= Y �t�+ �Zn�t�= e−%t�h+ gn��X�t�� a.s.� t ≥ 0� (16)

If we can show that gn is C0-continuous, then h + gn will be a nonnegative C0-continuous function, and
its smallest %-excessive majorant will exist by E.3. Then E.4 will imply that Vn+1 is the smallest %-excessive
majorant of h+ gn, and

e−%tVn+1�X�t�� = ess sup
�∈�t

Ɛx�e
−%��h+ gn��X���� ��t	 by E.4

= ess sup
�∈�t

Ɛx�Yn+1��� ��t	 by (16)

= Zn+1�t� by (6)

= ess sup
��1� � � � ��n+1�∈� n+1

t

Ɛx

{n+1∑
i=1

e−%�ih�X��i��

∣∣∣∣�t

}
by (2)

�x-a.s. for every t ≥ 0, which proves (15) for n+ 1.
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We claim that gn is nonnegative and %-excessive. The C0-continuity of gn will then follow from E.1. It is
nonnegative since h, and therefore Vn is nonnegative. Because Vn ≤ nV1 and V1 is finite, Vn is finite. By induction
hypothesis, Vn is a finite %-excessive function. By E.2, e−%tVn�X�t�� is a càdlàg supermartingale. Therefore,
t �→ Ɛx�e

−%tVn�X�t��	 is right continuous, and

lim
t↓0

Ɛx�e
−%tgn�X�t��	= lim

t↓0
Ɛx�e

−%�t+��Vn�X�t+ ���	= gn�x��

Finally, Ɛx�e
−%tgn�X�t��	 = Ɛx�e

−%�t+��Vn�X�t + ���	 ≤ Ɛx�e
−%�Vn�X����	 = gn�x�. Hence, gn is %-

excessive. �

5. The case of regular linear diffusions. In the sequel we suppose that the process X of §4 is a time-
homogeneous regular linear diffusion with dynamics

dX�t�=*�X�t��dt+��X�t��dB�t�� t ≥ 0�

where B is a standard Brownian motion on �, and � = ��t	t≥0 is the augmentation of the natural filtration of X
that satisfies the usual conditions. We shall assume that the state space of X is an interval 	 = �a� b� for some
−�≤ a< b ≤+�, and that the boundaries a and b are natural (other boundary types can be handled similarly;
see Dayanik and Karatzas [13] and Dayanik [12]). Let �y be the first hitting time of y ∈	 by X, and let c ∈ I
be a fixed point of the state space. For every %≥ 0, we set

0�x��

{
Ɛx
{
e−%�c1��c<�	

}
� x≤ c

1/Ɛc
{
e−%�x1��x<�	

}
� x > c

}
� 1�x��

{
1/Ɛc

{
e−%�x1��x<�	

}
� x≤ c

Ɛx
{
e−%�c1��c<�	

}
� x > c

}
� (17)

and

F �x�= 0�x�

1�x�
� x ∈	 � (18)

Then F �·� is continuous and strictly increasing, F �a+�= 0 and F �b−�=+� for every %> 0; see, e.g., Itô and
McKean [16], Karlin and Taylor [22]. In this section, we shall redefine

h�X����= 0 on �� =+�	� (19)

If h�·� is the payoff function of an American-type option, then (19) implies that no payment is received unless the
option is exercised. Therefore, (19) is more natural in finance applications than setting h�X����= limt→� h�X�t��
on �� =�	. However, the results of previous sections are still valid under (19), and %-excessive functions are
easily characterized in terms of the functions F and 1.

Proposition 5.1. A measurable function U# 	 �→ �0�+�� is %-excessive for X if and only if �U/1� � F −1

is concave on �0�+��, for every %≥ 0.

Proof. If U is nonnegative, finite, and %-excessive, then E.2 and optional sampling imply that U�x� ≥
Ɛx�e

−%�U�X����	 for all � ∈� and x ∈	 . Therefore, the concavity of �U/1� � F −1 follows from Dayanik and
Karatzas [13, Proposition 5.9].

