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Optimal control problems with convex functions are ubiquitous in applications

of stochastic optimization. However, when applied in this context, the classical

least squares Monte Carlo methodology makes no attempt to take advantage

of this special structure: Given the convexity of value functions, it seems

reasonable to search for the best least-squares fit among the elements of a cone

of convex functions, rather than among a linear space of feature functions as

required by the classical least squares Monte Carlo approach. In the present

work, we build on this idea by introducing an appropriate modification to

the classical method. We show that computation time and accuracy can be

improved by using projections on convex cones instead of projections onto

linear spaces.
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I. INTRODUCTION

When making decisions under uncertainty, the major difficulty is to determine how to update

estimates and decisions in order to achieve optimality over a given time period. Most often, these

kind of questions are framed within the realm of Markov decision theory which can be viewed as

discrete-time optimal stochastic control. Following Bellman’s principle, the instantaneous reward

of re-positioning and the expected future revenue must be balanced against each other in order

to find an optimal action at any given time.

The theoretical underpinnings of Markov decision theory are now well-understood. Rigorous

mathematical treatments are available in textbook form. See for instance in [3], [13], [16] and

[24]. We often refer to the recent book [1] which provides a well balanced introduction to the

theory with applications in finance. However, practical applications remain persistently chal-

lenging despite the rich arsenal of theoretical tools available nowadays. Indeed more often than

not, the complexity of typical real-world implementations goes beyond what is computationally

feasible, and a great variety of ad-hoc methods were developed to serve different purposes. In

this context, approximate dynamic programming grew from attempts at providing simultaneously

practically implementable heuristics and theoretical insights on the reasons why these heuristics

perform well in practice. The book [23] provides a modern survey on the state-of-art in this

domain and on current challenges from an industrial perspective.

In order to control a large system, a practical solution to the high dimensionality of the

state space is a finite discretization of the latter. Alternatively, one can rely on an efficient

approximation of functions on this space. In this spirit, the least squares Monte Carlo approach

suggests to approximate functions on the state space by linear combinations of a set of basic

feature functions. Motivated by financial applications, most importantly the pricing of American

options on large baskets of underlying interests, the least squares Monte Carlo method has

attracted the attention of most quants and financial engineers over the last decade. Following

earlier works [7], [26], [27], the contribution of Longstaff and Schwartz [18] has enjoyed an

unprecedented popularity and became the source of subsequent research focused on its theoretical
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justification. For instance, convergence issues are addressed in [9] and later generalized in [25],

[10] and [11], extensions to multiple exercise rights were considered in [6], and most recently

studied in [2] where the connections to statistical learning theory and the theory of empirical

processes is emphasized. We also mention some related work on function-based methods in

financial mathematics: [19] addresses variance reduction techniques, [8] examines opportunities

for parallelization, and [17] discusses efficiency of weak Taylor schemes, whereas [5] gives a

survey of basic feature functions methods for the valuation of options. For an overview of the

applications of Monte Carlo methods in financial engineering we refer the interested reader to

Glasserman’s book [14] and to the literature cited therein.

Beyond financial applications, value function approximation methods have been used to capture

the local behavior of value functions, and advanced regression methods, e.g. kernel methods

[20], [21], local polynomial regression [12], and neural networks [4], have been brought to bear

with this goal. In the particular case of partially observable Markov decision processes, several

specific approaches been suggested [22]. The survey [15] gives an overview of these methods

and describes applications to autonomous robot navigation.

One of the main advantage of the least-squares approach is that it reduces computations to

simple linear algebraic operations in low dimension. However, combined with the successive

iterations required by the implementation of the dynamic programming principle, instability

and divergence are frequently observed. The thrust of this paper is to provide a modification,

which when applicable, stabilizes the iterative process. Our procedure requires the convexity of

the value function when a conditionally deterministic component is fixed. This assumption is

satisfied in most financial applications. Furthermore, as a by product of our analysis, we suggest

a methodology for an adaptive choice of a dictionary of basic feature functions, method which

appears to be helpful when tackling high-dimensional control problems.

The paper is organized as follows. In Section II, we recall the standard set-up of infinite horizon

Markov decision processes. In the following Section III, we tailor this general framework to the

case of stochastic systems with a conditionally deterministic component. For tractability reasons,

and motivated by practical applications, we choose this conditionally deterministic component

to take only a finite number of values, while the remaining components which can be viewed as

environmental variables or random factors, have a standard controlled Markovian evolution. Due

to such a split of the set of state variables, we are able to take full advantage of the convexity of
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the value function in the environment component which typically runs through a high-dimensional

space. These models offer great flexibility in capturing the special features of many practical

applications. In particular, they can be used to analyze optimal stopping and optimal switching

problems as well as a large number of problems of control of partially observable Markov

decision processes. In Section V, we introduce and analyze a modification of the least squares

method taking advantage of the convexity of the value function in some variables. The last

Section VII reports on implementations on specific examples and provides illustrations of the

performance of the method.

II. MARKOV DECISION THEORY

We review the classical framework of infinite-horizon Markov decision theory following [1].

