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Abstract. Mean field games are studied by means of the weak formulation of stochastic optimal

control. This approach allows the mean field interactions to enter through both state and control
processes and take a form which is general enough to include rank and nearest-neighbor effects.

Moreover, the data may depend discontinuously on the state variable, and more generally its

entire history. Existence and uniqueness results are proven, along with a procedure for identifying
and constructing distributed strategies which provide approximate Nash equlibria for finite-player

games. Our results are applied to a new class of multi-agent price impact models and a class of

flocking models for which we prove existence of equilibria.

1. Introduction

The methodology of mean field games initiated by Lasry and Lions [32] has provided an elegant
and tractable way to study approximate Nash equilibria for large-population stochastic differential
games with a so-called mean field interaction. In such games, the players’ private state processes
are coupled only through their empirical distribution. Borrowing intuition from statistical physics,
Lasry and Lions study the system which should arise in the limit as the number of players tends
to infinity. A set of strategies for the finite-player game is then derived from the solution of this
limiting problem. These strategies form an approximate Nash equilibrium for the n-player game if n
is large, in the sense that no player can improve his expected reward by more than εn by unilaterally
changing his strategy, where εn → 0 as n → ∞. They are attractive in that they are distributed:
the strategy of a single player depends only on his own private state.

Mean field games have seen a wide variety of applications, including models of oil production,
volatility formation, population dynamics, and economic growth (see [32, 22, 33, 31] for some ex-
amples). Independently, Caines, Huang, and Malhamé developed a similar research program under
the name of Nash Certianty Equivalent. The interested reader is referred to [25] and [26] and the
papers cited therein. They have since generalized the framework, allowing for several different types
of players and one major player.

The finite-player games studied in this paper are summarized as follows. For i = 1, . . . , n, the
dynamics of player i’s private state process are given by a stochastic differential equation (SDE):

dXi
t = b(t,Xi, µn, αit)dt+ σ(t,Xi)dW i

t , Xi
0 = ξi, (1)

where µn is the empirical distribution of the states:

µn =
1

n

n∑
j=1

δXj . (2)

The drift b may depend on time, player i’s private state (possibly its history), the distribution
of the private states (possibly their histories), and player i’s own choice of control αit. Here, W i
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are independent Wiener processes and ξi are independent identically distributed random variables
independent of the Wiener processes, and each player has the same drift and volatility coefficients.
Moreover, each player i has the same objective, which is to maximize

E

[∫ T

0

f(t,Xi, µn, qnt , α
i
t)dt+ g(Xi, µn)

]
, where qnt =

1

n

n∑
j=1

δαjt

over all admissible choices of αi, subject to the constraint (1). Note that the running reward function
f may depend upon the empirical distribution of the controls at time t, in addition to the same
arguments as b. This is part of the thrust of the paper. Of course, each player’s objective depends
on the actions of the other players, and so we look for Nash equilibria.

Intuitively, if n is large, because of the symmetry of the model, player i’s contribution to µn is
negligible, and he may as well treat µn as fixed. This line of argument leads to the derivation of the
mean field game problem, which has the following structure:

(1) Fix a probability measure µ on path space and a flow ν : t 7→ νt of measures on the control
space;

(2) With µ and ν frozen, solve the standard optimal control problem:{
supα E

[∫ T
0
f(t,X, µ, νt, αt)dt+ g(X,µ)

]
, s.t.

dXt = b(t,X, µ, αt)dt+ σ(t,X)dWt, X0 = ξ;
(3)

(3) Find an optimal control α, inject it into the dynamics of (3), and find the law Φx(µ, ν) of
the optimally controlled state process, and the flow Φα(µ, ν) of marginal laws of the optimal
control process;

(4) Find a fixed point µ = Φx(µ, ν), ν = Φα(µ, ν).

This is to be interpreted as the optimization problem faced by a single representative player in a
game consisting of infinitely many independent and identically distributed (i.i.d.) players. In the
first three steps, the representative player determines his best response to the other players’ states
and controls which he treats as given. The final step is an equilibrium condition; if each player
takes this approach, and there is to be any consistency, then there should be a fixed point. Once
existence and perhaps uniqueness of a fixed point are established, the second problem is to use
this fixed point to construct approximate Nash equilibrium strategies for the original finite-player
game. These strategies will be constructed from the optimal control for the problem of step (2),
corresponding to the choosing (µ, ν) to be the fixed point in step (1).

The literature on mean field games comprises two streams of papers: one based on analytic
methods and one on a probabilistic approach.

Lasry and Lions (e.g. [32], [22], etc.) study these problems via a system of partial differential
equations (PDEs). The control problem gives rise to a Hamilton-Jacobi-Bellman equation for the
value function, which evolves backward in time. The law of the state process is described by a
Kolmogorov equation, which evolves forward in time. These equations are coupled through the
dependence on the law of the state process, in light of the consistency requirement (4). This
approach applies in the Markovian case, when the data b, σ, f , and g are smooth or at least
continuous functions of the states and not of their pasts. Results in this direction include two broad
classes of mean field interactions: some have considered local dependence of the data on the measure
argument, such as functions (x, µ) 7→ G(dµ(x)/dx) of the density, while others have studied nonlocal
functionals, which are continuous with respect to a weak or Wasserstein topology.

More recently, several authors have taken a probabilistic approach to this problem by using the
Pontryagin maximum principle to solve the optimal control problem. See, for example, [10, 6, 11].
Typically in a stochastic optimal control problem, the backward stochastic differential equations
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(BSDEs) satisfied by the adjoint processes are coupled with the forward SDE for the state process
through the optimal control, which is generally a function of both the forward and backward parts.
When the maximum principle is applied to mean field games, the forward and backward equations
are coupled additionally through the law of the forward part. Carmona and Delarue investigate
this new type of forward-backward stochastic differential equations (FBSDEs) in [9]. It should be
noted that there is a similar but distinct way to analyze the infinite-player limit of large-population
games, leading to the optimal control of stochastic dynamics of McKean-Vlasov type. Early forms
of a stochastic maximum principle for this new type of control problem were given in [4, 7, 34]. A
general form of this principle was given in [10] where it was applied to the solution of the control
problem. A comparison of these two asymptotic regimes is given in [12].

The aim of this paper is to present a new probabilistic approach to the analysis of mean field
games with uncontrolled diffusion coefficients. Assuming σ = σ(t, x) contains neither a mean field
term nor a control, we obtain a general existence result. Under stronger assumptions, we prove a
modest extension of the uniqueness result of Lasry and Lions [32]. Finally, we provide a construction
of approximate Nash equilibria for finite-player games in the spirit of [11], in the case that b has no
mean field term.

Our analysis is based on the martingale approach to stochastic control; see for example, [15,
30, 37]. This approach depends heavily on the non-degeneracy of σ and its independence of the
control, and in our case, it is also important that σ has no mean field term. The strong formulation
of the problem, as in [11], would require that the state SDEs have strong solutions when controls
are applied. One of the main conveniences of our weak formulation is that weak existence and
uniqueness of the state SDE require much less regularity in the coefficients, which are allowed to be
path-dependent and merely measurable in the state variable. Also, the value function is shown to
solve a backward stochastic differential equation (BSDE), and necessary and sufficient conditions for
the optimality of a control follow easily from the comparison principle for BSDEs. This method is
discussed by El Karoui and Quenez in [30], Peng in [37], and perhaps most thoroughly by Hamadene
and Lepeltier in [23]. The two formulations are compared in Remark 6.12 below.

Our results allow for the mean field interaction (at least in the running reward function f) to
occur through the control processes in addition to the state processes. This appears to be new in
the theory of mean field games, and quite important for many practical applications. We allow for
very general nonlocal mean field interactions, including but not limited to weakly or Wasserstein
continuous functionals. Among the natural interactions that have not yet been addressed in the
mean field games literature which we are able to treat, we mention the case of coefficients which
depend on the rank (Example 5.9 in Section 5), or on the mean field of the individual’s nearest
neighbors (Section 2.2). Our framework also includes models with different types of agents, similar
to [25]. Moreover, f does not need to be strictly convex, and may in fact be identically zero. A final
novelty of our results worth emphasizing is that they apply in non-Markovian settings and require
no continuity in the state variable.

For the sake of illustration, we present two applications which had been touted as models for
mean field games, without being solved in full generality. First we study price impact models in which
asset price dynamics depend naturally on the rates of change of investors’ positions, generalizing
the standard model of Carlin et al. [8]. As a second application of theoretical our results, we discuss
a model of flocking proposed by Nourian et al. in [35] in order to to provide a mechanism by which
flocking behavior emerges as an equilibrium, as a game counterpart of the well-known Cucker-Smale
model, [14]. In [35], the authors identify the mean field limit, and under the assumption that there
exists a unique solution to the limiting mean field game, construct approximate Nash equilibria for
the finite-player games. While flocking is often defined mathematically as a large time phenomenon
(case in point, the stationary form of the mean field game strategy is considered in [35]), we treat
the finite horizon case to be consistent with the set-up of the paper, even though this case is most
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often technically more challenging. We provide existence and approximation results for both their
model and two related nearest-neighbor models.

A very recent paper of Gomes and Voskanyan [21] uses PDE methods to study mean field games
with interactions involving the control processes, which they call extended mean field games. Their
assumptions of continuity and convexity are stronger than ours, and they restrict themselves to
σ = 0. In exchange they obtain more in the way of regularity of the solutions, and in particular,
they allow for general dependence on the joint law of the state and control processes.

This paper is organized as follows. We introduce the two practical applications in Section 2.
The price impact models of Section 2.1 motivate the analysis of mean field games in which players
interact through their controls, while Section 2.2 describes the flocking model of [35] as well as two
related nearest-neighbor models. Then, Section 3 provides precise statements of the assumptions
used throughout the paper and the main existence and uniqueness results. Section 4 explains the
construction of approximate Nash equilibria for the finite-player game. In Section 5 we apply the
general theory to the applications of Section 2 as well as some other examples. The proofs of the
main theorems of Sections 3 and 4 are given in Sections 6 and 7, respectively.

2. Applications

2.1. Price impact models. To motivate our generalization of the class of mean field games worthy
of investigation, we present a simple multi-agent model of price impact which leads to mean field
interaction through the control processes. The model is along the lines of Almgren and Chriss’s
model [3] for price impact, or rather its natural extension to an n-player competitive game given by
Carlin, Lobo, and Viswanathan in [8]. The latter model is highly tractable, modeling a flat order
book from which each agent must execute a fixed order. We instead model a nonlinear order book
and use fairly general reward functions. See [1, 20] for a discussion of order book mechanics as well
as a discussion of resilience, a concept we do not address. In our model, after each trade, the order
book reconstructs itself instantly around a new mid-price St, and with the same shape. At each
time t, each agent faces a cost structure given by the same transaction cost curve c : R → [0,∞],
which is convex and satisfies c(0) = 0. We consider only order books with finite volume; an infinite
value for c(α) simply means that the volume α is not available. Flat order books are common in
the literature, though not realistic: they correspond to quadratic transaction costs c.

We work on a filtered probability space (Ω,F ,F = (Ft)t∈[0,T ], P ) supporting n+ 1 independent

Wiener processes, W 1, . . . ,Wn and B. Let S denote the asset price, Ki the cash of agent i, and Xi

his position. Each agent controls his trading rate αit and his position evolves according to

dXi
t = αitdt+ σdW i

t .

If a single agent i places a market order of αit when the mid-price is St, the transaction costs him
αitSt + c(αit). Hence, the changes in cash of agent i are naturally given by

dKi
t = −(αitSt + c(αit))dt.

Assuming c is differentiable on its domain, the marginal price per share of this trade is St + c′(αit),
meaning that the agent receives all of the volume on the order book between the prices St and
St + c′(αit). The order book should recenter somewhere in this price range, say at St + γc′(αit)/n,
where γ > 0. The factor of 1/n is irrelevant when n is fixed but is convenient for the subsequent
analysis.

In a continuous-time, continuous-trading model with multiple agents, it is not clear how si-
multaneous trades should be handled. Somewhat more realistic are continuous-time, discrete-trade
models, which many continuous-trade models are designed to approximate. In a continuous-time,
discrete-trade model, it is reasonable to assume that agents never trade simultaneously, given that
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there is a continuum of trade times to choose from. We choose to model this in our continuous-trade
setting in the following manner: When the n agents trade at rates α1

t , . . . , α
n
t at time t, agent i still

pays αitSt + c(αit), but the total change in price is

γ

n

n∑
i=1

c′(αit).

Finally, the mid-price is modeled as an underlying martingale plus a drift representing a form of
permanent price impact:

dSt =
γ

n

n∑
i=1

c′(αit)dt+ σ0dBt.

Note that the particular case c(α) = α2 corresponds to the standard of the industry known as the
Almgren-Chriss model [3]. The wealth V it of agent i at time t, as pegged to the mid-price, is given
by V i0 +Xi

tSt +Ki
t , which leads to the following dynamics:

dV it =

γ
n

n∑
j=1

c′(αjt )X
i
t − c(αit)

 dt+ σ0X
i
tdBt + σStdW

i
t . (4)

We assume that the agents are risk-neutral and seek to maximize their expected terminal wealths
at the end of the trading period, including some agency costs given by functions f and g, so that
the objective of agent i is to maximize:

J i(α1, . . . , αn) = E

[
V iT −

∫ T

0

f(t,Xi
t)dt− g(Xi

T )

]
.

