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SINGULAR FORWARD–BACKWARD STOCHASTIC DIFFERENTIAL
EQUATIONS AND EMISSIONS DERIVATIVES
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ESPINOSA2 AND NIZAR TOUZI2

Princeton University, Université de Nice Sophia-Antipolis, Ecole Polytechnique
and Ecole Polytechnique

We introduce two simple models of forward–backward stochastic dif-
ferential equations with a singular terminal condition and we explain how
and why they appear naturally as models for the valuation of CO2 emission
allowances. Single phase cap-and-trade schemes lead readily to terminal con-
ditions given by indicator functions of the forward component, and using fine
partial differential equations estimates, we show that the existence theory of
these equations, as well as the properties of the candidates for solution, de-
pend strongly upon the characteristics of the forward dynamics. Finally, we
give a first order Taylor expansion and show how to numerically calibrate
some of these models for the purpose of CO2 option pricing.

1. Introduction. This paper is motivated by the mathematical analysis of the
emissions markets, as implemented, for example, in the European Union (EU)
emissions trading scheme (ETS). These market mechanisms have been hailed by
some as the most cost efficient way to control green house gas (GHG) emissions.
They have been criticized by others for being a tax in disguise and adding to the
burden of industries covered by the regulation. Implementation of cap-and-trade
schemes is not limited to the implementation of the Kyoto protocol. The success-
ful US acid rain program is a case in point. However, a widespread lack of un-
derstanding of their properties and misinformation campaigns by advocacy groups
more interested in pushing their political agendas than using the results of ob-
jective scientific studies have muddied the water and add to the confusion. More
mathematical studies are needed to increase the understanding of these market
mechanisms and raise the level of awareness of their advantages as well as their
shortcomings. This paper was prepared in this spirit.

In a first part, we introduce simple single-firm models inspired by the workings
of the electricity markets (electric power generation is responsible for most of
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the CO2 emissions worldwide). Despite the specificity of some assumptions, our
treatment is quite general in the sense that individual risk averse power producers
choose their own utility functions. Moreover, the financial markets in which they
trade emission allowances are not assumed to be complete.

While market incompleteness prevents us from identifying the optimal trading
strategy of each producer, we show that, independent of the choice of the util-
ity function, the optimal production or abatement strategy is what we expect by
proving mathematically, and in full generality (i.e., without assuming complete-
ness of the markets), a folk theorem in environmental economics: the equilibrium
allowance price equals the marginal abatement cost, and market participants im-
plement all the abatement measures whose costs are not greater than the cost of
compliance (i.e., the equilibrium price of an allowance).

The next section puts together the economic activities of a large number of pro-
ducers and searches for the existence of an equilibrium price for the emissions al-
lowances. Such a problem leads naturally to a forward stochastic differential equa-
tion (SDE) for the aggregate emissions in the economy, and a backward stochastic
differential equation (BSDE) for the allowance price. However, these equations are
“coupled” since a nonlinear function of the price of carbon (i.e., the price of an
emission allowance) appears in the forward equation giving the dynamics of the
aggregate emissions. This feedback of the emission price in the dynamics of the
emissions is quite natural. For the purpose of option pricing, this approach was
described in [5] where it was called detailed risk neutral approach.

Forward–backward stochastic differential equations (FBSDEs) of the type con-
sidered in this section have been studied for a long time (see, e.g., [13] or [17]).
However, the FBSDEs we need to consider for the purpose of emission prices have
an unusual peculiarity: the terminal condition of the backward equation is given
by a discontinuous function of the terminal value of the state driven by the for-
ward equation. We use our first model to prove that this lack of continuity is not an
issue when the forward dynamics are strongly elliptic in the neighborhood of the
singularities of the terminal condition, in other words, when the volatility of the
forward SDE is bounded from below in the neighborhood of the discontinuities of
the terminal value. However, using our second equilibrium model, we also show
that when the forward dynamics are degenerate (even if they are hypoelliptic), dis-
continuities in the terminal condition and lack of strong ellipticity in the forward
dynamics can conspire to produce point masses in the terminal distribution of the
forward component at the locations of the discontinuities. This implies that the ter-
minal value of the backward component is not given by a deterministic function of
the forward component, for the forward scenarios ending at the locations of jumps
in the terminal condition, and justifies relaxing the definition of a solution of the
FBSDE.

Even though we only present a detailed proof for a very specific model for the
sake of definiteness, we believe that our result is representative of a large class of
models. Since from the point of view of the definition of “aggregate emissions”
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(the degeneracy of the forward dynamics is expected) this seemingly pathological
result should not be overlooked. Indeed, it sheds new light on an absolute conti-
nuity assumption made repeatedly in equilibrium analyses, even in discrete time
models (see, e.g., [3] and [4]). This assumption was regarded as an annoying tech-
nicality, but in light of the results of this paper, it looks more intrinsic to these
types of models. In any case, it fully justifies the need to relax the definition of a
solution of a FBSDE when the terminal condition of the backward part jumps.

A vibrant market for options written on allowance futures/forward contracts
has recently developed and increased in liquidity (see, e.g., [5] for details on these
markets). Reduced form models have been proposed to price these options (see [5]
or [6]). Several attempts have been made at matching the smile (or lack thereof)
contained in the quotes published daily by the exchanges. Section 5 develops the
technology needed to price these options in the context of the equilibrium frame-
work developed in the present paper. We identify the option prices in terms of so-
lutions of nonlinear partial differential equations and we prove when the dynamics
of the aggregate emissions are given by a geometric Brownian motion, a Taylor
expansion formula when the nonlinear abatement feedback is small. We derive an
explicit integral form for the first order Taylor expansion coefficient which can
easily be computed by Monte Carlo methods. We believe that the present paper is
the first rigorous attempt to include the nonlinear feedback term in the dynamics
of aggregate emissions for the purpose of emissions option pricing.

The final Section 5 was motivated by the desire to provide practical tools for
the efficient computation of option prices within the equilibrium framework of
the paper. Indeed, because of the nonlinear feedback created by the coupling in
the FBSDE, option prices computed from our equilibrium model differ from the
linear prices computed in [6, 19] and [5] in the framework of reduced form models.
We derive rigorously an approximation based on the first order asymptotics in
the nonlinear feedback. This approximation can be used to numerically compute
option prices and has the potential to efficiently fit the implied volatility smile
present in recent option price quotes. The final Section 5.3 numerically illustrates
the properties of our approximation.

2. Two simple models of green house gas emission control. We first de-
scribe the optimization problem of a single power producer facing a carbon cap-
and-trade regulation. We assume that this producer is a small player in the market
in the sense that his actions have no impact on prices and that a liquid market for
pollution permits exists. In particular, we assume that the price of an allowance
is given exogenously, and we use the notation Y = (Yt )0≤t≤T for the (stochastic)
time evolution of the price of such an emission allowance. For the sake of simplic-
ity we assume that [0, T ] is a single phase of the regulation and that no banking
or borrowing of the certificates is possible at the end of the phase. For illustra-
tion purposes, we analyze two simple models. Strangely enough, the first steps of
these analyses, namely, the identifications of the optimal abatement and production
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strategies, do not require the full force of the sophisticated techniques of optimal
stochastic control.

2.1. Modeling first the emissions dynamics. We assume that the source of ran-
domness in the model is given by W = (Wt)0≤t≤T , a finite family of independent

one-dimensional Wiener processes Wj = (W
j
t )0≤t≤T , 1 ≤ j ≤ d . In other words,

Wt = (W 1
t , . . . ,Wd

t ) for each fixed t ∈ [0, T ]. All these Wiener processes are as-
sumed to be defined on a complete probability space (�, F ,P), and we denote by
F = {Ft , t ≥ 0} the Brownian filtration they generate. Here, T > 0 is a fixed time
horizon representing the end of the regulation period.

We will eventually extend the model to include N firms, but for the time being,
we consider only the problem of one single firm whose production of electricity
generates emissions of carbon dioxide, and we denote by Et the cumulative emis-
sions up to time t of the firm. We also denote by Ẽt the perception at time t (e.g.,
the conditional expectation) of what the total cumulative emission ET will be at
the end of the time horizon. Clearly, E and Ẽ can be different stochastic processes,
but they have the same terminal values at time T , that is, ET = ẼT . We will as-
sume that the dynamics of the proxy Ẽ for the cumulative emissions of the firm
are given by an Itô process of the form

Ẽt = Ẽ0 +
∫ t

0
(bs − ξs) ds +

∫ t

0
σs dWs,(1)

where b represents the (conditional) expectation of what the rate of emission would
be in a world without carbon regulation, in other words, in what is usually called
business as usual (BAU), while ξ is the instantaneous rate of abatement chosen
by the firm. In mathematical terms, ξ represents the control on emission reduction
implemented by the firm. Clearly in such a model, the firm only acts on the drift
of its perceived emissions. For the sake of simplicity we assume that the processes
b and σ are adapted and bounded. Because of the vector nature of the Brownian
motion W , the volatility process σ is in fact a vector of scalar volatility processes
(σ j )1≤j≤d . For the purpose of this section, we could use one single scalar Wiener
process and one single scalar volatility process as long as we allow the filtration
F to be larger than the filtration generated by this single Wiener process. This fact
will be needed when we study a model with more than one firm.

Notice that the formulation (1) does not guarantee the positiveness of the per-
ceived emissions process, as one would expect it to be. This issue will be discussed
in Proposition 3 below, where we provide sufficient conditions on the coefficients
of (1) in order to guarantee the positiveness of the process Ẽ.

Continuing on with the description of the model, we assume that the abatement
decision is based on a cost function c : R → R which is assumed to be continuously
differentiable (C1 in notation), strictly convex and satisfy Inada-like conditions:

c′(−∞) = −∞ and c′(+∞) = +∞.(2)
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Note that (c′)−1 exists because of the assumption of strict convexity. Since c(x)

can be interpreted as the cost to the firm for an abatement rate of level x, without
any loss of generality we will also assume c(0) = min c = 0. Notice that (2) implies
that limx→±∞ c(x) = +∞.

EXAMPLE 1. A typical example of abatement cost function is given by the
quadratic cost function c(x) = αx2 for some α > 0 used in [19], or more generally,
the power cost function c(x) = α|x|1+β for some α > 0 and β > 0.

The firm controls its destiny by choosing its own abatement schedule ξ as well
as the quantity θ of pollution permits it holds through trading in the allowance
market. For these controls to be admissible, ξ and θ need only be progressively
measurable processes satisfying the integrability condition

E

∫ T

0

[
θ2
t + ξ2

t

]
dt < ∞.(3)

We denote by A the set of admissible controls (ξ, θ). Given its initial wealth x, the
terminal wealth XT of the firm is given by

XT = X
ξ,θ
T = x +

∫ T

0
θt dYt −

∫ T

0
c(ξt ) dt − ET YT .(4)

The first integral in the right-hand side of the above equation gives the proceeds
from trading in the allowance market. Recall that we use the notation Yt for the
price of an emission allowance at time t . The next term represents the abatement
costs and the last term gives the costs of the emission regulation. Recall also that
at this stage we are not interested in the existence or the formation of this price.
We merely assume the existence of a liquid and frictionless market for emission
allowances, and that Yt is the price at which each firm can buy or sell one allowance
at time t . The risk preferences of the firm are given by a utility function U : R → R,
which is assumed to be C1, increasing, strictly concave and satisfying the Inada
conditions

(U)′(−∞) = +∞ and (U)′(+∞) = 0.(5)

The optimization problem of the firm can be written as the computation of

V (x) = sup
(ξ,θ)∈A

EU
(
X

ξ,θ
T

)
,(6)

where E denotes the expectation under the historical measure P, and A is the set
of abatement and trading strategies (ξ, θ) admissible to the firm. The following
simple result holds.

PROPOSITION 1. The optimal abatement strategy of the firm is given by

ξ∗
t = [

c′]−1
(Yt ).
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REMARK 1. Notice that the optimal abatement schedule is independent of the
utility function. The beauty of this simple result is its powerful intuitive meaning:
given a price Yt for an emission allowance, the firm implements all the abatement
measures which make sense economically, namely, all those costing less than the
current market price of one allowance (i.e., one unit of emission).

PROOF OF PROPOSITION 1. By an immediate integration by parts in the ex-
pression (4) of the terminal wealth, we see that

ẼT YT = YT

(
Ẽ0 +

∫ T

0
bt dt +

∫ T

0
σt dWt

)
− YT

∫ T

0
ξt dt

= YT

(
Ẽ0 +

∫ T

0
bt dt +

∫ T

0
σt dWt

)
−

∫ T

0
Ytξt dt −

∫ T

0

(∫ t

0
ξs ds

)
dYt

so that XT = Aθ̃
T + B

ξ
T with

Aθ̃
T =

∫ T

0
θ̃t dYt − YT

(
Ẽ0 +

∫ T

0
bt dt +

∫ T

0
σt dWt

)
,

where the modified control θ̃ is defined by θ̃t = θt + ∫ t
0 ξs ds, and

B
ξ
T = x −

∫ T

0

[
c(ξt ) − Ytξt

]
dt.