The state of the system varies in a measurable space (E, E) and is affected by actions from a set

A of possible actions. A mapping from E into A is called a decision rule. For each a ∈ A, we

assume that Ka(x, dx
′) is a stochastic kernel on (E, E) and we consider a fixed sequence (Xt)t∈N

of random variables. One can think of them as the coordinate projections on the product of an

infinite number of copies of (E, E). In any case, for each initial point x ∈ E and each sequence

π = (πt)t∈N of decision rules, we consider the probability measure Pπx for which Pπx(X0 = x) = 1

and

Pπx(Xt+1 ∈ B |X0, . . . , Xt) = Kπt(Xt)(Xt, B) (1)

for each measurable B ∈ E and t ∈ N. So at time t ∈ N when the system is in state Xt = x,

the action a = πt(Xt) is used to pick the transition probability K,a=πt(Xt) giving the random

evolution of the state from Xt to a random variable Xt+1 with distribution Kπt(Xt)(Xt, · ). For

the sake of notational convenience, we introduce a special notation, say Ta, for the one-step

transition operator associated to the transition kernel Ka when the action a ∈ A is chosen. In

other words, for each action a ∈ A we define the operator Ta on functions f by

(Taf)(x) =

∫
X

f(x′)Ka(x, dx
′) x ∈ E, t ∈ N (2)

whenever the above integrals are well-defined. We also assume that we are given a function

R : E × A 7→ R, called the one-step reward function as R(x, a) stands for the reward for

applying at any given time, action a ∈ A in state x ∈ E. Our goal is to maximize the expected
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discounted infinite-horizon total reward, in other words to find the argument π∗ = (π∗t )t∈N of

the maximization problem

π∗ = arg sup
π∈A

Eπx

(
∞∑
t=0

γtR(Xt, πt(Xt))

)
(3)

where γ ∈ (0, 1) is a fixed discount factor, A the set of admissible sequences of decision rules

π = (πt)t∈N, and Eπx denotes expectation over the controlled Markov chain defined by (1). The

maximization (3) is well-defined under the integrability assumption

sup
π∈A

Eπx(
∞∑
t=0

γtR(Xt, πt(Xt))
+) <∞, x ∈ E, (4)

which is clearly satisfied if for example the function R is bounded. Furthermore, by introducing

the convergence assumption

lim
n→∞

sup
π∈A

Eπx(
∞∑
t=n

γtR(Xt, πt(Xt))
+) = 0, x ∈ E, (5)

which is also satisfied when R is bounded, the finite-horizon problems and their limit

V (n)(x) = sup
π∈A

Eπx(
n−1∑
t=0

γtR(Xt, πt(Xt))), V ∗(x) = lim
n→∞

V (n)(x), n ∈ N, x ∈ E (6)

are well defined and the total reward maximization (3) becomes tractable. Namely, under addi-

tional (rather technical) structure assumptions (see [1], p. 199) it holds that the iteration

V (n+1)(x) = max
a∈A

(
R(x, a) + γ

∫
E

V (n)(x′)Ka(x, dx
′)

)
, x ∈ E, V 0 = 0 (7)

converges toward the solution of the optimality equation

V ∗(x) = max
a∈A

(
R(x, a) + γ

∫
E

V ∗(x′)Ka(x, dx
′)

)
, x ∈ E, (8)

and that the decision rule

π∗0(x) = argmaxa∈A

(
R(x, a) + γ

∫
E

V ∗(x′)Ka(x, dx
′)

)
, x ∈ E

yields the time-independent policy π∗ = (π∗t )t∈N defined by π∗t = π∗0 for all t ∈ N which is

optimal since

V ∗(x) = Eπx(
∞∑
t=0

γtR(Xt, π
∗
0(Xt))), x ∈ E.

In terms of the operators (Ta)a∈A, the optimal policy is given by

π∗(x) = argmaxa∈A (R(x, a) + γ[TaV
∗](x)) (9)
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for all x ∈ E where V ∗(x) is the limit of (V (n)(x))n∈N defined inductively by

V (n+1)(x) = max
a∈A

(
R(x, a) + γ[TaV

(n)](x)
)
, n ∈ N, V 0 = 0. (10)

III. PARTIALLY DETERMINISTIC MARKOV SYSTEMS

For the reminder of this work, we concentrate on Markov decision problems which satisfy the

integrability, convergence and structure assumptions recalled above, and we search for numerical

algorithms providing approximations for the computation of the value function and the optimal

policy maximizing it.

We focus on Markov decision models whose state evolutions have a conditionally deterministic

component. To be more specific, we assume that the state space E = P × Z is the product of

of a compact metric space P and a measurable space (Z,Z). In most applications, P is an

interval or a finite set, and Z is a subset of a Eucledian space Rd. We further assume that the

evolution of the first component is conditionally deterministic given the values of the remaining

components in Z. As explained in the introduction, we also assume that the time evolution of the

state component in Z, which we view as the environment components, is given by a controlled

Markov process (Zt)t∈N governed by a family (ka(z, dz
′))a∈A of transition probability kernels

on Z parameterized by a compact metric set A giving the set of actions which can be taken

by the controller of the system. We assume that the changes in the conditionally deterministic

evolution are given by a continuous function:

α : P × A 3 (p, a) ↪→ α(p, a) ∈ P.