If �U/1��F −1 is concave, then U is continuous, and U�x�≥ Ɛx�e
−%�U�X����	 for every � ∈� and x ∈	 by

the same proposition cited above. Therefore, e−%tU �X�t�� is a càdlàg supermartingale, and t �→ Ɛx�e
−%tU �X�t��	

is right continuous, and (13) follows. �

Proposition 5.2. All the Vn’s are finite if and only if

4a � lim
x↓a

h+�x�
1�x�

<+� and 4b � lim
x↑b

h+�x�
0�x�

<+�� (20)

Moreover, if (i) (20) holds, and (ii) hn is as in Proposition 4.1, and (iii) Wn is the smallest nonnegative concave
majorant of Hn � �hn/1� � F −1 on �0�+��, then

Vn�x�= 1�x�Wn�F �x��� x ∈	� n≥ 1� (21)

Proof. The finiteness of Vn follows from Proposition 5.10 and V1 ≤ Vn ≤ nV1, n ≥ 1, and the rest from
Proposition 5.12 in Dayanik and Karatzas [13]. �
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In the remainder of this section, we assume that (20) holds. By Propositions 5.1 and 5.2, Vn�·� and gn�·� are
finite and continuous, and if

�n � �x ∈	 # Vn�x�= hn�x�	 and �n � inf�t ≥ 0# X�t� ∈ �n	� (22)

then �n is closed, and �n is a stopping time for every n≥ 1. By Proposition 4.1,

Vn�x�= sup
�∈�

Ɛx�e
−%�hn�X����	� x ∈	 � (23)

If (23) has an optimal stopping time, then �n is also optimal for the same problem. In fact, Dayanik and
Karatzas [13, Proposition 5.13 and 5.14] showed the following:

Proposition 5.3. Fix any n≥ 1. The stopping time �n of (22) is optimal for (23), if and only if either

4�n�a � lim
x↓a

h+
n �x�

1�x�
= 0 and 4

�n�
b � lim

x↑b
h+
n �x�

0�x�
= 0� (24)

or (i) if 4�n�a > 0, then there is no r ∈	 such that �a� r�⊆	\�n, and (ii) if 4�n�b > 0, then there is no l ∈	 such
that �l� b�⊆	\�n.

Proposition 5.4. Suppose that the stopping time �n of (22) is optimal for (23) for every n= 1� � � � �m. Let
�
�1�
1 � �1, and introduce for every n≥ 2, the stopping times

�
�n�
1 � �n� and �

�n�
i � �

�n�
i−1 + �+�n−i+1 � 9��n�i−1+�

� i= 2� � � � � n� (25)

where 9 is the time-shift operator. Then the stopping strategy ��
�n�
1 � � � � � ��n�

n � ∈� n is optimal for the multiple-
stopping problem (12) for every n= 1� � � � �m.

Proof. We will prove the proposition by induction on n. For n= 1, V1�x�= Ɛx�e
−%�1h1�X�1

�	= Ɛx�e
−%�

�1�
1 ·

h�X
�
�1�
1
�	� and �

�1�
1 ∈� 1 is indeed optimal.