Notice that Bξ depends only upon ξ without depending upon θ̃ while Aθ̃ depends
only upon θ̃ without depending upon ξ . The set A of admissible controls is equiv-
alently described by varying the couples (θ, ξ) or (θ̃ , ξ), so when computing the
maximum

sup
(θ,ξ)∈A

EU(XT ) = sup
(θ̃ ,ξ)∈A

EU
(
Aθ̃

T + B
ξ
T

)
,

one can perform the optimizations over θ̃ and ξ separately, for example, by fix-
ing θ̃ and optimizing with respect to ξ before maximizing the result with re-
spect to θ̃ . The proof is complete once we notice that U is increasing and that
for each t ∈ [0, T ] and each ω ∈ �, the quantity B

ξ
T is maximized by the choice

ξ∗
t = (c′)−1(Yt ). �

REMARK 2. The above result argues neither existence nor uniqueness of an
optimal admissible set (ξ∗, θ∗) of controls. In the context of a complete market,
once the optimal rate of abatement ξ∗ is implemented, the optimal investment
strategy θ∗ should hedge the financial risk created by the implementation of the
abatement strategy. This fact can be proved using the classical tools of portfolio
optimization in the case of complete market models. Indeed, if we introduce the
convex dual Ũ of U defined by

Ũ (y) := sup
x

{
U(x) − xy

}
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and the function I by I = (U ′)−1 so that Ũ (y) = U ◦ I (y) − yI (y) and if we
denote by E and EQ, respectively, the expectations with respect to P and the unique
equivalent measure Q under which Y is a martingale (we write Zt for its volatility
given by the martingale representation theorem), then from the a.s. inequality

U
(
X

ξ,θ
T

) − y
dQ

dP
X

ξ,θ
T ≤ U ◦ I

(
y

dQ

dP

)
− y

dQ

dP
I

(
y

dQ

dP

)
,

valid for any admissible (ξ, θ), and y ∈ R, we get

EU
(
X

ξ,θ
T

) ≤ EU ◦ I

(
y

dQ

dP

)
+ yEQ

[
X

ξ,θ
T − I

(
y

dQ

dP

)]

after taking expectations under P. Computing EQX
ξ,θ
T by integration by parts we

get

EU
(
X

ξ,θ
T

) ≤ EU ◦ I

(
y

dQ

dP

)

+ y

[
x − EQ

∫ T

0

[
c ◦ (

c′)−1
(Yt ) + Yt

(
bt − (

c′)−1
(Yt )

) + σtZt

]
dt

− EQI

(
y

dQ

dP

)]
,

if we use the optimal rate of abatement. So if we choose y = ŷ ∈ R as the unique
solution of

EQI

(
ŷ

dQ

dP

)
= x − EQ

∫ T

0
c ◦ (

c′)−1
(Yt ) + Yt

(
bt − (

c′)−1
(Yt )

) + σtZt dt,

it follows that

EQX
ξ̂,θ
T = EQI

(
ŷ

dQ

dP

)
,

and finally, if the market is complete, the claim I (ŷ dQ
dP

) is attainable by a cer-
tain θ∗. The proof is complete.

2.2. Modeling the electricity price first. We consider a second model for
which again, part of the global stochastic optimization problem reduces to a mere
path-by-path optimization. As before, the model is simplistic, especially in the
case of a single firm in a regulatory environment with a liquid frictionless mar-
ket for emission allowances. However, this model will become very informative
later on when we consider N firms interacting on the same market, and we try
to construct the allowance price Yt by solving a FBSDE. The model concerns an
economy with one single good (say, electricity) whose production is the source of
a negative externality (say, GHG emissions). Its price (Pt )0≤t≤T evolves according
to the following Itô stochastic differential equation:

dPt = μ(Pt) dt + σ(Pt ) dWt,(7)
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where the deterministic functions μ and σ are assumed to be C1 with bounded
derivatives. At each time t ∈ [0, T ], the firm chooses its instantaneous rate of pro-
duction qt and its production costs are c(qt ) where c is a function c : R+ ↪→ R

which is assumed to be C1 and strictly convex. With this notation, the profits and
losses from the production at the end of the period [0, T ] are given by the integral∫ T

0

[
Ptqt − c(qt )

]
dt.

The emission regulation mandates that at the end of the period [0, T ], the cu-
mulative emissions of each firm be measured, and that one emission permit be
redeemed per unit of emission. As before, we denote by (Yt )0≤t≤T the process
giving the price of one emission allowance. For the sake of simplicity, we assume
that the cumulative emissions Et up to time t are proportional to the production in
the sense that Et = εQt where the positive number ε represents the rate of emis-
sion of the production technology used by the firm, and Qt denotes the cumulative
production up to and including time t ,

Qt =
∫ t

0
qs ds.

At the end of the time horizon, the cost incurred by the firm because of the regula-
tion is given by ET YT = εQT YT . The firm may purchase allowances; we denote
by θt the amount of allowances held by the firm at time t . Under these conditions,
the terminal wealth of the firm is given by

XT = X
q,θ
T = x +

∫ T

0
θt dYt +

∫ T

0

[
Ptqt − c(qt )

]
dt − εQT YT ,(8)

where, as before, we used the notation x for the initial wealth of the firm. The first
integral in the right-hand side of the above equation gives the proceeds from trad-
ing in the allowance market, the next term gives the profits from the production
and the sale of electricity and the last term gives the costs of the emission regula-
tion. We assume that the risk preferences of the firm are given by a utility function
U : R → R, which is assumed to be C1, increasing, strictly concave and satisfying
the Inada conditions (5) stated earlier. As before, the optimization problem of the
firm can be written as

V (x) = sup
(q,θ)∈A

EU
(
X

q,θ
T

)
,(9)

where E denotes the expectation under the historical measure P, and A is the set
of admissible production and trading strategies (q, θ). This problem is similar to
those studied in [2] where the equilibrium issue is not addressed. As before, for
these controls to be admissible, q and θ need only be adapted processes satisfying
the integrability condition

E

∫ T

0

[
θ2
t + q2

t

]
dt < ∞.(10)
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PROPOSITION 2. The optimal production strategy of the firm is given by

q∗
t = (

c′)−1
(Pt − εYt ).

REMARK 3. As before, the optimal production strategy q∗ is independent of
the risk aversion (i.e., the utility function) of the firm. The intuitive interpretation
of this result is clear: once a firm observes both prices Pt and Yt , it computes the
price for which it can sell the good minus the price it will have to pay because of
the emission regulation, and the firm uses this corrected price to choose its optimal
rate of production in the usual way.

PROOF OF PROPOSITION 2. A simple integration by part (notice that Et is of
bounded variations) gives

QT YT =
∫ T

0
Yt dQt +

∫ T

0
Qt dYt =

∫ T

0
Ytqt dt +

∫ T

0
Qt dYt ,(11)

so that XT = Aθ̃
T + B

q
T with

Aθ̃
T =

∫ T

0
θ̃t dYt with θ̃t = θt − ε

∫ t

0
qs ds,

which depends only upon θ̃ and

B
q
T = x +

∫ T

0

[
(Pt − εYt )qt − c(qt )

]
dt,

which depends only upon q without depending upon θ̃ . Since the set A of admissi-
ble controls is equivalently described by varying the couples (q, θ) or (q, θ̃), when
computing the maximum

sup
(q,θ)∈A

E
{
U(XT )

} = sup
(q,θ̃)∈A

E
{
U

(
Aθ̃

T + B
q
T

)}
,

one can perform the optimizations over q and θ̃ separately, for example, by fix-
ing θ̃ and optimizing with respect to q before maximizing the result with re-
spect to θ̃ . The proof is complete once we notice that U is increasing and that
for each t ∈ [0, T ] and each ω ∈ �, the quantity B

q
T is maximized by the choice

q∗
t = (c′)−1(Pt − εYt ). �

3. Allowance equilibrium price and a first singular FBSDE. The goal of
this section is to extend the first model introduced in Section 2 to an economy with
N firms, and solve for the allowance price.
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3.1. Switching to a risk neutral framework. As before, we assume that Y =
(Yt )t∈[0,T ] is the price of one allowance in a one-compliance period cap-and-trade
model, and that the market for allowances is frictionless and liquid. In the absence
of arbitrage, Y is a martingale for a measure Q equivalent to the historical mea-
sure P. Because we are in a Brownian filtration,

dQ

dP
= exp

[∫ T

0
αt dWt − 1

2

∫ T

0
|αt |2 dt

]

for some sequence α = (αt )t∈[0,T ] of adapted processes. By Girsanov’s theorem,
the process W̃ = (W̃t )t∈[0,T ] defined by

W̃t = Wt −
∫ t

0
αs ds

is a Wiener process for Q so that equation (1), giving the dynamics of the perceived
emissions of a firm, now reads

dẼt = (b̃t − ξt ) dt + σt dW̃t

under Q, where the new drift b̃ is defined by b̃t = bt + σtαt for all t ∈ [0, T ].

3.2. Market model with N firms. We now consider an economy comprising
N firms labeled by {1, . . . ,N}, and we work in the risk neutral framework for
allowance trading discussed above. When a specific quantity such as cost function,
utility, cumulative emission, trading strategy, . . . depends upon a firm, we use a
superscript i to emphasize the dependence upon the ith firm. So in equilibrium
(i.e., whenever each firm implements its optimal abatement strategy), for each firm
i ∈ {1, . . . ,N} we have

dẼi
t = {

b̃i
t − [(

ci)′]−1
(Yt )

}
dt + σ i

t dW̃t

with given initial perceived emissions Ẽi
0. Consequently, the aggregate perceived

emission Ẽ defined by

Ẽt =
N∑

i=1

Ẽi
t

satisfies

dẼt = (
bt − f (Yt )

)
dt + σt dW̃t ,

where

bt =
N∑

i=1

b̃i
t , σt =

N∑
i=1

σ i
t and f (x) =

N∑
i=1

[(
ci)′]−1

(x).
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Again, since we are in a Brownian filtration, it follows from the martingale rep-
resentation theorem that there exists a progressively measurable process Z =
(Zt )t∈[0,T ] such that

dYt = Zt dW̃t and EQ
∫ T

0
|Zt |2 dt < ∞.

Furthermore, in order to entertain a concrete existence and uniqueness result, we
assume that W̃ is one dimensional and that there exist deterministic continuous
functions [0, T ] × R 
 (t, e) ↪→ b(t, e) ∈ R and [0, T ] × R 
 t ↪→ σ(t, e) ∈ R

such that bt = b(t, Ẽt ) and σt = σ(t, Ẽt ), for all t ∈ [0, T ], Q-a.s.
Consequently, the processes Ẽ, Y and Z satisfy a system of FBSDEs under Q,

which we restate for the sake of later reference:{
dẼt = (

b(t, Ẽt ) − f (Yt )
)
dt + σ(t, Ẽt ) dW̃t , with given Ẽ0 ∈ R,

dYt = Zt dW̃t , YT = λ1[�,+∞)(ẼT ).
(12)

The fact that the terminal condition for YT is given by an indicator function re-
sults from the equilibrium analysis of these markets (see [3] and [4]). � is the
global emission target set by the regulator for the entire economy. It represents the
cap part of the cap-and-trade scheme. λ is the penalty that firms have to pay for
each emission unit not covered by the redemption of an allowance. Currently, this
penalty is 100 euros in the EU ETS. Notice that since all the cost functions ci are
strictly convex, f is strictly increasing. We shall make the following additional
assumptions:

b(t, e) and σ(t, e) are Lipschitz in e uniformly in t,(13)

there exists an open ball U ⊂ R2, U 
 (T ,�),
(14)

such that inf
(t,e)∈U∩[0,T ]×R

σ 2(t, e) > 0,

f is Lipschitz continuous (and strictly increasing).(15)

We denote by H0 the collection of all R-valued progressively measurable pro-
cesses on [0, T ] × R, and we introduce the subsets

H2 :=
{
Z ∈ H0;EQ

∫ T

0
|Zs |2 ds < ∞

}

and

S2 :=
{
Y ∈ H0;EQ

[
sup

0≤t≤T

|Ys |2
]
< ∞

}
.

3.3. Solving the singular equilibrium FBSDE. The purpose of this subsection
is to prove existence and uniqueness of a solution to FBSDE (12).
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THEOREM 1. If assumptions (13) to (15) hold for a given � ∈ R, then, for any
λ > 0, FBSDE (12) admits a unique solution (Ẽ, Y,Z) ∈ S2 ×S2 ×H2. Moreover,
for any t ∈ [0, T ], Ẽt is nonincreasing with respect to λ and nondecreasing with
respect to �.

PROOF. For any function ϕ : R ↪→ R, we write FBSDE(ϕ) for the FBSDE
(12) when the function g = λ1[�,+∞) appearing in the terminal condition in the
backward component of (12) is replaced by ϕ.

(i) We first prove uniqueness. Let (Ẽ, Y,Z) and (Ẽ′, Y ′,Z′) be two solutions
of FBSDE (12). Clearly it is sufficient to prove that Y = Y ′. Let us set

δEt := Ẽt − Ẽ′
t , δYt := Yt − Y ′

t , δZt := Zt − Z′
t ,

βt := b(t, Ẽt ) − b(t, Ẽ′
t )

δEt

1{δEt 
=0}, �t := σ(t, Ẽt ) − σ(t, Ẽ′
t )

δEt

1{δEt 
=0}.

Notice that (βt )0≤t≤T and (�t)0≤t≤T are bounded processes. By direct calculation,
we see that

d(BtδEtδYt ) = −BtδYt

(
f (Yt ) − f

(
Y ′

t

))
dt + BtδEtδZt dW̃t ,

where

Bt := exp
(∫ t

0

(
�2

s

2
− βs

)
ds −

∫ t

0
�s dW̃s

)
.

Since δE0 = 0 and δET δYT = (ẼT − Ẽ′
T )(g(ẼT ) − g(Ẽ′

T )) ≥ 0, because g is
nondecreasing, this implies that

EQ

[∫ T

0
BtδYt

(
f (Yt ) − f

(
Y ′

t

))
dt

]
≤ 0.