α(p, a) ∈ P is the new value of the first component of the state if the previous value is p and

the action a ∈ A was taken by the controller. In other words, the transition kernel K giving the

evolution of the full state Xt = (Pt, Zt) is of the form:

Ka((p, z), d(p′, z′)) = δα(p,a)(dp
′) ka(z, dz

′),

where we denote by δp the Dirac unit mass at p. For such Markov decision process, the optimal

policy is given by π∗ = (π∗0)t∈N, where for each state (p, z) ∈ P × Z the optimal action at any

time is a maximizer

π∗0(p, z) = argmaxa∈A

(
R(p, z, a) + γ

∫
Z

V ∗(α(p, a), z′)k(z, dz′, a)

)
(11)
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which is obtained from the dynamic programming principle as the pointwise limit

V ∗ = lim
n→∞

V (n)

of iterated value functions defined inductively by

V (n+1)(p, z) = max
a∈A

(
R(p, z, a) + γ

∫
Z

V (n)(α(p, a), z′)k(z, dz′, a)

)
, V 0 = 0. (12)

As before, it is convenient to rewrite this equation in terms of the operator τa associated to the

transition kernel ka and defined on bounded measurable functions on (Z,Z) by:

(τaϕ)(z) =

∫
Z

ϕ(z′)ka(z, dz
′) z ∈ Z, t ∈ N (13)

and the iterated value functions satisfy

V (n+1)(p, z) = sup
a∈A

(
R(p, z, a) + γ[τaV

(n)(α(p, z), · )](z)
)
, p ∈ P, z ∈ Z, n ∈ N, V 0 = 0.

(14)

Before we proceed, we describe an example of a great practical importance for which the

above set up is natural. This example is an abstraction of a gas storage facility management

model used in [?]. The solution of such a stochastic control problem is also used for valuation

and hedging purposes within risk management of large portfolio of energy financial and physical

assets.

Example. Consider a storage management problem, where the level of the commodity stored

in the facility needs to be controlled over time. In this application, P is the set of possible levels

of the commodity in the storage facility. Given storage costs and random price fluctuations, the

controller has to decide when to purchase the commodity and add it to the storage, or withdraw

from storage and sell it at the market price. A is the set of actions which can be taken in order to

change the level in the storage facility. The action a yields a transition from the previous storage

level p to the new level α(p, a). In the simplest form of this example, (Zt)t∈N describes the

Markovian evolution of the market (spot) price of the underlying commodity. More generally,

the state Zt at time t could be multivariate, in which case one of the components of Zt is usually

the market (spot) price of the commodity at time t. The other components may be latent variables

representing the current market conditions, stochastic factors which can also be needed to ensure

the Markov property of the dynamics. In this example, the value R(p, z, a) describes the cash

flow associated with the decision a to buy or sell commodity at time t. Note that the value
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R(p, z, a) depends not only on the action a and on the market price through the corresponding

price-component of z, but may also depend on the current inventory level p. For instance, in

the case of gas storage, the injection/withdrawal rates and costs depend upon the storage level

through the physical laws restricting gas pressure.

For the purpose of illustration we consider the simple case in which the storage level can

either be full, half-full, or empty, and the agent must decide at which price and time to buy the

commodity and fill the storage facility, or sell the commodity he has in storage to the market.

This problem could also be viewed as an instance of a so-called optimal switching problem.

For the sake of definiteness we set P = {1, 2, 3} where 1 stands for ”empty”, 2 for ”half-full”

and 3 for ”full”, and A = {1, 2, 3} where 1 stands for ”withdraw and sell”, 2 for ”store and do

nothing”, and 3 for ”inject and buy”, with changes in the first component given by the function

α whose values we give in the form of a table

a

inject store withdraw

empty half-full empty empty

p halpf-full full half-full empty

full full full half-full

or equivalently, in the form of a matrix:

(α(i, j))3
i,j=1 =


1 1 2

1 2 3

2 3 3

 for (p, a) ∈ P × A. (15)

Clearly, P and A do not need to have the same numbers of elements, i.e. the number of levels

of the storage facility does not have to be equal to the number of actions the operator can take.

In this three-level storage example, we may assume that the commodity market price evolution

is described by the last component (Z
(d)
t )t∈N of the process (Zt = (Z1

t , . . . , Z
d
t ))t≥0. Hence for

each t ≥ 0, the instantaneous reward is given by the following affine linear functions in the

variable z = (z(1), . . . , z(d)) ∈ Rd

R(p, (z(1), . . . , z(d)), a) = −c|p− α(p, a)|+ (p− α(p, a))z(d), (16)

thereby, the constant c > 0 represents proportional transaction costs.
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IV. EXISTENCE BY FIXED POINT ARGUMENTS

In this section, we use fixed point arguments to prove existence (and in some cases uniqueness)

for the optimality equation (8). For our first theoretical result, we assume that Z is a locally

compact metric space with Borel σ-field Z , and we denote by C(P × Z) the real separable

Banach space of real valued bounded uniformly continuous functions on P × Z equipped with

the supremum norm.

Theorem 1. If we assume that the reward function R is bounded and uniformly continuous in

its three variables, and that for any non-negative continuous function ϕ on Z we have:

sup
z∈Z

sup
a∈A

[τaϕ](z) ≤ sup
z∈Z

ϕ(z) (17)

then the map V ↪→ φ(V ) defined by

[φ(V )](p, z) = sup
a∈A

[R(p, z, a) + γ[kaV (α(p, z), · )](z)] , p ∈ P, z ∈ Z

is a strict contraction on C(P ×Z), and the optimality equation has a unique fixed point in this

space.

Note that assumption (17) is clearly satisfied when the transition kernel ka is independent of

a ∈ A. This is the case in the application to commodity storage management and valuation used

as a motivating example for our analysis.