Price impact models are most often used in optimal execution problems for high frequency trading.
Because of their short time scale, the fact that St as defined above can become negative is not an
issue in practice. In these problems, one often chooses g(x) = mx2 for some m > 0 in order to
penalize left over inventory. The function f is usually designed to provide an incentive for tracking
a benchmark, say the frequently used market volume weighted average price (VWAP) and a penalty
slippage.

If the control processes are square integrable and the cost function c has at most quadratic
growth, the volumes Xi

t and the transaction price St are also square integrable and the quadratic
variation terms in (4) are true martingales. So after using Itō’s formula we find

J i(α1, . . . , αn) = E

∫ T

0

γ
n

n∑
j=1

c′(αjt )X
i
t − c(αit)− f(t,Xi

t)

 dt− g(Xi
T )

 .
Treating Xi as the state processes, this problem is of the form described in the introduction. The
general theory presented in the sequel will apply to this model under modest assumptions on the
functions c, f , and g, ensuring existence of approximate Nash equilibria. Intuitively, when n is large,
a single agent may ignore his price impact without losing much in the way of optimality. This model
could be made more realistic in many ways, but we believe any improvement will preserve the basic
structure of the price impact, which naturally depends on the mean field of the control processes. It
should be mentioned that the risk-neutrality assumption is crucial and hides a much more difficult
problem. Without risk-neutrality, we would have to keep track of V and S as state processes. More
importantly, the Brownian motion B would not disappear after taking expectations, and this would
substantially complicate the mean field limit.

2.2. Flocking models. The position Xi
t and velocity V it of individual i change according to

dXi
t = V it dt,

dV it = αitdt+ σdW i
t ,
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where αit is the individual’s acceleration vector, W i are independent d-dimensional Wiener processes,
and σ > 0 is a d× d matrix (usually d = 2 or d = 3). The objective of individual i is to choose αi

to minimize

E

∫ T

0

|αit|2R +

∣∣∣∣∣∣ 1n
n∑
j=1

(V jt − V it )φ(|Xj
t −Xi

t |)

∣∣∣∣∣∣
2

Q

dt

 . (5)

Here, φ : [0,∞) → [0,∞) is a nonincreasing function, and |x|Q := x>Qx for x ∈ Rd, where Q ≥ 0
(similar for |·|R). The |αit|2R term penalizes too rapid an acceleration, while the second term provides
an incentive for an individual to align his velocity vector with the average velocity of the flock. The
weights φ(|Xj

t −Xi
t |) emphasize the velocities of nearby (in position) individuals more than distant

ones. In [35], drawing inspiration from [14], φ is of the form

φ(x) = c
(
1 + x2

)−β
, β ≥ 0, c > 0. (6)

Our existence and approximation results apply to the model above as well as a related model in
which the weights in (5) take a different form. Namely, individual i may give non-zero weight only
to those individuals it considers to be neighbors, where the set of neighbors may be determined in
two different ways. Nearest neighbor rules pre-specify a radius r > 0, and an individual i’s neighbors
at time t are those individuals j with |Xj

t −Xi
t | ≤ r. Letting N i

t denote the set of such j and |N i
t |

its cardinality, the objective function is

E

∫ T

0

|αit|2R +

∣∣∣∣∣∣ c

|N i
t |
∑
j∈Nit

(V jt − V it )

∣∣∣∣∣∣
2

Q

dt

 . (7)

This is inspired by what is now known as Vicsek’s model, proposed in [40] and studied mathemat-
ically in [29]. On the other hand, recent studies such as [5] provide evidence that birds in flocks
follow so-called k-nearest neighbor rules, which track only a fixed number k ≤ n of neighbors at
each time. The corresponding objective function is the same, if we instead define N i

t to be the set
of indices j of the k closest individuals to i (so of course |N i

t | = k). Note that there are no “ties”;

that is, for each distinct i, j, l ≤ n and t > 0, we have P (|Xi
t −X

j
t | = |Xi

t −X l
t|) = 0.

3. Mean field games

We turn now to a general discussion of the mean field game models which we consider in this
paper. We collect the necessary notation and assumptions in order to state the main existence,
uniqueness, and approximation theorems.

3.1. Construction of the mean field game. Let B(E, τ) denote the Borel σ-field of a topological
space (E, τ). When the choice of topology is clear, we use the abbreviated form B(E). For a
measurable space (Ω,F), let P(Ω) denote the set of probability measures on (Ω,F). We write
µ � ν when µ is absolutely continuous with respect to ν, and µ ∼ ν when the measures are
equivalent. Given a measurable function ψ : Ω→ [1,∞), we set:

Pψ(Ω) =

{
µ ∈ P(Ω) :

∫
ψ dµ <∞

}
,

Bψ(Ω) =

{
f : Ω→ R measurable, sup

ω
|f(ω)|/ψ(ω) <∞

}
.

We define τψ(Ω) to be the weakest topology on Pψ(Ω) making the map µ 7→
∫
f dµ continuous for

each f ∈ Bψ(Ω). The space (Pψ(Ω), τψ(Ω)) is generally neither metrizable nor separable, which will
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pose some problems. We define the empirical measure map en : Ωn → P(Ω) by

en(ω1, . . . , ωn) =
1

n

n∑
j=1

δωj .

Notice that en need not be B(Pψ(Ω), τψ(Ω))-measurable, but this will not be an issue.

Definition 3.1. Given measurable spaces E and F , we say that a function f : P(Ω) × E → F is
empirically measurable if

Ωn × E 3 (x, y) 7→ f(en(x), y) ∈ F
is jointly measurable for all n ≥ 1.

Let C := C([0, T ];Rd) be the space of Rd-valued continuous functions on [0, T ] endowed with the
sup-norm ‖x‖ := sups∈[0,T ] |x(s)| and fix a Borel measurable function ψ : C → [1,∞) throughout.

It will play a role similar to the “Lyapunov-like” function of Gärtner [19], controlling a tradeoff
between integrability and continuity requirements. Some comments on the choice of ψ follow in
Remark 3.6. For any µ ∈ P(C) and t ∈ [0, T ], the marginal µt denotes the image of µ under the
coordinate map C 3 x 7→ xt ∈ Rd.

We use the notation λ0 ∈ P(Rd) for the initial distribution of the infinitely many players’ state
processes. Let Ω := Rd×C, define ξ(x, ω) := x and W (x, ω) := ω, and let P denote the product of λ0

and the Wiener measure, defined on B(Ω). Define Ft to be the completion of σ((ξ,Ws) : 0 ≤ s ≤ t)
by P -null sets of B(Ω), and set F := (Ft)0≤t≤T . We work with the filtered probability space
(Ω,FT ,F, P ) for the remainder of the section. For k ∈ N and q ≥ 1 define the spaces

Hq,k :=

h : [0, T ]× Ω→ Rk progressively measurable with E

(∫ T

0

|ht|2dt

)q/2 <∞
 .

For a martingale M , we denote by E(M) its Doleans stochastic exponential. We now state assump-
tions on the data which will stand throughout the paper. Unless otherwise stated, Pψ(C) is equipped
with the topology τψ(C).

The following assumptions (S) are implicitly assumed throughout the paper.

Assumption (S) (Standing assumptions).

(S.1) The control space A is a compact convex subset of a normed vector space, and the set A of
admissible controls consists of all progressively measurable A-valued processes. The volatility
σ : [0, T ]×C → Rd×d is progressively measurable. The drift b : [0, T ]×C×Pψ(C)×A→ Rd is
such that (t, x) 7→ b(t, x, µ, a) is progressively measurable for each (µ, a), and a 7→ b(t, x, µ, a)
is continuous for each (t, x, µ).

(S.2) There exists a unique strong solution X of the driftless state equation

dXt = σ(t,X)dWt, X0 = ξ, (8)

such that E[ψ2(X)] <∞, σ(t,X) > 0 for all t ∈ [0, T ] almost surely, and σ−1(t,X)b(t,X, µ, a)
is uniformly bounded.

We will elaborate on these and the subsequent assumptions in Section 5 below, but for now, let
us mention a typical example. If σ has linear growth, ψ(x) = 1 + ‖x‖p, and

∫
Rd |x|

2pλ0(dx) < ∞,

then indeed E[ψ2(X)] <∞.

From now on, X denotes the unique solution of (8). For each µ ∈ Pψ(C) and α ∈ A, define a
measure Pµ,α on (Ω,FT ) by

dPµ,α

dP
= E

(∫ ·
0

σ−1b (t,X, µ, αt) dWt

)
T

.
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By Girsanov’s theorem and boundedness of σ−1b, the process Wµ,α defined by

Wµ,α
t := Wt −

∫ t

0

σ−1b (s,X, µ, αs) ds

is a Wiener process under Pµ,α, and

dXt = b (t,X, µ, αt) dt+ σ(t,X)dWµ,α
t .

That is, under Pµ,α, X is a weak solution of the state equation. Note that Pµ,α and P agree on F0;
in particular, the law of X0 = ξ is still λ0. Moreover, ξ and W remain independent under Pµ,α.

Remark 3.2. It is well-known that the nonsingularity assumption (S.2) of σ guarantees that F
coincides with the completion of the filtration generated by X. It is thus implicit in the definition of
A that our admissible controls can be written in closed-loop form, that is as deterministic functions
of (t,X).

We now state the assumptions on the reward functions entering the objectives to be maximized
by the players. Throughout, P(A) is endowed with the weak topology and its corresponding Borel
σ-field.

(S.3) The running reward f : [0, T ]×C×Pψ(C)×P(A)×A→ R is such that (t, x) 7→ f(t, x, µ, q, a)
is progressively measurable for each (µ, q, a) and a 7→ f(t, x, µ, q, a) is continuous for each
(t, x, µ, q). The terminal reward function g : C × Pψ(C) → R is such that x 7→ g(x, µ) is
Borel measurable for each µ.

(S.4) There exist c > 0 and an increasing function ρ : [0,∞)→ [0,∞) such that

|g(x, µ)|+ |f(t, x, µ, q, a)| ≤ c
(
ψ(x) + ρ

(∫
ψ dµ

))
, ∀(t, x, µ, q, a).

Since ψ ≥ 1, this is equivalent to the same assumption but with ψ replaced by 1 + ψ.
(S.5) The function f is of the form

f(t, x, µ, q, a) = f1(t, x, µ, a) + f2(t, x, µ, q).

Given a measure µ ∈ Pψ(C), a control α ∈ A, and a measurable map [0, T ] 3 t 7→ qt ∈ P(A),
we define the associated expected reward by

Jµ,q(α) := Eµ,α
[∫ T

0

f(t,X, µ, qt, αt)dt+ g(X,µ)

]
where Eµ,α denotes expectation with respect to the measure Pµ,α. Considering µ and q as fixed,
we are faced with a standard stochastic optimal control problem, the value of which is given by

V µ,q = sup
α∈A

Jµ,q(α).

Definition 3.3. We say a measure µ ∈ Pψ(C) and a measurable function q : [0, T ] → P(A) form
a solution of the MFG if there exists α ∈ A such that V µ,q = Jµ,q(α), Pµ,α ◦ X−1 = µ, and
Pµ,α ◦ α−1

t = qt for almost every t.

3.2. Existence and uniqueness. Some additional assumptions are needed for the existence and
uniqueness results. Define the Hamiltonian h : [0, T ]×C×Pψ(C)×P(A)×Rd×A→ R, the maximized
Hamiltonian H : [0, T ]×C×Pψ(C)×P(A)×Rd → R, and the set on which the supremum is attained
by

h(t, x, µ, q, z, a) := f(t, x, µ, q, a) + z · σ−1b(t, x, µ, a),

H(t, x, µ, q, z) := sup
a∈A

h(t, x, µ, q, z, a), (9)

A(t, x, µ, q, z) := {a ∈ A : h(t, x, µ, q, z, a) = H(t, x, µ, q, z)},
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respectively. Note that A(t, x, µ, q, z) does not depend on q, in light of assumption (S.5), so we
shall often drop q from the list of arguments of A and use the notation A(t, x, µ, z). Note also that
A(t, x, µ, z) is always nonempty, since A is compact and h is continuous in a by assumptions (S.1)
and (S.3).

Assumption (C). For each (t, x, µ, z), the set A(t, x, µ, z) is convex.

It will be useful to have notation for the driftless law and the set of equivalent laws:

X := P ◦X−1 ∈ Pψ(C)
PX := {µ ∈ Pψ(C) : µ ∼ X} .

Assumption (E) (Existence assumptions). For each (t, x) ∈ [0, T ] × C the following maps are
sequentially continuous, using τψ(C) on PX and the weak topology on P(A):

PX ×A 3 (µ, a) 7→ b(t, x, µ, a),

PX × P(A)×A 3 (µ, q, a) 7→ f(t, x, µ, q, a),

PX 3 µ 7→ g(x, µ).