Since Bt > 0 and f is (strictly) increasing, this implies that δY = 0 dt ⊗ dQ-a.e.
and therefore Y = Y ′ by continuity.

(ii) We next prove existence. Let (gn)n≥1 be an increasing sequence of smooth
nondecreasing functions with gn ∈ [0, λ] and such that gn → g− = λ1(�,∞).

(ii-1) We first prove the existence of a solution when the boundary condition
is given by gn. For every n ≥ 1, the FBSDE(gn) satisfies the assumption of The-
orems 5.6 and 7.1 in [12] with b3 = 0, f1 = f2 = f3 = 0, σ2 = σ3 = 0, b2 ≤ 0
[by (15)] and h = 0 (since gn is nondecreasing) so that Condition (5.11) in [12]
holds with λ = 0 and F(t,0) = 0 for any ε > 0. By Theorem 7.1 in [12], the
FBSDE(gn) has a unique solution (Ẽn, Y n,Zn) ∈ S2 × S2 × H2. Moreover, it
holds Yn

t = un(t, Ẽn
t ), 0 ≤ t ≤ T , for some deterministic function un. In con-

trast with [12], the function un is not a random field but a deterministic function
since the coefficients of the FBSDE are deterministic. We refer to [15] for the
general construction of un when the coefficients are deterministic. Since the se-
quence (gn)n≥1 is increasing, we deduce from the comparison principle [12], The-
orem 8.6, which applies under the same assumption as [12], Theorem 7.1, that, for
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any t ∈ [0, T ], the sequence of functions (un(t, ·))n≥1 is nondecreasing. By [12],
Theorem 8.6, again, un is nondecreasing in λ and nonincreasing in �. Since gn

is [0, λ]-valued and un(t, e) = EQ[gn(Ẽn
T )|Ẽn

t = e], we deduce that un is [0, λ]-
valued as well. Since the sequence of functions (un)n≥1 is nondecreasing, we may
then define

u(t, e) := lim
n→∞ ↑ un(t, e), t ∈ [0, T ], e ∈ R.

Clearly, u is [0, λ]-valued and u(t, ·) is a nondecreasing function for any t ∈ [0, T ].
Moreover, u is nondecreasing in λ and nonincreasing in �.

By [12], Theorems 6.1(iii) and 7.1(i), we know that, for every n ≥ 1, the func-
tion un is Lipschitz continuous with respect to e, uniformly in t ∈ [0, T ]. Ac-
tually, we claim that, for any δ ∈ (0, T ), the function un(t, ·) is Lipschitz con-
tinuous in e, uniformly in t ∈ [0, T − δ] and in n ≥ 1. The proof follows again
from [12], Theorems 6.1(iii) and 7.1(i). To be more specific, we need to es-
tablish a uniform upper bound for the bounded solutions ȳ to the first ODE
in [12], (3.12), associated with an arbitrary positive terminal condition ȳT = h̄ > 0,
namely, for given bounded (measurable) functions b1 : [0, T ] 
 t ↪→ b1(t) ∈ R+
and b2 : [0, T ] 
 t ↪→ b2(t) ∈ R+, with inft∈[0,T ] b2(t) > 0, we are seeking an up-
per bound for any bounded (ȳt )0≤t≤T satisfying

ȳt = ȳT +
∫ T

t

(
b1(s)|ȳs | − b2(s)ȳ

2
s

)
ds; ȳT = h̄ > 0.

Here b1(t) is understood as an upper bound for the derivative of b with respect
to x, and b2 as a lower bound for the derivative of f with respect to y. As long as
ȳt does not vanish, we deduce from a simple computation that

ȳt = exp
(∫ T

t
b1(s) ds

)(
1

ȳT

+
∫ T

t
b2(s) exp

(∫ T

s
b1(r) dr

)
ds

)−1

.

Since the right-hand side above is always (strictly) positive, we conclude that it is
indeed a solution for any t ∈ [0, T ]. Therefore, there exists a constant C, indepen-
dent of ȳT , such that ȳt ≤ C/(T − t) for any t ∈ [0, T ). By [12], Theorems 6.1(iii)
and 7.1(i), we deduce that, for any δ ∈ (0, T ], the function un(t, ·) is Lipschitz
continuous with respect to e, uniformly in t ∈ [0, T − δ] and n ≥ 1. Letting n tend
to +∞, we deduce that the same holds for u.

Notice that the process Ẽn solves the (forward) stochastic differential equation

dẼn
t = (

b
(
t, Ẽn

t

) − f ◦ un(
t, Ẽn

t

))
dt + σ

(
t, Ẽn

t

)
dW̃t , t ∈ [0, T ),

where here and in the following, we use the notation f ◦ u for the composition of
the functions f and u. Since f is increasing and the sequence (un)n≥1 is nonde-
creasing, it follows from the comparison theorem for (forward) stochastic differ-
ential equations that the sequence of processes (Ẽn)n≥1 is nonincreasing. We may
then define

Êt := lim
n→∞ ↓ Ẽn

t for t ∈ [0, T ].
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(ii-2) To identify the dynamics of the limiting process Ê, we introduce the pro-
cess Ẽ defined on [0, T ) as the unique strong solution of the stochastic differential
equation

dẼt = (b − f ◦ u)(t, Ẽt ) dt + σ(t, Ẽt ) dW̃t , t ∈ [0, T ); Ẽ0 = 0.

The fact that the function u is bounded and Lipschitz continuous in space (locally
in time), together with our assumptions on b, f and σ guarantee the existence and
uniqueness of such a strong solution. Since b is at most of linear growth and u is
bounded, the solution cannot explode as t tends to T , so that the process (Ẽt )0≤t<T

can be extended by continuity to the closed interval [0, T ]. Since u is Lipschitz
continuous with respect to e, uniformly in t ∈ [0, T − δ] for any δ ∈ (0, T ), we
deduce from the classical comparison result for stochastic differential equations
that Ẽn

t ≥ Ẽt for any t ∈ [0, T ). Letting t tend to T , it also holds Ẽn
T ≥ ẼT . Since,

for any n ≥ 1, un(t, e) = EQ[gn(Ẽn
T )|Ẽn

t = e], for (t, e) ∈ [0, T ) × R, and gn

is a nondecreasing function, we deduce that un(t, ·) is a nondecreasing function
as well. Obviously, the same holds for u(t, ·). We then use the fact that Ẽn ≥ Ẽ

together with the increase of un(t, ·) to compute, using Itô’s formula, that, for any
t ∈ [0, T ]:

(
Ẽn

t − Ẽt

)2 = 2
∫ t

0

(
Ẽn

s − Ẽs

)((
b − f ◦ un)(

s, Ẽn
s

) − (b − f ◦ u)(s, Ẽs)
)
ds

+
∫ t

0

∣∣σ (
s, Ẽn

s

) − σ(s, Ẽs)
∣∣2 ds

+ 2
∫ t

0

(
Ẽn

s − Ẽs

)(
σ

(
s, Ẽn

s

) − σ(s, Ẽs)
)
dW̃s

≤ C

∫ t

0

∣∣Ẽn
s − Ẽs

∣∣2 ds + 2
∫ t

0

(
Ẽn

s − Ẽs

)(
f ◦ u − f ◦ un)

(s, Ẽs) ds(16)

+ 2
∫ t

0

(
Ẽn

s − Ẽs

)(
σ

(
s, Ẽn

s

) − σ(s, Ẽs)
)
dW̃s

≤ (C + 1)

∫ t

0

∣∣Ẽn
s − Ẽs

∣∣2 ds +
∫ t

0

∣∣(f ◦ u − f ◦ un)
(s, Ẽs)

∣∣2 ds

+ 2
∫ t

0

(
Ẽn

s − Ẽs

)(
σ

(
s, Ẽn

s

) − σ(s, Ẽs)
)
dW̃s

by the Lipschitz property of the coefficients b and σ . Taking expectation, we de-
duce

EQ
[(

Ẽn
t − Ẽt

)2] ≤ (C + 1)EQ
∫ t

0

∣∣Ẽn
s − Ẽs

∣∣2 ds

+ EQ
∫ t

0

∣∣(f ◦ u − f ◦ un)
(s, Ẽs)

∣∣2 ds.
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Then

EQ[(
Ẽn

t − Ẽt

)2] ≤ (C + 1)

∫ t

0
EQ[(

Ẽn
s − Ẽs

)2]
ds + εn,

where εn := EQ[∫ T
0 |(f ◦ u − f ◦ un)(s, Ẽs)|2 ds] → 0, by the dominated

convergence theorem. Therefore it follows from Gronwall’s inequality that
sup0≤t≤T EQ[(Ẽn

t − Ẽt )
2] → 0 as n tends to +∞. Repeating the argument, but

using in addition the Burkhölder–Davis–Gundy inequality in (16), we deduce that
Ẽn → Ẽ in S2, and as a consequence, Ê = Ẽ.

(ii-3) The key point to pass to the limit in the backward equation is to prove that
Q[ẼT = �] = 0. Given a small real δ > 0, we write

Q[ẼT = �] = Q
[
ẼT = �,(t, Ẽt )T −δ≤t≤T ∈ U

]
(17)

+ Q
[
ẼT = �,∃t ∈ [T − δ, T ] : (t, Ẽt ) /∈ U

]
,

where U is as in (14). (Here, the notation (t, Ẽt )T −δ≤t≤T ∈ U means that (t, Ẽt ) ∈
U for any t ∈ [T − δ, T ].) On the event {(t, Ẽt )T −δ≤t≤T ∈ U}, the process
(Ẽt )T −δ≤t≤T coincides with (Xt)T −δ≤t≤T , solution to

Xt = ẼT −δ +
∫ t

T −δ

(
b(s,Xs) − f ◦ u(s,Xs)

)

+
∫ t

T −δ
σ̃ (s,Xs) dW̃s, T − δ ≤ t ≤ T ,

where σ̃ : [0, T ] × R ↪→ R is a given bounded and continuous function which is
Lipschitz continuous with respect to e, which satisfies inf[0,T ]×R σ̃ > 0, and which
coincides with σ on U .

Since σ̃−1 is bounded and f is bounded on [0, λ], we may introduce an equiva-
lent measure Q̃ ∼ Q under which the process B̃t := W̃t − σ̃−1(t,Xt)(f ◦u)(t,Xt),
t ∈ [T − δ, T ], is a Brownian motion. Then X solves the stochastic differential
equation

dXt = b(t,Xt) dt + σ̃ (t,Xt ) dB̃t , t ∈ [T − δ, T ]; XT −δ = ẼT −δ.(18)

By [14], Theorem 2.3.1, the conditional law, under Q̃, of XT given the initial con-
dition XT −δ has a density with respect to the Lebesgue measure. Consequently,
Q̃[XT = �] = 0, and the same holds true under the equivalent measure Q. There-
fore,

Q
[
ẼT = �,(t, Ẽt )T −δ≤t≤T ∈ U

] = 0.

By (17), we deduce

Q[ẼT = �] = Q
[
ẼT = �,∃t ∈ [T − δ, T ] : (t, Ẽt ) /∈ U

]
≤ Q

[
sup

T −δ≤s≤T

∣∣(s, Ẽs) − (T , ẼT )
∣∣ ≥ dist

(
(T ,�),U�)].
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As δ tends to 0, the right-hand side above tends to 0, so that

Q[ẼT = �] = 0,(19)

which implies that we can use g− = λ1(�,∞) instead of g = λ1[�,∞) in (12). More-
over, we also have

lim
n→∞Q

[
Ẽn

T > �|Ft

] = Q[ẼT > �|Ft ](20)

for each t < T . The fact that gn ≤ g implies

Yn
t = E

Q
t

[
gn(

Ẽn
T

)] ≤ E
Q
t

[
g
(
Ẽn

T

)] → E
Q
t

[
g(ẼT )

]
as n → ∞ by (20). On the other hand, since Ẽn

T ≥ ẼT , it follows from the nonde-
crease of gn, the dominated convergence theorem and (20) that

Yn
t = E

Q
t

[
gn(

Ẽn
T

)] ≥ E
Q
t

[
gn(ẼT )

] → E
Q
t

[
g(ẼT )

]
.

Hence, Yn
t → Yt := E

Q
t [g(ẼT )]. Now, let Z ∈ H2 be such that

Yt = g(ẼT ) −
∫ T

t
Zs dW̃s, t ∈ [0, T ].

Notice that Y takes values in [0, λ], and therefore Y ∈ S2. Similarly, using the
increase and the decrease of the sequences (un)n≥1 and (En)n≥1, respectively,
together with the increase of the functions un(t, ·) and u(t, ·) and the continuity of
the function u(t, ·) for t ∈ [0, T ), we see that for t ∈ [0, T )

u(t, Ẽt ) = lim
n→∞un(t, Ẽt ) ≤ lim inf

n→∞ un(
t, Ẽn

t

) ≤ lim sup
n→∞

un(
t, Ẽn

t

)
≤ lim

n→∞u
(
t, Ẽn

t

) = u(t, Ẽt ).

Since Yn
t = un(t, Ẽn

t ), this shows that Yt = u(t, Ẽt ) on [0, T ), and the proof of
existence of a solution is complete. �

Impact on the model for emission control. As expected, the previous result im-
plies that the tougher the regulation (i.e., the larger λ and/or the smaller �), the
higher the emission reductions (the lower Ẽt ). In particular, in the absence of regu-
lation which corresponds to λ = 0, the aggregate level of emissions is at its highest.

We also notice that the assumptions in Theorem 1 can be specified in such a
way that the aggregate perceived emission process Ẽ takes nonnegative values, as
expected from the rationale of the model.