Let us assume that ���n�
1 � � � � � ��n�

n � is optimal for (12) for some 1≤ n≤m− 1 and prove the same for n+ 1.
Since �

�n+1�
1 = �n+1 is optimal for (23) for n+ 1,

Vn+1�x� = Ɛx
{
e−%�

�n+1�
1 hn+1

(
X

�
�n+1�
1

)}= Ɛx
{
e−%�

�n+1�
1 �h+ gn�

(
X

�
�n+1�
1

)}
= Ɛx

{
e−%�

�n+1�
1 h

(
X

�
�n+1�
1

)}+ Ɛx
{
e−%��

�n+1�
1 +��Vn

(
X

�
�n+1�
1 +�

)}
= Ɛx

{
e−%�

�n+1�
1 h

(
X

�
�n+1�
1

)}+ Ɛx

{
e−%��

�n+1�
1 +��ƐX

�
�n+1�
1 +�

n∑
i=1

e−%�
�n�
i h

(
X

�
�n�
i

)}

= Ɛx
{
e−%�

�n+1�
1 h

(
X

�
�n+1�
1

)}+ Ɛx

{ n∑
i=1

e−%:
�n+1�
i h

(
X

:
�n+1�
i

)}
�

where :
�n+1�
i � �

�n+1�
1 + �+ �

�n�
i � 9

�
�n+1�
1 +�

, i = 1� � � � � n. The proof of the induction step will follow once we
show that

:
�n+1�
i = �

�n+1�
i+1 � i= 1� � � � � n� (26)

Note that :�n+1�
1 � �

�n+1�
1 +�+�n �9��n+1�

1 +�
= �

�n+1�
2 , and (26) holds for i= 1. Suppose (26) is true for 1≤ i≤

n− 1, and prove the same for i+ 1. We have

:
�n+1�
i+1 � �

�n+1�
1 + �+ �

�n�
i+1 � 9��n+1�

1 +�

= �
�n+1�
1 + �+ (

�
�n�
i + �+�n−i � 9��n�i +�

) � 9
�
�n+1�
1 +�

(27)

by the definition (25) of ��n�
i+1. Since :

�n+1�
i � �

�n+1�
1 + �+ �

�n�
i � 9

�
�n+1�
1 +�

= �
�n+1�
i+1 by the induction hypothesis, it

follows that
��

�n�
i + �� � 9

�
�n+1�
1 +�

= �
�n�
i � 9

�
�n+1�
1 +�

+ �= �
�n+1�
i+1 − �

�n+1�
1 �

and, since �Y � 9�� � 9� = Y � 9�+��9� for every random variable Y and stopping times � and � , we have(
�n−i � 9��n�i +�

) � 9
�
�n+1�
1 +�

= �n−i � 9��n+1�
i+1 +�

�
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By plugging the last two equalities back into (27), we obtain

:
�n+1�
i+1 = �

�n+1�
1 + �+ (

�
�n+1�
i+1 − �

�n+1�
1 +�n−i � 9��n+1�

i+1 +�

)
= �

�n+1�
i+1 + �+�n−i � 9��n+1�

i+1 +�
= �

�n+1�
i+2 �

which completes the proof of both induction hypotheses. �

Corollary 5.1. If both 4a and 4b of (20) are zero, then (24) holds, and ��
�n�
1 � � � � � ��n�

n � is optimal for the
multiple-stopping problem (12) for every n≥ 1.

Proof. If we establish (24), the rest follows from Propositions 5.3 and 5.4. Since h ≤ hn = h + gn−1 ≤
h+Vn−1 ≤ �n+ 1�V1, and the mapping x �→ x+ is increasing h+ ≤ h+

n ≤ �n+ 1�V1.
Dayanik and Karatzas [13, Proposition 5.10] prove that limx↓a�V1/1��x� = 4a and limx↑b�V1/0��x� = 4b.

From the previous inequalities, it follows 4a ≤ 4�n�a = limx↓a ≤ �n+ 1�4a and 4b ≤ 4
�n�
b = limx↑b ≤ �n+ 1�4b.

Since 4a = 4b = 0, (24) follows. �

6. Examples. This final section is devoted to a detailed analysis of a set of natural examples for which
explicit computations can be performed.

6.1. Brownian motion. Let X be one-dimensional standard Brownian motion on 	 =�, the reward function
be h�x�� x+ for x ∈	 , and fix %> 0.

The functions 0�·� and 1�·� of (17) are the unique (up to a scalar multiple) increasing and decreasing solu-
tions of �1/2�u′′ = %u, respectively. We take 0�x�= ex

√
2% and 1�x�= e−x

√
2%, x ∈� so that

F �x��
0�x�

1�x�
= e2x

√
2%� x ∈��

The boundaries ±� are natural, and F �−��= 0 and F �+��=+�. Clearly, 4−� and 4+� of (20) are zero.
Therefore, all the Vn’s of (12) are finite by Proposition 5.2, and the multiple-stopping strategies ��

�n�
1 � � � � � ��n�

n �
of (25) are optimal by Corollary 5.1. Hence, the optimal multiple-stopping problem (12) reduces to the optimal
stopping problem (23).