Theorem 3.4. Suppose (E) and (C) hold. Then there exists a solution of the MFG.

Remark 3.5. It is worth emphasizing that sequential continuity is often easier to check for τψ(C),
owing in part to the failure of the dominated convergence theorem for nets. For example, functions
like µ 7→

∫ ∫
φ(x, y)µ(dx)µ(dy) for bounded measurable φ are always sequentially continuous but

may fail to be continuous.

Remark 3.6. The function ψ enters the assumptions in two essential ways. On the one hand, the
functions b, f , and g should be τψ(C)-continuous in their measure arguments as in (E). On the other
hand, the solution of the SDE dXt = σ(t,X)dWt should possess ψ2-moments as in (S.2), and the
growth of f and g should be controlled by ψ, as in (S.4). There is a tradeoff in the choice of ψ:
larger ψ makes the latter point more constraining and the former less constraining.

The following uniqueness theorem is inspired by Lasry & Lions [32]. They argue that, in general,
one cannot expect uniqueness without an appropriate monotonicity assumption.

Assumption (U).

(U.1) For each (t, x, µ, z), the set A(t, x, µ, z) is a singleton;
(U.2) b = b(t, x, a) has no mean field term;
(U.3) f(t, x, µ, a) = f1(t, x, µ) + f2(t, µ, q) + f3(t, x, a) for some f1, f2, and f3;
(U.4) For all µ, ν ∈ Pψ(C),∫

C

[
g(x, µ)− g(x, ν) +

∫ T

0

(f1(t, x, µ)− f1(t, x, ν)) dt

]
(µ− ν)(dx) ≤ 0. (10)

Theorem 3.7. Suppose (U) holds. Then there is at most one solution of the MFG.

Corollary 3.8. Suppose (E) and (U) hold. Then there exists a unique solution of the MFG.

Remark 3.9. A simple extension of the above formulation allows more heterogeneity among agents:
indeed, one can work instead on a probability space Ω = Ω′ ×Rd ×C, where Ω′ is some measurable
space which will model additional time-zero randomness. We may then fix an initial law λ0 ∈
P(Ω′ × Rd), and let P be the product of λ0 and Wiener measure. Letting (θ, ξ,W ) denote the
coorinate maps, we work with the filtration generated by the process (θ, ξ,Ws)0≤s≤T . The data b,
σ, f , and g may all depend on θ. In the finite-player game, the agents have i.i.d. initial data (θi, ξi),
known at time zero. This generalization complicates the notation but changes essentially none of
the analysis.
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4. Approximate Nash equilibria for finite-player games

Before proving these theorems, we discuss how a solution of the MFG may be used to con-
struct an approximate Nash equilibrium for the finite-player game, using only distributed controls.
Additional assumptions are needed for the approximation results:

Assumption (F).

(F.1) b = b(t, x, a) has no mean field term;
(F.2) For all (t, x, µ, q, a), f(t, x, µ, q, a) = f(t, x, µt, q, a), where µt denotes the image of µ under

the map C 3 x 7→ x·∧t ∈ C;
(F.3) The functions b, f , and g are empirically measurable, as in Definition 3.1, using the progressive

σ-field on [0, T ]× C, and Borel σ-fields elsewhere;
(F.4) For each (t, x), the following functions are continuous at each point satisfying µ ∼ X :

Pψ(C)× P(A)×A 3 (µ, q, a) 7→ f(t, x, µ, q, a),

Pψ(C) 3 µ 7→ g(x, µ);

(F.5) There exists c > 0 such that, for all (t, x, µ, q, a),

|g(x, µ)|+ |f(t, x, µ, q, a)| ≤ c
(
ψ(x) +

∫
ψ dν

)
.

Remark 4.1. The continuity assumption (F.4) is stronger than assumption (E). Indeed, in (E)
we required only sequential continuity on a subset of the space Pψ(C). Assumption (F.2) is a kind
of adaptedness in the measure argument. The results of this section have analogs when (F.1) fails
under stronger continuity requirements for b in its measure arguments, but we refrain from giving
them as the proofs are quite long.

Adhering to the philosophy of the weak formulation, we choose a single convenient probability
space on which we define the n-player games, simultaneously for all n. Assumptions (C) and
(F) stand throughout this section (as does (S), as always). We fix a solution of the MFG (µ̂, q̂)
throughout, whose existence is guaranteed by Theorem 3.4, with corresponding closed-loop control
α̂(t, x) (see Remark 3.2). Consider a probability space (Ω,F , P ) supporting a sequence (W 1,W 2, . . .)
of independent d-dimensional Wiener processes, independent Rd-valued random variables (ξ1, ξ2, . . .)
with common law λ0, and processes (X1, X2, . . .) satisfying

dXi
t = b(t,Xi, α̂(t,Xi))dt+ σ(t,Xi)dW i

t , X
i
0 = ξi.

For each n, let Fn = (Fnt )t∈[0,T ] denote the completion of the filtration generated by (X1, . . . , Xn)

by null sets of F . Let Xi denote the completion of the filtration generated by Xi. Note that Xi

are independent and identically distributed and that the process (ξi,W i
t )0≤t≤T generates the same

filtration Xi, as in Remark 3.2. Abbreviate αit = α̂(t,Xi). These controls are known as distributed
controls.

We now describe the n-player game for fixed n. The control space An is the set of all Fn-
progressively measurable A-valued processes; the players have complete information of the other
players’ state processes. On the other hand, Ann is the n-fold Cartesian product of An, or the set of
Fn-progressively measurable An-valued processes. Let µn denote the empirical measure of the first
n state processes as defined in the introduction by (2). For β = (β1, . . . , βn) ∈ Ann, define a measure
Pn(β) on (Ω,FnT ) by the density

dPn(β)

dP
:= E

(∫ ·
0

n∑
i=1

(
σ−1b(t,Xi, βit)− σ−1b(t,Xi, αit)

)
dW i

t

)
T

.

Under Pn(β), for each i = 1, . . . , n, Xi is a weak solution of the SDE

dXi
t = b(t,Xi, βit)dt+ σ(t,Xi)dW βi,i

t ,
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where

W βi,i
· := W· −

∫ ·
0

[
σ−1b(t,Xi, βit)− σ−1b(t,Xi, αit)

]
dt

is a d-dimensional Pn(β)-Wiener process. Note that Xi
0 are i.i.d. with common law λ0 under any of

the measures Pn(β) with β ∈ Ann. For β = (β1, . . . , βn) ∈ Ann, the value to player i of the strategies
β is defined by

Jn,i(β) := EPn(β)

[∫ T

0

f(t,Xi, µn, qn(βt), β
i
t)dt+ g(Xi, µn)

]
,

where, for a = (a1, . . . , an) ∈ An, we define

qn(a) :=
1

n

n∑
i=1

δai .

Note that the joint measurability assumption (F.3) guarantees that g(Xi, µn) is FnT -measurable,
while (F.2) and (F.3) ensure that (f(t,Xi, µn, qn(βt), β

i
t))t∈[0,T ] and (b(t,Xi, βit))t∈[0,T ] are progres-

sively measurable with respect to Fn.

Theorem 4.2. Assume (C) and (F) hold, and let (µ̂, q̂) denote a solution of the MFG, with corre-
sponding closed-loop control α̂ = α̂(t, x) (see Remark 3.2). Then the strategies αit := α̂(t,Xi) form
an approximate Nash equilbrium for the finite-player game in the sense that there exists a sequence
εn ≥ 0 with εn → 0 such that, for 1 ≤ i ≤ n and β ∈ An,

Jn,i(α
1, . . . , αi−1, β, αi+1, . . . , αn) ≤ Jn,i(α1, . . . , αn) + εn.

Remark 4.3. The punchline is that αi is Xi-adapted for each i. That is, player i determines his
strategy based only on his own state process. As explained earlier, such strategies are said to be
distributed. The theorem tells us that even with full information, there is an approximate Nash
equilibrium consisting of distributed controls, and we know precisely how to construct one using a
solution of the MFG. Note that the strategies (αi)i∈N also form an approximate Nash equilibrium for
any partial-information version of the game, as long as player i has access to (at least) the filtration
Xi generated by his own state process.

5. Applications and Additional Examples

First, we return to the models presented in Section 2, for which we demonstrate the applicability
of the existence and approximation theorems (3.4 and 4.2). Then, we turn to a more general
discussion of the assumptions and special cases.

5.1. Price impact models. We restrict our attention to finite-volume order books. We suppose
that A ⊂ R is a compact interval containing the origin, c′ : A→ R is continuous and nondecreasing,
σ > 0, f : [0, T ] × R → R and g : R → R are measurable, and finally that there exists c1 > 0 such
that

|f(t, x)|+ |g(x)| ≤ c1ec1|x|, for all (t, x) ∈ [0, T ]× R.

Let c(x) =
∫ x

0
c′(a)da. Assume that Xi

0 are i.i.d. and that their common distribution λ0 ∈ P(R)

satisfies
∫
R e

p|x|λ0(dx) < ∞ for all p > 0. In the notation of the paper, we have b(t, x, µ, a) = a,

σ(t, x) = σ, f(t, x, µ, q, a) = γxt
∫
A
c′dq − c(a)− f(t, xt), g(x, µ) = g(xT ), and ψ(x) = ec1‖x‖.

It is quite easy to check the assumptions of the previous sections, at least with the help of
Lemma 5.4 below, yielding the following theorem. Moreover, in this simple case we can estimate
the rate of convergence, as proven at the end of Section 7.
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Proposition 5.1. Under the above assumptions, the existence and approximation theorems 3.4 and
4.2 apply to the price impact model. Moreover, in the approximation theorem, there exists a constant
C > 0 such that

εn ≤ C/
√
n.

5.2. Flocking models. To work around the degeneracy of the diffusion (Xi, V i), we consider
only V i as the state variable, and recover Xi by making the coefficients path-dependent. Let
b(t, v, µ, a) = a, σ > 0 constant, g ≡ 0, and A ⊂ Rd compact convex. Define ι : [0, T ]× C → Rd and
I : [0, T ]× P(C)→ P(Rd) by

ι(t, v) :=

∫ t

0

vsds, I(t, µ) := µ ◦ ι(t, ·)−1.

Note that ι(t, V i) represents the position of the individual at time t; we are assuming each individual
starts at the origin to keep the notation simple and consistent, although any initial distribution of
positions could be accounted for by using the construction of Remark 3.9. For flocking models, (5)
is captured by choosing a running reward function of the form:

f (1)(t, v, µ, a) = −|α|2R −
∣∣∣∣∫
C
µ(dv′)(v′t − vt)φ(|ι(t, v′ − v)|)

∣∣∣∣2
Q

.

The minus signs are only to turn the problem into a maximization, to be consistent with the
notation of the rest of the paper. Recall that φ : [0,∞) → [0,∞) is nonincreasing and thus Borel
measurable. Assume the initial data V i are i.i.d. and square-integrable, with law λ0 ∈ P2(Rd).
Take ψ(x) = 1 + ‖x‖2 for x ∈ C. For the nearest neighbor model, we use

f (2)(t, v, µ, a) = −|α|2R −
∣∣∣∣ c

I(t, µ)(B(ι(t, v), r))

∫
C
µ(dv′)(v′t − vt)1B(ι(t,v),r)(ι(t, v

′))

∣∣∣∣2
Q

,

where r > 0 was given, and B(x, r′) denotes the closed ball of radius r′ centered at x. Consider the
second term above to be zero whenever I(t, µ)(B(ι(t, v), r)) = 0. Finally, for the k-nearest-neighbor
model, we choose η ∈ (0, 1) to represent a fixed percentage of neighbors, which amounts to keeping
k/n fixed in the finite-player game as we send n→∞. We define r : P(Rd)× Rd → [0,∞) by

r(µ, x, y) := inf {r′ > 0 : µ(B(x, r′)) ≥ y} ,

and

f (3)(t, v, µ, a) = −|α|2R −
∣∣∣∣ cη
∫
C
µ(dv′)(v′t − vt)1B(ι(t,v),r(I(t,µ),ι(t,v)),η)(ι(t, v

′))

∣∣∣∣2
Q

.

It is straightforward to check that the objective (7) for the nearest neighbor models is equivalent to
maximizing

E
∫ T

0

f (1)(t, V i, µn, αit)dt, where µn =
1

n

n∑
j=1

δV j ,

replacing f (1) by f (2) in the case of the k-nearest neighbor model.

Proposition 5.2. Under the above assumptions, the existence and approximation theorems 3.4 and
4.2 apply to each of the flocking models.