PROPOSITION 3. Let the conditions of Theorem 1 hold true. Assume further
that f (0) = 0 and there exists r > 0 such that σ(t,0) = 0, b(t, ·) ≥ 0 on [0, r], and
b(t, ·) ≤ 0 on [−r,0]. Then:

(i) for any Ẽ0 ≥ 0, the process Ẽ in (12) is nonnegative;
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(ii) if in addition Ẽ0 > 0, then Ẽt > 0 for all t ∈ [0, T ).

PROOF. By (15), we know that f (y) ≥ 0 for y ∈ [0, λ]. Since the process
(Yt )0≤t≤T is [0, λ]-valued, we deduce from the comparison principle for forward
SDEs that the forward process (Ẽt )0≤t≤T is dominated by the solution (Xt)0≤t≤T

to the SDE

Xt = Ẽ0 +
∫ t

0
b(s,Xs) ds +

∫ t

0
σ(s,Xs) dW̃s, 0 ≤ t ≤ T .

Observe that our conditions on b and σ imply that, whenever Ẽ0 ≤ 0, we have
X ≤ 0 and therefore Ẽ ≤ 0. Then YT = λ1[�,+∞)(ẼT ) = 0, so that u(0, Ẽ0) =
E(YT ) = 0. Similarly, u(t, e) = 0, for any t ∈ [0, T ] and e ≤ 0.

As a consequence, for any initial condition Ẽ0, we can write (f (Yt ))0≤t<T in
the forward equation in (12) as

f (Yt ) = f
(
u(t, Ẽt )

) = f
(
u(t, Ẽt )

) − f
(
u(t,0)

)
= f (u(t, Ẽt )) − f (u(t,0))

Ẽt

Ẽt1{Ẽt 
=0},

where the ratio (f (u(t, e)) − f (u(t,0)))/e, for e 
= 0, is uniformly bounded in
e ∈ R \ {0} and in t in compact subsets of [0, T ) since u is Lipschitz continuous in
space, uniformly in time in compact subsets of [0, T ) [see point (ii-1) in the proof
of Theorem 1]. Similarly, the processes

βt := b(t, Ẽt )

Ẽt

1{Ẽt 
=0} and �t := σ(t, Ẽt )

Ẽt

1{Ẽt 
=0}

are adapted and bounded by the Lipschitz property of the coefficients b,σ in e uni-
formly in t and the fact that b(t,0) = σ(t,0) = 0. We then deduce that (Ẽt )0≤t<T

may be expressed as

Ẽt = Ẽ0 exp
(∫ t

0

(
βs − ϕs − 1

2
�2

s

)
ds +

∫ t

0
�s dW̃s

)
, 0 ≤ t < T ,

with ϕt = [f (Yt )/Ẽt ]1{Ẽt 
=0}, 0 ≤ t < T . �

REMARK 4. Using for u additional estimates from the theory of partial dif-
ferential equations, we may also prove that ϕt appearing in the above proof of
Proposition 3 grows up at most as (T − t)−1/2 when t ↗ T . This implies that ϕ is
integrable on the whole [0, T ] and thus, that ẼT > 0 as well when Ẽ0 > 0. Since
this result is not needed in this paper, we do not provide a detailed argument.

REMARK 5. The nondegeneracy of σ in the neighborhood of (T ,�) [see (14)]
is compatible with the condition σ(t,0) = 0 of Proposition 3, since �, which is
the regulatory emission cap in practice, is expected to be (strictly) positive.
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4. Enlightening example of a singular FBSDE. We saw in the previous sec-
tion that the terminal condition of the backward equation can be a discontinuous
function of the terminal value of the forward component without threatening ex-
istence or uniqueness of a solution to the FBSDE when the forward dynamics are
nondegenerate in the neighborhood of the singularity of the terminal condition.
In this section, we show that this is not the case when the forward dynamics are
degenerate, even if they are hypoelliptic and the solution of the forward equation
has a density before maturity. We explained in the Introduction why this seemingly
pathological mathematical property should not come as a surprise in the context of
equilibrium models for cap-and-trade schemes.

Motivated by the second model given in Section 2.2, we consider the FBSDE⎧⎨
⎩

dPt = dWt,

dEt = (Pt − Yt ) dt,

dYt = Zt dWt, 0 ≤ t ≤ T ,
(21)

with the terminal condition

YT = 1[�,∞)(ET )(22)

for some real number �. Here, (Wt)t∈[0,T ] is a one-dimensional Wiener process.
This unrealistic model corresponds to quadratic costs of production, and choosing
appropriate units for the penalty λ and the emission rate ε to be 1. [For notational
convenience, the martingale measure is denoted by P instead of Q as in Section 3,
and the associated Brownian motion by (Wt)0≤t≤T instead of (W̃t )0≤t≤T .]

Below, we will not discuss the sign of the emission process E as we did in
Proposition 3 above for the first model. Our interest in the examples (21) and (22)
is the outcome of its mathematical analysis, not its realism! We prove the following
unexpected result.

THEOREM 2. Given (p, e) ∈ R2, there exists a unique progressively measur-
able triple (Pt ,Et , Yt )0≤t≤T satisfying (21) together with the initial conditions
P0 = p and E0 = e and

1(�,∞)(ET ) ≤ YT ≤ 1[�,∞)(ET ).(23)

Moreover, the marginal distribution of Et is absolutely continuous with respect to
the Lebesgue measure for any 0 ≤ t < T , but has a Dirac mass at � when t = T .
In other words,

P{ET = �} > 0.

In particular, (Pt ,Et , Yt )0≤t≤T may not satisfy the terminal condition P{YT =
1[�,∞)(ET )} = 1. However, the weaker form (23) of terminal condition is suffi-
cient to guarantee uniqueness.
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Before we engage in the technicalities of the proof we notice that the transfor-
mation

(Pt ,Et )0≤t≤T ↪→ (
Ēt = Et + (T − t)Pt

)
0≤t≤T(24)

maps the original FBSDE (21) into the simpler one{
dĒt = −Yt dt + (T − t) dWt ,

dYt = Zt dWt,
(25)

with the same terminal condition YT = 1[�,∞)(ĒT ). Moreover, the dynamics of
(Et )0≤t≤T can be recovered from those of (Ēt )0≤t≤T since (Pt )0≤t≤T in (21) is
purely autonomous. In particular, except for the proof of the absolute continuity of
Et for t < T , we restrict our analysis to the proof of Theorem 2, for Ē solution of
(25) since E and Ē have the same terminal values at time T .

We emphasize that system (25) is doubly singular at maturity time T ; the diffu-
sion coefficient of the forward equation vanishes as t tends to T and the boundary
condition of the backward equation is discontinuous at �. Together, both singular-
ities make the emission process accumulate a nonzero mass at � at time T . This
phenomenon must be seen as a stochastic residual of the shock wave observed in
the inviscid Burgers equation

∂tv(t, e) − v(t, e)∂ev(t, e) = 0, t ∈ [0, T ), e ∈ R,(26)

with v(T , e) = 1[�,+∞)(e) as boundary condition. As explained below, equation
(26) is the first-order version of the second-order equation associated with (25).

Indeed, it is well known that the characteristics of (26) may meet at time T and
at point �. By analogy, the trajectories of the forward process in (25) may hit � at
time T with a nonzero probability, then producing a Dirac mass. In other words,
the shock phenomenon behaves like a trap into which the process (Et )0≤t≤T [or
equivalently, the process (Ēt )0≤t≤T ] may fall with a nonzero probability. It is then
well understood that the noise plugged into the forward process (Ēt )0≤t≤T may
help escape the trap. For example, we saw in Section 3 that the emission process
did not see the trap when it was strongly elliptic in the neighborhood of the singu-
larity. In the current framework, the diffusion coefficient vanishes in a linear way
as time tends to maturity; it decays too fast to prevent almost every realization of
the process from falling into the trap.

As before, we prove existence of a solution to (25) by first smoothing the singu-
larity in the terminal condition, solving the problem for a smooth terminal condi-
tion and obtaining a solution to the original problem by a limiting argument. How-
ever, in order to prove the existence of a limit, we will use PDE a priori estimates
and compactness arguments instead of comparison and monotonicity arguments.
We call mollified equation the system (25) with a terminal condition

YT = φ(ĒT ),(27)

given by a Lipschitz nondecreasing function φ from R to [0,1] which we view
as an approximation of the indicator function appearing in the terminal condi-
tion (22).
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4.1. Lipschitz regularity in space.

PROPOSITION 4. Assume that the terminal condition in (25) is given by (27)
with a Lipschitz nondecreasing function φ with values in [0,1]. Then, for each
(t0, e) ∈ [0, T ] × R, (25) admits a unique solution (Ē

t0,e
t , Y

t0,e
t ,Z

t0,e
t )t0≤t≤T satis-

fying Ē
t0,e
t0

= e and Y
t0,e
T = φ(Ē

t0,e
T ). Moreover, the mapping

(t, e) ↪→ v(t, e) = Y
t,e
t

is [0,1]-valued, is of class C 1,2 on [0, T ) × R and has Hölder continuous first-
order derivative in time and first and second-order derivatives in space.

Finally, the Hölder norms of v, ∂ev, ∂2
e,ev and ∂tv on a given compact subset

of [0, T ) × R do not depend upon the smoothness of φ provided φ is [0,1]-valued
and nondecreasing. Specifically, the first-order derivative in space satisfies

0 ≤ ∂ev(t, e) ≤ 1

T − t
, t ∈ [0, T ).(28)

In particular, e ↪→ v(t, e) is nondecreasing for any t ∈ [0, T ).
Finally, for a given initial condition (t0, e), the processes (Y

t0,e
t )t0≤t≤T and

(Z
t0,e
t )t0≤t<T , solution to the backward equation in (25) (with φ as boundary con-

dition), are given by

Y
t0,e
t = v

(
t, Ē

t0,e
t

)
, t0 ≤ t ≤ T ;

(29)
Z

t0,e
t = (T − t)∂ev

(
t, Ē

t0,e
t

)
, t0 ≤ t < T .

PROOF. The problem is to solve the system{
dĒt = −Yt dt + (T − t) dWt,

dYt = Zt dWt,
(30)

with ξ = φ(ĒT ) as terminal condition and (t0, e) as initial condition. The drift
in the first equation, that is, (t, y) ∈ [0, T ] × R ↪→ −y, is decreasing in y and
Lipschitz continuous, uniformly in t . By Peng and Wu [16], Theorem 2.2 (with
G = 1, β1 = 0 and β2 = 1 therein), we know that equation (30) admits at most
one solution. Unfortunately, Peng and Wu [16], Theorem 2.6 (see also Remark 2.8
therein) does not apply to prove existence directly.

To prove existence, we use a variation of the induction method in Delarue [7].
In the whole argument, t0 stands for the generic initial time at which the process
Ē starts. The proof consists of extending the local solvability property of Lips-
chitz forward–backward SDEs as the distance T − t0 increases, so that the value
of t0 will vary in the proof. Recall indeed from [7], Theorem 1.1, that existence
and uniqueness hold in small time. Specifically, we can find some small positive
real number δ, possibly depending on the Lipschitz constant of φ, such that (30)
admits a unique solution when t0 belongs to the interval [T − δ, T ]. Remember
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that the initial condition is Ēt0 = e. As a consequence, we can define the value
function v : [T − δ, T ] × R 
 (t0, e) ↪→ Y

t0,e
t0

. By [7], Corollary 1.5, it is known
to be Lipschitz in space uniformly in time as long as the initial time parameter
t0 remains in [T − δ, T ]. The diffusion coefficient T − t in (30) being uniformly
bounded away from 0 on the interval [0, T − δ], by [7], Theorem 2.6, (30) admits
a unique solution on [t0, T − δ] when t0 is assumed to be in [0, T − δ). Therefore,
we can construct a solution to (30) in two steps when t0 < T − δ: we first solve
(30) on [t0, T − δ] with Ēt0 = e as initial condition and v(T − δ, ·) as giving the
terminal condition, the solution being denoted by (Ēt , Yt ,Zt )t0≤t≤T −δ ; then, we
solve (30) on [T − δ, T ] with the previous ĒT −δ as initial condition and with φ as
giving the terminal condition, the solution being denoted by (Ē′

t , Y
′
t ,Z

′
t )T −δ≤t≤T .

We already know that Ē′
T −δ matches ĒT −δ . To patch (Ēt , Yt ,Zt )t0≤t≤T −δ and

(Ē′
t , Y

′
t ,Z

′
t )T −δ≤t≤T into a single solution over the whole time interval [t0, T ],

it is sufficient to check the continuity property YT −δ = Y ′
T −δ as done in De-

larue [7]. This continuity property is a straightforward consequence of [7], Corol-
lary 1.5: on [T − δ, T ], (Y ′

t )T −δ≤t≤T has the form Y ′
t = v(t, Ē′

t ). In particular,
Y ′

T −δ = v(T − δ, Ē′
T −δ) = v(T − δ, ĒT −δ) = YT −δ . This proves the existence of a

solution to (30) with Ēt0 = e as initial condition.
We conclude that, for any (t0, e), (30) admits a unique solution (Ē

t0,e
t , Y

t0,e
t ,

Z
t0,e
t )t0≤t≤T satisfying Ē

t0,e
t0

= e and Y
t0,e
T = φ(Ē

t0,e
T ). In particular, the value func-

tion v : (t0, e) ↪→ Y
t0,e
t0

[i.e., the value at time t0 of the solution (Yt )t0≤t≤T under
the initial condition Ēt0 = e] can be defined on the whole [0, T ] × R.