6.1.1. �n = 1�. By Proposition 5.2, we have V1�x� = 1W1�F �x��, x ∈ �, where W1�·� is the smallest
nonnegative concave majorant of

H1�y�� �h1/1��F
−1�y��= �ln y�+

√
y

2
√

2%
� y ∈ �0�+���

which vanishes on �0�1� and is nonnegative strictly concave and increasing on �1�+��; see Figure 1(b). Since
limy→+�H ′

1�y�= 0, there is a unique number z1 > 1 such that

H1�z1�/z1 =H ′
1�z1�� (28)

(c)

0

h(x) = x+

0 10 1

H1

L1

W1

H1

z1 = e2z1 = e2

G1

z2

W2

L2

H2

(a) (b)

Figure 1. (Brownian motion). The sketches of (a) the reward function h, (b) the function H1 and its smallest nonnegative concave
majorant W1, (c) H2 =H1 +G1 and its smallest nonnegative concave majorant W2.
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In fact z1 = e2, and W1�·� coincides with L1�y� � yH ′
1�z1� on �0� z1� and with H1�·� on �z1�+��. Now, let

x1 � F −1�z1�= 1/
√

2%. Then

V1�x�= 1�x�W1�F �x��=


ex
√

2%−1/
√

2%� x≤ x1�

x� x≥ x1�

Since �1 = �x ∈ �# V1�x� = h1�x�	 = F −1��y ≥ 0# W1�y� = H1�y�	� = �x1�+��, the optimal stopping time
of (22) is �1 = inf�t ≥ 0# X�t�≥ x1	.

6.1.2. �n= 2�. We start by first finding the smallest nonnegative concave majorant W2 of H2 � �h2/1��F −1,
where h2 = h+ g1 and g1�x�= Ɛx�e

−%�V1�X����	, x ∈�.
If G1�y� � �g1/1��F

−1�y�� for every y ≥ 0, then H2 = H1 + G1. Since g1 is nonnegative, finite, and
%-excessive, the function G1 is concave by Proposition 5.1. Because G1 is also nonnegative, its concavity
implies that the right derivative of G1�y� is nonnegative everywhere (otherwise, G1 < 0 on �y0�+�� for some
y0 ≥ 0); therefore, G1 is also nondecreasing. Finally, 0 ≤G1 ≤W1 and limy↓0 W1�y�= limy↓0 H1�y�= 0. Thus,
limy↓0 G1�y�= 0.

As shown in Figure 1(c), H2 is concave both on �0�1� and �1�+��. Since G1 and H1 are concave on
�1�+�� and G1 ≤H1, we must have 0 ≤ limy→�G′

1�y�≤ limy→�H ′
1�y� (otherwise, G1 >H1 on �y1�+�� for

some y1 ≥ 0). Since the latter is zero, limy→�G′
1�y�= 0. Hence, limy→�H ′

2�y�= 0, and there is unique z2 > 1
such that

H2�z2�/z2 =H ′
2�z2�� (29)

It is then clear, as is also seen from Figure 1(c), that the smallest nonnegative concave majorant W2 of H2

is the same as the straight line L2�y� = yH ′
2�z2� on �0� z2�, and the same as H2 on �z2�+��. If we define

x2 � F −1�z2�, then

V2�x�= 1�x�W2�F �x��=


h2�x2�e

−�x2−x�
√

2%� x≤ x2�

h2�x�� x > x2�

(30)

It is also easy to see that �2 = �x2�+�� and �2 = inf�t ≥ 0# X�t�≥ x2	.
Next we prove that x2 ≤ x1. Note that

d

dy

(
Hn�y�

y

)
= 1

y

(
H ′

n�y�−
Hn�y�

y

)
� y > 1� n= 1�2� (31)