Proof. Assumptions (S.1), (S.4), (S.5), (C), (F.1), (F.2), and (F.5) are easy to check. Lemma 5.4
below takes care of (S.2). Also, (S.3) and (F.3) are clear for f (1) and f (2), and follow from Lemma
5.3 below for f (3). It remains to check the continuity assumption (F.4). For f (1), this follows from
Proposition 5.6 below. Apply Itô’s formula to tWt to get

ι(t,X) =

∫ t

0

Xsds =

∫ t

0

(ξ + σWs)ds = tξ + σtWt − σ
∫ t

0

sdWs.
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Since ξ and W are independent, we see that I(t,X ) ∼ L for t ∈ (0, T ], where L denotes Lebesgue
measure on Rd. Hence I(t, µ) ∼ L for µ ∼ X , and so µ 7→ 1/I(t, µ)(B(x, r)) is τψ(C)-continuous at
points µ ∼ X , for each (x, r) ∈ Rd × (0,∞). This along with Proposition 5.6 below establish (F.4)
for f (2). Finally, we prove (F.4) for f (3). Fix (t, v) ∈ (0, T ]× C, and define

Bµ := B (ι(t, v), r(I(t, µ), ι(t, v), η)) ,

F (µ) :=

∫
C
(v′t − vt)1Bµ(ι(t, v′))µ(dv′),

for µ ∈ Pψ(C). In light of Lemma 5.5 and the discussion preceding it, it suffices to show F is WC,2-
continuous at points µ ∼ X . Let µn → µ in WC,2 with µ ∼ X , and note that I(t, µ) ∼ I(t,X ) ∼ L.
Then

F (µn)− F (µ) =

∫
C
(v′t − vt)

(
1Bµn − 1Bµ

)
(ι(t, v′))µ(dv′)

+

∫
C
(v′t − vt)1Bµn (ι(t, v′))[µn − µ](dv′)

=: In + IIn.

Note that I(t, µn) → I(t, µ) weakly, and thus r(I(t, µn), ι(t, x), η) → r(I(t, µ), ι(t, x), η) by Lemma
5.3. Since 1Bµn → 1Bµ holds L-a.e. (and thus I(t, µ)-a.e.) and

∫
C(v
′
t − vt)[µn − µ](dv′) → 0, the

dominated convergence theorem yields In → 0. To show IIn → 0, note that note that

I(t, (v′t − vt)µn(dv′))→ I(t, (v′t − vt)µ(dv′)), weakly.

Since the latter measure is absolutely continuous with respect to Lebesgue measure, Theorem 4.2
of [38] implies

IIn = [I(t, (v′t − vt)µn(dv′))− I(t, (v′t − vt)µ(dv′))] (Bµn)→ 0.

In fact, we should consider separately the positive and negative parts of each of the d components of
the signed vector measures (v′t− vt)µn(dv′), since Theorem 4.2 of [38] is stated only for nonnegative
real-valued measures. �

Lemma 5.3. The function r is empirically measurable, and r(·, x, y) is weakly continuous at points
µ ∼ L.

Proof. To prove measurability, note that for any c > 0

{(z, x, y) : r(en(z), x, y) > c} =

{
(z, x, y) :

1

n

n∑
i=1

1B(x,c)(zi) < y

}
is clearly a Borel set in (Rd)n × Rd × (0, 1) for each n. To prove continuity, let µn → µ weakly in
P(Rd) with µ ∼ L. Let ε > 0. Since µ ∼ L, the map r 7→ µ(B(x, r)) is continuous and strictly
increasing. Thus the inverse function r(µ, x, ·) is also continuous, and we may find δ > 0 such that
|r(µ, x, y) − r(µ, x, z)| < ε whenever |z − y| ≤ δ. Theorem 4.2 of [38] tells us that µn(B) → µ(B)
uniformly over measurable convex sets B, since µ� L. Hence, for n sufficiently large,

sup
(x,r)∈Rd×(0,∞)

|µ(B(x, r))− µn(B(x, r))| < δ.

Thus, for sufficiently large n,

r(µn, x, y) = inf {r′ > 0 : µ(B(x, r′)) ≥ y + (µ− µn)(B(x, r′))}
≥ inf {r′ > 0 : µ(B(x, r′)) ≥ y − δ}
= r(µ, x, y − δ) ≥ r(µ, x, y)− ε,

and similarly

r(µn, x, y) ≤ inf {r′ > 0 : µ(B(x, r′)) ≥ y + δ} = r(µ, x, y + δ) ≤ r(µ, x, y) + ε.

�
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5.3. Discussion of the Assumptions. Conditions (C) and (U) are rather strong but are crucial to
the fixed point argument. Condition (C) (resp. (U.1)) holds when the Hamiltonian h(t, x, µ, q, z, a)
is concave (resp. strictly concave) in a, for each (t, x, µ, q, z), which is a common assumption in
control theory. For example, condition (C) (resp. (U.1)) holds if b is affine in a and f is concave
(resp. strictly concave) in a. More generally, we can get away with quasiconcavity in the previous
statements. Note that if f ≡ 0 then A(t, x, µ, 0) = A, and thus condition (U.1) fails except in trivial
cases. However, condition (C) frequently holds even in the absence of a running reward function
f ≡ 0; the optimal control in such a case is typically a bang-bang control.

We turn now to the assumptions (S), (E), and (F). Standard arguments give:

Lemma 5.4. Assume that ψ0 : Rd → [1,∞) is either ψ0(x) = 1 + |x|p for some p ≥ 1 or ψ0(x) =
ep|x| for some p > 0, and let ψ(x) = supt∈[0,T ] ψ0(xt). If

∫
Rd ψ0(x)2λ0(dx) < ∞, σ > 0, |σ(·, 0)| ∈

L2[0, T ], and |σ(t, x) − σ(t, y)| ≤ c‖x − y‖ for some c > 0, then (S.2) holds as long as σ−1b is
bounded.

The measurability requirement (F.3) is unusual, but not terribly restrictive. The more difficult
assumption to verify is that of continuity, (F.4). Common assumptions in the literature involve
continuity with respect to the topology of weak convergence or more generally a Wasserstein metric.
For a separable Banach space (E, ‖ · ‖E) and p ≥ 1, let

Wp
E,p(µ, ν) := inf

{∫
E

‖x− y‖pEπ(dx, dy) : π ∈ P(E × E) with marginals µ, ν

}
,

When ψE,p(x) = 1 + ‖x‖pE , it is known that WE,p metrizes the weakest topology making the map
PψE,p(E) 3 µ 7→

∫
φdµ continuous for each continuous function φ ∈ BψE,p(E) (see Theorem 7.12

of [41]). Thus WE,p is weaker than τψE,p(C), which proves the following result.

Lemma 5.5. Let ψ = ψC,p, p ≥ 1. Suppose f and g are (sequentially) continuous in (µ, q, a) at
points with µ ∼ X , for each (t, x), using the metric WC,p on Pψ(C). Then (F.4) holds.

In most applications the coefficients are Markovian; that is, f(t, x, µ, q, a) = f̂(t, xt, µt, q, a) for

some f̂ : [0, T ]×Rd ×P(Rd)×P(A)×A→ R. Note that for any µ, ν ∈ P(C), p ≥ 1, and t ∈ [0, T ],

WRd,p(µt, νt) ≤ WC,p(µ, ν),

and thus the previous proposition includes Markovian data. Note also that assumption (F.4) de-
mands continuity in the measure argument only at the points which are equivalent to X . Of course,
if σ does not depend on X or is uniformly bounded from below, then Xt ∼ L for all t > 0, and thus

in the Markovian case we need only to check that f̂ is continuous at points which are equivalent
to Lebesgue measure. At no point was a Markov property of any use, and this is why we chose to
allow path-dependence in each of the coefficients. Moreover, continuity in the spatial variable was
never necessary either. Indeed, we require only that dXt = σ(t,X)dWt admits a strong solution,
as in assumption (S.2), which of course covers the usual Lipschitz assumption. The most common
type of mean field interaction is scalar and Markovian, so we investigate such cases carefully.

Proposition 5.6 (Scalar dependence on the measure). Consider a function of the form

f(t, x, µ, q, a) =

∫
C
F (t, xt, yt, q, a)µ(dy) =

∫
Rd
F (t, xt, y, q, a)µt(dy)

where F : [0, T ]× Rd × Rd × P(A)×A→ R is jointly measurable and jointly continuous in its last
two arguments whenever the first three are fixed. Let ψ0 : Rd → [1,∞) be lower semicontinuous,
and suppose there exists c > 0 such that

sup
(t,a)∈[0,T ]×A

|F (t, x, y, q, a)| ≤ c(ψ0(x) + ψ0(y))

for all (x, y) ∈ Rd × Rd. Let ψ(x) = supt∈[0,T ] ψ0(xt) for x ∈ C. Then f satisfies the relevant parts

of assumptions (S.3), (S.4), (E), (F).
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Proof. Note that ψ : C → [1,∞) is lower-semicontinuous and thus measurable. Note also that the
function C 3 y 7→ F (t, x, yt, q, a) ∈ R is in Bψ(C) for each (t, x, q, a) ∈ [0, T ]× Rd × P(A)× A, and
thus f is indeed well defined for µ ∈ Pψ(C). Property (F.2) is obvious, and property (F.5) follows
from the inequality

|f(t, x, µ, q, a)| ≤ c
(
ψ0(xt) +

∫
C
ψ0(yt)µ(dy)

)
.

The measurability assumption (F.3) is easy to verify. Condition (E) will follow from (F.4), which
we prove now.

Fix (t, x) ∈ [0, T ]× C, and let E = P(A)× A. Let F0(y, η) := F (t, xt, y, η) for (y, η) ∈ Rd × E.
Fix (µ, η) ∈ Pψ(C)× E and a net (µα, ηα) converging to (µ, η). We also have µαt → µt in τψ0

(Rd).
Note that

f(t, x, µα, ηα)− f(t, x, µ, η) =

∫
Rd

(F0(y, ηα)− F0(y, η))µαt (dy) +

∫
Rd
F0(y, η)(µαt − µt)(dy)

The second term clearly tends to zero. For the first term, fix ε > 0. Since E is compact metric, the
function Rd 3 y 7→ F0(y, ·) ∈ C(E) is measurable, using the Borel σ-field generated by the supremum
norm on the space C(E) of continuous real-valued functions of E; see Theorem 4.55 of [2]. Thus,
by Lusin’s theorem (12.8 of [2]), there exists a compact set K ⊂ Rd such that

∫
Kc ψ0 dµt < ε and

K 3 y 7→ F0(y, ·) ∈ C(E) is continuous. Since |F0(y, η′)| ≤ c(ψ0(xt)+ψ0(y)) for all (y, η′) ∈ Rd×E,∣∣∣∣∫
Rd

(F0(y, ηα)− F0(y, η))µαt (dy)

∣∣∣∣ ≤ sup
y∈K
|F0(y, ηα)− F0(y, η)|+ 2c

∫
Kc

(ψ0(xt) + ψ0(y))µαt (dy).

It follows from the compactness of E and Lemma 5.8 below that the restriction of F0 to K × E is
uniformly continuous. Since K is compact, we use Lemma 5.8 again in the other direction to get
supy∈K |F0(y, ηα)− F0(y, η)| → 0. Since also

lim

∫
Kc

(ψ0(xt) + ψ0(y))µαt (dy) =

∫
Kc

(ψ0(xt) + ψ0(y))µt(dy) ≤ (1 + ψ0(xt))ε,

we have

lim sup

∣∣∣∣∫
Rd

(F0(y, ηα)− F0(y, η))µαt (dy)

∣∣∣∣ ≤ 2c(1 + ψ0(xt))ε.

�

Corollary 5.7. Let F and ψ0 be as in Proposition 5.6, and suppose

f(t, x, µ, q, a) = G

(
t, xt,

∫
Rd
F (t, xt, y, q, a)µt(dy), q, a

)
,

where G : [0, T ] × Rd × R × P(A) × A → R is jointly measurable and continuous in its last three
arguments. If also

|G(t, x, y, q, a)| ≤ c (ψ0(x) + |y|)
for some c > 0, then f satisfies the relevant parts of assumptions (S.3), (S.4), (E), (F).

We will occasionally need the following simple lemma, which was used in the proof of Proposition
5.6. It is probably known, but we include its proof for the sake of completeness.

Lemma 5.8. Let E and K be topological spaces with K compact, let G : E×K → R, and let x0 ∈ E
be fixed. Then G is jointly continuous at points of {x0} × K if and only if G(x0, ·) is continuous
and x 7→ supy∈K |G(x, y)−G(x0, y)| is continuous at x0.

Proof. We begin with the “only if” claim. Let ε > 0. For each y ∈ K, there exists a neighborhood
Uy × Vy ⊂ E × K of (x0, y) such that |G(x, y′) − G(x0, y)| < ε for all (x, y′) ∈ Uy × Vy. Since
{Vy : y ∈ K} cover K, there exist y1, . . . , yn such that

⋃n
i=1 Vyi = K. Let U =

⋂n
i=1 Uyi . Then, for
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any x ∈ U and y ∈ K, there exists i such that y ∈ Vyi , and thus |G(x, y)−G(x0, y)| < ε. To prove
the converse, simply note that

|G(x, y)−G(x0, y0)| ≤ sup
y′∈K

|G(x, y′)−G(x0, y
′)|+ |G(x0, y)−G(x0, y0)|.

�

5.4. Additional Examples. Corollary 5.7 allows us to treat many mean field interactions which
are not weakly continuous, as they may involve integrals of discontinuous functions. This is useful
in the following examples.