Proof: If V1 and V2 are two elements of C(P × Z), then

‖φ(V2)− φ(V1)‖ = sup
(p,z)∈P×Z

|φ(V2)(p, z)− φ(V1)(p, z)|

= sup
(p,z)∈P×Z

∣∣∣∣sup
a∈A

[R(p, z, a) + γ[τaV1(α(p, a), · )](z)]

− sup
a∈A

[R(p, z, a) + γ[τaV2(α(p, a), · )](z)]

∣∣∣∣
≤ γ sup

(p,z)∈P×Z
sup
a∈A
|[τa(V2 − V1)(α(p, a), · )](z)|

≤ γ sup
z∈Z

sup
a∈A

[τa(sup
p∈P
|(V2 − V1)(p, · )|](z)

≤ γ‖V2 − V1‖

where we used assumption (17) with ϕ(z) = supp∈P |(V2 − V1)(p, z)|. This concludes the proof

since γ < 1.
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Remark. A similar strict contraction result can be proven in Lebesgue spaces Lp(Z,Z, µ;C(P ))

of C(P )-valued functions where C(P ) denotes the real separable Banach space of real valued

continuous functions on the compact metric space P . Indeed, if we assume that µ is a probability

measure on (Z,Z) with respect to which all the probability measures ka(z, · ) are absolutely

continuous, then under the condition∥∥∥∥sup
a∈A

τaϕ

∥∥∥∥
L1(µ)

≤ ‖ϕ‖L1(µ)

for all non-negative functions ϕ, then φ is a strict contraction in L1(Z,Z, µ;C(P )) and the

optimality equation has a unique fixed point in this space.

As explained earlier, Theorem 1 is useful when the transition kernel of the random component

Zt of the state does not depend upon the action a. It is still possible to prove existence of a

fixed point and a solution of the optimality equation when this condition is not satisfied. The

following theoretical result implies existence (though not necessarily uniqueness) when the set

A of actions is finite. As we already saw, this case is typical in practical application.

We assume that the function α is continuous and as before, that the reward function R is

bounded and uniformly continuous in its three variables, and we denote by R the function

R(p, a) = sup
z∈Z

R(p, z, a), p ∈ P, a ∈ A. (18)

Classical results on infinite horizon, discrete time, deterministic optimal control problems guar-

antee the existence of a function V
∗ ∈ C(P ) solving

V
∗
(p) = sup

a∈A
[R(p, a) + γV

∗
(α(p, a)), p ∈ P. (19)

We now denote by B the set:

B = {V ∈ C(P × Z); ∀p ∈ P, ∀z ∈ Z, V (p, z) ≤ V
∗
(p)}. (20)

We can now state and prove our second existence result:

Theorem 2. Using the notation above, we assume that

• there exist a finite number N of continuous functions αi : A 3 a ↪→ αi(a) ∈ P such that

for each p ∈ P there exists i ∈ {1, · · · , N} such that α(p, a) = αi(a) for all a ∈ A;

• the reward function R is bounded and uniformly continuous in its three variables:

• and that for any non-negative continuous function ϕ on Z we have:
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• the map Z 3 z ↪→ ka(z, · ) into the space of probability measures on (Z,Z) is uniformly

continuous in variation norm, uniformly in a ∈ A.

Under these conditions, the optimality equation has a solution in B.

Notice that the third assumption is satisfied when the set of admissible actions a ∈ A is finite,

while the first assumption is satisfied when P is finite as well.

Proof: Clearly, the set B is a closed convex subset of the Banach space C(P×Z). Moreover,

φ maps B into itself. Indeed, if V ∈ B, then for every p ∈ P and z ∈ Z we have:

φ(V )(p, z) = sup
a∈A

[R(p, z, a) + γ

∫
Z

V (α(p, a), z′)ka(z, dz
′)]

≤ sup
a∈A

[R(p, a) + γV
∗
(α(p, a))

≤ V
∗
(p)

where we used the definition of R and the fact that V ∈ B to obtain the first inequality, and

the definition of V
∗

to derive the last inequality. This proves that φ(V ) ∈ B. So the proof will

be complete if we can apply Schauder’s fixed point theorem by proving that the image φ(B)

is relatively compact in C(P × Z). Because of the uniform bound in the very definition of

B, a form of the classical Arzela-Ascoli theorem implies that it is enough to check uniform

equi-continuity of φ(B). So let V ∈ B and (p1, z1) and (p2, z2) in P × Z. Then

|φ(V )(p1, z1)− φ(V )(p2, z2)| = sup
a∈A
|R(p1, z1, a)−R(p2, z2, a)|

+ γ sup
a∈A
|[τaV (α(p1, a), · )](z1)− [τaV (α(p2, a), · )](z1)]|

+ γ sup
a∈A
|[τaV (α(p2, a), · )](z1)− [τaV (α(p2, a), · )](z2)]|

= (i) + (ii) + (iii).