From [7], Corollary 1.5, and the discussion above, we know that the mapping
e ↪→ v(t, e) is Lipschitz continuous when T − t is less than δ and that, for any
t0 ∈ [0, T ], Y

t0,e
t has the form Y

t0,e
t = v(t, Ē

t0,e
t ) when T − t is less than δ. In

particular, on any [0, T − δ′], δ′ being less than δ, (30) may be seen as a uniformly
elliptic FBSDE with a Lipschitz boundary condition. By Delarue and Guatteri [8],
Theorem 2.1 (together with the discussion in Section 8 therein), we deduce that v

belongs to C 0([0, T ]×R)∩ C 1,2([0, T )×R), that t ↪→ ‖∂ev(t, ·)‖∞ is bounded on
the whole [0, T ] and that t ↪→ ‖∂2

eev(t, ·)‖∞ is bounded on every compact subset
of [0, T ).3 Moreover, (29) holds.

By the martingale property of (Y
t0,e
t )t0≤t≤T , it is well seen that v is [0,1]-

valued. To prove that it is nondecreasing (with respect to e), we follow the proof
of Theorem 1. We notice that (Ē

t0,e
t )t0≤t≤T satisfies the SDE

dĒ
t0,e
t = −v

(
t, Ē

t0,e
t

)
dt + (T − t) dWt , t0 ≤ t ≤ T ,

3Specifically, [8], Theorem 2.1, says that v belongs to C 0([0, T ) × R) and that t ↪→ ‖∂ev(t, ·)‖∞
is bounded on every compact subset of [0, T ). In fact, by Delarue [7], Corollary 1.5, we know that
v belongs to C 0([T − δ, T ] × R) and that t ↪→ ‖∂ev(t, ·)‖∞ is bounded on [T − δ, T ] for δ small
enough.
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which has a Lipschitz drift with respect to the space variable. In particular, for

e ≤ e′, Ē
t0,e
T ≤ Ē

t0,e
′

T , so that v(t0, e) = Eφ(Ē
t0,e
T ) ≤ Eφ(Ē

t0,e
′

T ) = v(t0, e
′).

We now establish (28). For t0 ≤ t ≤ T , the forward equation in (30) has the form

Ē
t0,e
t = e −

∫ t

t0

v
(
s, Ēt0,e

s

)
ds +

∫ t

t0

(T − s) dWs.(31)

Since v is C 1 in space on [0, T ) × R with bounded Lipschitz first-order derivative,
we can apply standard results on the differentiability of stochastic flows (see, e.g.,
Kunita’s monograph [10]). We deduce that, for almost every realization of the
randomness and for any t ∈ [t0, T ), the mapping e ↪→ Ē

t0,e
t is differentiable and

∂eĒ
t0,e
t = 1 −

∫ t

t0

∂ev
(
s, Ēt0,e

s

)
∂eĒ

t0,e
s ds.(32)

In particular,

∂eĒ
t0,e
t = exp

(
−

∫ t

t0

∂ev
(
s, Ēt0,e

s

)
ds

)
.(33)

Since v is nondecreasing, we know that ∂ev ≥ 0 on [0, T ) × R so that ∂eĒ
t0,e
t

belongs to [0,1]. Since ∂ev is also bounded on the whole [0, T ) × R, we deduce
by differentiating the right-hand side in (31) with t = T that ∂eĒ

t0,e
T exists as well

and that ∂eĒ
t0,e
T = limt→T ∂eĒ

t0,e
t ∈ [0,1]. To complete the proof of (28), we then

notice that for any t ∈ [t0, T ],
d
[
(T − t)Y

t0,e
t − Ē

t0,e
t

] = (T − t) dY
t0,e
t − (T − t) dWt = (T − t)

[
Z

t0,e
t − 1

]
dWt,

so that taking expectations we get

(T − t0)v(t0, e) − e = −E
[
Ē

t0,e
T

]
.

Now, differentiating with respect to e, we have

(T − t0)∂ev(t0, e) = 1 − E
[
∂eĒ

t0,e
T

] ≤ 1,

which concludes the proof of (28).
It now remains to investigate the Hölder norms (both in time and space) of v,

∂ev, ∂2
eev and ∂tv.

We first deal with v itself. For 0 < t < s < T ,

v(s, e) − v(t, e) = v(s, e) − v
(
s, Ēt,e

s

) + v
(
s, Ēt,e

s

) − v(t, e)

= v(s, e) − v
(
s, Ēt,e

s

) + Y t,e
s − Y

t,e
t

= v(s, e) − v
(
s, Ēt,e

s

) +
∫ s

t
Zt,e

r dBr .
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From (28), we deduce∣∣v(s, e) − v(t, e)
∣∣ ≤ 1

T − s
E

∣∣Ēt,e
s − e

∣∣ + E

∣∣∣∣
∫ s

t
Zt,e

r dBr

∣∣∣∣
≤ 1

T − s

[
s − t +

(∫ s

t
(T − r)2 dr

)1/2]
+ E

[∫ s

t

∣∣Zt,e
r

∣∣2 dr

]1/2

≤ 1

T − s

[
s − t +

(∫ s

t
(T − r)2 dr

)1/2]
+ (s − t)1/2,

since Zt,e
r = (T − r)∂ev(r, Ēt,e

r ) ∈ [0,1]. So for ε > 0, v is 1/2-Hölder continuous
in time t ∈ [0, T − ε], uniformly in space and in the smoothness of φ.

Now, by Delarue and Guatteri [8], Theorem 2.1, we know that v satisfies the
PDE

∂tv(t, e) + (T − t)2

2
∂2
eev(t, e) − v(t, e)∂ev(t, e) = 0, t ∈ [0, T ), e ∈ R,(34)

with φ as boundary condition. On [0, T − ε] × R, ε > 0, equation (34) is a non-
degenerate second-order PDE of dimension 1 with −v as drift, this drift being

C 1/2,1-continuous independently of the smoothness of φ. By well-known results
in PDEs (so-called Schauder estimates; see, e.g., Krylov [9], Theorem 8.11.1) for
any small η > 0, the C(3−η)/2,3−η-norm of v on [0, T − ε] × R is independent of
the smoothness of φ. �

REMARK 6. As announced, equation (34) is of Burgers type. In particular, it
has the same first-order part as equation (26).

4.2. Boundary behavior. Still in the framework of a terminal condition given
by a smooth (i.e., nondecreasing Lipschitz) function with values in [0,1], we in-
vestigate the shape of the solution as t approaches T .

PROPOSITION 5. Assume that there exists some real �+ such that φ(e) = 1
on [�+,+∞). Then, there exists a universal constant c > 0 such that for any
δ > 0,

v
(
t,�+ + T − t + δ

) ≥ 1 − exp
(
−c

δ2

(T − t)3

)
, 0 ≤ t < T .(35)

In particular, v(t, e) → 1 as t ↗ T uniformly in e in compact subsets of
(�+,+∞).

Similarly, assume that there exists an interval (−∞,�−] such that φ(e) = 0 on
(−∞,�−]. Then, for any δ > 0,

v
(
t,�− − δ

) ≤ exp
(
−c

δ2

(T − t)3

)
.(36)

In particular, v(t, e) → 0 as t ↗ T uniformly in e in compact subsets of
(−∞,�−).
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PROOF. We only prove (35) as the proof of (36) is similar. To do so, we fix
(t0, e) ∈ [0, T ) × R and consider the following system:{

dE−
t = −dt + (T − t) dWt ,

dY−
t = Z−

t dWt , t0 ≤ t ≤ T ,

with E−
t0

= e as initial condition for the forward equation and Y−
T = φ(E−

T ) as
terminal condition for the backward part. The solution (Ē

t0,e
t , Y

t0,e
t ,Z

t0,e
t )t0≤t≤T

given by Proposition 4 with Ē
t0,e
t0

= e and Y
t0,e
T = φ(Ē

t0,e
T ) satisfies Y

t0,e
t ∈ [0,1]

for any t ∈ [t0, T ] so that E−
t ≤ Ē

t0,e
t almost surely for t ∈ [t0, T ]. Now, since φ

is nondecreasing, φ(E−
T ) ≤ φ(Ē

t0,e
T ) almost surely, namely, Y−

t0
≤ Y

t0,e
t0

. Setting
v−(t0, e) = Y−

t0
(recall that Y−

t0
is deterministic) we see that

v−(t0, e) ≤ v(t0, e) ≤ 1.(37)

Now, since

v−(t0, e) = Eφ
(
E−

T

) = Eφ

(
e − (T − t0) +

∫ T

t0

(T − s) dWs

)

with φ ≥ 1[�+,+∞), by choosing e = �+ + (T − t0) + δ as in the statement of
Proposition 5 we get

Eφ
(
E−

T

) = Eφ

(
�+ + δ +

∫ T

t0

(T − s) dWs

)

≥ P

[
�+ + δ +

∫ T

t0

(T − s) dWs ≥ �+
]

= P

[∫ T

t0

(T − s) dWs ≥ −δ

]

= 1 − P

[∫ T

t0

(T − s) dWs ≤ −δ

]

and we complete the proof by applying standard estimates for the decay of the
cumulative distribution function of a Gaussian random variable. Note indeed that
var(

∫ T
t0

(T − s) dWs) = (T − t0)
3/3 if we use the notation var(ξ) for the variance

of a random variable ξ . �

The following corollary elucidates the boundary behavior between �− and
�+ + (T − t) with �− and �+ as above.

COROLLARY 1. Choose φ as in Proposition 5. If there exists an interval
[�+,+∞) on which φ(e) = 1, then for α > 0 and e < �+ + (T − t)+ (T − t)1+α

we have

v(t, e) ≥ e − �+

T − t
− exp

(
− c

(T − t)1−2α

)
− (T − t)α(38)
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for the same c as in the statement of Proposition 5.
Similarly, if there exists an interval (−∞,�−] on which φ(e) = 0, then for

α > 0 and e > �− − (T − t)1+α we have

v(t, e) ≤ e − �−

T − t
+ exp

(
− c

(T − t)1−2α

)
+ (T − t)α.(39)

PROOF. We first prove (38). Since v(t, ·) is 1/(T − t)-Lipschitz continuous,
we have

v
(
t,�+ + (T − t) + (T − t)1+α) − v(t, e) ≤ �+ − e + (T − t) + (T − t)1+α

T − t

= �+ − e

T − t
+ 1 + (T − t)α.

Therefore,

v(t, e) ≥ v
(
t,�+ + (T − t) + (T − t)1+α) − 1 − (T − t)α − �+ − e

T − t

and applying (35),

v(t, e) ≥ e − �+

T − t
− exp

(−c(T − t)2α−1) − (T − t)α.

For the upper bound, we use the same strategy. We start from

v(t, e) − v
(
t,�− − (T − t)1+α) ≤ e − �−

T − t
+ (T − t)α,

so that

v(t, e) ≤ e − �−

T − t
+ exp

(−c(T − t)2α−1) + (T − t)α. �

4.3. Existence of a solution. We now establish the existence of a solution to
(25) with the original terminal condition. We use a compactness argument giving
the existence of a value function for the problem.

PROPOSITION 6. There exists a continuous function v : [0, T ) × R ↪→ [0,1]
satisfying:

(1) v belongs to C 1,2([0, T ) × R) and solves (34),
(2) v(t, ·) is nondecreasing and 1/(T − t)-Lipschitz continuous for any t ∈

[0, T ),
(3) v satisfies (35) and (36) with �− = �+ = �,
(4) v satisfies (38) and (39) with �− = �+ = �,
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and for any initial condition (t0, e) ∈ [0, T ) × R, the strong solution (Ē
t0,e
t )t0≤t<T

of

Ēt = e −
∫ t

t0

v(s, Ēs) ds +
∫ t

t0

(T − s) dWs, t0 ≤ t < T ,(40)

is such that (v(t, Ē
t0,e
t ))t0≤t<T is a martingale with respect to the filtration gener-

ated by W .

PROOF. Choose a sequence of [0,1]-valued smooth nondecreasing functions
(φn)n≥1 such that φn(e) = 0 for e ≤ � − 1/n and φn(e) = 1 for e ≥ � + 1/n,
n ≥ 1, and denote by (vn)n≥1 the corresponding sequence of functions given by
Proposition 4. By Proposition 4, we can extract a subsequence, which we will still
index by n, converging uniformly on compact subsets of [0, T ) × R. We denote
by v such a limit. Clearly, v satisfies (1) in the statement of Proposition 6. More-
over, it also satisfies (2) because of Proposition 4, (3) by Proposition 5 and (4)
by Corollary 1. Having Lipschitz coefficients, the stochastic differential equation
(40) has a unique strong solution on [t0, T ) for any initial condition Ēt0 = e. If
we denote the solution by (Ē

t0,e
t )t0≤t<T , Itô’s formula and (34) imply that the pro-

cess (v(t, Ē
t0,e
t ))t0≤t<T is a local martingale. Since it is bounded, it is a bona fide

martingale. �

We finally obtain the desired solution to the FBSDE in the sense of Theorem 2.

PROPOSITION 7. v and (Ē
t0,e
t )t0≤t<T being as above and setting

Y
t0,e
t = v

(
t, Ē

t0,e
t

)
, Z

t0,e
t = (T − t)∂ev

(
t, Ē

t0,e
t

)
, t0 ≤ t < T ,

the process (Ē
t0,e
t )t0≤t<T has an a.s. limit Ē

t0,e
T as t tends to T . Similarly, the

process (Y
t0,e
t )t0≤t<T has an a.s. limit Y

t0,e
T as t tends to T , and the extended

process (Y
t0,e
t )t0≤t≤T is a martingale with respect to the filtration generated by W .