Example 5.9 (Rank effects). Suppose an agent’s reward depends on the rank of his state process
among the population. That is, suppose d = 1 and f(t, x, µ, q, a) involves a term of the form
G(µt(−∞, xt]), where G : [0, 1] → R is continuous. Such terms with G monotone are particularly
interesting for applications, as suggested for a model of oil production in [22]. The intuition is that
an oil producer prefers to produce before his competitors, in light of the uncertainty about the
longevity of the oil supply. The state process X represents oil reserves, and G should be decreasing
in their model. Proposition 5.6 shows that the inclusion of such terms as µt(−∞, xt] in f or g is
compatible with all of our assumptions. If b contains such rank effects, no problem is posed for
assumptions (S) and (E), but of course (F.1) is violated.

Example 5.10 (Types). In [25], Huang, Caines, and Malhamé consider multiple types of agents,
and a dependence on the mean field within each type. The number of types is fixed, and an agent
cannot change type during the course of the game. Using the construction of Remark 3.9, we may
model this by giving each agent a random but i.i.d. type at time zero. Alternatively, in some models
an agent’s type may change with his state (or with time, or with his strategy); for example, a person’s
income bracket depends on his wealth. Suppose, for example, that A1, A2, . . . , Am ⊂ Rd are Borel
sets of positive Lebesgue measure, and define Fi : P(Rd)→ P(Rd) by Fi(ν)(B) := ν(B ∩Ai)/ν(Ai)
when ν(Ai) > 0 and Fi(ν) = 0 otherwise. As long as σ is bounded away from zero, then Xt ∼ L
where L is again Lebesgue measure on Rd, and indeed Fi are τ1(Rd)-continuous at points µ ∼ Xt.
So we can treat functionals of the form

f(t, x, µ, q, a) = G(t, xt, F (µt), q, a),

where F = (F1, . . . , Fm), and G : [0, T ]× Rd × (P(Rd))m × P(A)×A→ R.

Example 5.11 (Monotone functionals of measures). Here we provide some examples of the mono-
tonicity assumption (3) of Theorem 3.7. For any of the following g, we have∫

C
[g(x, µ)− g(x, ν)] (µ− ν)(dx) ≤ 0.

• g(x, µ) = φ(x) for some φ : C → R.
• g(x, µ) = φ(µ) for some φ : Pψ(C)→ R.

• g(x, µ) =
∣∣φ(x)−

∫
C φ(y)µ(dy)

∣∣2 for some φ : C → R. If, for example, φ(x) = x, then this
payoff function rewards a player if his state process deviates from the average.
• g(x, µ) = −

∫
Rd φ(|x − y|)µT (dy), where φ : [0,∞) → [0,∞) is bounded, continuous, and

positive definite. A special case is when φ is bounded, nonincreasing, and convex; see
Proposition 2.6 of [20].

Example 5.12 (Geometric Brownian motion). Requiring σ−1b to be bounded rather than σ−1 and
b each to be bounded notably allows for state processes of a geometric Brownian motion type. For
example, if d = 1, our assumptions allow for coefficients of the form

b(t, x, µ, a) = b̂(t, µ, a)xt,

σ(t, x) = σ̂(t)xt,

where σ̂(t) > 0 for all t and σ̂−1b̂ is bounded.
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Remark 5.13. We close the section with a remark on the assumption of boundedness of σ−1b,
which could certainly be relaxed. The reason for this assumption lies in the BSDE (11) for the
value function; boundedness of σ−1b equates to a standard Lipschitz driver, as covered in [36]. The
results of Hamadene and Lepeltier in [23] may be applied if b and σ have linear growth in x and
σ is bounded below, but this increases the technicalities and rules out a direct application of the
results of [24]. However, we only really need [24] in order to treat mean field interactions in the
control, and thus our analysis should still work under appropriate linear growth assumptions. Our
assumptions of boundedness of σ−1b and compactness of A unfortunately rule out common linear-
quadratic models, but, nonetheless, the same general techniques could be used to study a large
class of linear-quadratic problems (still, of course, with uncontrolled volatility) in which both these
assumptions fail. More care is required in the choice of admissible controls, and the BSDE for the
value function becomes quadratic in z; this program was carried out for stochastic optimal control
problems in [18], and could presumably be adapted to mean field games.

6. Proofs of Theorems 3.4 and 3.7

This section is devoted to the proofs of the existence and uniqueness theorems regarding the
mean field game. Throughout the section, we work with the canonical probability space described
in the second paragraph of Section 3. Since BSDEs will be used repeatedly, it is important to note
that the classical existence, uniqueness, and comparison results for BSDEs do indeed hold in our
setting, despite the fact that F is not the Brownian filtration. The purpose of working with the
Brownian filtration is of course for martingale representation, which we still have with our slightly
larger filtration: It follows from Theorem 4.33 of [28], for example, that every square integrable F-

martingale (Mt)0≤t≤T admits the representation Mt = M0 +
∫ t

0
φsdWs for some φ ∈ H2,d. However,

note that in our case the initial value Y0 of the solution of a BSDE is random, since F0 is not trivial.

To find a fixed point for the law of the control, we will make use of the spaceM of positive Borel
measures ν on [0, T ]× P(A) (using the weak topology on P(A)) whose first projection is Lebesgue
measure; that is, ν([s, t] × P(A)) = t − s for 0 ≤ s ≤ t ≤ T . Endow M with the weakest topology
making the map ν 7→

∫
φdν continuous for each bounded measurable function φ : [0, T ]×P(A)→ R

for which φ(t, ·) is continuous for each t. This is known as the stable topology, which was studied
thoroughly by Jacod and Mémin in [27]. In particular, since A is a compact metrizable space, so is
P(A), and thus so is M. Note that a measure ν ∈M disintegrates into ν(dt, dq) = νt(dq)dt, where
the measurable map [0, T ] 3 t 7→ νt ∈ P(P(A)) is uniquely determined up to almost everywhere
equality. For any bounded measurable function F : P(A) → Rk, we extend F to P(P(A)) in the
natural way by defining

F (ν) :=

∫
P(A)

ν(dq)F (q).

In this way, F (δq) = F (q) for q ∈ P(A).

Remark 6.1. Because of condition (S.5), the aforementioned convention will not lead to any con-
fusion regarding the meaning of H(t, x, µ, ν, z), for ν ∈ P(P(A)). In particular, it is consistent with
the relationship H(t, x, µ, ν, a) := supa∈A h(t, x, µ, ν, z, a), since the only dependence of h on ν is
outside of the supremum.

For each (µ, ν) ∈ Pψ(C) × M, we now construct the corresponding control problem. The
standing assumptions (S) are in force throughout, and the following construction is valid with-
out any of the other assumptions. Recall the definitions of h and H from (9) in Section 3. That
(t, x, z) 7→ H(t, x, µ, νt, z) is jointly measurable for each (µ, ν) follows, for example, from the measur-
able maximum Theorem 18.19 of [2]. Boundedness of σ−1b guarantees that H is uniformly Lipschitz
in z. Since µ ∈ Pψ(C), it follows from assumptions (S.2) and (S.4) that g(X,µ) ∈ L2(P ) and that
(H(t,X, µ, νt, 0))0≤t≤T = (supa f(t,X, µ, νt, a))0≤t≤T ∈ H2,1. Hence the classical result of Pardoux
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and Peng [36] (or rather a slight extension thereof, as remarked above) applies, and there exists a
unique solution (Y µ,ν , Zµ,ν) ∈ H2,1 ×H2,d of the BSDE

Y µ,νt = g(X,µ) +

∫ T

t

H(s,X, µ, νs, Z
µ,ν
s )ds−

∫ T

t

Zµ,νs dWs. (11)

For each α ∈ A, we may similarly solve the BSDE

Y µ,ν,αt = g(X,µ) +

∫ T

t

h(s,X, µ, νs, Z
µ,ν,α
s , αs)ds−

∫ T

t

Zµ,ν,αs dWs

= g(X,µ) +

∫ T

t

f(s,X, µ, νs, αs)ds−
∫ T

t

Zµ,ν,αs dWµ,α
s .

Since Wµ,α is a Wiener process under Pµ,α and Y µ,α is adapted, we get

Y µ,ν,αt = Eµ,α
[
g(X,µ) +

∫ T

t

f(s,X, µ, νs, αs)ds

∣∣∣∣∣Ft
]
.

In particular, E[Y µ,ν,α0 ] = Jµ,ν(α).

It is immediate from the comparison principle for BSDEs (e.g. Theorem 2.2 of [30]) that
E[Y µ,ν0 ] ≥ E[Y µ,ν,α0 ] = Jµ,ν(α) for each α ∈ A, and thus E[Y µ,ν0 ] ≥ V µ,ν . By a well-known
measurable selection theorem (e.g. Theorem 18.19 of [2]), there exists a function α̂ : [0, T ] × C ×
Pψ(C)× Rd → A such that

α̂(t, x, µ, z) ∈ A(t, x, µ, z), for all (t, x, µ, z), (12)

and such that for each µ the map (t, x, z) 7→ α̂(t, x, µ, z) is jointly measurable with respect to the
progressive σ-field on [0, T ]× C and B(Rd). Letting

αµ,νt := α̂(t,X, µ, Zµ,νt ), (13)

the uniqueness of solutions of BSDEs implies Y µ,νt = Y µ,ν,α
µ,ν

t , which in turn implies V µ,ν =
Jµ,ν(αµ,ν) since Jµ,ν(αµ,ν) ≤ V µ,ν .

The process αµ,ν is an optimal control, but so is any process in the set

A(µ, ν) := {α ∈ A : αt ∈ A(t,X, µ, Zµ,νt ) dt× dP − a.e.} . (14)

Define Φ : Pψ(C)× A→ P(C)×M by

Φ(µ, α) := (Pµ,α ◦X−1, δPµ,α◦α−1
t

(dq)dt)

The goal now is to find a point (µ, ν) ∈ Pψ(C) × M for which there exists α ∈ A(µ, ν) such
that (µ, ν) = Φ(µ, α). In other words, we seek a fixed point of the set-valued map (µ, ν) 7→
Φ(µ,A(µ, ν)) := {Φ(µ, α) : α ∈ A(µ, ν)}. Note that under condition (U), αµ,ν is the unique element
of A(µ, ν) (up to almost everywhere equality), and this reduces to a fixed point problem for a
single-valued function.

Remark 6.2. It is worth emphasizing that the preceding argument demonstrates that the set
A(µ, ν) is always nonempty, under only the standing assumptions (S).

Remark 6.3. The main difficulty in the analysis is the adjoint process Zµ,ν . Note that for each
(µ, ν) there exists a progressively measurable function ζµ,ν : [0, T ] × C → Rd such that Zµ,νt =
ζµ,ν(t,X). If we choose a measurable selection α̂ as in (12), any weak solution of the following
McKean-Vlasov SDE provides a solution of the MFG:{

dXt = b(t,X, µ, α̂(t,X, µ, ζµ,ν(t,X)))dt+ σ(t,X)dWt,

X ∼ µ, µ ◦ (α̂(t, ·, µ, ζµ,ν(t, ·)))−1 = νt a.e.

The notation X ∼ µ means that µ should equal the law of X. This map ζµ,ν is typically quite
inaccessible, which is why we do not appeal to any existing results on McKean-Vlasov equations,
even when ν is not present. All such results require some kind of continuity of the map (x, µ) 7→
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b(t, x, µ, α̂(t, x, µ, ζµ,ν(t, x))), as far as the authors know. It is possible to make assumptions on the
data which would guarantee, for example, that ζµ,ν(t, ·) is continuous, but continuous dependence
on µ would be a much trickier matter.

6.1. Some results of set-valued analysis. We precede the main proofs with some useful lemmas.
Without assumption (U), the optimal controls need not be unique, and thus we will need a fixed
point theorem for set-valued maps. We first summarize some terminology from set-valued analysis.

For a point y in a metric space (E, d) and δ > 0, let B(y, δ) denote the open ball of radius δ
centered at y. Similarly, for F ⊂ E, let B(F, δ) = {x ∈ E : infy∈F d(x, y) < δ}. For two subsets
F,G of E, we (abusively) define

d(F,G) := sup
y∈G

d(F, y) = sup
y∈G

inf
x∈F

d(x, y).

Note that d is not symmetric. If K is another metric space, a set-valued function Γ : K → 2E is
said to be upper hemicontinuous at x ∈ K if for all ε > 0 there exists δ > 0 such that Γ(B(x, δ)) ⊂
B(Γ(x), ε). It is straightforward to prove that Γ is upper hemicontinuous at x ∈ K if and only if
d(Γ(x),Γ(xn))→ 0 for every sequence xn converging to x.

In order to relax somewhat the convexity assumption of Kakutani’s fixed point theorem, we
adapt results of Cellina in [13] to derive a slight generalization of Kakutani’s theorem, which will
assist in the proof of Theorem 3.4.

Proposition 6.4. Let K be a compact convex metrizable subset of a locally convex topological vector
space, and let E be a normed vector space. Suppose Γ : K → 2E is upper hemicontinuous and has
closed and convex values, and suppose φ : K ×E → K is continuous. Then there exists x ∈ K such
that x ∈ φ(x,Γ(x)) := {φ(x, y) : y ∈ Γ(x)}.