Given ε > 0, by uniform continuity of the function R and the compactness of the set A, we

can find δ1 > 0 so that (i) ≤ ε/2 as long as d(p1, p2) < δ1 and d(z1, z2) < δ1. Furthermore,

the assumption on the fact that we only have a finite number of functions α(p, · ) implies, by

compactness of P , that there exists δ2 > 0 such that α(p1, a) = α(p2, a) for all a ∈ A whenever

d(p1, p2) < δ2. This implies that (ii) = 0 whenever d(p1, p2) < δ2. Finally, we notice that

(iii) ≤ (sup
p∈P
|V ∗(p)|) sup

a∈A
‖ka(z1, · )− ka(z2, · )‖
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which can be made smaller than ε/2 provided that d(z1, z2) < δ3 for some δ3 > 0 whose existence

is guaranteed by the uniform continuity of Z 3 z ↪→ ka(z, · ) in variation norm, uniformly in

a ∈ A. This concludes the proof of equicontinuity of φ(B).

V. LEAST-SQUARES APPROXIMATIONS

The purpose of this section is to prepare the ground for the practical implementation of the

solution of partially deterministic Markov decision problems introduced above. For the purpose

of numerical computations, the transition operators Ta and τa need to be approximated. However,

the convergence of the value function iterations defined in (10) is sensitive to the properties of

these operators. Replacing Ta or τa by a numerical approximation may jeopardize the very

existence of the fixed point and the limit of the sequence defined inductively in (10). Indeed

problems do occur when Ta is approximated naively, e,g, as suggested by the classical least

squares Monte Carlo method.

In this approach, we first fix a dictionary {ψk}mk=1 of feature functions, and then a sample

z′1, · · · , z′n of n elements in Z. One can think of these as a sample of realizations of inde-

pendent identically distributed random variables with common distribution µ on the measurable

space (Z,Z). Then for each possible action a ∈ A, we consider a sample z′′1 (a), · · · , z′′n(a)

of realizations of independent random variables with distributions ka(z′1, dz
′′), · · · , ka(z′n, dz′′)

respectively. For each a ∈ A, we denote by S(a) the sample (z′1, z
′′
1 (a)), · · · , (z′n, z′′n(a)) of n

independent couples (z′, z”) ∈ Z × Z. Once the dictionary {ψk}mk=1 and the samples S(a) are

fixed, we use the approximate transition operator τ̃a defined on functions ϕ : Z → R by

T̃aϕ =
m∑
k=1

λ̃kψk,

where the coefficients (λ̃k)
m
k=1 ∈ Rm are chosen in order to minimize the sum of squared errors∑

(z′,z′′)∈S(a)

|ϕ(z′′)−
m∑
k=1

λkψk(z
′)|2

over all the possible choices of (λk)
m
k=1 ∈ Rm. The feature functions ψk forming the dictionary

are often called basis functions even though they may not be linearly independent. In fact, in

many practical applications, they happen to be strongly dependent, their choice being dictated

by the desire to take advantage of the redundancy in their features. Theoretically, the operator

τ̃a approximates τa if if the number m of functions in the dictionary and the size n of the set
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of Monte Carlo samples are chosen sufficiently large. In [25] and [2], conditions are given on

the relative growths of these two sizes which ensure the convergence of least squares Monte-

Carlo transition operator approximations to the true Markov transition. Despite the existence

of these theoretical results, one encounters two major problems in practical applications of the

least-squares Monte-Carlo method:

1) an appropriate choice of the dictionary of basis functions turns out to be difficult, partic-

ularly for high-dimensional state spaces;

2) increasing the size of the dictionary may cause oscillations in τ̃aϕ if the sample size is

too small.

From now on, we shall deal with specific partially deterministic Markov decision problems for

which the functions

z ↪→ V ∗(p, z) (21)

are convex for each p ∈ P . More precisely, we assume that the following conditions which are

stronger than (21) are satisfied:

H1 The reward functions z 7→ R(p, z, a) are convex for all p ∈ P, a ∈ A;

H2 The transitions preserve convexity, i.e. for each a ∈ A, Taf is convex whenever f is.

Note that (H1) and (H2) imply (21), because V ∗(p, ·) is the pointwise limit of (V (n)(p, ·))n∈N
which are convex, since at each iteration in (12), Ta preserves convexity, followed by a convexity-

preserving maximization over A. In our storage example, condition (H1) holds due to the special

form (16) of the reward. To ensure (H2), specific assumptions on the transition kernel of the

Markov processes (Zt)t∈N must be made.

Remark The reader may be confused 1 by the mix of maximization and convexity, expecting

the minimization of a convex function (or the maximization of a concave function) instead.

Indeed, determining maxima of convex functions is computationally involving. Furthermore,

standard applications in the portfolio optimization typically deal with maximization of concave

functions. Note the situation considered here is completely different, since we do not maximize

in the variable z ∈ Z , in which the value function is convex. The maximization in (12) can be

1We are grateful to the anonymous referee for pointing out this question.
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interpreted for each fixed p ∈ P as maximum over a finite number of convex functions on Z ,

indexed by a ∈ A.

Control problems satisfying (H1) and (H2) frequently appear in applications, ranging from

finance to autonomous robot navigation (see [15]). In particular, an important class of the so-

called partially observable Markov decision processes is captured by this problem type.