Moreover, P-a.s., we have

1(�,∞)

(
Ē

t0,e
T

) ≤ Y
t0,e
T ≤ 1[�,∞)

(
Ē

t0,e
T

)
(41)

and

Y
t0,e
T = Y

t0,e
t0

+
∫ T

t0

Z
t0,e
t dWt .(42)

Notice that Z
t0,e
t is not defined for t = T .

PROOF OF PROPOSITION 7. The proof is straightforward now that we have
collected all the necessary ingredients. We start with the extension of (Ē

t0,e
t )t0≤t<T
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up to time T . The only problem is to extend the drift part in (40), but since v is
nonnegative and bounded, it is clear that the process(∫ t

t0

v
(
s, Ēt0,e

s

)
ds

)
t0≤t<T

is almost surely increasing in t , so that the limit exists. The extension of
(Y

t0,e
t )t0≤t<T up to time T follows from the almost sure convergence theorem

for positive martingales.
To prove (41), we apply (3) in the statement of Proposition 6. If Ē

t0,e
T =

limt→T Ē
t0,e
t > �, then we can find some δ > 0 such that Ē

t0,e
t > � + (T − t) + δ

for t close to T , so that Y
t0,e
t = v(t, Ē

t0,e
t ) ≥ 1 − exp[−cδ2/(T − t)3] for t close to

T , that is, Y
t0,e
T ≥ 1. Since Y

t0,e
T ≤ 1, we deduce that

Ē
t0,e
T > � ⇒ Y

t0,e
T = 1.

In the same way,

Ē
t0,e
T < � ⇒ Y

t0,e
T = 0.

This proves (41). Finally, (42) follows from Itô’s formula. Indeed, by Itô’s formula
and (34),

Y
t0,e
t = Y

t0,e
t0

+
∫ t

t0

Zt0,e
s dWs, t0 ≤ t < T .

By definition, Zt0,e
s = (T − s)∂ev(s, Ē

t0,e
s ), t0 ≤ s < T . By part (2) in the statement

of Proposition 6, it is in [0,1]. Therefore, the Itô integral∫ T

t0

Zt0,e
s dWs

makes sense as an element of L2(�,P). This proves (42). �

4.4. Improved gradient estimates. Again using standard results on the differ-
entiability of stochastic flows (see again Kunita’s monograph [10]), we see that
formulae (32) and (33) still hold in the present situation of a discontinuous termi-
nal condition. We also prove a representation for the gradient of v of Malliavin–
Bismut type.

PROPOSITION 8. For t0 ∈ [0, T ), ∂ev(t0, e) admits the representation

∂ev(t0, e) = 2(T − t0)
−2E

[
lim
δ→0

v
(
T − δ, Ē

t0,e
T −δ

) ∫ T

t0

∂eĒ
t0,e
t dWt

]
.(43)

In particular, there exists some constant A > 0 such that

sup
|e|>A

sup
0≤t≤T

∂ev(t, e) < +∞.(44)
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PROOF. For δ > 0, Proposition 7 yields

E

[
v
(
T − δ, Ē

t0,e
T −δ

) ∫ T

t0

∂eĒ
t0,e
t dWt

]
= E

[∫ T −δ

t0

Z
t0,e
t dWt

∫ T

t0

∂eĒ
t0,e
t dWt

]

= E

[∫ T −δ

t0

(T − t)∂ev
(
t, Ē

t0,e
t

)
∂eĒ

t0,e
t dt

]
.

The bounds we have on ∂ev and (∂eĒ
t0,e
t )t0≤t<T justify the exchange of the expec-

tation and integral signs. We obtain

E

[
v
(
T − δ, Ē

t0,e
T −δ

) ∫ T

t0

∂eĒ
t0,e
t dWt

]
=

∫ T −δ

t0

(T − t)E
[
∂e

[
v
(
t, Ē

t0,e
t

)]]
dt.

Similarly, we can exchange the expectation and the partial derivative so that

E

[
v
(
T − δ, Ē

t0,e
T −δ

) ∫ T

t0

∂eĒ
t0,e
t dWt

]
=

∫ T −δ

t0

(T − t)∂e

[
Ev

(
t, Ē

t0,e
t

)]
dt.

Since (v(t, Ē
t0,e
t ))t0≤t≤T −δ is a martingale, we deduce

E

[
v
(
T − δ, Ē

t0,e
T −δ

) ∫ T

t0

∂eĒ
t0,e
t dWt

]
= ∂ev(t0, e)

∫ T −δ

t0

(T − t) dt

= 1

2
(T − δ − t0)(T + δ − t0)∂ev(t0, e).

Letting δ tend to zero and applying dominated convergence, we complete the proof
of the representation formula of the gradient.

To derive the bound (44), we emphasize that, for e away from � (say, e.g.,
e � �), the probability that (Ē

t0,e
t )t0≤t≤T hits � is very small and decays exponen-

tially fast as T − t0 tends to 0. On the complement, that is, for supt0≤t≤T Ē
t0,e
t < �,

we know that v(t, Ē
t0,e
t ) tends to 0 as t tends to T . Specifically, following the proof

of Proposition 5, there exists a universal constant c′ > 0 such that for any e ≤ �−1
and t0 ∈ [0, T ),

(T − t0)
2∂ev(t0, e) ≤ 2(T − t0)

1/2P1/2
[

sup
t0≤t≤T

Ē
t0,e
t ≥ �

]

≤ 2(T − t0)
1/2P1/2

[
� − 1 + sup

t0≤t≤T

∫ t

t0

(T − s) dWs ≥ �

]

≤ 2(T − t0)
1/2P1/2

[
sup

t0≤t≤T

∫ t

t0

(T − s) dWs ≥ 1
]

≤ 2(T − t0)
1/2 exp

(
− c′

(T − t0)3

)
,

the last line following from Rogers and Williams [18], maximal inequality
(IV.37.12).
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The same argument holds for e > �+2 by noting that (43) also holds for v −1.
�

REMARK 7. The stochastic integral in the Malliavin–Bismut formula (43) is
at most of order (T − t0)

1/2. Therefore, the typical resulting bound for ∂ev(t, e) in
the neighborhood of (T ,�) is (T − t)−3/2. Obviously, it is less accurate than the
bound given by Propositions 4 and 6. This says that the Lipschitz smoothing of the
singularity of the boundary condition obtained in Propositions 4 and 6, namely,
∂ev(t, e) ≤ (T − t)−1, follows from the first-order Burgers structure of the PDE
(34) and that the diffusion term plays no role in it. This is a clue to understanding
why the diffusion process Ē feels the trap made by the boundary condition. On the
opposite, the typical bound for ∂ev(t, e) we would obtain in the uniformly elliptic
case by applying a Malliavin–Bismut formula (see Nualart [14], Exercise 2.3.5) is
of order (T − t)−1/2, which is much better than (T − t)−1.

Nevertheless, the following proposition shows that the diffusion term permits
us to improve the bound obtained in Propositions 4 and 6. Because of the noise
plugged into Ē, the bound (T − t)−1 cannot be achieved. This makes a real differ-
ence with the inviscid Burgers equation (26) which admits

(t, e) ∈ [0, T ) × R ↪→ ψ

(
e − �

T − t

)

as solution, with ψ(e) = 1 ∧ e+ for e ∈ R (see, e.g., Lax [11], (10.12’)).

We thus prove the following stronger version of Propositions 4 and 6.

PROPOSITION 9. For any (t0, e) ∈ [0, T ) × R, it holds (T − t0)∂ev(t0, e) < 1.

PROOF. Given (t0, e) ∈ [0, T ) × R, we consider (Ē
t0,e
t , Y

t0,e
t ,Z

t0,e
t )t0≤t≤T as

in the statement of Proposition 7. As in the proof of Proposition 4, we start from

d
[
(T − t)Y

t0,e
t − Ē

t0,e
t

] = (T − t) dY
t0,e
t − (T − t) dWt

= (T − t)
[
Z

t0,e
t − 1

]
dWt, t0 ≤ t < T .

Therefore, for any initial condition (t0, e),

(T − t0)v(t0, e) − e = −E
[
Ē

t0,e
T

]
.

Unfortunately, we do not know whether Ē
t0,e
T is differentiable with respect to e.

However,

(T − t0)∂ev(t0, e) = 1 − lim
h→0

h−1E
[
Ē

t0,e+h
T − Ē

t0,e
T

]
= 1 − lim

h→0
h−1 lim

t↗T
E

[
Ē

t0,e+h
t − Ē

t0,e
t

]
≤ 1 − lim

h→0
lim
t↗T

inf|u|≤h
E

[
∂eĒ

t0,e+u
t

]
.
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Using (33), the nonnegativity of ∂ev and Fatou’s lemma,

(T − t0)∂ev(t0, e) ≤ 1 − lim
h→0

lim
t↗T

inf|u|≤h
E

[
exp

(
−

∫ t

t0

∂ev
(
s, Ēt0,e+u

s

)
ds

)]

≤ 1 − lim
h→0

inf|u|≤h
E

[
exp

(
−

∫ T

t0

∂ev
(
s, Ēt0,e+u

s

)
ds

)]

≤ 1 − E

[
exp

(
− lim

h→0
sup
|u|≤h

∫ T

t0

∂ev
(
s, Ēt0,e+u

s

)
ds

)]
.

Consequently, in order to prove that (T − t0)∂ev(t0, e) < 1, it is enough to prove
that

lim
h→0

sup
|u|≤h

∫ T

t0

∂ev
(
t, Ē

t0,e+u
t

)
dt(45)

is finite with nonzero probability. To do so, the Lipschitz bound given by Propo-
sition 4 is not sufficient since the integral of the bound is divergent. To overcome
this difficulty, we use (44): with nonzero probability, the values of the process
(Ēt )t0≤t≤T at the neighborhood of T may be made as large as desired. Precisely,
for A as in Proposition 8, it is sufficient to prove that there exists δ > 0 small
enough such that P[inf|h|≤1 infT −δ≤t≤T Ē

t0,e+h
t > A] > 0. For δ > 0, we deduce

from the boundedness of the drift in (40) that

P
[

inf|h|≤1
inf

T −δ≤t≤T
Ē

t0,e+h
t > A

]

≥ P

[
e − 1 − (T − t0) + inf

T −δ≤t≤T

∫ t

t0

(T − s) dWs > A

]
.

By independence of the increments of the Wiener integral, we get

P
[

inf|h|≤1
inf

T −δ≤t≤T
Ē

t0,e+h
t > A

]

≥ P

[
e − 1 − (T − t0) +

∫ T −δ

t0

(T − s) dWs > 2A

]

× P

[
inf

T −δ≤t≤T

∫ t

T −δ
(T − s) dWs > −A

]
.

The first probability in the above right-hand side is clearly positive for T − δ > t0.
The second one is equal to

P

[
inf

T −δ≤t≤T

∫ t

T −δ
(T − s) dWs > −A

]
= 1 − P

[
sup

T −δ≤t≤T

∫ t

T −δ
(T − s) dWs ≥ A

]
.

Using Rogers and Williams [18], maximal inequality (IV.37.12), the above right-
hand side is always positive. By (44), we deduce that, with nonzero probability,
the limsup in (45) is finite. �
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4.5. Distribution of Ēt for t0 ≤ t ≤ T . We finally claim the following.

PROPOSITION 10. Keep the notation of Propositions 6 and 7 and choose some
starting point (t0, e) ∈ [0, T ) × R and some p ∈ R. Then, for every t ∈ [t0, T ), the
law of the variable

E
t0,e,p
t = Ē

t0,e
t − (T − t)P

p
t = Ē

t0,e
t − (T − t)[p + Wt ],

obtained by transformation (24), is absolutely continuous with respect to the
Lebesgue measure. At time t = T , it has a Dirac mass at �.

PROOF. Obviously, we can assume p = 0, so that Pt = Wt . (For simplicity, we
will write E

t0,e
t for E

t0,e,p
t .) We start with the absolute continuity of E

t0,e
t at time

t < T . Since v is smooth away from T , we can compute the Malliavin derivative
of E

t0,e
t (see Nualart [14], Theorem 2.2.1). It satisfies

DsE
t0,e
t = t − s −

∫ t

s
∂ev

(
r,Et0,e

r + (T − r)Wr

)
DsE

t0,e
r dr

−
∫ t

s
(T − r)∂ev

(
r,Et0,e

r + (T − r)Wr

)
dr

for t0 ≤ s ≤ t . In particular,

DsE
t0,e
t =

∫ t

s

[[
1 − (T − r)∂ev

(
r,Et0,e

r + (T − r)Wr

)]
(46)

× exp
(
−

∫ t

r
∂ev

(
u,Et0,e

u + (T − u)Wu

)
du

)]
dr.