Proof. Let Gr(Γ) := {(x, y) ∈ K × E : y ∈ Γ(x)} denote the graph of Γ. By Cellina’s result
(Theorem 1 of [13]), for each positive integer n we may find a continuous (singe-valued) function
γn : K → E such that the graph of γn is contained in the 1/n neighborhood of Gr(Γ). That is, for
all x ∈ K,

d((x, γn(x)), Gr(Γ)) := inf {d ((x, γn(x)), (y, z)) : y ∈ K, z ∈ Γ(y)} < 1/n,

where d denotes some metric on K × E. Since K 3 x 7→ φ(x, γn(x)) ∈ K is continuous, Schauder’s
fixed point theorem implies that there exists xn ∈ K such that xn = φ(xn, γn(xn)). By Lemma
17.8 and Theorem 17.10 of [2], Γ(K) :=

⋃
x∈K Γ(x) ⊂ X is compact and Gr(Γ) is closed. Thus

Gr(Γ) ⊂ K × Γ(K) is compact. Since d((xn, γn(x)), Gr(Γ))→ 0 and Gr(Γ) is compact, there exist
a subsequence xnk and a point (x, y) ∈ Gr(Γ) such that (xnk , γnk(xnk)) → (x, y). This completes
the proof, since y ∈ Γ(x) and since continuity of φ yields

x = limxnk = limφ(xnk , γnk(xnk)) = φ(x, y).

�

A special case of Berge’s maximum theorem (17.31 of [2]) will be useful:

Theorem 6.5 (Berge’s Theorem). Let E be a metric space, K a compact metric space, and φ :
E ×K → R a continuous function. Then γ(x) := maxy∈K φ(x, y) is continuous, and the following
set-valued function is upper hemicontinuous and compact-valued:

E 3 x 7→ arg max
y∈K

φ(x, y) := {y ∈ K : γ(x) = φ(x, y)} ∈ 2K
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6.2. Proof of Theorem 3.4 (existence). We now turn toward the proof of Theorem 3.4. In
what follows, we always use the topology τψ(C) on Pψ(C), except when stated otherwise. Despite
its simplicity, we state the following result as a lemma for later references.

Lemma 6.6. Let (E, E) and (F,F) be measurable spaces, and let µ, ν ∈ P(E) with ν � µ. If
X : E → F is measurable, then

dν ◦X−1

dµ ◦X−1
◦X = Eµ

[
dν

dµ

∣∣∣∣X] µ− a.s.

Lemma 6.7. For any q ∈ R with |q| ≥ 1, we have (recall that X := P ◦X−1)

Mq := sup
(µ,α)∈Pψ(C)×A

∫
(dΦ(µ, α)/dX )

q
dX <∞. (15)

Proof. Recall that σ−1b is bounded, say by c > 0. Fix (µ, α) ∈ Pψ(C) × A. Letting Nt :=∫ t
0
σ−1b(t,X, µ, αt)dWt, we see that [N,N ]T ≤ Tc2, and thus, since q(q − 1) ≥ 0,

E(N)qT = E(qN)T exp (q(q − 1)[N,N ]T /2) ≤ E(qN)T exp
(
q(q − 1)Tc2/2

)
.

Hence, Lemma 6.6 and Jensen’s inequality yield∫
(dΦ(µ, α)/dX )

q
dX = E [E [dPµ,α/dP |X]

q
] ≤ E [(dPµ,α/dP )q] ≤ exp

(
q(q − 1)Tc2/2

)
.

Since this bound is independent of (µ, α), we indeed have Mq <∞. �

In terms of the notation from Lemma 6.7, let M := max(M2,M−1). Let

Q :=

{
µ ∈ Pψ(C) : µ ∼ X ,

∫
(dµ/dX )2dX ≤M,

∫
(dX/dµ)dX ≤M

}
. (16)

By construction, the range of Φ is contained in Q×M. Critical to our fixed point theorem is the
following compactness result, which probably exists in various forms elsewhere in the literature.
Part of the result may be found, for example, in Lemma 6.2.16 of [16]. But, for lack of a concise
reference, and to keep the paper fairly self-contained, we include a complete proof of the following:

Proposition 6.8. The space (Q, τψ(C)) is convex, compact, and metrizable. Moreover, τ1(C) and
τψ(C) induce the same topology on Q.

Proof. Of course, by τ1(C) we mean τφ(C) with φ ≡ 1. Define

Q1 =

{
µ ∈ P(C) : µ� X ,

∫
(dµ/dX )2dX ≤M

}
,

Q2 =

{
µ ∈ P(C) : µ ∼ X ,

∫
(dX/dµ)dX ≤M

}
.

Cleary each set is convex. We will show that Q1 is compact and metrizable under τ1(C), that Q2 is
τ1(C)-closed, and that τ1(C) and τψ(C) induce the same topology on Q1.

Let q ∈ R with |q| ≥ 1. The set Kq := {Z ∈ L1(X ) : Z ≥ 0 X − a.s.,
∫
|Z|qdX ≤ M} is

clearly convex. It is also norm-closed: if Zn → Z in L1(X ) with Zn ∈ Kq, then Zn → Z X -a.s.
along a subsequence, and thus Fatou’s lemma yields

∫
|Z|qdX ≤ lim inf

∫
|Zn|qdX ≤ M . Hence,

Kq is weakly closed (see Theorem 5.98 of [2]). For q > 1, the set Kq is uniformly integrable and
thus weakly compact, by the Dunford-Pettis theorem; moreover, Kq is metrizable, since it is a
weakly compact subset of separable Banach space (Theorem V.6.3 of [17]). Now, for µ� X , define
F (µ) := dµ/dX . Then F is a homeomorphism from (Q2, τ1(C)) to K−1 equipped with the weak
topology of L1(X ), and so Q2 is τ1(C)-closed. Simiarly, F is a homeomorphism from (Q1, τ1(C)) to
K2 with the weak topology, and so (Q1, τ1(C)) is compact and metrizable.
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It remains to prove that τ1(C) and τψ(C) coincide onQ1. Let φ ∈ Bψ(C) with |φ| ≤ ψ, µ ∈ Pψ(C),
and ε > 0, and define U = {ν ∈ Pψ(C) : |

∫
φd(ν − µ)| < ε}. Since τψ(C) is stronger than τ1(C), it

suffices to find a τ1(C)-neighborhood V of µ with V ∩ Q1 ⊂ U ∩ Q1. First, note that for any c > 0
and ν ∈ Q1, the Cauchy-Schwarz inequality yields(∫

{ψ≥c}
ψ dν

)2

≤
∫ (

dν

dX

)2

dX
∫
{ψ≥c}

ψ2dX ≤M
∫
{ψ≥c}

ψ2dX .

Since
∫
ψ2dX < ∞ by (S.2), we may find c > 0 such that

∫
{ψ≥c} ψ dν ≤ ε/3 for all ν ∈ Q1. Then,

for any ν ∈ Q1,∣∣∣∣∫ φd(ν − µ)

∣∣∣∣ ≤
∣∣∣∣∣
∫
{ψ<c}

φd(ν − µ)

∣∣∣∣∣+

∣∣∣∣∣
∫
{ψ≥c}

φdν

∣∣∣∣∣+

∣∣∣∣∣
∫
{ψ≥c}

φdµ

∣∣∣∣∣ ≤ 2ε

3
+

∣∣∣∣∣
∫
{ψ<c}

φd(ν − µ)

∣∣∣∣∣ .
Set V = {ν ∈ P(C) : |

∫
{ψ<c} φd(ν − µ)| < ε/3}, so that V ∩ Q1 ⊂ U ∩ Q1. Since |φ| ≤ ψ, we have

φ1{ψ<c} ∈ B1(C), and thus V ∈ τ1(C). �

The next two lemmas pertain to the Zµ,ν terms that arise in the BSDE representations above;
in particular, a kind of continuity of the map (µ, ν) 7→ Zµ,ν is needed.

Lemma 6.9. Suppose assumption (E) holds. Then for each (t, x) ∈ [0, T ] × C, the function Q ×
P(A)×Rd 3 (µ, q, z) 7→ H(t, x, µ, q, z) is continuous, and the set-valued function Q×Rd 3 (µ, z) 7→
A(t, x, µ, z) is upper hemicontinuous.

Proof. Since Q is metrizable by Lemma 6.8, this is simply a combination of assumption (E) with
Theorem 6.5, using E = Q×P(A)× Rd and K = A. Recall from (S.1) that A is compact. �

Lemma 6.10. Suppose assumption (E) holds. Suppose (µn, νn) → (µ, ν) in Q ×M, using τψ(C)
on Q. Then

lim
n→∞

E

[∫ T

0

∣∣∣Zµn,νnt − Zµ,νt

∣∣∣2 dt] = 0.

Proof. Note that the functions H(s, x, µ′, ν′, ·) have the same Lipschitz constant for each (t, x, µ′, ν′),
coinciding with the uniform bound for σ−1b. Assumption (S.4) implies

E

[∫ T

0

|H(t,X, µn, νnt , 0)|2dt

]
= E

[∫ T

0

sup
a∈A
|f(t,X, µ′, ν′t, a)|2dt

]

≤ 2c2TE[ψ2(X)] + 2c2Tρ2

(∫
ψ dµn

)
for all 1 ≤ n ≤ ∞, where (µ∞, ν∞) := (µ, ν). Since µn ∈ Pψ(C) and µn → µ in τψ(C) it follows that
supn

∫
ψ dµn <∞. Since ρ is increasing and nonnegative,

sup
n
ρ2

(∫
ψ dµn

)
= ρ2

(
sup
n

∫
ψ dµn

)
<∞. (17)

Assumption (S.2) yields E[ψ2(X)] <∞. Hence, we will be able to conclude via a convergence result
for BSDEs proven by Hu and Peng in [24], as soon as we show that

In := E
[
|g(X,µn)− g(X,µ)|2

]
→ 0,

and

IIn := E

(∫ T

t

(H(s,X, µ, νs, Z
µ,ν
s )−H(s,X, µn, νns , Z

µ,ν
s ))ds

)2
→ 0,

for all t ∈ [0, T ].
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We first check that the integrands of In and IIn are uniformly integrable. Assumption (S.4)
gives

|g(X,µn)− g(X,µ)| ≤ c
(

2ψ(X) + ρ

(∫
ψ dµ

)
+ ρ

(∫
ψ dµn

))
,

which is indeed square integrable in light of (S.2) and (17). Note that

|H(t,X, µ, νt, Z
µ,ν
t )−H(t,X, µn, νnt , Z

µ,ν
t )| ≤ sup

a∈A

∣∣f(t,X, µ, νt, a) + Zµ,νt · σ−1b(t,X, µ, a)

−f(t,X, µn, νnt , a)− Zµ,νt · σ−1b(t,X, µn, a)
∣∣

≤
∣∣∣∆f,n

t

∣∣∣+ |Zµ,νt ||∆
b,n
t |. (18)

where

∆f,n
t := sup

a∈A
|f(t,X, µ, νt, a)− f(t,X, µn, νnt , a)| , and

∆b,n
t := sup

a∈A

∣∣σ−1b(t,X, µ, a)− σ−1b(t,X, µn, a)
∣∣ .

Again, (S.4) lets us bound |∆f,n| by the same term with which we bounded |g(X,µn) − g(X,µ)|.
Since Zµ,ν ∈ H2,1 and |∆b,n| is bounded, the integrands are indeed uniformly integrable.

It is clear now that In → 0, because of assumption (E) and the dominated convergence theorem.
Rewrite IIn as

IIn = E

∣∣∣∣∣
∫ T

t

ds

(∫
P(A)

νs(dq)H(s,X, µ, q, Zµ,νs )−
∫
P(A)

νns (dq)H(s,X, µn, q, Zµ,νs )

)∣∣∣∣∣
2
 .

For fixed s and ω, the function Q× P(A) 3 (µ′, q) 7→ H(s,X, µ′, q, Zµ,νs ) is continuous, by Lemma
6.9. Compactness of P(A) implies that the function Q 3 µ′ 7→ H(s,X, µ′, q, Zµ,νs ) is continuous,
uniformly in q (see Lemma 5.8). Thus∫

P(A)

νns (dq)H(s,X, µn, q, Zµ,νs )−
∫
P(A)

νns (dq)H(s,X, µ, q, Zµ,νs )→ 0.

By definition of the stable topology of M, we also have∫ T

t

ds

∫
P(A)

νns (dq)H(s,X, µ, q, Zµ,νs )→
∫ T

t

ds

∫
P(A)

νs(dq)H(s,X, µ, q, Zµ,νs ).

It is now clear that IIn → 0, and the proof is complete. �

The last ingredient of the proof is to establish the applicability of Proposition 6.4. Note that A
is a compact subset of a normed space, say (A′, ‖ ·‖A), and thus A may also be viewed as a subset of
the normed space of (equivalence classes of dt× dP -a.e. equal) progressively measurable A′-valued
processes, with the norm

‖α‖A := E
∫ T

0

‖αt‖Adt.

Lemma 6.11. Under assumptions (E) and (C), the function A : Q ×M → 2A defined by (14) is
upper hemicontinuous and has closed and convex values.