In this work, we develop a simple method to overcome both difficulties under the standing

convexity assumption (21) of the iterated value functions. To be more specific, knowing the

convexity of the targeted function τaϕ, it appears natural to search for a best least-squares fit

among a cone of convex functions rather than among a linear space. Following this idea, we

pre-specify a cone spanned by non-negative linear combinations of convex basis functions and

determine the least squares projection on this cone. With this, we address the second bullet point,

adding significant stability with respect to increase in the size of the dictionary, since due to

the convexity restriction, no oscillation occurs. Concerning the first bullet point, we suggest an

adaptive method to choose the basis functions of the dictionary. Based on the analysis of practical

examples for which the functions (21) are convex, we conclude that the most efficient choice is

to select a basis dynamically, depending on and adjusted to the function ϕ being projected. As

we shall see later, our choice for the cone spanned by the dictionary (ψj)
m
j=1 appears naturally

in the spirit of projection pursuit regression as we use compositions of the function ϕ with

affine functionals, namely ψj(z) = ϕ(lj(z)) for z ∈ Z for a particular choice of affine linear

functionals lj : Z → Z whose type is derived from an analysis of the transition operator τa.

VI. FIXED POINT CONSTRUCTION

As in the classical least squares method, we consider for each a ∈ A a finite set of Monte

Carlo samples, say S(a) ⊂ Z × Z, which consists of pairs (z′, z′′) ∈ Z × Z of independent

realizations of a couple (Z ′, Z ′′(a)) of random variables in Z × Z satisfying

• The first components z′ form a sample (denoted by the letter Ξ) from the distribution of

the random variable Z ′;

• For each a ∈ A, P(Z ′′(a) ∈ dz′′ |Z ′ = z′) = k(z′, dz′′, a), for all z′ ∈ Z ′.

We propose to overcome the problems articulated in the bullet points above by using a modi-

fication of the Monte-Carlo transition operator τ̃a, which we call approximative transition, and
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denote τ̆ b(a). For each a ∈ A, this operator is defined by

τ̆ b(a)f =
m∑
j=1

λ̆j(a)ψj, (22)

where the coefficients (λ̆j(a))mj=1 ⊂ [0,∞) solve the constrained optimization problem:

inf
λj≥0,j=1,··· ,m,

maxz′∈Ξ
∑m
j=1

λjψj(z′)≤maxz′∈Ξ f(z′)

∑
(z′,z′′)∈S(a)

|f(z′′)−
m∑
j=1

λjψj(z
′)|2. (23)

The boundedness constraint is crucial for the existence of a fixed point V̆ ∗ of the functional

equation:

V̆ ∗(p, z) = max
a∈A

(
R(p, z, a) + γτ̆ b(a)V̆ ∗(α(p, a), ·)(z)

)
(p, z) ∈ P × Ξ. (24)

See Theorem 3 below. However, this boundedness condition is not sufficient and additional

assumptions are required in order to ensure that a solution V̆ ∗ (24) exists. We suppose that the

realizations of all rewards on Ξ are non-negative

R(a, z, p) ≥ 0 a ∈ A, z ∈ Ξ, p ∈ P (25)

and introduce their maximum

R(a, z, p) ≤ R̄(a, p) := max
z∈Ξ

R(a, z, p) a ∈ A, z ∈ Ξ, p ∈ P. (26)

Further, we assume that the feature functions of the dictionary are chosen such that

{(ψj(z))z∈Ξ : j = 1, . . . ,m} are linearly independent for each a ∈ A. (27)

and that

all basis functions (ψj)
m
j=1 are strictly positive (28)

Remark All three assumptions are not restrictive. Namely, given reward functions, we always

can address a related problem, whose rewards satisfy (25) and (26) and are given by

R+(p, z, a) = R(p, z, a)−min{R(p, z, a) |, p ∈ P , z ∈ Ξ, a ∈ A}. (29)

for all z ∈ Z , p ∈ P , a ∈ A. A straight-forward verification shows that by adding the same

constant to each reward function, one obtains another Markov decision problem which possess

exactly the same optimal policy. That is, we always can transform the reward R of a given

problem by (29) to ensure (25). Considering (27), the independence feature functions as functions

December 13, 2011 DRAFT



16

on Z is a natural, since otherwise one can omit some feature elements. Their linear independence

as functions on the sample Ξ is fulfilled if Ξ is sufficiently rich, which is typically the case

in applications. Finally, given non-negative rewards, all value functions (V n)n≥0 are also non-

negative. Having in mind their convexity, we agree that it is reasonable to chose our cone feature

as in (??).

Theorem 3. Suppose that (25), (27), and (28) hold. Given (T̆ b(a))a∈A as defined by (22) and

(23), there exists a solution V̆ ∗ to (24).

The proof of this theorem requires auxiliary results. First, we examine how the right hand

side of (24) acts at the level of coefficients. Given a collection β = ((βj(p, a))mj=1)(p,a)∈P×A of

non-negative coefficients, introduce

W β(p, z) = max
a∈A

(
R(p, z, a) + γ

m∑
j=1

βj(α(p, a), a)ψj(z)

)
for all (p, z) ∈ P × Ξ. (30)

Expressing for each a ∈ A and p ∈ P the function T̆ b(a)W β(p, ·) by basis (ψj)
m
j=1 yields new

non-negative coefficients Iβ = (((Iβ)j(p, a))mj=1)(p,a)∈P×A, which are determined by

(T̆ b(a)W β(p, ·))(z) =
m∑
j=1

(Iβ)j(p, a)ψj(z) for all p ∈ P, a ∈ A, z ∈ Z. (31)

Lemma 1. The mapping

I : ([0,∞[m)P×A → ([0,∞[m)P×A β 7→ Iβ

defined by (30) and (31) is continuous.