Since Hn are concave on �1�+��, the right-hand side of (31) is positive (negative) for 1 < y < zn (y > zn) and
equals zero at y = zn, thanks to (28) and (29). Hence, zn is the global maximum on �1�+�� of y �→Hn�y�/y,
which is increasing (decreasing) on �1� zn� (�zn�+��) for n= 1�2. We have

H2�z1�

z1

= H1�z1�

z1

+ G1�z1�

z1

=H ′
1�z1�+

G1�z1�

z1

≥H ′
1�z1�+G′

1�z1�=H ′
2�z1��

where the inequality follows from the concavity of G1 and G�0+�= 0. Hence, H2 is decreasing at y = z1, and
therefore, z2 ≤ z1. Since F is increasing, it follows that x2 = F −1�z2�≤ F −1�z1�= x1.

6.1.3. (General n). Similarly, Hn = �hn/1� � F −1 can be shown to be concave on �0�1� and �1�+��; and
limy→+�H ′

n�y�= 0. There exists unique zn > 1 such that

Hn�zn�/zn =H ′
n�zn��

The smallest nonnegative concave majorant Wn of Hn on �0�+�� coincides with the straight-line Ln�y� =
yH ′

n�zn� on �0� zn�, and with Hn on �zn�+��. If xn � F −1�zn�, then

Vn�x�= 1�x�Wn�F �x��=


e−�xn−x�

√
2%hn�xn�� x≤ xn�

hn�x�� x > xn�

(32)

and �n = inf�t ≥ 0# X�t�≥ xn	 in (25).
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The mapping y �→Hn�y�/y is increasing on �1� zn�, and decreasing on �zn�+��; zn > 1 is its maximizer. We
can show as above that 1< zn ≤ z1 = e2. These facts can be used to compute xn numerically.

6.2. Geometric Brownian motion. Suppose that X is a geometric Brownian motion in 	 = �0�+�� with
dynamics dX�t�= X�t��%dt + �dB�t��, t ≥ 0, where % and � are positive constants. Let the reward function
in (12) be h�x�= �K− x�+, x > 0 for some constant K > 0.

The functions in (17) are unique (up to positive multipliers) increasing and decreasing solutions of the ordinary
differential equation ��2/2�x2u′′�x�+%xu′�x�= %u�x� for x > 0, where the right-hand side is the infinitesimal
generator of X applied to a smooth function u. We let 0�x�= x and 1�x�= x−c, where c� 2%/�2, thus

F �x��
0�x�

1�x�
= x1+c� x > 0�

Note that F �0+� = 0, F �+�� = +�; namely, both 0 and +� are natural boundaries for X. One can also
check that both 40 and 4� of (20) are zero. Hence, all Vn’s are finite, and ��

�n�
1 � � � � � ��n�

n � of (25) is an optimal
multiple-stopping strategy for every n≥ 1, thanks to Proposition 5.2 and Corollary 5.1.

6.2.1. �n = 1�. By Proposition 5.2, we have V1�x� = 1�x�W1�F �x�� for every x > 0, where W1 is the
smallest nonnegative concave majorant of

H1�y�� �h/1��F −1�y��= �Kyc/�1+c� − y�+� y > 0�

It can be shown that H1�0� � H1�0+� = 0. The mapping H1 is strictly concave on �0�K1+c�, vanishes on
�K1+c�+��, and has global maximum at z1 � �cK/�1 + c��1+c ∈ �0�K1+c�. Therefore, its smallest nonnega-
tive concave majorant W1 coincides with H1 on �0� z1� and is equal to the constant H1�z1� on �z1�+��; see
Figure 2(b). If we define x1 � F −1�z1�= cK/�1+ c�, then

V1�x�= 1�x�W1�F �x��=


K− x� 0 < x≤ x1�

�x1/x�
2r/�2

�K− x1�� x > x1�

Since �1 = F −1��0� z1��= �0� x1�, we have �1 = inf�t ≥ 0# X�t�≤ x1	.