Proof. Convexity follows immediately from assumption (C). We first show A(·) has closed values.
Let L denote Lebesgue measure on [0, T ]. Note that ‖ · ‖A is bounded on A, and thus ‖ · ‖A
metrizes convergence in L×P -measure. To prove closedness, fix a sequence αn ∈ A(µ, ν) such that
‖αn − α‖A → 0 for some α ∈ A. By passing to a subsequence, we may assume αnt (ω) → αt(ω)
for all (t, ω) ∈ N , for some N ⊂ [0, T ] × Ω with L × P (N) = 1. We may assume also that
αnt (ω) ∈ A(t,X(ω), µ, Zµ,νt (ω)) for all n and (t, ω) ∈ N . By Theorem 6.5, for each (t, ω) the set
A(t,X(ω), µ, Zµ,νt (ω)) ⊂ A is compact, and thus αt(ω) ∈ A(t,X(ω), µ, Zµ,νt (ω)) for all (t, ω) ∈ N .
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To prove upper hemicontinuity, let (µn, νn)→ (µ, ν) in Q×M. We must show that

d(A(µ, ν),A(µn, νn)) = sup
αn∈A(µn,νn)

inf
α∈A(µ,ν)

E
∫ T

0

‖αnt − αt‖Adt→ 0.

Define

cnt (ω) := d
(
A(t,X(ω), µ, Zµ,νt (ω)), A(t,X(ω), µn, Zµ

n,νn

t (ω))
)

= sup
{

inf {‖a− b‖A : b ∈ A(t,X(ω), µ, Zµ,νt (ω))} : a ∈ A(t,X(ω), µn, Zµ
n,νn

t (ω))
}
.

Lemma 6.10 implies that Zµ
n,νn → Zµ,ν in L×P -measure; it follows then from upper hemicontinuity

of A(t, x, ·, ·) (Lemma 6.9) that cn → 0 in L × P -measure as well. Since of course cn is bounded,
the proof will be complete once we establish

sup
αn∈A(µn,νn)

inf
α∈A(µ,ν)

E
∫ T

0

‖αnt − αt‖Adt = E
∫ T

0

cnt dt.

To prove that we can pass the infimum and supremum inside of the integrals, we first use
Theorem 18.19 of [2] to draw a number of conclusions. First, the map (t, ω) 7→ A(t,X(ω), µ, Zµ,νt (ω))
is measurable, in the sense of Definition 18.1 of [2], and thus also weakly measurable since it is

compact-valued (see Lemma 18.2 of [2]). Second, there exists a measurable function β̂ : [0, T ]×Ω×
A→ A such that

‖a− β̂(t, ω, a)‖A = inf {‖a− b‖A : b ∈ A(t,X(ω), µ, Zµ,νt (ω))} ,

β̂(t, ω, a) ∈ A(t,X(ω), µ, Zµ,νt (ω)).

Note that for any αn ∈ A, the process β̂(t, ω, αnt (ω)) is in A(µ, ν). Hence, we may exchange the
infimum and the expectation to get

inf
α∈A(µ,ν)

E
∫ T

0

‖αnt − αt‖Adt = E
∫ T

0

inf {‖αnt − b‖A : b ∈ A(t,X(ω), µ, Zµ,νt (ω))} dt,

It follows from Theorem 6.5 that a 7→ inf {‖a− b‖A : b ∈ A(t,X(ω), µ, Zµ,νt (ω))} is continuous for
each (t, ω). Hence, Theorem 18.19 of [2] also tells us that there exists a measurable selection

β̂n : [0, T ]× Ω→ A such that

cnt (ω) = inf
{
‖β̂n(t, ω)− b‖A : b ∈ A(t,X(ω), µ, Zµ,νt (ω))

}
,

β̂n(t, ω) ∈ A(t,X(ω), µn, Zµ
n,νn

t (ω)).

The process β̂n(t, ω) is in A(µn, νn), and so we exchange the supremum and the expectation to get

sup
αn∈A(µn,νn)

E
∫ T

0

inf {‖αnt − b‖A : b ∈ A(t,X(ω), µ, Zµ,νt (ω))} dt = E
∫ T

0

cnt dt.

�

Proof of Theorem 3.4. The proof of Theorem 3.4 is an application of Proposition 6.4, with K = Q×
M and E = A. Let S denote the vector space of bounded measurable functions φ : [0, T ]×P(A)→ R
such that φ(t, ·) is continuous for each t. Endow S with the supremum norm, and let S∗ denote its
continuous dual space. Note that M⊂ S∗. Let Y := Bψ(C)⊕ S, endowed with the norm

‖(φ, η)‖Y := sup
x∈C

|φ(x)|
ψ(x)

+ sup
(t,q)∈[0,T ]×P(A)

|η(t, q)|.

The dual of Y is Y∗ = B∗ψ(C)⊕S∗, which contains Q×M as a subset. Using τψ(C) on Q, the product

topology ofQ×M coincides with the topology induced by the weak*-topology of Y∗. By Lemma 6.7,
the function Φ takes values in Q×M, noting that Q×M is convex and compact by Lemma 6.8. Let
τM denote the topology of M. To prove that Φ : (Q, τψ(C)) × (A, ‖ · ‖A) → (Q, τψ(C)) × (M, τM)
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is continuous, Lemma 6.8 tells us that it suffices to show that Φ : (Q, τψ(C)) × (A, ‖ · ‖A) →
(Q, τ1(C))× (M, τM) is sequentially continuous. We will instead prove the stronger statement that
Φ : (Q, τψ(C)) × (A, ‖ · ‖A) → (Q,V1) × (M, τM) is sequentially continuous, where V1 denotes the
total variation metric,

V1(µ, ν) := sup

∫
φd(µ− ν),

where the supremum is over measurable real-valued functions φ with |φ| ≤ 1. Denote by H(ν|µ) the
relative entropy,

H(ν|µ) =

{∫
log dν

dµdν if ν � µ

+∞ otherwise.

Now let (µn, αn) → (µ, α) in (Q, τψ(C)) × (A, ‖ · ‖A). We first show that Pµ
n,αn → Pµ,α. By

Pinsker’s inequality, it suffices to show H(Pµ,α|Pµn,αn))→ 0. Since

dPµ
n,αn

dPµ,α
= E

(∫ ·
0

(
σ−1b (t,X, µn, αnt )− σ−1b (t,X, µ, αt)

)
dWµ,α

t

)
T

,

and since σ−1b is bounded, we compute

H(Pµ,α|Pµ
n,αn) = −Eµ,α

[
log

dPµ
n,αn

dPµ,α

]
=

1

2
Eµ,α

[∫ T

0

∣∣σ−1b (t,X, µn, αnt )− σ−1b (t,X, µ, αt)
∣∣2 dt] .

Since Pµ,α ∼ P and αn → α in L × P -measure, it follows from Lemma 6.10 that Zµ
n,νn → Zµ,ν

in L × Pµ,α-measure, where L denotes Lebesgue measure on [0, T ]. By assumption (E), the map
σ−1b(t, x, ·, ·) is continuous for each (t, x). Conclude from the bounded convergence theorem that
Pµ

n,αn → Pµ,α in total variation. It follows immediately that Pµ
n,αn ◦X−1 → Pµ,α ◦X−1 in total

variation, and that

V1

(
Pµ

n,αn ◦ (αnt )−1, Pµ,α ◦ (αnt )−1
)
≤ V1

(
Pµ

n,αn , Pµ,α
)
→ 0.

Moreover, Pµ,α ◦ (αnt )−1 → Pµ,α ◦ α−1
t in L-measure, since αn → α in L × P -measure. Thus

Pµ
n,αn ◦ (αnt )−1 → Pµ,α ◦ α−1

t in L-measure, which finally implies

δPµn,αn◦(αnt )−1(dq)dt→ δPµ,α◦α−1
t

(dq)dt, in M.

With continuity of Φ established, Φ and A(·) verify the assumptions of Proposition 6.4, and
thus there exists a fixed point (µ, ν) ∈ Φ(µ,A(µ, ν)) = {Φ(µ, α) : α ∈ A(µ, ν)}. It remains to notice
that the function Φ takes values in Q×M0, where

M0 :=
{
ν ∈M : ν(dt, dq) = δq̂(t)(dq)dt for some measurable map q̂ : [0, T ]→ P(A)

}
.

For an element in M0, the correponding map q̂ is uniquely determined, up to almost everywhere
equality. Hence, for our fixed point (µ, ν), we know that there exist α ∈ A(µ, ν) and a measurable
function q̂ : [0, T ]→ P(A) such that νt = δq̂(t) and q̂(t) = Pµ,α ◦ α−1

t for almost every t. �

Remark 6.12. Assume for the moment that there is no mean field interaction in the control.
Following the notation of Remark 6.3, we may ask if the SDE

dXt = b(t,X, µ, α̂(t,X, µ, ζµ(t,X)))dt+ σ(t,X)dWt,

admits a strong solution, with µ equal to the law of X. This would allow us to solve the mean
field game in a strong sense, on a given probability space, as is required in [11] and [6]. Since
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ζµ(t,X) = Zµt , this forward SDE is coupled with the backward SDE:
dXt = b(t,X, µ, α̂(t,X, µ, Zt))dt+ σ(t,X)dWt,

dYt = −H(t,X, µ, Zt)dt+ ZtdWt,

µ0 = λ0, X ∼ µ, YT = g(X,µ).

To solve the mean field game in a strong sense, one must therefore resolve this “mean field FBSDE”,
studied in some generality in [9]. The solution must consist of (X,Y, Z, µ), such that (X,Y, Z) are
processes adapted to the filtration generated by (Wt, X0)t∈[0,T ] and satisfying the above SDEs, and
such that the law of X is µ. Our formulation is a relaxation of the more common formulation (e.g.
[11] and [6]) in that the forward SDEs no longer need to be solved in a strong sense. Note, however,
that the FBSDE written here is of a different nature from those of [11, 6], which were obtained
from the maximum principle. Our FBSDE is more like a stochastic form of the PDE systems of
Lasry and Lions; indeed, in the Markovian case, the Feynman-Kac formula for the backward part
is nothing but the HJB equation.

6.3. Proof of Theorem 3.7 (uniqueness).

Proof of Theorem 3.7. Recall that A(µ, ν) is always nonempty, as in Remark 6.2. By condition
(U.1), we know A(µ, ν) is a singleton for each (µ, ν) ∈ Pψ(C) ×M. Its unique element αµ,ν is
defined given by

αµ,νt = α̂(t,X,Zµ,νt ),

where the function α̂ is defined as in (12); note that assumptions (U.2) and (U.3) imply that
α̂ = α̂(t, x, z) does not depend on µ or ν. Suppose now that (µ1, ν1), (µ2, ν2) ∈ Pψ(C) ×M are
two solutions of the MFG; that is, they are fixed points of the (single-valued) function Φ(·,A(·)).
Abbreviate Y i = Y µ

i,νi , Zi = Zµ
i,νi , αi = αµ

i,νi , f it := f(t,X, µi, νit , α
i
t) and bit := σ−1b(t,X, αit).

We begin by rewriting the BSDEs (11) in two ways:

d(Y 1
t − Y 2

t ) = −
[
f1
t − f2

t + Z1
t · b1t − Z2

t · b2t
]
dt+ (Z1

t − Z2
t )dWt

= −
[
f1
t − f2

t + Z2
t ·
(
b1t − b2t

)]
dt+ (Z1

t − Z2
t )dWµ1,α1

t

= −
[
f1
t − f2

t + Z1
t ·
(
b1t − b2t

)]
dt+ (Z1

t − Z2
t )dWµ2,α2

t ,

with Y 1
T − Y 2

T = g(X,µ1)− g(X,µ2). Recall that Pµ,α agrees with P on F0 for each µ ∈ Pψ(C) and
α ∈ A. In particular,

Eµ
1,α1 [

Y 1
0 − Y 2

0

]
= E

[
Y 1

0 − Y 2
0

]
= Eµ

2,α2 [
Y 1

0 − Y 2
0

]
.

Thus

E
[
Y 1

0 − Y 2
0

]
= Eµ

1,α1

[
g(X,µ1)− g(X,µ2) +

∫ T

0

(
f1
t − f2

t + Z2
t ·
(
b1t − b2t

))
dt

]
(19)

= Eµ
2,α2

[
g(X,µ1)− g(X,µ2) +

∫ T

0

(
f1
t − f2

t + Z1
t ·
(
b1t − b2t

))
dt

]
. (20)

Since the optimal control maximizes the Hamiltonian,

f1
t + Z2

t · b1t = h(t,X, µ1, ν1
t , Z

2
t , α

1
t ) ≤ H(t,X, µ1, ν1

t , Z
2
t )

= f1(t,X, µ1) + f2(t, µ1, ν1
t ) + f3(t,X, α2

t ) + Z2
t · b2t ,

and thus, since f2
t = f1(t,X, µ2) + f2(t, µ2, ν2

t ) + f3(t,X, α2
t ),

f1
t − f2

t + Z2
t ·
(
b1t − b2t

)
≤ f1(t,X, µ1)− f1(t,X, µ2) + f2(t, µ1, ν1

t )− f2(t, µ2, ν2
t ). (21)

By switching the place of the indices, the same argument yields

f1
t − f2

t + Z1
t ·
(
b1t − b2t

)
≥ f1(t,X, µ1)− f1(t,X, µ2) + f2(t, µ1, ν1

t )− f2(t, µ2, ν2
t ). (22)
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Since f2(t, µi, νit) are deterministic, applying inequality (21) to (19) and (22) to (20) yields

0 ≤
[
Eµ

1,α1

− Eµ
2,α2

] [
g(X,µ1)− g(X,µ2) +

∫ T

0

(
f1(t,X, µ1)− f1(t,X, µ2)

)
dt

]
.