Proof: Write I as a concatenation of the following mappings

β 7→ (W β(p, ·))p∈P 7→ (T̆ b(a)W β(p, ·))(p,a)∈P×A 7→ Iβ. (32)

The first function maps continuously ([0,∞[m)P×A into the finite dimensional space of vectors

(indexed by P ) of functions on Ξ. The second mapping is continuous, being a componentwise

application of the restricted cone projections (T̆ b(a))a∈A. The last mapping acts as a compo-

nentwise coefficient representation with respect to the linearly independent vectors (27) and is

also continuous. Note that all vector spaces in the chain (32) are finite-dimensional, hence the

continuity can be understood with respect to the usual Euclidean norm.
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Next, we consider an associated Markov decision problem, where the state space is P and

the deterministic state transition is defined by the actions A as follows: If a ∈ A is applied in

the state p ∈ P , then the system jumps with certainty from p ∈ P to α(a, p) ∈ P and yields an

instantaneous reward R̄(a, p) from (26). Applying standard results from Markov decision theory,

we obtain the value function V̄ ∗ = (V̄ ∗(p))p∈P of this Markov decision problem, which satisfies

max
a∈A

(
R̄(p, a) + γV̄ ∗(α(p, a))

)
= V̄ ∗(p) for all p ∈ P . (33)

With V̄ ∗, we define the set B ⊂ ([0,∞[m)P×A of non-negative coefficients

B = {((βj(p, a))mj=1)(p,a)∈P×A :
m∑
j=1

βj(p, a)ψj(z) ≤ V̄ ∗(p) for (p, a) ∈ P × A, z ∈ Ξ} (34)

which is compact (due to (28)) and convex. The next lemma shows that B is invariant under I .

Lemma 2. The mapping I satisfies IB ⊂ B.

Proof: For each β ∈ B, the non-negativity Iβ ∈ ([0,∞[m)P×A of coefficients is ensured

by (31) and by the definition of (T̆ b(a))a∈A. Hence, it remains to show
m∑
j=1

(Iβ)j(p, a)ψj(z) ≤ V̄ ∗(p) for each z ∈ Ξ and p ∈ P, a ∈ A. (35)

Given β ∈ B and a ∈ A, by definition (34) it holds
m∑
j=1

βj(p, a)ψj(z) ≤ V̄ ∗(p), for each z ∈ Ξ and p ∈ P , a ∈ A. (36)

Further, the estimate by (??)
m∑
j=1

(Iβ)j(p, a)ψj(z) = T̆ b(a)W β(p, z) ≤ W β(p, z) for p ∈ P , a ∈ A and z ∈ Ξ. (37)

Now maximize W β(p, z) on the right hand side of (37) in z ∈ Ξ to obtain the assertion (35):
m∑
j=1

(Iβ)j(p, a)ψj(z) ≤ W β(p, z) = max
a∈A

(
R(p, z, a) + γ

m∑
j=1

βj(α(p, a), a)ψj(z)

)

≤ max
a∈A

max
z∈Ξ

R(p, z, a) + γmax
a∈A

max
z∈Ξ

m∑
j=1

βj(α(p, a), a)ψj(z)

≤ max
a∈A

(
R̄(p, a) + γV̄ ∗(α(p, a))

)
= V̄ ∗(p).

Here, the last inequality is due to (36) and to (26).
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Now, we gathered all auxiliary results and enter the proof of the Proposition 3.

Proof: The results of the above lemmata show that the continuous function I maps a

compact and convex set B to itself. Thus, the existence of the fixed point

β∗ ∈ B with Iβ∗ = β∗

follows from the Brower’s fixed point theorem. Given such fixed point β∗, we define

W β∗(p, z) = max
a∈A

(
R(p, z, a) + γ

m∑
j=1

β∗j (α(p, a), a)ψj(z)

)
for all (p, z) ∈ P × Ξ.

Form β∗ = Iβ∗ we conclude that for all (p, z) ∈ P × Ξ holds

W β∗(p, z) = max
a∈A

(
R(p, z, a) + γ

m∑
j=1

(Iβ∗)j(α(p, a), a)ψj(z)

)

= max
a∈A

(
R(p, z, a) + γT̆ b(a)W β∗(α(p, a), ·)(z)

)
,

where the last equality is obtained from (31). In other words, V̆ ∗ := W β∗ solves (24), as required

in the assertion of the Proposition 3.

Remark Brower’s fixed point theorem yields the existence of a fixed point (24). Although

convergence of value iteration can not be concluded under present assumptions, we believe that

the above results are instructive, showing a reasonable way to address practical solution of an

important class high-dimensional control problems by least-squares Monte-Carlo methods. Our

study shows that a regularization of the control problem yields desirable results. We suggest to

change the rewards to positive values and to mimic the most crucial properties of the true Markov

transition, such as positivity Taf ≥ 0 if f ≥ 0 (using projections on a cone of positive functions),

contractility supz∈Z Taf(z) ≤ supz∈Z f(z) (obtained due to (??)), and convexity preservation,

valid in our context (by construction, as projection on cone of convex functions). Due to this

regularization, the authors have observed a stable convergence of value iterations in all numerical

experiments, studied so far.

VII. A NUMERICAL ILLUSTRATION WITH ADAPTIVE FEATURE SELECTION

We now illustrate the properties of our methodology with the analysis of the storage facility

management problem introduced in Section V. We assume that the commodity price follows

an auto-regression of order two, which we realize as a Markovian evolution on the state space
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Z = R2. This assumption on the dimension of the model is made for illustration purposes only.