6.2.2. �n= 2�. By Proposition 5.4, we have V2�x�= 1�x�W2�F �x��, where W2 is the smallest nonnegative
concave majorant of H2 = H1 + G1, and G1 � �g1/1� � F −1. Since g1 is nonnegative and %-excessive, the
function G1 is nonnegative and concave by Proposition 5.1; therefore, it is also nondecreasing. Because G1 ≤W1,
we also have G1�+��≤W1�z1� and G1�0+�= 0; see Figure 2(c).

Now observe that H2 is the sum of two concave functions on �0�K1+c� and �K1+c�+��; therefore, it is itself
concave on both intervals. We have H2�0+�= 0. The function H2 coincides with G1 on �K1+c�+�� and has
unique global maximum at some z2 ∈ �0�K1+c�. Therefore, W2 is the same as H2 on �0� z2� and is equal to the
constant H2�z2� on �z2�+��. If x2 � F −1�z2�, then �2 = inf�t ≥ 0# X�t�≤ x2	 and

V2�x�= 1�x�W2�F �x��=


h2�x�� 0 < x < x2�

�x2/x�
2%/�2

h2�x2�� x≥ x2�

W1

K

h(x) = (K − x)+

0 K1+c0 z1

H1(z1)

K1+c0

W2
H2(z2)

G1
H1H1

z2

(a) (b) (c)

z1

H2 W1K

Figure 2. (Geometric Brownian motion). The sketches of (a) the reward function h, (b) the function H1 and its smallest nonnegative
concave majorant W1, (c) H2 =H1 +G1 and its smallest nonnegative concave majorant W2.
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Next let us show that x1 ≤ x2 <K. Since zn is a unique global maximizer of Hn for n= 1 and n= 2, we have

0 ≤H2�z2�−H2�z1�=−�H1�z1�−H1�z2��+ �G1�z2�−G1�z1���

which implies G1�z2�−G1�z1�≥H1�z1�−H1�z2�≥ 0. Since G1 is nondecreasing, we must have z1 ≤ z2 <K1+c.
Because F is increasing, the inequalities x1 ≤ x2 <K follow.

One can check that the same results hold for general n. Namely, Hn is concave on �0�K1+c� and �K1+c�+��. It
coincides on �K1+c�+�� with the bounded, nonnegative, nondecreasing, and concave function Gn−1 � �gn−1/1��
F −1, and we have Hn�0+�= 0. Therefore, Hn has a global maximum zn, which is located in �0�K1+c�; in fact,
z1 ≤ zn <K1+c. The smallest nonnegative concave majorant Wn of Hn coincides with Hn on �0� zn� and is equal
to the constant Hn�zn� on �zn�+��. If we define xn � F −1�zn�, then �n = inf�t ≥ 0# X�t� ≤ xn	 is the nth
stopping time in (25), and

Vn�x�= 1�x�Wn�F �x��=


hn�x�� 0 < x < xn�

�xn/x�
2%/�2

hn�xn�� x≥ xn�

6.3. Ornstein-Uhlenbeck process. Let X be the diffusion process in � with dynamics dXt = k�m−Xt�dt+
�dBt , t ≥ 0, where k > 0, � > 0, and m ∈� are constants. Let the reward function in (12) be h�x�= �ex −L�+,
x ∈�.