By Proposition 9, we deduce that DsE
t0,e
t > 0 for any t0 ≤ s ≤ t . By Nualart [14],

Theorem 2.1.3, we deduce that the law of E
t0,e
t has a density with respect to the

Lebesgue measure.
To prove the existence of a point mass at time T , it is enough to focus on Ē

t0,e
T

since the latter is equal to E
t0,e
T . We prove the desired result by comparing the

stochastic dynamics of Ē
t0,e
T to the time evolution of solutions of simpler stochas-

tic differential equations. With the notation used so far, Ē
t0,e
t is a solution of the

stochastic differential equation

dĒt = −v(t, Ēt ) dt + (T − t) dWt ,(47)

so it is natural to compare the solution of this equation to solutions of stochastic
differential equations with comparable drifts. Following Remark 6, we are going
to do so by comparing v with the solution of the inviscid Burgers equation (26). To
this effect we use once more the function ψ defined by ψ(e) = 1 ∧ e+ introduced
earlier. As stated in Remark 7, the function ψ((e − �)/(T − t)) is a solution
of the Burgers equation (26) which, up to the diffusion term [which decreases
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to 0 like (T − t)2 when t ↗ T ], is the same as the partial differential equation
satisfied by v. Using (35) and (36) with �− = �+ = � and δ = (T − t)5/4, we
infer that v(t, e) and ψ(e − �/(T − t)) are exponentially close as T − t tends
to 0 when e ≤ −(T − t)5/4 or e ≥ T − t + (T − t)5/4; using (38) and (39) with
�− = �+ = � and α = 1/4, we conclude that the distance between v(t, e) and
ψ((e − �)/(T − t)) is at most of order 5/4 with respect to T − t as T − t tends to
0 when −(T − t)5/4 < e < T − t + (T − t)5/4. In any case, we have

∀e ∈ R

∣∣∣∣v(t, e) − ψ

(
e − �

T − t

)∣∣∣∣ ≤ C(T − t)1/4(48)

for some universal constant C. We now compare (47) with

dX±
t = −ψ

(
X±

t − �

T − t

)
dt ± C(T − t)1/4 dt

(49)
+ (T − t) dWt , t0 ≤ t < T ,

with X±
t0

= e as initial conditions. Clearly,

X−
t ≤ Ē

e,t0
t ≤ X+

t , t0 ≤ t < T .(50)

Knowing that ψ(x) = x when 0 ≤ x ≤ 1, we anticipate that scenarios satisfying
0 ≤ X±

t −� ≤ T − t can be viewed as solving the stochastic differential equations

dZ±
t = −Z±

t − �

T − t
dt ± C(T − t)1/4 dt + (T − t) dWt

with Z±
t0

= e as initial conditions. This remark is useful because these equations
have explicit solutions,

Z±
t = � + (T − t)

[
Wt − Wt0 ∓ 4C(T − t)1/4 ± 4C(T − t0)

1/4 + e − �

T − t0

]
,

(51)
t0 ≤ t ≤ T .

We define the event F by

F =
{

sup
t0≤t≤T

|Wt − Wt0 | ≤
1

8

}

and we introduce the quantities e(t0) and ē(t0) defined by

e(t0) = � + 1
4(T − t0) and ē(t0) = � + 3

4(T − t0)

so that

1

4
≤ e − �

T − t0
≤ 3

4
,
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whenever e(t0) ≤ e ≤ ē(t0). For such a choice of e, since

Z± − �

T − t
= Wt − Wt0 ∓ 4C(T − t)1/4 ± 4C(T − t0)

1/4 + e − �

T − t0
,

it is easy to see that if we choose t0 such that T − t0 is small enough for 32C(T −
t0)

1/4 < 1 to hold, then

∀t ∈ [t0, T ] 0 ≤ Z−
t − �

T − t
≤ Z+

t − �

T − t
≤ 1

on the event F . This implies that (X±
t )t0≤t<T and (Z±

t )t0≤t<T coincide on F ,
and consequently that X+

T = X−
T = � and hence, Ē

t0,e
T = � on F by (50). This

completes the proof for these particular choices of t0 and e. In fact, the result holds
for any e and any t0 ∈ [0, T ). Indeed, since Ē

t0,e
t has a strictly positive density at

any time t ∈ (t0, T ), if we choose t1 ∈ (t0, T ) so that 32C(T − t1)
1/4 < 1, then

using the Markov property we get

P
{
Ē

t0,e
T = �

} ≥
∫ ē(t1)

e(t1)
P

{
Ē

t1,e
′

T = �
}
P

{
Ē

t0,e
t1

∈ de′} > 0,

which completes the proof in the general case. �

REMARK 8. We emphasize that the expression for DsE
t0,e
t given in (46) can

vanish with a nonzero probability when replacing t by T . Indeed, the integral∫ T

r
∂ev

(
u,Et0,e

u + (T − u)Wu

)
du

may explode with a nonzero probability since the derivative ∂ev(u, e) is expected
to behave like (T − u)−1 as u tends to T and e to �. Indeed, v is known to behave
like the solution of the Burgers equation when close to the boundary [see (48)].
As a consequence, we expect ∂ev to behave like the gradient of the solution of the
Burgers equation. The latter is singular in the neighborhood of the final disconti-
nuity and explodes like (T − u)−1 in the cone formed by the characteristics of the
equation.

However, in the uniformly elliptic case, the integral above is always bounded
since ∂ev(u, ·) is at most of order (T − u)−1/2 as explained in Remark 7.

4.6. Uniqueness. Our proof of uniqueness is based on a couple of comparison
lemmas.

LEMMA 1. Let φ be a nondecreasing smooth function with values in [0,1]
greater than 1[�,+∞), and w be the solution of the PDE (34) with φ as terminal
condition. Then, any solution (Ē′

t , Y
′
t ,Z

′
t )t0≤t≤T of (25) starting from Ē′

t0
= e and

satisfying 1(�,+∞)(Ē
′
T ) ≤ Y ′

T ≤ 1[�,+∞)(Ē
′
T ) also satisfies

w
(
t, Ē′

t

) ≥ Y ′
t , t0 ≤ t ≤ T .
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Similarly, if φ is less than 1(�,+∞), then

w
(
t, Ē′

t

) ≤ Y ′
t , t0 ≤ t ≤ T .

PROOF. Applying Itô’s formula to (w(t, Ē′
t ))t0≤t≤T , we obtain

d
[
w

(
t, Ē′

t

) − Y ′
t

] = (
w

(
t, Ē′

t

) − Y ′
t

)
∂ew

(
t, Ē′

t

)
dt + [

(T − t)∂ew
(
t, Ē′

t

) − Z′
t

]
dWt .

Therefore,

d

[[
w

(
t, Ē′

t

) − Y ′
t

]
exp

(
−

∫ t

t0

∂ew
(
s, Ē′

s

)
ds

)]

= exp
(
−

∫ t

t0

∂ew
(
s, Ē′

s

)
ds

)[
(T − t)∂ew

(
t, Ē′

t

) − Z′
t

]
dWt .

In particular,

w
(
t, Ē′

t

) − Y ′
t = exp

(∫ t

t0

∂ew
(
s, Ē′

s

)
ds

)

× E

[
exp

(
−

∫ T

t0

∂ew
(
s, Ē′

s

)
ds

)[
w

(
T , Ē′

T

) − Y ′
T

]∣∣∣Ft

]
,

and the proof is complete. �

The next lemma can be viewed as a form of conservation law.

LEMMA 2. Let (χn)n≥1 be a nonincreasing sequence of nondecreasing
smooth functions matching 0 on some intervals (−∞,�−,n)n≥1 and 1 on some
intervals (�+,n,+∞)n≥1 and converging toward 1[�,+∞), then the associated so-
lutions (wn)n≥1, given by Proposition 4 converge toward v constructed in Propo-
sition 6.

The conclusion remains true if (χn)n≥1 is a nondecreasing sequence converging
toward 1(�,+∞).

PROOF. Each wn is a solution of the conservative partial differential equa-
tion (34). Considering vn as in the proof of Proposition 6, we have for any
n,m ≥ 1, ∫

R

(
wn − vm)

(t, e) de =
∫

R

(
χn − φm)

(e) de, t ∈ [0, T ).

Notice that the integrals are well defined because of Proposition 5. Since φm(e) →
1[�,+∞)(e) as m → +∞ for e 
= �, we deduce that∫

R

(
wn − v

)
(t, e) de =

∫
R

[
χn(e) − 1[�,+∞)(e)

]
de, t ∈ [0, T ).
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Since the right-hand side converges toward 0 as n tends to +∞, so does the
left-hand side, but since wn(t, e) ≥ v(t, e) by Lemma 1 [choosing (Ē′, Y ′,Z′) =
(Ēt0,e, Y t0,e,Zt0,e)], we must also have

lim
n→+∞

∫
R

∣∣wn(t, e) − v(t, e)
∣∣de = 0.

Since (wn(t, ·))n≥1 is equicontinuous (by Proposition 4), we conclude that
wn(t, e) → v(t, e). The proof is similar if χn ↗ 1(�,+∞). �

To complete the proof of uniqueness, consider a sequence (χn)n≥1 as in the
statement of Lemma 2. For any solution (Ē′

t , Y
′
t ,Z

′
t )t0≤t≤T of (25) with Ē′

t0
= e,

Lemma 1 yields

wn(
t, Ē′

t

) ≥ Y ′
t , t ∈ [t0, T ).

Passing to the limit, we conclude that

v
(
t, Ē′

t

) ≥ Y ′
t , t ∈ [t0, T ).

Choosing a nondecreasing sequence (χn)n≥1, instead, we obtain the reverse in-
equality, and hence, we conclude that Y ′

t = v(t, Ē′
t ) for t ∈ [t0, T ). By unique-

ness to (40), we deduce that Ē′
t = Ē

t0,e
t , so that Y ′

t = Y
t0,e
t . We easily deduce that

Z′
t = Z

t0,e
t as well.

REMARK 9. We conjecture that the analysis performed in this section can be
extended to more general conservation laws than Burgers equation. The Burgers
case is the simplest one since the corresponding forward–backward stochastic dif-
ferential equation is purely linear.

5. Option pricing and small abatement asymptotics. In this section, we
consider the problem of option pricing in the framework of the first equilibrium
model introduced in this paper.

5.1. PDE characterization. Back to the risk neutral dynamics of the (per-
ceived) emissions given by (12), we assume that the emissions of the business as
usual scenario are modeled by a geometric Brownian motion so that b(t, e) = be

and σ(t, e) = σe. As explained in the Introduction, this model has been used in
most of the early reduced form analyses of emissions allowance forward contracts
and option prices (see [5] and [6], e.g.). The main thrust of this section is to include
the impact of the allowance price Y on the dynamics of the cumulative emissions.
As we already saw in the previous section, this feedback f (Ys) is the source of
a nonlinearity in the PDE whose solution determines the price of an allowance.
Throughout this section, we assume that under the pricing measure (martingale
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spot measure) the cumulative emissions and the price of a forward contract on an
emission allowance satisfy the forward–backward system⎧⎪⎪⎨

⎪⎪⎩
Et = E0 +

∫ t

0

(
bEs − f (Ys)

)
ds +

∫ t

0
σEs dWs,

Yt = λ1[�,∞)(ET ) −
∫ T

t
Zt dWt ,

(52)

with f as in (15) with f (0) = 0 and λ,� > 0. For notational convenience, the
martingale measure is denoted by P instead of Q as in Section 3 and the associated
Brownian motion by (Wt)0≤t≤T instead of (W̃t )0≤t≤T .

Theorem 1 directly applies here, so that equation (52) is uniquely solvable given
the initial condition E0. In particular, we know from the proof of Theorem 1 that
the solution (Yt )0≤t≤T of the backward equation is constructed as a function (Yt =
u(t,Et ))0≤t≤T of the solution of the forward equation. Moreover, since we are
assuming that f (0) = 0, it follows from Proposition 3 that the process E takes
positive values.

Referring to [15], we notice that the function u is the right candidate for being
the viscosity solution to the PDE⎧⎪⎨

⎪⎩
∂tu(t, e) + (

be − f
(
u(t, e)

))
∂eu(t, e) + 1

2σ 2e2∂2
eeu(t, e) = 0,

(t, e) ∈ [0, T ) × R+,

u(T , ·) = λ1[�,∞).

(53)

Having this connection in mind, we consider next the price at time t < τ of a
European call option with maturity τ < T and strike K on an allowance forward
contract maturing at time T . It is given by the expectation

E
{(

Y t,e
τ − K

)+} = E
{(

u
(
τ,Et,e

τ

) − K
)+}

,

which can, as before, be written as a function U(t,E
t,e
t ) of the current value of

the cumulative emissions, where the notation (t, e) in superscript indicates that
Et = e. Once the function u is known and/or computed, for exactly the same rea-
sons as above, the function U appears as the viscosity solution of the linear partial
differential equation⎧⎪⎨

⎪⎩
∂tU(t, e) + (

be − f
(
u(t, e)

))
∂eU(t, e) + 1

2σ 2e2∂2
eeU(t, e) = 0,

(t, e) ∈ [0, τ ) × R+,

U(τ, ·) = (
u(τ, ·) − K

)+
,

(54)

which, given the knowledge of u, is a linear partial differential equation. Notice
that in the case f ≡ 0 of infinite abatement costs, except for the fact that the co-
efficients of the geometric Brownian motion were assumed to be time dependent,
the above option price is the same as the one derived in [5].
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5.2. Small abatement asymptotics. Examining the PDEs (53) and (54), we see
that there are two main differences with the classical Black–Scholes framework.
First, the underlying contract price is determined by the nonlinear PDE (53). Sec-
ond, the option pricing PDE (54) involves the nonlinear term f (u(t, e)), while still
being linear in terms of the unknown function U . Because the function u is deter-
mined by the first PDE (53), this nonlinearity is inherent to the model, and one
cannot simply reduce the PDE to the Black–Scholes equation.

In order to understand the departure of the option prices from those of the
Black–Scholes model, we introduce a small parmater ε ≥ 0, and take the abate-
ment rate to be of the form f = εf0 for some fixed nonzero increasing continuous
function f0. We denote by uε and Uε the corresponding prices of the allowance
forward contract and the option. Here, what we call Black–Scholes model corre-
sponds to the case f ≡ 0. Indeed, in this case, both (53) and (54) reduce to the
linear Black–Scholes PDE, differing only through their boundary conditions. This
model was one of the models used in [5] for the purpose of pricing options on
emission allowances based on price data exhibiting no implied volatility smile.