The generalization to higher order auto-regressions is straight-forward.

In order to improve computation efficiency, we implement an adaptive feature selection ac-

cording to which the dictionary of feature basis functions is chosen at each iteration depending

upon the function on which the transition operator is computed. Our method is applicable in the

case of linear state price price dynamics. We now describe the basic idea.

Let us assume that the d-dimensional Markov processes (Zt)t∈N giving the evolution of the

commodity price, and possibly of other factors of the model, has the dynamics of a linear

state space model recursively defined by Zt+1 = AZt + Wt+1 for t ∈ N, starting from a given

Z0 = z0 ∈ Z ⊂ Rd, where A ∈ Md,d is a d × d matrix and (Wt)t∈N is a white noise sequence

of Rd-valued independent identically distributed mean-zero random variables. Such a model

captures not only plain auto regressive models, but also time series models with seasonal and

trend components. Note that in the present situation, the Markov transition operator τ = τa does

not depend upon the action a ∈ A, so the assumption (17) of Theorem ?? is satisfied. This

operator is given by

[τϕ](z) = E(ϕ(Zt+1) |Zt = z) = E(ϕ(AZt +Wt+1) |Zt = z)

= E(ϕ(Az +Wt+1)) =

∫
R
ϕ(Az + w)PW (dw) (38)

where PW denotes the common distribution of the noise vectors Wt. From this expression we

infer the convexity preservation property and we derive a reasonable candidate for the cone of

feature basis functions. Indeed, for each w ∈ Rd, the function z 7→ ϕ(Az + w) can be regarded

as a modification of the original function z 7→ ϕ(z) obtained by composition ϕ◦ lw of ϕ with the

affine linear function lw : Z 3 z 7→ Az + w ∈ Z determined by its intercept w ∈ Rd. Note that

if ϕ is convex, then each modification ϕ ◦ lw is also convex. Having in mind an approximation

of the integral in (38) by a limit of sums, τϕ can be approximated by elements from the cone

spanned by {ϕ ◦ lw : lw : Z → Z, w ∈ Rd}. If ϕ is convex, this cone consists of convex

functions, which yields also convexity of τϕ. In order to mimic (38), we suggest to select our

feature dictionary from the cone spanned by the functions (ψj = ϕ ◦ lwj)mj=1 for an appropriate

set (wj)
n
j=1 ∈ Rd of intercepts which should be chosen in order to represent typical realizations

of W1.

In our numerical implementation, we assume that the commodity price follows an univariate
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Fig. 1. For p = 2 the expected value function z 7→ T̆ V̆ ∗(p, z) (left) and the optimal policy z 7→ π̆∗(p, z) (right).

auto-regressive model of order d = 2 with coefficients 0.3 and 0.65, driven by a unit variance

noise. We realize such a scalar process as the second component (Z
(2)
t )t∈N of the linear state

space process (Zt)t∈N defined by the recursion Z
(1)
t+1

Z
(2)
t+1

 =

 0 1

0.65 0.3

 Z
(1)
t

Z
(2)
t

+

 0

W
(2)
t+1

 ,
where (W

(2)
t )t∈N are independent identically standard normally distributed random variables. To

demonstrate the performance of our method we take a very small Monte Carlo sample S =

(Zt(ω), Zt+1(ω))500
t=1 constructed from of a single path (Zt(ω))501

t=1 consisting of 501 observations

only. We use the reward function (16) with transaction cost c = 1, and set the discount factor

to λ = 0.8. Furthermore, we implemented the adaptive dictionary choice described above with

with five intercepts (wj)
5
j=1 equidistantly distributed from w1 = −1 to w5 = 1. With these data,

we observed a stable convergence of the iterated value iterations even with only N = 20 steps.

For the position p = 2 (storage facility half-full), the expected value function z 7→ V̆ ∗(p, z)

and the optimal policy π̆∗(p, z) = maxa∈A

(
R(p, z, a) + γT̆ (a)V̆ ∗(α(p, a), ·)(z)

)
are plotted in

Figure 1. To show the performance of this strategy, we applied the decision rule π̆∗ to another test

sample (Zt(ω
′))1000

t=1 . Figure (2) shows the joint evolution of the price sample path (Z(2)t(ω′))1000
t=1 ,

the resulting optimal storage levels (p̆∗t )
1000
t=1 (stepwise constant, oscillating between 1=empty and
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3=full), and the running reward (
∑t

u=1Ru(p̆
∗
u, ă
∗
u, Zu))

1000
t=1 (stepwise constant, increasing). Notice

that in order to be able to include the three time evolutions on the same plot, we scaled all the

processes down to the interval [0, 1].

0 200 400 600 800 1000

0.0
0.2

0.4
0.6

0.8
1.0

Index

Fig. 2. Joint evolution of sample path, control policy and running cumulated reward.

VIII. CONCLUSION

Infinite horizon control problems with discounted reward are popular in applications. However,

relevant real-world problems are still notoriously challenging even in this setting, due high-

dimensionality of the state space. We demonstrate that the classical least squares Monte Carlo

method can be improved when the value functions are convex. Although the convexity assumption

may appear restrictive, it is satisfied in a large class of models. Furthermore, Monte-Carlo

methods are generically less affected by the curse of dimensionality, we believe that our method

can still be used when other techniques fail by reaching their computational limits.
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