Hypothesis (U.4) implies that the right side is at most zero, so in fact

0 =
[
Eµ

1,α1

− Eµ
2,α2

] [
g(X,µ1)− g(X,µ2) +

∫ T

0

(
f1(t,X, µ1)− f1(t,X, µ2)

)
dt

]
. (23)

Suppose α1 6= α2 holds on a (t, ω)-set of strictly positive L × P -measure, where L is again
Lebesgue measure. Then assumption (U.1) implies that the inequalities (21) and (22) are strict on

a set of positive L × P -measure. Since P ∼ Pµ1,α1 ∼ Pµ2,α2

, this implies

0 <
[
Eµ

1,α1

− Eµ
2,α2

] [
g(X,µ1)− g(X,µ2) +

∫ T

0

(
f1(t,X, µ1)− f1(t,X, µ2)

)
dt

]
,

which contradicts (23). Thus α1 6= α2 must hold L × P -a.e., which yields

dPµ
1,α1

dP
= E

(∫ ·
0

σ−1b(t,X, α1
t )dWt

)
T

= E
(∫ ·

0

σ−1b(t,X, α2
t )dWt

)
T

=
dPµ

2,α2

dP
, a.s.

Thus µ1 = Pµ
1,α1 ◦ X−1 = Pµ

2,α2 ◦ X−1 = µ2, and ν1
t = δPµ1,α1◦(α1

t )
−1 = δPµ2,α2◦(α2

t )
−1 = ν2

t

a.e. �

7. Proof of finite-player approximation

This section addresses the finite-player game by proving Theorem 4.2, thus justifying the mean
field approximation. We work on the probability space of Section 4. Recall that under P , X1, X2, . . .
are i.i.d. with common law µ̂ and α1

t , α
2
t , . . . are i.i.d. with common law q̂t, for almost every t. By

symmetry, we may prove the result for player 1 only. For β ∈ An, define βα := (β, α2, . . . , αn) ∈ Ann.
We abuse notation somewhat by writing α in place of (α1, . . . , αn) ∈ Ann. Note that (α1)α = α and
Pn(α) = P , in our notation. For β ∈ An, let

J ′n(β) := EPn(βα)

[∫ T

0

f(t,X1, µ̂, q̂t, βt)dt+ g(X1, µ̂)

]
.

Note that J ′n(α1) does not depend on n. We divide the proof into three lemmas.

Lemma 7.1. Let F : C × Pψ(C) → R be empirically measurable, and suppose F (x, ·) is τψ(C)
continuous at µ̂ for each x ∈ C. Assume also that there exists c > 0 such that

|F (x, µ)| ≤ c
(
ψ(x) +

∫
ψ dµ

)
, for all (x, µ) ∈ C × Pψ(C).

Then limn→∞ E[|F (Xi, µn)− F (Xi, µ̂)|p] = 0 for each i and p ∈ [1, 2).

Proof. By symmetry, it suffices to prove this for i = 1. By replacing F (x, µ) with |F (x, µ)−F (x, µ̂)|,
assume without loss of generality that F ≥ 0 and F (x, µ̂) = 0 for all x. Define

νn :=
1

n− 1

n∑
i=2

δXi .
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By independence of X1 and νn, we have

E[F (X1, µn)] = E
[
E
[
F

(
x,

1

n
δx +

n− 1

n
νn
)]

x=X1

]
.

Now let ε > 0. By continuity of F (x, ·), there exist δ > 0 and φ1, . . . , φk ∈ Bψ(C) such that
F (x, ν) < ε whenever |

∫
φid(ν − µ̂)| < δ for all i = 1, . . . , k. By the law of large numbers,

lim
n→∞

∣∣∣∣∫ φi d

(
1

n
δx +

n− 1

n
νn − µ̂

)∣∣∣∣ = 0, a.s.

Thus lim supn→∞ F
(
x, 1

nδx + n−1
n νn

)
≤ ε a.s., for each ε > 0, and so F

(
x, 1

nδx + n−1
n νn

)
→ 0 a.s.

for each x. The growth assumption along with (S.2) yield

E
[
F 2(X1, µn)

]
≤ 2c2E

[
ψ2(X1) +

(∫
ψ dµn

)2
]
≤ 4c2E

[
ψ2(X1)

]
<∞,

and we conclude by the dominated convergence theorem. �

Lemma 7.2. We have limn→∞ supβ∈An |Jn,1(βα)− J ′n(β)| = 0.

Proof. Note that, for any β ∈ An,

|Jn,1(βα)− J ′n(β)| ≤
∫ T

0

EPn(βα)[Ft(X
1, µn) +Gt(X

1, qn(βαt ))]dt

+ EPn(βα)[|g(X1, µn)− g(X1, µ̂)|], (24)

where F : [0, T ]× C × Pψ(C)→ R and G : [0, T ]× C × P(A)→ R are defined by

Ft(x, µ) := sup
(a,q)∈A×P(A)

|f(t, x, µ, q, a)− f(t, x, µ̂, q, a)|,

Gt(x, q) := sup
a∈A
|f(t, x, µ̂, q, a)− f(t, x, µ̂, q̂t, a)|.

Theorem 18.19 of [2] ensures that both functions are (empirically) measurable. Since A and P(A)
are compact, Lemma 5.8 assures us that Ft(x, ·) is τψ(C)-continuous at µ̂ and that Gt(x, ·) is weakly
continuous, for each (t, x). Similar to the proof of Lemma 6.7, {dPn(βα)/dP : β ∈ An, n ≥ 1} are
bounded in Lp(P ), for any p ≥ 1. Since assumption (F.5) is uniform in t for f , we deduce from
Lemma 7.1 and the dominated convergence theorem that

lim
n→∞

sup
β∈An

[∫ T

0

EPn(βα)[Ft(X
1, µn)]dt+ EPn(βα)[|g(X1, µn)− g(X1, µ̂)|]

]
= 0.

It remains to check that the Gt term converges. Note that Gt(x, ·) is uniformly continuous, as
P(A) is compact. Also V1(qn(βαt ), qn(αt)) ≤ 2/n, since these are empirical measures of n points
which differ in only one point (recall that V1 denotes total variation). Hence

lim
n→∞

sup
β∈An

∣∣Gt(X1, qn(αt))−Gt(X1, qn(βαt ))
∣∣ = 0, a.s.

Since α1
t , α

2
t , . . . are i.i.d. with common law q̂t, we have qn(αt)→ q̂t weakly a.s. (see [39]), and thus

Gt(X
1, qn(αt)) → 0 a.s. Note that dPn(βα)/dP are bounded in Lp(P ) for any p ≥ 1 and that the

integrands above are bounded in Lp(P ) for any p ∈ [1, 2), by (F.5) and the same argument as in
the proof of Lemma 7.2. The dominated convergence theorem completes the proof. �

Lemma 7.3. For any β ∈ An, J ′n(α1) ≥ J ′n(β).
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Proof. We use the comparison principle for BSDEs. Fix n and β ∈ An. Define φ, φ̃ : [0, T ]×Ω×Rd →
R by

φ(t, z) := sup
a∈A

[
f(t,X1, µ̂, q̂t, a) + z ·

(
σ−1b(t,X1, a)− σ−1b(t,X1, α1

t )
)]

φ̃(t, z) := f(t,X1, µ̂, q̂t, βt) + z ·
(
σ−1b(t,X1, βt)− σ−1b(t,X1, α1

t )
)

By Pardoux and Peng [36], there exist unique solutions (Y,Z1, . . . , Zn) and (Ỹ , Z̃1, . . . , Z̃n) of the
BSDEs {

dYt = −φn(t, Z1
t )dt+

∑n
j=1 Z

j
t dW

j
t

YT = g(X1, µ̂),{
dỸt = −φ̃n(t, Z̃1

t )dt+
∑n
j=1 Z̃

j
t dW

j
t

ỸT = g(X1, µ̂).

The unique solution of the first BSDE is in fact given by Z2 ≡ . . . ≡ Zn ≡ 0, where (Y, Z1) are
X1-progressively measurable and solve the BSDE{

dYt = −
[
H(t,X1, µ̂, q̂t, Z

1
t )− Z1

t · σ−1b(t,X1, α1
t )
]
dt+ Z1

t dW
1
t

YT = g(X1, µ̂).

This is due to the X1-measurability of the driver and terminal condition of this BSDE. Recall that
α1 is optimal for the mean field problem, and thus it must maximize the Hamiltonian; that is,

H(t,X1, µ̂, q̂t, Z
1
t ) = h(t,X1, µ̂, q̂t, Z

1
t , α

1
t ) = f(t,X1, µ̂, q̂t, α

1
t ) + Z1

t · σ−1b(t,X1, α1
t ).

Thus dYt = −f(t,X1, µ̂, q̂t, α
1
t )dt+ Z1

t dW
1
t . Since W 1 is a Wiener process under P , taking expec-

tations yields E[Y0] = J ′n(α1), which we note does not depend on n.

Similarly, note that W j , j ≥ 2 are Wiener processes under Pn(βα), as is W β,1. Hence, we

rewrite Ỹ as follows:{
dỸt = −f(t,X1, µ̂, q̂t, βt)dt+ Z̃1

t dW
β,1
t +

∑n
j=2 Z̃

j
t dW

j
t

ỸT = g(X1, µ̂).

Take expectations, noting that P = Pn(βα) on Fn0 , to see E[Ỹ0] = EPn(βα)[Ỹ0] = J ′n(β). Finally,

since φ ≥ φ̃, the comparison principle for BSDEs yields Y0 ≥ Ỹ0, and thus J ′n(β) ≤ J ′n(α1). �

Proof of Theorem 4.2. Simply let εn = 2 supβ∈An |Jn,1(βα) − J ′n(β)|. Then εn → 0 by Lemma 7.2,
and Lemma 7.3 yields, for all β ∈ An,

Jn,1(βα) ≤ 1

2
εn + J ′n(β) ≤ 1

2
εn + J ′n(α1) ≤ εn + Jn,1(α).

�

Proof of Proposition 5.1. We simply modify the previous proof, in light of the special structure of
the price impact model. Namely, the inequality (24) becomes

εn = 2 sup
β∈An

|Jn,1(βα)− J ′n(β)| ≤ 2 sup
β∈An

EPn(β)

∫ T

0

∣∣∣∣γX1
t

∫
A

c′d(qnt (βα)− q̂t)
∣∣∣∣ dt.

Use Hölder’s inequality to get

εn ≤ 2γE
[
‖X1‖4

]1/4
sup
β∈An

E

[(
dPn(β)

dP

)4
]1/4 ∫ T

0

dtE

[(∫
A

c′d(qnt (βα)− q̂t)
)2
]1/2

.
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Assumption (S.2) with ψ(x) = ec1‖x‖ implies that ‖X1‖ has finite moments of all orders. Again,
{dPn(βα)/dP : β ∈ An, n ≥ 1} are bounded in Lp(P ) for any p ≥ 1. So it suffices to show

sup
β∈An

E

[(∫
A

c′d(qnt (βα)− q̂t)
)2
]1/2

≤ C/
√
n,

for some C > 0. This will follow from two inequalities: An easy calculation gives∣∣∣∣∫
A

c′d(qnt (βα)− q̂t)
∣∣∣∣ ≤ 2C1/n+

∣∣∣∣∫
A

c′d(qnt (α)− q̂t)
∣∣∣∣ ,

where C1 = supa∈A |c′(a)|. Since α1
t , α

2
t , . . . are i.i.d. with common law q̂t,

E

[(∫
A

c′d(qnt (α)− q̂t)
)2
]

= Var(c′(α1
t ))/n ≤ 4C2

1/n.

�
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en probabilité, Séminaire de probabilités de Strasbourg 15 (1981), 529–546.
28. J. Jacod and A.N. Shiryaev, Limit theorems for stochastic processes, Grundlehren der mathematischen Wis-

senschaften, Springer-Verlag, 1987.
29. A. Jadbabaie, J. Lin, and A.S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor

rules, IEEE Transactions on Automatic Control 48 (2003), no. 6, 988–1001.

30. N. El Karoui, S. Peng, and M.C. Quenez, Backward stochastic differential equations in finance, Mathematical
Finance 7 (1997), no. 1, 1–71.

31. A. Lachapelle and M.T. Wolfram, On a mean field game approach modeling congestion and aversion in pedestrian

crowds, Transportation Research Part B: Methodological 45 (2011), no. 10, 1572 – 1589.
32. J.M. Lasry and P.L. Lions, Mean field games, Japanese Journal of Mathematics 2 (2007), 229–260.
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