For ε = 0, the nonlinear feedback given by the abatement rate disappears and
we easily compute that, for e > 0,

u0(t, e) = λE
[
1[�,∞)

(
E

0,t,e
T

)]
(55)

= λ�

(
ln[e exp(b(T − t))/�]

σ
√

T − t
− σ

√
T − t

2

)
,

U0(t, e) = E
[(

u0(
τ,E0,t,e

τ

) − K
)+]

, 0 ≤ t ≤ τ,(56)

where E0,t,e is the geometric Brownian motion

dE0,t,e
s = E0,t,e

s [b ds + σ dWs], s ≥ t,(57)

used as a proxy for the cumulative emissions in business as usual, with the initial
condition E

t,e
t = e (see, e.g., [5] for details and complements). The main technical

result of this section is the following first order Taylor expansion of the option
price.

PROPOSITION 11. Let f satisfy (15) and (t, e) ∈ [0, τ ) × (0,+∞). Then, as
ε → 0, we have

Uε(t, e) = U0(t, e)

− εE

[
1[�,∞)

(
u0(

τ,E0,t,e
τ

))

×
∫ T

t
f0

(
u0(

s,E0,t,e
s

))
∂eu

0(
s ∨ τ,E0,t,e

s∨τ

)E0,t,e
s∨τ

E
0,t,e
s

ds

]
+ o(ε),

where ε−1o(ε) → 0 as ε → 0.
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PROOF. The proof is divided into four parts.
(i) We first prove that the functions u0 and U0, with u0 ≡ 0 and U0 ≡ 0

on [0, T ] × R− and [0, τ ] × R−, respectively, belong to C 1,2([0, T ) × R) and
C 1,2([0, τ ) × R), respectively.

By (55), we know that u0 is C 1,2 on [0, T ) × R∗+. Obviously, u0 ≡ 0 on the
whole [0, T ] × {0} since � > 0. Using the bound

∫ −x

−∞
exp

(
−v2

2

)
dv√
2π

≤
√

2

π
x−1 exp

(
−x2

2

)
, x > 0,

we deduce that

u0(t, e) ≤
√

2

π
λ

σ(T − t)1/2

|ln(e exp(b(T − t))/�)| exp
(
−|ln(e exp(b(T − t))/�)|2

2σ 2(T − t)

)

for 0 < e � 1, t ∈ [0, T ). This shows that u0(t, e) decays toward 0 faster than any
polynomial. In particular, ∂eu

0(t,0) = ∂2
eeu

0(t,0) = 0. Differentiating (55) with
respect to e, we conclude by the same argument that ∂eu

0(t, e) and ∂2
eeu

0(t, e)

decay toward 0 faster than any polynomial, so that the first- and second-order
derivatives in space are continuous on [0, T ) × R+. Obviously, ∂tu

0(t,0) = 0 for
any t ∈ [0, T ) and, by differentiating (55) with respect to t , we can also prove that
∂tu

0 is continuous on [0, T ) × R+. Since u0 ≡ 0 on [0, T ] × R∗−, we deduce that
u0 is of class C 1,2 on [0, T ) × R.

All in all, the computation of the first-order derivatives yields

∂eu
0(t, e) = λ√

2πeσ(T − t)1/2
exp

(
−|ln(e exp(b(T − t))/�) − σ 2(T − t)/2|2

2σ 2(T − t)

)

for e > 0 and t ∈ [0, T ). The above right-hand side is less than C/(T − t)1/2 for e

away from 0, the constant C being independent of t . When e is close to 0,

∣∣∂eu
0(t, e)

∣∣ ≤ λ√
2πeσ(T − t)1/2

exp
(
−|ln(e exp(b(T − t))/�)|2

2σ 2(T − t)

)
,

so that the bound∣∣∂eu
0(t, e)

∣∣ ≤ C(T − t)−1/2, t ∈ [0, T ), e ∈ R,(58)

is always true. As a by-product, we deduce that u0(τ,E0
τ ) ≤ C(T − τ)−1/2|E0

τ |,
so that (

u0(
τ,E0

τ

) − K
)+ = (

u0(
τ,E0

τ

) − K
)+1{|E0

τ |≥(T −τ)1/2K/C}.
In particular,

U0(t, e) = E
[(

u0(
τ,E0,t,e

τ

) − K
)+1{|E0,t,e

τ |≥(T −τ)1/2K/C}
]
.

By the same argument as the one used for u0, we see that U0 and its partial deriva-
tives with respect to t and e decay toward 0 as e tends to 0, at a faster rate than
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any polynomial one. In particular, setting U0(t, e) = 0 for t ∈ [0, τ ] and e ∈ R, we
deduce that U0 belongs to C 1,2([0, τ ) × R).

(ii) We use the smoothness of u0 and apply Itô’s formula to (u0(s,Eε,t,e
s ))t≤s≤T ,

where Eε,t,e denotes the forward process in (52), when f ≡ εf0 and under the
initial condition E

ε,t,e
t = e > 0, t ∈ [0, τ ). Using the fact that u0 belongs to

C 1,2([0, T ) × R) together with (58), we deduce that, for any t ≤ S < T ,

u0(t, e) = E

[
u0(

S,E
ε,t,e
S

) + ε

∫ S

t
f0

(
uε(s,Eε,t,e

s

))
∂eu

0(
s,Eε,t,e

s

)
ds

]
.

Clearly, u0(S, e) → λ1[�,+∞)(e) as S ↗ T , for e 
= S. Since P[Eε,t,e
T = �] =

0 [see (ii-3) in the proof of Theorem 1], we deduce that Eu0(S,E
ε,t,e
S ) →

λE1[�,+∞)(E
ε,t,e
T ) = uε(t, e) as S ↗ T . Therefore,

u0(t, e) − uε(t, e) = εE

∫ T

t
f0

(
uε(s,Eε,t,e

s

))
∂eu

0(
s,Eε,t,e

s

)
ds,(59)

the right-hand side above making sense because of the bound (58). By a similar
argument, we get

U0(t, e) = E
(
u0(

τ,Eε,t,e
τ

) − K
)+

(60)
+ εE

∫ τ

t
f0

(
uε(s,Eε,t,e

s

))
∂eU

0(
s,Eε,t,e

s

)
ds.

Notice that ∂eU
0 is bounded since u0(τ, ·) is Lipschitz continuous so that the inte-

gral above is well defined. By (58) and (59), we know that ‖u0(τ, ·)−uε(τ, ·)‖∞ ≤
Cε, for a constant C independent of ε and τ . Therefore,

E
(
u0(

τ,Eε,t,e
τ

) − K
)+

= E
[(

u0(
τ,Eε,t,e

τ

) − K
)+1{|u0(τ,E

ε,t,e
τ )−K|≥Cε}

]
+ E

[(
u0(

τ,Eε,t,e
τ

) − K
)+1{|u0(τ,E

ε,t,e
τ )−K|<Cε}

]
= E

[(
uε(τ,Eε,t,e

τ

) − K
)+1{|u0(τ,E

ε,t,e
τ )−K|≥Cε}

]
+ εE

[
1{u0(τ,E

ε,t,e
τ )≥K+Cε}

∫ T

τ
f0

(
uε(s,Eε,t,e

s

))
∂eu

0(
s,Eε,t,e

s

)
ds

]

+ E
[(

u0(
τ,Eε,t,e

τ

) − K
)+1{|u0(τ,E

ε,t,e
τ )−K|<Cε}

]
= E

[(
uε(τ,Eε,t,e

τ

) − K
)+]

+ εE

[
1{u0(τ,E

ε,t,e
τ )≥K}

∫ T

τ
f0

(
uε(s,Eε,t,e

s

))
∂eu

0(
s,Eε,t,e

s

)
ds

]

+ εO
(
P

[∣∣u0(
τ,Eε,t,e

τ

) − K
∣∣ ≤ Cε

])
,
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where O(·) stands for the Landau notation. By (60), we finally get

U0(t, e) = Uε(t, e)

+ εE

[
1{u0(τ,E

ε,t,e
τ )≥K}

∫ T

τ
f0

(
uε(s,Eε,t,e

s

))
∂eu

0(
s,Eε,t,e

s

)
ds

]
(61)

+ εE

∫ τ

t
f0

(
uε(s,Eε,t,e

s

))
∂eU

0(
s,Eε,t,e

s

)
ds

+ εO
(
P

[∣∣u0(
τ,Eε,t,e

τ

) − K
∣∣ ≤ Cε

])
.

(iii) We now prove that

lim
ε→0

P
[∣∣u0(

τ,Eε,t,e
τ

) − K
∣∣ ≤ Cε

] = 0

for (t, e) ∈ [0, τ ) × (0,+∞). For any δ > 0,

lim sup
ε→0

P
[∣∣u0(

τ,Eε,t,e
τ

) − K
∣∣ ≤ Cε

] ≤ lim sup
ε→0

P
[∣∣u0(

τ,Eε,t,e
τ

) − K
∣∣ ≤ Cδ

]
.

By continuity with respect to parameters of solutions of stochastic differential
equations, we see that Eε,t,e

τ → E0,t,e
τ a.s. as ε → 0. Therefore, by the Portman-

teau theorem, it holds for any δ > 0,

lim sup
ε→0

P
[∣∣u0(

τ,Eε,t,e
τ

) − K
∣∣ ≤ Cε

] ≤ P
[∣∣u0(

τ,E0,t,e
τ

) − K
∣∣ ≤ Cδ

]
.

On the interval [K − Cδ,K + Cδ], with δ small enough so that K − Cδ > 0, the
function u0(τ, ·) is continuously differentiable with a nonzero derivative and thus
defines a C1-diffeomorphism. Moreover, since e > 0, the random variable E0,t,e

τ

has a smooth density on the interval [K − Cδ,K + Cδ]. Therefore, the random
variable u0(τ,E0,t,e

τ ) has a continuous density on the interval [K − Cδ,K + Cδ].
We conclude that

lim
δ→0

P
[∣∣u0(

τ,E0,t,e
τ

) − K
∣∣ ≤ Cδ

] = 0.

(iv) We now have all the ingredients needed to complete the proof. From (61),
we have

U0(t, e) = Uε(t, e) + εE

[
1{u0(τ,E

ε,t,e
τ )≥K}

∫ T

τ
f0

(
uε(s,Eε,t,e

s

))
∂eu

0(
s,Eε,t,e

s

)
ds

]

+ εE

[∫ τ

t
f0

(
uε(s,Eε,t,e

s

))
∂eU

0(
s,Eε,t,e

s

)
ds

]
+ εo(ε).

Since, for any s ∈ [0, T ), uε(s, ·) converges toward u0(s, ·) uniformly as ε tends
to 0, and since P[u0(τ,E0,t,e

τ ) = K] = 0, we deduce from (58) and from Lebesgue
dominated convergence theorem that

U0(t, e) = Uε(t, e) + εE

[
1{u0(τ,E

0,t,e
τ )≥K}

∫ T

τ
f0

(
u0(

s,E0,t,e
s

))
∂eu

0(
s,E0,t,e

s

)
ds

]

+ εE

[∫ τ

t
f0

(
u0(

s,E0,t,e
s

))
∂eU

0(
s,E0,t,e

s

)
ds

]
+ εo(ε).
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The final result then follows from the identity

∂eU
0(t, e) = E

[
E0,t,e

τ

E
0,t,e
t

1[K,∞)

(
u0(

τ,E0,t,e
τ

))
∂eu

0(
τ,E0,t,e

τ

)]
,

0 ≤ t < τ, e > 0,

which can be derived by differentiation of (56) and making use of the equality
P[u0(τ,E0,t,e

τ ) = K] = 0. �

5.3. Numerical results. In this final subsection we provide the following nu-
merical evidence of the accuracy of the small abatement asymptotic formula de-
rived above:

(1) We compute numerically uε with high accuracy, and we then compute val-
ues of Uε using the values of uε so computed. We used an explicit finite difference
monotone scheme (see, e.g., [1] for details). The left-hand pane of Figure 1 gives a
typical sample of results. For the sake of illustration we used the abatement func-
tion f (x) = x corresponding to quadratic costs of abatement. The penalty, cap,
emission volatility and emission rate in BAU were chosen as λ = 1, � = 1.25,
σ = 0.3 and b = 2�/T where the length of the regulation period was T = 1 year.
The prices of the allowances u(t, e) and uε(t, e) were computed on a regular grid in
the time × log-emission space. The mesh of the time subdivision was �t = 1/250.
The grid of 1001 log-emission was regular, centered around 0 with mesh �x con-
nected to �t by the standard stability condition. We considered an option with
maturity τ = 0.25 and strike K = 0.86. We computed uε(t, e) and Uε(t, e) over
this grid for 11 values of ε, ε = 0,0.1,0.2, . . . ,0.9,1, and we plotted the option

FIG. 1. European call option prices for ε = 0,0.1,0.2, . . . ,0.9,1.
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prices Uε(t, e) against the corresponding allowance prices uε(t, e). The graphs
decrease as ε increases from 0 to 1.

We plotted Uε against uε in order to show how the option price depends upon
the value of the underlying allowance.

(2) We also computed the expectation appearing as the coefficient of ε in the
first order expansion of Proposition 11. We used a plain Monte Carlo computation
of the expectation with N = 10,000 sample paths. The right-hand pane of Fig-
ure 1 shows the potential of the approximation for ε = 0.1. The top plot shows the
difference between the exact option value and the linear approximation given by
setting ε = 0 and ignoring the feedback effect. Both option values were computed
by solving the partial differential equations as explained at the beginning of the
section. The lower plot shows the first order correction as identified in Proposi-
tion 11, showing the potential of the approximation.

Acknowledgments. We would like to thank two anonymous referees for
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and for insightful comments which led to improvements in the presentation of the
results of the paper.
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