We shall denote by 0�·� and 1�·� the functions in (17) for X, and by 0̃�·� and �1�·� those for the process
Zt � �Xt −m�/� , t ≥ 0, which satisfies dZt =−kZt +dBt , t ≥ 0. For every x ∈�,

0̃�x�= ekx
2/2
−%/k�−x

√
2k� and �1�x�= ekx

2/2
−%/k�x
√

2k�� (33)

and 0�x� = 0̃��x − m�/�� and 1�x� = �1��x − m�/��, where 
��·� is the parabolic cylinder function; see
Borodin and Salminen [6, Appendices 1.24 and 2.9]. The boundaries ±� are natural for X. By using the relation


��z�= 2−�/2e−z2/4���z/
√

2�� z ∈� (34)

in terms of Hermite function ���·� of degree � and its integral representation

���z�=
1

@�−��

∫ �

0
e−t2−2tzt−�−1 dt� Re� < 0 (35)

(see, for example, Lebedev [23, pp. 284, 290]), one can check that both limits in (20) are zero. By Proposition 5.2
and Corollary 5.1, the value function Vn�·� in (12) is finite, and the strategy ��1� � � � � �n� of (25) is optimal for
every n≥ 1.

6.3.1. �n= 1�. This case—namely, pricing perpetual American call option on an asset with price process eXt ,
t ≥ 0—has been recently studied by Cadenillas et al. [7] by using variational inequalities. Let F �x�� 0�x�/1�x�
for every x ∈�. Since the reward function h�·� is increasing, the function H1�y�� �h/1��F −1�y��, y ∈ �0�+��
is also increasing. Dayanik and Karatzas [13, §6] show that H ′′�y� and ���−%�h��F −1�y�� have the same sign
at every y where h is twice differentiable. Here, ��−%�h�x�= ex���2/2�+ km−%− kx�+%L for x > lnL.
Hence, there exists some A > 0 such that H�·� is convex on �0� F �A∨ lnL�� and concave on �F �A∨ lnL��+��;
see Figure 3(b). It can also be checked that H ′�+��= 0 by using (34), (35) and the identity � ′

��z�= 2���−1�z�,
z ∈�; see Lebedev [23, p. 289], Borodin and Salminen [6, Appendix 2.9]. Therefore, there exists unique
z1 > F �L� such that H ′�z1��H�z1�/z1. The smallest nonnegative concave majorant W1�·� of H1�·� on �0���
coincides with the straight line L1�y� � �y/z1�H1�z1�, y ≥ 0 on �0� z1�, and with H1�·� on �z1�+��. If x1 �

F −1�z1�, then the relation V1�x�= 1�x�W1�F �x��, x ∈� gives

V1�x�=



�ex1 −L�e�k/2����x−m�/��2−��x1−m�/��2�


−%/k�−��x−m�/��
√

2k�


−%/k�−��x1 −m�/��
√

2k�
� x < x1�

ex −L� x≥ x1�

(36)

The stopping time �1 = inf�t ≥ 0# Xt > x1	 is the first exit time from �0� x1�.
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lnL 00

H1

L1

W1

H1

G1

W2

L2

H2

(a) (b) (c)

h(x) = (ex− L)+

z1 z2 z1

F (ξ)F (lnL)F (lnL)0 F (ξ)

Figure 3. (Ornstein-Uhlenbeck process). The sketches of (a) the reward function h, (b) the function H1 and its smallest nonnegative
concave majorant W1, (c) H2 =H1 +G1 and its smallest nonnegative concave majorant W2. In the figure, A is shown to be larger than lnL.

6.3.2. �n ≥ 2�. The analysis is similar to that in previous examples; compare, for example, Figures 2(c)
and 3(c). The nth value function Vn in (12) is the same as the function in (36), except that x1 is replaced
with xn � F −1�zn� for every n ≥ 1, and �n = inf�t ≥ 0# Xt > xn	 in (25), where zn is the unique solution of
H ′

n�y� = Hn�y�/y, y ≥ 0. The critical value zn is the unique maximum of y �→ Hn�y�/y and is contained in
�F �lnL�� z1�. It can be calculated numerically.

6.4. Another mean-reverting diffusion. Let X be a diffusion process in �0�+�� with dynamics

dXt =*Xt�B−Xt�dt+�XtdBt� t ≥ 0� (37)

and h�x�� �x−K�+ for every x > 0 in (12), where *, B, � , and K are positive constants. The process has been
studied widely in irreversible investment and harvesting problems; see, for example, Dixit and Pindyck [14],
Alvarez and Shepp [2].

The functions 0�·� and 1�·� in (17) are the increasing and decreasing fundamental solutions of �1/2��2 ·
x2u′′�x�+*x�B− x�u′�x�−%u�x�= 0, respectively. Denote by

M�a�b�x��
�∑
k=0

�a�k
�b�k

xn

n! � �a�k � a�a+ 1� · · · �a+ k− 1�� �a�0 = 1� (38)

U�a�b� x��
D

sinDb

{
M�a�b�x�

@�1+ a− b�@�b�
− x1−b M�1+ a− b�2− b�x�

@�a�@�2− b�

}
(39)

the confluent hypergeometric functions of the first and second kind, respectively, which are two linearly inde-
pendent solutions for the Kummer equation xw′′�x�+ �b− x�w′�x�− ax = 0 for arbitrary positive constants a

and b; see, for example, Abramowitz and Stegun [1, Chapter 13]. Then

0�x�� �cx�9
+
M�9+� a+� cx�� and 1�x�� �cx�9

+
U�9+� a+� cx�� x > 0�

and

F �x��
0�x�

1�x�
= M�9+� a+� cx�

U�9+� a+� cx�
� x > 0�

where c� 2*�2, a± = 29± + �2*B/�2�, and

9± �

(
1
2
− *B

�2

)
±
√(

1
2
− *B

�2

)
+ 2%

�2
� 9− < 0 < 9+

are the roots of the equation �1/2��29�9− 1�+*B9−%= 0; see Dayanik and Karatzas [13]. Since 0�+��=
1�−��=+�, the boundaries 0 and +� are natural. Both limits in (20) are zero. By Proposition 5.2, all the
Vn’s are finite, and ��

�n�
1 � � � � � ��n�

n � of (25) is optimal for every n≥ 1 because of Corollary 5.1.
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F (L)00

H1

L1

W1

H1

G1

W2

L2

H2

(a) (b) (c)

0

h(x) = (x − K)+

z1 z1
F (ξ) z2F (ξ)L F (L)

Figure 4. (Mean-reverting process). The sketches of (a) the reward function h, (b) the function H1 and its smallest nonnegative concave
majorant W1, (c) H2 =H1 +G1 and its smallest nonnegative concave majorant W2. In the figure, A is shown to be larger than K.

6.4.1. �n = 1�. Dayanik and Karatzas [13, §6.10] show that the function H1 = �h/1� � F −1 is increasing,
convex on �0� F �K ∨ A��, and concave on �F �K ∨ A��+�� for some A > 0, and H ′�+�� = 0; see Figure 4.
Therefore, H�y�/y = H ′�y� has a unique solution—call it z1, and the smallest nonnegative concave majorant
W1 of H1 coincides with the straight line L1�y�= �y/z1�H�z1� on �0� z1�, and with H1 on �z1�+��. If we set
x1 � F −1�z1� >K, then

V1�x�= 1�x�W1�F �x��=



(
x

x1

)9+
M�9+� a+� cx�
M�9+� a+� cx1�

�x1 −K�� 0 < x < x1�

x−K� x > x1�

(40)

6.4.2. �n≥ 2�. The fundamental properties of the functions W1 and H1 are essentially the same as those in
the first example; compare the graphs in Figures 4 and 1. Therefore, the analysis is the same as that in §§6.1.2
and 6.1.3 after obvious changes, such as, instead of (30) and (32), we have

Vn�x�= 1�x�Wn�F �x��=



(
x

xn

)9+
M�9+� a+� cx�
M�9+� a+� cxn�

hn�xn�� 0 < x < xn�

hn�x�� x > xn

(41)

for n ≥ 2. Finally, the nth stopping time �n = inf�t ≥ 0# Xt ≥ xn	 in (25) is the first hitting time of X to
�xn�+��. Moreover, xn = F −1�zn�; the number zn is the unique maximum of y �→Hn�y�/y and is contained in
�K�x1�. Therefore, zn and xn can be calculated numerically.
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